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Abstract

Given a graph G, let fG(n,m) be the minimal number k such that every k indepen-

dent n-sets in G have a rainbow m-set. Let D(2) be the family of all graphs with maxi-

mum degree at most two. Aharoni et al. (2019) conjectured that (i) fG(n, n−1) = n−1

for all graphs G ∈ D(2) and (ii) fCt
(n, n) = n for t ≥ 2n+1. Lv and Lu (2020) showed

that the conjecture (ii) holds when t = 2n + 1. In this article, we show that the con-

jecture (ii) holds for t ≥ 1

3
n2 + 44

9
n. Let Ct be a cycle of length t with vertices being

arranged in a clockwise order. An ordered set I = (a1, a2, . . . , an) on Ct is called a

2-jump independent n-set of Ct if ai+1 − ai = 2 (mod t) for any 1 ≤ i ≤ n − 1. We

also show that a collection of 2-jump independent n-sets F of Ct with |F| = n admits

a rainbow independent n-set, i.e. (ii) holds if we restrict F on the family of 2-jump

independent n-sets. Moreover, we prove that if the conjecture (ii) holds, then (i) holds

for all graphs G ∈ D(2) with ce(G) ≤ 4, where ce(G) is the number of components of

G isomorphic to cycles of even lengths.

1 Introduction

Let F = (F1, F2, ..., Fn) be a collection of sets (not necessarily distinct), a (partial)

rainbow set of F is a set R = {xi1 , xi2 , ..., xim} such that xij ∈ Fij for 1 ≤ i1 < i2 < . . . <

ik ≤ m ≤ n. Given a graph G and a collection F of independent sets of G, a rainbow set

R of F is called a rainbow independent set of (F , G) if R is also an independent set of G.

An m-set is a set of size m. Let I be a family of sets. Write F ⊑ I for a collection of

∗The work was supported by NNSF of China (No. 12071453) and Anhui Initiative in Quantum Informa-

tion Technologies (AHY150200) and National Key Research and Development Project (SQ2020YFA070080).
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sets (not necessarily distinct) F with each member of F belonging to I. Given a graph G

and an integer n, write I(G) (resp. In(G) or In+(G)) for the family of independent sets

(resp. independent sets such that each of them has uniform size n or of size at least n) of

G. Given a graph G and integers m,n with m ≤ n, define

fG(n,m) = min{|F| : F ⊑ In(G) and (F , G) has a rainbow indepent m-set}.

Given a family G of graphs, let

fG(n,m) = sup{fG(n,m) : G ∈ G}.

Clearly, a rainbow matching in a graph is a rainbow independent set in its line graph.

Partially motivated by the study of the rainbow matching problem in graphs (there are

fruitful results about the problem, one can refer [1, 2, 4, 5, 6, 7, 8] for more details),

Aharoni, Briggs, Kim and Kim studied the rainbow independent set problem in certain

classes of graphs and proposed several conjectures in [3].

Let m ≤ n. Clearly,

fG(n,m) ≥ m. (1)

Aharoni, et al. [3] conjectured that the lower bound in (1) is tight for fG(n, n − 1) with

∆(G) ≤ 2 and fCt(n, n), where Ct is a cycle with t vertices. Write D(2) for the family of

graphs with maximum degree two.

Conjecture 1.1 (Conjecture 2.14 in [3]). fD(2)(n, n− 1) = n− 1.

Conjecture 1.2 (Conjecture 2.9 in [3]). If t ≥ 2n+ 1, then fCt(n, n) = n.

The following proposition can be easily checked (also has been observed in [2, 3, 8]).

Proposition 1. fC2n
(n, n) = 2n − 1.

When t = 2n + 1, Conjecture 1.2 was confirmed by Lv and Lu [10].

Theorem 1.3 (Theorem 1 in [10]). fC2n+1
(n, n) = n.

In this article, we first show that Conjecture 1.1 is true when G is 2-regular and |V (G)| ∈

{2n− 1, 2n} and then we show that Conjecture 1.2 seems stronger than Conjecture 1.1, i.e.

Conjecture 1.2 implies Conjecture 1.1 for graphs G ∈ D(2) with ce(G) ≤ 4, where ce(G) is

the number of components of G isomorphic to cycles of even lengths. So we concentrate

our attention on Conjecture 1.2 and prove that this conjecture holds when t is large. The

main results of the article are listed below.

Theorem 1.4. If G is 2-regular with 2n− 1 ≤ |V (G)| ≤ 2n then fG(n, n− 1) = n− 1.
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Theorem 1.5. If fCℓ
(n, n) = n for ℓ ≥ 2n + 1, then fG(n, n − 1) = n − 1 for all graphs

G ∈ D(2) with ce(G) ≤ 4, provided that In(G) 6= ∅.

Theorem 1.6. fCt(n, n) = n for t > 1
3n

2 + 44
9 n.

Given integers a, b with a ≤ b, let [a, b] = {a, a+1, . . . , b−1, b}, and write [b] for [1, b] for

simplicity. Let Ct be a cycle with vertex set [a, a+ t−1] and edge set {a(a+1), . . . , (a+ t−

2)(a+t−1), (a+t−1)a}. For t ≥ 2n+1 and 2 ≤ k ≤ t−2, an ordered set I = (a1, a2, . . . , an)

is called a k-jump independent set of Ct if ai+1 − ai = k (mod t) for any 1 ≤ i ≤ n − 1.

We call a1 the start of I, denoted by s(I), and an the end of I. Let Ik
n(G) be the family

of all k-jump independent n-sets in G. We prove that Conjecture 1.2 is true if we restrict

F ⊑ I2
n(Ct).

Theorem 1.7. Given integers t, n with t ≥ 2n + 1, if F ⊆ I2
n(Ct) with |F| = n, then F

has a rainbow independent n-set.

Remark: Any independent n-set of C2n+1 must be a 2-jump set. So the theorem can be

viewed as a generalization of Theorem 1.3 in some sense.

