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A B S T R A C T

Web Services are influencing most IT-based industries as the basic building block of business infrastructures. A
Web Service has an interface described in a machine-processable format (specifically WSDL). Service providers
expose their services by publishing the corresponding WSDL documents. Service consumers can learn about
service capability and how to interact with the services. Service descriptions (WSDL documents) should be
ideally understood easily by service stakeholders so that the process of consuming services is simplified. In this
work we present a practical metric to quantify readability in WSDL documents – attending to their semantics by
using WordNet as the underlying concept hierarchy. In addition, we propose a set of best practices to be used
during the development of WSDL documents to improve their readability. To validate our proposals, we
performed both qualitative and quantitative experiments. A controlled survey with a group of (human) service
consumers showed that software engineers required less time and effort to analyze WSDL documents with
higher readability values. Other experiment compares readability values of a dataset of real-life WSDL
documents from the industry before and after modifying them to adhere to the readability best practices
proposed in this paper. We detected a significant readability improvement for WSDL documents written
according to the best practices. In another experiment, we applied existing readability metrics for natural
language texts detecting their unsuitability to the Web Service context. Lastly, we analyzed the readability best
practices identifying their useful applicability to the industry.

1. Introduction

The Service-Oriented Computing (SOC) paradigm has experienced
an ever-increasing adoption since it provides support for building
distributed, inter-organizational applications in heterogeneous envir-
onments [1]. Mostly, the software industry has adopted SOC by using
Web Service technologies. A Web Service is a program with a well-
defined interface that can be published, located and invoked by using
standard Web protocols [2].

Typically, service interfaces and communication protocols are
represented in the form of WSDL2 (Web Services Description
Language) documents. WSDL is an XML-based language for specifying
service descriptions. A WSDL document is defined by a service
provider, optionally published in a service registry, and then used by
service consumers both to figure out service capabilities and to
establish interaction among consumer applications and the specified
Web Service. The goal of WSDL is that service consumers can reason

about the functionality of a Web Service without knowing service
implementation details and by only looking at its associated WSDL
document [3]. Intuitively, this can be achieved provided that the
document is readable/understandable, i.e., it does not suffer from
specification problems that might obscure the purpose of the service to
end users. Moreover, when such documents are published in a registry,
services must be discovered prior to be consumed. The process of
discovering Web Services requires automatically matching a query
against potential candidate services in a registry, and then manually
inspecting retrieved candidates to select the desired result. For this
process to be effective, service providers must supply meaningful
WSDL documents upon developing services [4].

Particularly, from a linguistic point of view, readability is defined as
“the level of ease or difficulty with which text material can be
understood by a particular reader who is reading that text for a
specific purpose” [5]. In the context of Web Services, service descrip-
tions (WSDL documents) should be ideally understood easily by service
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stakeholders so that the process of consuming services is simplified.
Then, producing readable service descriptions can be used as a strategy
by service providers to attract service consumers [6]. Current research
in the field is indeed compatible with the idea of generating readable
service descriptions [7,8], since they address other relevant quality
attributes such as maintainability [9], discoverability [10] and adapt-
ability [11].

However, quantifying readability and hence providing a metric
broadly applicable for WSDL documents is still a major challenge.
Previous works in the field [12,6] require a service domain ontology –

structured as a concept hierarchy modeled via languages such as
OWL3/RDF4 – to compute readability. Nevertheless, the lack of
complete and relevant domain-specific ontologies hinders the applic-
ability of ontology-based approaches in practice [13,14]. Ontologies
aim to describe all relevant aspects related to general services which are
accessible through a Web Service interface, with the ultimate goal of
enabling the (total or partial) automation of the Web Service lifecycle
(e.g., discovery, composition, monitoring, etc.) [15]. However, domain-
specific ontologies are often avoided in real life applications because
they are difficult to specify [16].

Therefore, the main contribution of this paper is to propose a
practical metric to quantify readability in WSDL documents, and a set
of best practices to improve WSDL readability. To this end, we adapt
and extend the semantic readability metric proposed in [12] to focus on
WSDL documents by using WordNet [17] as the underlying concept
hierarchy. WordNet is a domain-independent lexical database of the
English language. Thus, a domain-specific, “heavy” ontology for each
domain is not necessary. In addition, we propose a set of best practices
that can be used during the development of WSDL documents to
improve their readability according to the proposed metric. Following
the rationale adopted in previous work [18,3,19], we provide the
readability metric along with a best practices catalog for developers
to quantify and improve the readability of their WSDL documents. The
readability metric is applied over services descriptions, truly accessible
to service consumers, and does not consider their implementation code
– which is unavailable to third parties.