We give a bit more definitions and notation. For a collection F of sets and a given set

A, denote F −A = {I −A : I ∈ F} and F ∩A = {I ∩A : I ∈ F}. For a set B of numbers

and a given number i, let B + i = {b + i : b ∈ B}. For a graph G and a collection F of

independent sets in G, let v ∈ V (G), define CF (v) = {I : v ∈ I ∈ F} to be the list of v and

cF (v) = |CF (v)| the list number of v. For a rainbow independent set R of F and v ∈ R,

let CR(v) be the color (i.e. the independent set in the list CF (v)) assigned to v and let

CR = ∪v∈R{CR(v)}.

The rest of the paper is arranged as follows. We give a greedy algorithm to find a

rainbow independent set for a given graph G and F ⊑ I(G) and some preliminaries in

Section 2. We prove Theorems 1.4 and 1.5 in Section 3. In Sections 4 and 5, we give the

proofs of Theorem 1.6 and 1.7. We also give some discussions in the last section.

2 A greedy algorithm and some preliminaries

First, we give a greedy algorithm (GRIS) to find a rainbow independent set in a given

graph G and F ⊑ I(G).

It is easy to check that the output R = GRIS(G,F) is a rainbow independent set of

(F , G). The following is a simple fact when we apply GRIS to a path.

Lemma 2.1. Let Pt be a path with vertex set [t] and edge set {12, 23, . . . , (t − 1)t} and

F ⊑ I(n−1)+(Pt) with |F| ≥ n − 1. Suppose t ≥ 2n − 1. Let R = GRIS(Pt,F) and

C = C(Pt,F). If |R| < n, then |R| = n− 1 and, for any I ∈ F\C, we have |I| = n− 1 and

|I ∩ {a, a + 1}| = 1 for any a ∈ R.
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Algorithm 2.1: GREEDY-RAINBOW-INDEPENDENT-SET (GRIS(G,F))

Input: A graph G with ordered vertex set A = {a1, a2, . . . , at}, and a collection of

independent set F = (I1, ..., Ik) ⊑ I(G)

Output: A rainbow independent set R of F

1 Set R = C = ∅ and j = 0.

2 Reset j := j + 1. If CF (aj) \ C = ∅ or CF (aj) \ C 6= ∅ but R ∪ {aj} is not an independent

set, go to step 3; otherwise, reset R := R ∪ {aj} and choose Ii ∈ CF (aj)\C with the

minimal index i and reset C := C ∪ {Ii}.

3 If j < t, return to step 2; else if j = t, then stop and output R = GRIS(G,F) and

C = C(G,F). We call C(G,F) a greedy color set.

Proof. Suppose |R| = |C| = k < n. Pick I ∈ F \ C. Then, for any i ∈ I, R ∪ {i} can not

be a larger independent set of Pt. Thus i ∈ R or i is a neighbor of some vertex in R, i.e.

i ∈ (R − 1) ∪ R ∪ (R + 1). If i /∈ R ∪ (R + 1), then i ∈ R − 1, i.e., i + 1 ∈ R. But at

step i of the algorithm GRIS, i will be added to R since i− 1 /∈ R. This is a contradiction

to i + 1 ∈ R. Hence i ∈ R ∪ (R + 1). Since I is an independent set, |I ∩ {a, a + 1}| ≤ 1

for any a ∈ R. So n − 1 ≤ |I| ≤ |R| = k < n. Thus we have |I| = |R| = k = n − 1 and

|I ∩ {a, a + 1}| = 1 for any a ∈ R.

In Lemma 2.1, if we choose F ∈ In(Pt) with |F| = n then |R| must be n. So we have

the following corollary.

Corollary 2.2. Suppose t ≥ 2n− 1. Then fPt(n, n) = n.

Remark: Note that Aharoni et al. have proved that for the family of chordal graphs T

and m ≤ n, fT (n,m) = m (Theorem 3.20 in [3]). So, in fact, we have the following result.

Corollary 2.3. Suppose t ≥ 2n− 1 and Ft is a forest of order t. Then fFt(n,m) = m for

m ≤ n.

Corollary 2.4. Let Ct be a cycle with vertex set [t] and edge set {12, 23, . . . , (t − 1)t, t1}.

Suppose t ≥ 2n. Then we have

(A) fCt(n, n − 1) = n− 1.

(B) Let m be the maximum integer such that fCt(n,m) = n. Then m ≥ n− 1. Suppose

F ⊑ In(Ct) with |F| = n. If m = n− 1 then the following hold.

(B1) cF (i) > 0 for any i ∈ [t].

(B2) If CF (i) = I for some i ∈ [t], then I ∈ CF (i± 2).

(B3) If cF (i) = 1 for some i ∈ [t] and t ≥ 2n+ 1, then cF (i± 1) > 1.

Proof. Suppose F ⊑ In(Ct) with |F| = k. Let Pt−1 = Ct − {t} and F ′ = F − {t}. Then

F ′ ⊑ I(n−1)+(Pt−1). Note that t− 1 ≥ 2n − 1. We can apply the algorithm GRIS to Pt−1

and F ′. Let R = GRIS(Pt−1,F
′). Then |R| ≤ |F ′| = k.
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(A) If k = n− 1 then |R| ≤ k < n. By Lemma 2.1, |R| = n− 1. Clearly, R is a rainbow

independent set of (F , Ct) too. This implies that fCt(n, n − 1) = n− 1.

(B) Suppose k = n. Then |R| ≤ k = n. If |R| < n, by Lemma 2.1, we have |R| = n− 1.

So we have m ≥ |R| ≥ n− 1. Now we assume m = n− 1.

(B1) If there is a vertex i ∈ [t] with cF (i) = 0, without loss of generality, assume i = t,

then F ′ = F −{t} = F ⊑ In(Pt−1). Note that t−1 ≥ 2n−1. By Corollary 2.2, we can find

a rainbow independent n-set R′ of (F ′, Pt−1), which is also a rainbow independent n-set of

(F , Ct), a contradiction to the maximality of m.

(B2) Without loss of generality, assume CF (t) = {I}. By the symmetry of Ct, it is

sufficient to prove 2 ∈ I. Recall that F ′ = F − {t} ⊑ I(n−1)+(Pt−1). Let C = C(Pt−1,F
′).

Note that m = |R| = |GRIS(Pt−1,F
′)| = |C| = n − 1 and |F ′| = n. We have |F ′ \ C| = 1.

Let F ′ \ C = {I ′}. By Lemma 2.1, we have |I ′| = n − 1 and |I ′ ∩ {a, a + 1}| = 1 for every

a ∈ R. Since I is the only independent set containing t in F , we have I ′ = I \ {t}. By

(B1), CF ′(1) = CF (1) 6= ∅. So by the processing of the algorithm GRIS, 1 is the first vertex

added to R. Hence |(I \ {t}) ∩ {1, 2}| = 1. Since 1t ∈ E(Ct) and t ∈ I, we have 1 /∈ I. This

implies that 2 ∈ I.

(B3) If not, there are two consecutive vertices i, i+1 ∈ [t] with |CF (i)| = |CF (i+1)| = 1.

Without loss of generality, assume i = t − 3 and CF (t − 3) = {I1} and CF (t − 2) = {I2}.

Let Pt−6 = Ct− [t−5, t] and F ′ = (F \{I1, I2})− [t−5, t]. Since I1 is the only member of F

containing t−3 and I2 is the only one of F containing t−2, we have I∩{t−3, t−2} = ∅ for

any I ∈ F \{I1, I2}. So |I ∩ [t−5, t]| ≤ 2 for any I ∈ F \{I1, I2}. Thus F
′ ⊑ I(n−2)+(Pt−6).

Note that t− 6 ≥ 2n+1− 6 = 2(n− 2)− 1. By Corollary 2.2, we have fPt−6
(n− 2, n− 2) =

n − 2. So we have a rainbow independent (n − 2)-set R of (Pt−6,F
′). This is also a

rainbow independent (n − 2)-set of (F \ {I1, I2}, Ct). Recall that CF (t − 3) = {I1} and

CF (t − 2) = {I2}. By (B2), I1 ∈ CF (t − 1) and I2 ∈ CF (t − 4). Therefore, by adding

t − 4 and t − 1 to R, we get a rainbow independent n-set R ∪ {t − 1, t − 4} of (F , Ct), a

contradiction to m = n− 1.

3 Proofs of Theorem 1.4 and 1.5

An odd (resp. even) cycle is a cycle of odd length (resp. even length).

Proof of Theorem 1.4. We prove by induction on the number of components c(G) of G. If

c(G) = 1, then G is a cycle. By Corollaries 2.4 (A), we have fG(n, n − 1) = n − 1. Now

suppose c(G) > 1 and the result holds for all 2-regular graphs H with c(H) < c(G). Let

F = (I1, I2, . . . , In−1) ⊑ In(G).
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If G has a component isomorphic to a cycle C2m+1 for some m ∈ [n − 1], then |Ii ∩

V (C2m+1)| = m for every i ∈ [n − 1] because 2n − 1 ≤ |V (G)| ≤ 2n. Let F1 = (I1 ∩

V (C2m+1), . . . , Im ∩ V (C2m+1)). Then F1 ⊑ Im(C2m+1). By Theorem 1.3, we can find

a rainbow independent m-set R1 of (F1, C2m+1). Let H = G − V (C2m+1) and F2 =

(Im+1 ∩ V (H), . . . , In−1 ∩ V (H)). Then H is 2-regular with |V (H)| = 2(n − m) − 1 and

F2 ⊑ In−m(H). By the induction hypothesis, there is a rainbow independent (n−m−1)-set

R2 of (F2,H). So R1 ∪R2 is a rainbow independent (n− 1)-set of (F , G), we are done.

Now suppose that every component of G is an even cycle. Let G = C1 ∪ C2 ∪ . . . ∪ Ck

with |V (Ci)| = 2ni for i ∈ [k]. Then |Ii ∩ V (Cj)| = nj for every i ∈ [n − 1] and j ∈ [k].

Let H = C2 ∪ . . . ∪ Ck. Then F ′ = (In1+1 ∩ V (H), . . . , In−1 ∩ V (H)) ⊑ In−n1
(H). By the

induction hypothesis, there is a rainbow independent (n − n1 − 1)-set R′ of (F ′,H). So

|R′ ∩ V (Cj)| = nj for all j ∈ [2, k] but exactly one exception, without loss of generality,

say C2, with |R′ ∩ V (C2)| = n2 − 1. Let J = ∪v∈R′∩V (C2)CR′(v). Then |J | = n2 − 1. Let

F1 = (Ij : j ∈ [n1] or Ij ∈ J) and assume n1 ≤ n2. Then |F1| = n1 + n2 − 1 ≥ 2n1 − 1 and

F1 ∩ V (C1) ⊑ In1
(C1). So we have a rainbow independent n1-set R1 of (F1 ∩ V (C1), C1)

by Proposition 1. Let F2 = F1 \ CR1
. Then |F2| = n2 − 1 and F2 ∩ V (C2) ⊑ In2

(C2). By

Corollary 2.4 (A), there is a rainbow independent (n2−1)-set of (F2∩V (C2), C2). Therefore,

R′ \ (R′ ∩ V (C2)) ∪ R1 ∪ R2 is rainbow independent (n − 1)-set of (F , G). This completes

the proof.

Let V be a finite set and I ⊑ 2V . For a subset S ⊂ V , define

h(I, S) = max{m : |{I ∈ I : |I ∩ S| ≥ m}| ≥ m}.