We performed both qualitative and quantitative experiments to
validate our metric and best practices on readability. The first experi-
ment analyzes the applicability/utility potential of readability notions
in the industry. For this, we measured the lack of readability best
practices in a dataset of industry Web Services crawled from the
Mashape.com5 online service repository. In fact, at the time of writing
this article, this is the largest dataset of Web Services available for
academic and industry purposes. The second experiment is a controlled
survey with a group of (human) service consumers. They were asked to
analyze a dataset of WSDL documents to determine whether or not
they were readable in general terms, i.e., without considering our
metric. The survey results were compared with the readability values
obtained by applying the readability metric. The third experiment
compares readability values of a dataset of real-life WSDL documents
from the industry before and after modifying them to adhere to the
readability best practices proposed in this paper. The last experiment
compared existing readability metrics for natural language text with
regard to our metric. We detected that those text-based metrics do not
perform well for the Web Service context.

The rest of this paper is organized as follows. Section 2 introduces
basic concepts on Web Services and readability. Section 3 presents the
Web Services centered readability metric and the set of best practices
proposed in this work. Section 4 presents the experiments to validate
our proposals. Section 5 discusses relevant related work. Conclusions
and future work are presented afterwards.

2. Background

A service development life-cycle, as any other regular kind of
software component, consists of several phases. Within these, the
service design phase comprises service interface specification using
WSDL. Several important concerns, such as granularity, cohesion,
discoverability and reusability, should influence design decisions to
result in good service interface designs [20]. Many of the problems
related to the efficiency of standard-compliant approaches to service
discovery stem from the fact that the WSDL specification is incorrectly
or partially exploited by providers [21].

2.1. Web Service Description Language (WSDL)

When employing Web Services, a provider describes each service
technical contract, a.k.a. its interface, in WSDL. WSDL is an XML-
based language designed for specifying service functionality as a set of
abstract operations with inputs and outputs, and to associate binding
information so that consumers can invoke the offered operations.
WSDL allows providers to describe two parts of a service: what it does
(its functionality) and how to invoke it. The first part reveals the service
interface that is offered to consumers, while the second part specifies
technological aspects, such as transport protocols and network ad-
dresses. Consumers use the functional descriptions to match third-
party services to their needs, and the technological details to invoke the
selected service [22].

With WSDL, service functionality is described as one or more port-
types which arrange different operations that exchange input and
output messages. Main WSDL elements, such as port-types, operations
and messages, must be labeled with unique names. Optionally, these
WSDL elements might contain documentation as comments. Messages
consist of parts that transport data between consumers and providers
of services, and vice-versa. Exchanged data is represented using XML
according to specific data-type definitions in XML Schema Definition
(XSD), a language to define the structure of an XML element. XSD
offers constructors to define simple types (e.g., integer and string),
restrictions, and both encapsulation and extension mechanisms to
define complex elements. XSD code might be included in a WSDL
document using the types element, but alternatively it might be put
into a separate file and imported from the WSDL document or even
other WSDL documents. Fig. 1 shows the structure of a WSDL
document that includes the types element.

2.2. Plain-text oriented readability

The original readability model from [12], which is based upon
“heavy” ontologies, computes two main features of a plain-text docu-
ment, namely document scope and document cohesion, according to
the presence/absence of domain terms in a document. The vocabulary
of the domain is structured as a concept hierarchy, where the more
specific the terms, the deeper they appear in the hierarchy. Terms in
the document which have a match in the concept hierarchy are
regarded as domain concepts, otherwise they are non-domain con-
cepts. The concept hierarchy that captures the domain terms can be a
domain-specific ontology or taxonomy, either defined by domain
experts [23] or obtained by exploring specialized Web sites.6,7 The
model also considers difficulty (of comprehension) of single words in a
document.