Lemma 3.1. Let W be a finite set and V ⊆ W . Suppose I ⊑ 2W is a collection of n+-sets

with |I| = n and h(I, V ) = n. Let (V1, V2) be a partition of V and let h(I, Vi) = mi for

i = 1, 2. Then we have m1 +m2 ≥ n. Furthermore,

(i) for each ℓ ≤ m1 +m2 −n, there exists a partition (I1,I2) of I such that h(I1, V1) =

m1 − ℓ and h(I2, V2) = n−m1 + ℓ;

(ii) if m1 +m2 − n = 0, then |I ∩ V3−i| ≤ m3−i for every I ∈ Ii and i = 1, 2;

(iii) if m1 + m2 − n > 0 and ℓ ≤ m1 + m2 − n − 1, then we can choose I2 with

|I ∩ V2| ≥ n−m1 + ℓ+ 1 for every I ∈ I2.

Proof. Assume I = (I1, I2, . . . , In) with |I1 ∩ V1| ≥ |I2 ∩ V1| ≥ . . . ≥ |In ∩ V1|. By the

definition ofm1, |Ii∩V1| ≥ m1 for each 1 ≤ i ≤ m1 and |Ij∩V1| ≤ m1 for eachm1+1 ≤ j ≤ n.

So we have |Ij ∩ V2| ≥ n −m1 for each m1 + 1 ≤ j ≤ n. By the definition of m2, we have

m2 ≥ n−m1, i.e. m1 +m2 ≥ n.

(i) Let ℓ ≤ m1 +m2 − n and I ′
1 = {Ii : |Ii ∩ V1| ≥ m1 − ℓ} and I ′

2 = {Ii : |Ii ∩ V2| ≥

n−m1+ ℓ}. By the definition of m1 and m2, we have |I
′
1| ≥ m1 and |I ′

2| ≥ m2. Since every
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|Ii| ≥ n, we have either |Ii∩V1| ≥ m1− ℓ or |Ii∩V2| > n−m1+ ℓ. Hence I ′
1∪I ′

2 = I and so

|I ′
1\I

′
2| ≤ n−m2 ≤ m1−ℓ. Therefore, we can choose a subset I1 of I with I ′

1\I
′
2 ⊆ I1 ⊆ I ′

1

and |I1| = m1 − ℓ. Let I2 = I \ I1. Clearly, h(I1, V1) = m1 − ℓ and h(I2, V2) = n−m1 + ℓ.

(ii) Clearly, if ℓ = m1 +m2 − n = 0 then |I ∩ V3−i| ≤ n−mi = m3−i for any I ∈ Ii and

i = 1, 2.

(iii) If m1+m2−n > 0 and ℓ ≤ m1+m2−n−1, then we can reset I ′
2 = {Ii : |Ii∩V2| ≥

n−m1 + ℓ+1}. Note that n−m1 + ℓ+1 ≤ m2. All discussions in (i) keep true. Thus, we

have the desired partition (I1,I2) of I with |I ∩ V2| ≥ n−m1 + ℓ+ 1 for every I ∈ I2.

Now we give the proof of Theorem 1.5.

Proof of Theorem 1.5: Suppose to the contrary that there is a graph G ∈ D(2) with ce(G) ≤

4 and an F = (I1, I2, . . . , In−1) ⊑ In(G) such that G contains no rainbow independent

(n − 1)-set of (F , G). Since G ∈ D(2), each component of G is a path or a cycle. Assume

that G is a minimum counterexample. We claim that G contains no component isomorphic

to a path or an odd cycle.

Claim 1. G contains no component H with fH(h, h) = h, where h = h(F , V (H)). In

particular, G contains no component isomorphic to a path or an odd cycle.

Proof. Suppose to the contrary that there is a component H of G with fH(h, h) = h,

where h = f(F , V (H)). Let G′ = G − V (H). Without loss of generality, assume |I1 ∩

V (H)| ≥ |I2 ∩ V (H)| ≥ . . . ≥ |In−1 ∩ V (H)|. So |Ii ∩ V (H)| ≥ h for every 1 ≤ i ≤ h and

|Ij ∩V (G′)| ≤ h for every h+1 ≤ j ≤ n−1 by the definition of h. Let F1 = (I1, . . . , Ih) and

F2 = (Ih+1, . . . , In−1). Then F1 ⊑ Ih+(H) and F2 ⊑ I(n−h)+(G
′). Since fH(h, h) = h, we

can find a rainbow independent h-set R1 of (F1,H). Since G is a minimum counterexample,

we can find a rainbow independent (n − h− 1)-set R2 of (F2, G
′). Therefore, R1 ∪R2 is a

rainbow independent (n− 1)-set of (F , G), a contradiction.

If H is isomorphic to a path or an odd cycle. Then |V (H)| ≥ 2h+1 if H is an odd cycle

and 2h otherwise. By the assumption fCs(h, h) = h when s ≥ 2h+1 and Corollary 2.3, we

always have fH(h, h) = h. We are done.

By Claim 1, we may assume that G consists of k even cycles, namely G = ∪k
i=1Ci,

where |V (Ci)| = 2ni, 1 ≤ i ≤ k. By Corollary 2.4 (A), k ≥ 2. Let Vi = V (Ci). By Claim 1,

h(F , Vi) = ni for i ∈ [k]. Let Fi = {Ij ∈ F : |Ij ∩ Vi| = ni}, i ∈ [k]. Then |Fi| ≥ ni for

i ∈ [k]. Denote t =
∑k

i=1 ni − n.

Claim 2. t ≥ k − 1.
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Proof. Suppose to the contrary that t ≤ k − 2. Note that n = |I| =
∑k

i=1 |I ∩ Vi| for every

I ∈ F . So there are at least two cycles Ci, i ∈ [k] with |I ∩ Vi| ≥ ni, i.e., every I lies in at

least two of {Fi, i ∈ [k]} for every I ∈ F . Therefore,

k
∑

i=1

|Fi| ≥ 2|F| = 2(n− 1) = 2

k
∑

i=1

ni − 2t− 2 >

k
∑

i=1

(2ni − 2).

Thus there exists at least one i ∈ [k], say i = 1, such that |F1| ≥ 2n1− 1. By Proposition 1,

we can find a rainbow independent n1-set R1 of (F1, C1). By the minimality of G, we can

find a rainbow independent (n − n1 − 1)-set R2 of (F \ CR1
, G − V1). Hence R1 ∪ R2 is a

rainbow independent (n− 1)-set of (F , G), a contradiction.

Let nk = min{n1, . . . , nk}. By Corollary 2.4 (A), there is a rainbow independent (nk−1)-

set Rk of (Fk, Ck). Let A = F \ CRk
. Then

|A| = n− 1− (nk − 1) =

k−1
∑

i=1

ni − t

and

h(A, G− Vk) =

k−1
∑

i=1

ni − t

because |I ∩V (G−Vk)| ≥ n−nk =
∑k−1

i=1 ni− t for every I ∈ A. If k = 2, then G−Vk = C1

and so h(A, C1) = n1 − t < n1 because t ≥ k − 1 = 1. By the assumption fCs(n, n) = n for

s ≥ 2n + 1, we have a rainbow independent (n1 − t)-set R1 of (A, C1). Hence R1 ∪R2 is a

rainbow independent (n− 1)-set of (F , G), a contradiction.

Now assume that k ≥ 3. Let V̂i = V (G − Vk − Vi) and h(A, Vi) = mi for i ∈ [k − 1].

Then V̂i 6= ∅. Applying Lemma 3.1 to Vi ∪ V̂i, we have mi + h(A, V̂i) ≥ |A|.

Claim 3. For i ∈ [k − 1],

mi + h(A, V̂i) =

{

|A|+ 1 if mi = ni

|A| otherwise.

Proof. We only prove the case i = 1 and the other cases can be shown similarly. If m1 = n1

and m1+h(A, V̂1) = |A|, then by Lemma 3.1 (i) and (ii), A can be partitioned into A1∪A2

such that h(A1, V1) = n1 and h(A1, V̂1) = |A| − n1, furthermore, for any I ∈ A1, we have

|I ∩ V̂1| ≤ |A| − n1. Thus, for every I ∈ A1, |I ∩ Vk| = |I ∩ (V1 ∪ Vk)| − |I ∩ V1| ≥

n− (|A|−n1)−n1 = nk, i.e. A1 ⊂ Fk. Hence |Fk| ≥ 2nk−1. By Proposition 1, we can find

a rainbow independent nk-set R′
k of (Fk, Ck). Let F ′ = F \ CR′

k
. Then |F ′| = n − 1 − nk

and |I ∩ V (G− Vk)| ≥ n− nk for every I ∈ F ′. By the minimality of G, there is a rainbow
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independent (n−1−nk)-set R
′ of (F ′, G−Vk). Therefore, R

′
k∪R′ is a rainbow independent

(n− 1)-set of (F , G), a contradiction.

Now assume m1+h(A, V̂1) ≥ |A|+2 if m1 = n1, or m1+h(A, V̂1) ≥ |A|+1 if m1 < n1.

By applying Lemma 3.1 (i) and (iii) to V1 ∪ V̂1, we can partition A into A1 ∪A2 such that

(1) h(A1, V1) = n1−1, h(A2, V̂1) = |A|+1−n1 and for any I ∈ A2, |I ∩ V̂1| ≥ |A|+2−n1 if

m1 = n1 (choose ℓ = 1) (which implies that |A1| = n1 − 1), or h(A1, V1) = m1, h(A2, V̂1) =

|A| − m1 and for any I ∈ A2, |I ∩ V̂1| ≥ |A| + 1 − m1 if m1 < n1 (choose ℓ = 0) (which

implies that |A1| = m1). By the assumption fCs(m,m) = m for s ≥ 2m + 1, we have a

rainbow independent |A1|-set R1 of (A1, C1). On the other hand, by the minimality of G,

we have a rainbow independent |A2|-set R2 of (A2, G− Vk − V1). Hence R1 ∪R2 ∪Rk is a

rainbow independent (n− 1)-set of (F , G), a contradiction too.

If k = 3, then mi + h(A, V̂i) = mi + h(A, V3−i) = mi +m3−i for i = 1, 2. So we have

either mi = ni for i = 1, 2 or mi < ni for i = 1, 2 by Claim 3. For the former case, we have

n1+n2 = m1+m2 = |A|+1 = n−n3+1. So t = n1+n2+n3−n = 1, which is a contradiction

to t ≥ k − 1. For the latter case, we have m1 +m2 = |A| = n − n3. Applying Lemma 3.1

(i) and (ii) to V1 ∪ V2, we can partition A into A1 ∪A2 such that h(A1, V1) = m1 < n1 and

h(A2, V2) = |A| −m1 = m2 < n2. By the assumption fCs(m,m) = m for s ≥ 2m + 1, we

obtain a rainbow independent mi-set Ri of (Ai, Ci) for i = 1, 2. Thus R1 ∪ R2 ∪ R3 is a

rainbow independent (n− 1)-set of (F , G), a contradiction.

Now, we assume k = 4. Hence t ≥ k− 1 = 3. We distinguish two cases according to the

relations of mi and ni for i ∈ [3].

If there exists some i ∈ [3], say i = 3, such that m3 < n3. By Claim 3, |A| = m3 +

h(A, V1 ∪ V2). First, we claim that we can choose A (recall that A = F \ CR4
) with

m3 = h(A, V3) = n3 − 1. To show this, we choose CR4
such that |F3 ∩ A| is as large

as possible. If |F3 ∩ A| ≥ n3 − 1, then h(A, V3) ≥ n3 − 1, we are done. So, assume

|F3 ∩A| < n3 − 1. By applying Lemma 3.1 (i) and (ii) on V3 ∪ V̂3, we can partition A into

A3∪A
′
3 such that h(A3, V3) = m3 and h(A′

3, V1∪V2) = n−n4−m3, moreover, we can choose

an I0 ∈ A′
3 such that |I0 ∩ (V1 ∪ V2)| = n− n4 −m3 and |I0 ∩ V3| ≤ m3. This implies that

I0 ∈ F4 but I0 /∈ F3. Therefore, reset A by replacing I0 with some set of F3∩CR4
, we obtain

a new A with larger |F3 ∩A|, a contradiction. Now we have m3 = h(A, V3) = n3− 1 and so

h(A, V1∪V2) = |A|−m3 = n1+n2−t+1. Again applying Lemma 3.1 (i) and (ii) to V3∪V̂3, we

can partition A into A3 and A′
3 with h(A3, V3) = n3−1 and h(A′

3, V1∪V2) = n1+n2− t+1,

furthermore, for any I ∈ A′
3, |I ∩ V3| ≤ n3 − 1 (this also implies that |A3| = n3 − 1 and

|A′
3| = n1 + n2 − t + 1). By the assumption fCs(m,m) = m for s ≥ 2m + 1, we can find

a rainbow independent (n3 − 1)-sets R3 of (A3, C3). We claim that there is at least one of

h(A′
3, Vi), i = 1, 2 with h(A′

3, Vi) = ni. Otherwise, we have m′
i = h(A′

3, Vi) < ni, i = 1, 2.
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Applying Lemma 3.1 (i) to V1 ∪ V2, we have m′
1 + m′

2 ≥ |A′
3| and A′

3 can be partitioned

into B1 and B2 with h(B1, V1) = m′
1 and h(B2, V2) = |A′

3| − m′
1 ≤ m′

2 (choose ℓ = 0). By

the assumption fCs(m,m) = m for s ≥ 2m+ 1, we have a rainbow independent m′
1-set R1

of (B1, C1) and a rainbow independent (|A′
3| −m′

1)-set of (B2, C2). Note that

4
∑

i=1

|Ri| = m′
1 + |A′

3| −m′
1 + n3 − 1 + n4 − 1 = n− 1.

Hence R1∪R2∪R3∪R4 is a rainbow independent (n−1)-set of (F , G), a contradiction. By

this claim, without loss of generality, assume h(A′
3, V1) = n1 and so h(A′

3, V2) = n2 − t+1.

Again by Lemma 3.1 (i) and (ii), A′
3 can be partitioned into B1 and B2 with h(B1, V1) = n1

and h(B2, V2) = n2 − t + 1, furthermore, |I ∩ V1| = n1 and |I ∩ V2| ≤ n2 − t + 1 for any

I ∈ B1. Hence |I ∩ V4| = n −
∑3

i=1 |I ∩ Vi| ≥ n − n1 − (n2 − t + 1) − (n3 − 1) = n4 for

any I ∈ B1 and so B1 ⊂ F1 ∩ F4. Therefore, we have |F4| ≥ n1 + n4 > 2n4 − 1. By

Proposition 1, we can find a rainbow independent n4-set R
′
4 of (F4, C4). Let F

′ = F \CR′

4
.

Then |F ′| = n−1−n4 and |I ∩ (V1∪V2∪V3)| = n−n4 for every I ∈ F ′. By the minimality

of G, there is a rainbow independent (n − 1− n4)-set R
′ of (F ′, C1 ∪ C2 ∪ C3). Therefore,

R′
4 ∪R′ is a rainbow independent (n− 1)-set of (F , G), a contradiction too.

Now assume mi = ni for all i ∈ [3]. By Corollary 2.4 (A), there is a rainbow independent

(n3 − 1)-set R3 of (F3 ∩ A, C3). Let B = A \ CR3
, we choose CR3

minimize max{n1 − |B ∩

F1|, n2 − |B ∩ F2|}. By Claim 3, m3 + h(A, V1 ∪ V2) = |A| + 1, i.e., h(A, V1 ∪ V2) =

|B| = n1 + n2 − t+1. As discussed in the above case, there is one of h(B, Vi), i = 1, 2 with

h(B, Vi) = ni. Without loss of generality, assume h(B, V1) = n1 and so h(B, V2) = n2− t+1.

Hence, n1−|B∩F1| ≤ 0 and n2−|B∩F2| ≥ t−1 ≥ 2. By Lemma 3.1 (i) and (ii), B can be

partitioned into B1 and B2 with h(B1, V1) = n1 and h(B2, V2) = n2 − t+1, furthermore, for

any I ∈ B1, we have |I ∩ V1| = n1 and |I ∩ V2| ≤ n2 − t+1. Hence, for any I ∈ B1, we have

I ∈ F3 or I ∈ F4 but I /∈ F2. If there is some I ∈ F3, reset B by replacing I with some set

in F2∩CR3
(which is can be done since |F2∩CR3

| = |A∩F2|−|B∩F2| ≥ n2−|B∩F2| ≥ 2),

the resulting new set B has smaller max{n1 − |B ∩ F1|, n2 − |B ∩ F2|}, a contradiction. So

for any I ∈ B1, we have I ∈ F4, i.e., B1 ⊂ F4. Thus |F4| ≥ n1+n4− 1 ≥ 2n4 − 1. With the

same discussion with the end of the above case, we have a contradiction to the assumption

that (F , G) has no rainbow independent (n− 1)-set.

4 Proof of Theorem 1.6

In this section, Ct always denotes a cycle with vertex set [t] and edge set {12, 23, . . . , (t−

1)t, t1}.
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Proof of Theorem 1.6. Let F ⊑ In(Ct) with |F| = n. We show that there is a rainbow

independent n-set of (F , Ct) if t >
1
3n

2 + 44
9 n. Suppose to the contrary that (Ct,F) has no

rainbow independent n-set. Choose a member J ∈ F . By Corollary 2.4 (A), (F \ {J}, Ct)

has a rainbow independent (n − 1)-set R. Let R′ = R ∩ NCt [J ]. Then R′ is a rainbow

independent set of (F \ {J}, Ct) too. Choose such a R with the smallest |R′|. We claim

that |R′| ≥ ⌈n2 ⌉. Otherwise, suppose |R′| < n
2 . Since |NCt [i] ∩ NCt [j]| ≤ 1 for any two

vertices i, j ∈ J with i 6= j, every vertex of R′ is contained in at most two members of

{NCt [i] : i ∈ J}. So there exists a j0 ∈ J with NCt [j0] = [j0 − 1, j0 + 1] ∩ R = ∅. So we

can enlarge R by adding j0 with color J to R, a contradiction to the assumption. Now let

F = Ct −NCt [J ∪R]. By the definition of R and R′, J ⊆ NCt [R
′] ⊆ NCt [R]. So we have

|NCt [J ∪R]| = |NCt [J ]|+ |NCt [R]| − |NCt [J ] ∩NCt [R]| ≤ 3n+ 3n − |J | = 5n.

Recall that CR′ is the set of the corresponding colors assigned to vertices in R′. We claim

that CF (i)∩CR′ = ∅ for any i ∈ V (F ). If not, assume there is an I ∈ CF (i)∩CR′ for some

i ∈ V (F ) and assume I is the color of j in R′, i.e. CR′(j) = {I}. Let R̃ = (R \ {j}) ∪ {i}.

Then R̃′ = R̃∩NCt [J ] = R′\{j}, a contradiction to the minimality of |R′|. This claim implies

that for any I ∈ CR′ ∪ {J}, we have I ⊆ NCt [J ∪ R]. Let A = {(i, I) : i ∈ I and I ∈ F},

B = {(i, I) : i ∈ V (F ) and i ∈ I, I ∈ F} and C = {(i, I) : i /∈ V (F ) and i ∈ I, I ∈ F}. So,

with a double-counting argument, we have

|B| =
∑

i∈V (F )

cF (i) = |A| − |C| ≤ n2 − n|CR′ ∪ {J}| ≤
1

2
n2 − n, (2)

where the inequality holds since |CR′ | = |R′| ≥ ⌈n2 ⌉. Note that NCt [J ∪ R] is a union of

intervals of length at least 3 and |NCt [J ∪ R]| ≤ 5n. So NCt [J ∪ R] consists of at most 5n
3

intervals. This implies that F = Ct −NCt [J ∪ R] has at least t − 5n vertices and consists

of m ≤ 5n
3 paths, say P1, P2, . . . , Pm. By Corollary 2.4 (B1), cF (a) ≥ 1 for any a ∈ [1, t].

By Corollary 2.4 (B3), every path Pj contains at most
|V (Pj)|+1

2 vertices a with cF (a) = 1.

Hence,

∑

i∈F

cF (i) =
m
∑

j=1

∑

i∈V (Pj)

cF (i)

≥
m
∑

j=1

(

2|V (Pj)| −
|V (Pj)|+ 1

2

)

=
3

2

m
∑

j=1

|V (Pj)| −
m

2

≥
3

2
(t− 5n)−

m

2

≥
3

2
t−

25

3
n.

(3)
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From (2) and (3), we have

3

2
t−

25

3
n ≤

∑

i∈F

cF (i) ≤
1

2
n2 − n,

i.e. t ≤ 1
3n

2 + 44
9 n, a contradiction.

5 Proof of Theorem 1.7

Let Zt be the additive group of remainder of modulo t. For a, b ∈ Zt, a > b means

a (mod t) > b (mod t). For two sequences (a1, . . . , an), (b1, . . . , bn) ∈ Z
n
t , (a1, . . . , an) >

(b1, . . . , bn) if and only if there exists some i ∈ [n] such that ai > bi and aj = bj for all j < i.

Throughout this section, let Ct be a cycle with vertex set Zt and edge set {01, 12, ..., (t−

1)0}. If t = 2n + 1, by Theorem 1.3, the result holds. So we assume t ≥ 2n + 2 in the

following. Let F = (B1, . . . , Bn) ⊑ I2
n(Ct). Choose a maximal rainbow independent set

A = {a1, a2, . . . , ar} of (Ct,F) with the property that a1, . . . , ar are in a clockwise order

in Ct and DA = (ar − a1, a2 − a1, a3 − a2, . . . , ar − ar−1) is minimal. Without loss of

generality, assume CA = {B1, B2, . . . , Br} and a1 = 1. Then we have a1 < a2 < . . . < ar

by the assumption of A. It is sufficient to show that r = n. By Corollary 2.4 (A), we know

r ≥ n− 1. Suppose r = n− 1. Define Ai = {ai, ai + 1} for i = 1, 2, . . . , n− 1. We have the

following claims.

Claim 4. Bn ⊆ A ∪ (A + 1) ∪ {a1 − 1}. Moreover, 0 ∈ Bn and |Bn ∩ Ai| = 1 for each

i ∈ [n− 1].

Proof. If there exists one b ∈ Bn such that b /∈ A ∪ (A + 1) ∪ (A − 1), then {b} ∪ A is a

larger rainbow independent set than A, a contradiction. Now suppose that there exists one

b ∈ Bn and an i ∈ [2, r] with b = ai − 1 but b 6= ai−1 + 1. Then we can replace ai by b

in A and get another rainbow independent set {a1, . . . , ai−1, b, ai+1, . . . , ar} of (F , Ct) with

b−ai−1 < ai−ai−1, a contradiction to the minimality of DA. So Bn ⊆ A∪(A+1)∪{a1−1}.

Note that A ∪ (A + 1) consists of exactly two independent sets of size n − 1. Since

|Bn| = n, we have a1−1 ∈ Bn, i.e. 0 ∈ Bn and |Bn∩{ai, ai+1}| = 1 for any i ∈ [n−1].

Claim 5. If CA(ai) = Bki and Bn ∈ CF (ai) for some i ≥ 2, then Bki = Bn.

Proof. If Bki 6= Bn, then we can reset the color of ai by Bn and apply Claim 4 to Bki ,

we have 0 ∈ Bki and |Bki ∩ Aℓ| = 1 for every ℓ ∈ [n − 1]. Since Bki 6= Bn, we have

s(Bki) 6= s(Bn). Without loss of generality, we assume 0 ≤ s(Bki) < s(Bn). Let Bn =

(j, j +2, . . . , 0, 2, . . . , 2n− t+ j− 2). Then j > 0 and 2n− t+ j− 2 < j (otherwise, we have

t ≤ 2n − 2, a contradiction). So, by Claim 4, t− 2 must be in An−1 and j must be in As,
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where s = n− t−j
2 . If s(Bki) = 0 then Bki = (0, 2, . . . , 2n − 2). So we have 2n− 2 ∈ An−1,

i.e. an−1 = 2n− 3 or 2n− 2. In any case, we have t ≤ 2n+1, a contradiction. Now assume

s(Bki) = h 6= 0. Then Bki = {h, h+2, . . . , 0, 2, . . . , 2n− t+ h− 2}. Hence h and j have the

same parity. So j − 2 ∈ Bki but j − 2 /∈ Bn because j − (2n − t+ j − 2) = t− 2n + 2 ≥ 4.

Since j ∈ Bn ∩ As, we have 2n − t + j − 2 must be in Bn ∩ As−1. Since As ∩ As−1 = ∅

and 2n − t + j − 2 < j − 2 < j, there is no Aℓ containing j − 2 for ℓ ∈ [n − 1]. This is a

contradiction to |Bki ∩Aℓ| = 1 for all ℓ ∈ [n− 1].

If s(Bn) = 0, i.e., Bn = {0, 2, . . . , 2n−2}. Since A is an independent set with a1 = 1 ∈ A

and |Bn∩{ai, ai+1}| = 1 for every i ∈ [n−1], there exists an integer k with 1 < k ≤ n such

that ai = 2i−1 for 1 ≤ i < k and ai = 2i for i ≥ k (if k < n). By Claim 5, we have Bi = Bn

for all i ≥ k. Clearly, 2n /∈ Bi for all i ∈ [k, n]. If t = 2n + 2, since ai = 2i− 1 ∈ Bi and Bi

is 2-jump, we have 2n /∈ Bi for all i ∈ [k − 1]. Therefore, 2n /∈ Bi for all i ∈ [n], which is

a contradiction to Corollary 2.4 (B1). If t > 2n + 2, then t− 3 > 2n − 1 > an−1. Clearly,

t− 3 /∈ Bn. Let ℓ ≤ k − 1 be the minimal number with t− 3 ∈ Bℓ (If such ℓ does not exist,

then t−3 /∈ Bi for all i ∈ [n], a contradiction to Corollary 2.4 (B1), too). Since Bi ∈ I2
n(Ct)

with ai = 2i− 1 ∈ Bi and t− 3 /∈ Bi for any i < ℓ, we have ai + 2 = ai+1 ∈ Bi. So we can

recolor ai+1 with Bi for all i ∈ [ℓ− 1], remain the color of ai unchanged for i ∈ [ℓ+1, n− 1]

and color t− 3 with Bℓ and 0 with Bn, i.e. (A \ {1}) ∪ {0, t− 3} is a rainbow independent

n-set of (F , Ct), a contradiction.

Now suppose s(Bn) = −2(n−m) for some n > m > 0, i.e., Bn = {t− 2(n−m), . . . , t−

2, 0, 2, . . . , 2m − 2}. If t = 2n + 2, then Bn = {2m + 2, . . . , 2n, 0, 2, . . . , 2m − 2}. Clearly,

2m−1 /∈ A (otherwise, Bn∩{2m−1, 2m} = ∅, a contradiction to Claim 4). With the same

reason as the case s(Bn) = 0, we have an integer k with 1 < k ≤ m such that ai = 2i−1 for

any i ∈ [k − 1] and ai = 2i for any i ∈ [k,m − 1]. With the same discussion with the case

s(Bn) = 0, we have 2m /∈ Bi for all i ∈ [m− 1]. For i = m, we have am 6= 2m (otherwise,

Bn∩{am, am+1} = ∅, a contradiction to Claim 4). So ai > 2m for any i ∈ [m,n−1]. Since

Bj is 2-jump, all elements of Bj have the same parity. By Claim 5, Bj = Bn if aj ∈ Bj

is an even numbers when j ∈ [m,n − 1]. So 2m /∈ Bj for any j ∈ [m,n − 1]. Therefore,

we have 2m /∈ Bi for all i ∈ [n], a contradiction to Corollary 2.4 (B1). If t > 2n + 2,

then by Claim 4, we have ai ∈ {t − 2n + 2i, t − 2n + 2i − 1} for i ∈ [m,n − 1], and

ai ∈ {2i − 1, 2i} for i ∈ [2,m − 1]. In particular we have an−1 ∈ {−2,−3}. If an−1 = −2,

then a1−an−1 = 3 and am−am−1 ≥ t−2n+2m−1−2(m−1) > 3, we have a contradiction

to the minimality of DA by reordering A with A = {am, am+1..., an−1, a1, ...am−1}. So we

have an−1 = −3, which implies that ai = t−2n+2i−1 for every i ∈ [m,n−1]. In particular,

am = t−2(n−m)−1 ∈ Bm. Note that am−2 = t−2(n−m)−3 > 2m−1 > am−1. By the

minimality of DA, we have −2(n −m)− 3 /∈ Bm (otherwise, we can reduce am − am−1 by

replacing am with am−2 in A). Since Bm is 2-jump, we have s(Bm) = t−2(n−m)−1 and so
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−1 ∈ Bm. Then A′ = (A \ {am})∪{−1} = {am+1, . . . , an−1,−1, a1, . . . , am−1} is a rainbow

independent set of (F , Ct) with am+1−am−1 ≥ t−2n+2m+1−2(m−1) > 5 > 4 = a1−an−1,

a contradiction to the minimality of DA.

This completes the proof of Theorem 1.7.

6 Concluding remarks and discussions

In this article, we show that (1) Conjecture 1.1 is true when |V (G)| ∈ {2n− 1, 2n} and

(2) if Conjecture 1.2 is ture then Conjecture 1.1 holds for graphs G ∈ D(2) with ce(G) ≤ 3.

We believe that Conjecture 1.2 implies Conjecture 1.1, we leave this as an open problem. For

Conjecture 1.2, it has been shown that this conjecture is true for the base case (Theorem 1.3)

and for large t (Theorem 1.6). Could we show the rest case of Conjecture 1.2?
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