The initial feature named scope is defined as the coverage of
domain-specific concepts in the document. The original model calcu-
lates the scope considering the average depth of all the concepts in the
document. If the average depth is high, the document scope will be

3 Web Ontology Language. https://www.w3.org/2001/sw/wiki/OWL
4 Resource Description Framework. https://www.w3.org/RDF/
5 http://mashape.com

6 http://protegewiki.stanford.edu/wikiIProtegeOntology_Library/–
7 http://lov.okfn.org/dataset/lovlindex.html
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low. Thus, the document will be less readable. Unfortunately, the
original model does not provide any range or threshold to determine
“high” and “low” depth values.

Then, the cohesion feature refers to how much focused is the
document on a particular topic. It can be computed as the shortest path
among each pair of terms according to the given concept hierarchy.
This reflects the semantic relation among the domain terms in the
document. According to the model, the more cohesive the domain
terms in the document, the more readable the document.

Finally, the difficulty feature is related with the comprehension of
words in a document. It is calculated by using a traditional readability
formula: the Dale–Chall's readability index [24]. This formula in-
dicates the percentage of difficult words in the document using a
growing list of approximately 3000 familiar (non-difficult) words.

Formula (1) shows the overall Concept-based Readability Score
(CRS), which is calculated upon scope, cohesion and the Dale–Chall's
readability index (DaCw):

CRS d Scope d Cohesion d DaCw d Scope d

e Cohesion d
sim c c

number Of Associations

DaCw d Of Difficult Words

( ) = ( ) + ( ) + ( ) ( )

= ( ) =
∑ ( , )

( )=% − − −

∑ depth c i j
n

i j

−1

− ( ) , =1i
n

i=1
⎛
⎝⎜

⎞
⎠⎟

(1)

For more details of the concept-based readability score we refer
interested readers to [12].

Example: To illustrate the original readability model, next we
describe a simple example involving a documentd composed by three
words: compact, motorcar and truck. We consider the concept
hierarchy presented in Fig. 2.

• Scope: The depth of the word compact is 3, while the depth of
motorcar and truck is 2. Therefore the scope is:
scope d e( ) = = 0.000911−(3+2+2) .

• Dale–Chall's Index: The words compact and truck do not belong
to the Dale–Chall's list, then the percentage of difficult words is 66%.

• Cohesion: The cohesion value is calculated as follows:

cohesion d
sim c c

sim compact motorcar sim compact truck

sim motorcar truck

( ) =
∑ ( , )

3

=

( , ) + ( , )

+ ( , )
3

= 0.77 + 0.3 + 0.48
3

= 0.52

i j i j, =1
3

• Readability value: finally, the readability value is calculated as
follows:

CRS d( ) = 0.000911 + 0.52 + 66 = 0.536−1

CRS applied to WSDL: An existing approach in the context of
readability for Web Services [6] has applied the notions defined in the
original model defined by [12] upon WSDL documents in a straightfor-
ward way. In this approach, all words included in a WSDL document
are analyzed to determine if they are domain terms with respect to a
domain-specific ontology previously selected. However, from the
analysis of the readability model, we conclude the following issues:

• The original readability model strongly depends on a concept
hierarchy (in the form of a domain-specific ontology). However, it
is known that the task of building a specific ontology for a domain
requires a large effort even by skillful developers [14,13,7]. This
hinders the adoption of such readability model in practice.

• The original readability model targeted plain-text documents. Thus,
it is unaware of the structural information included in a WSDL
document. Structural information involves each comprising part of a
WSDL document, namely operations, port types, messages, data
type definitions, etc. As this information is known a priori, it is
possible and desirable to analyze it when calculating readability.
Then, the overall comparison extent is limited to only compare
certain subsets of relevant terms.

3. Readability on web services

This section presents the Web Service centered implementation of a
readability metric for WSDL documents. This metric allows us to
compare WSDL documents according to their readability values.
Applied in the context of service discovery and inspection, the read-
ability value enables the (automatic) discovery of services which are
more readable, further easing the adoption of Web Services in practice.
In addition, we present a set of best practices, which can benefit
providers during the development of WSDL documents to offer services
with higher readability – according to the proposed metric.

3.1. Web service centered readability

To overcome the issues mentioned in Section 2.2, we decided to

Fig. 1. WSDL structure.

Fig. 2. Vehicles hierarchy.
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adapt the original readability model to the context of Web Services,
particularly for WSDL documents. In addition, we decided to use
WordNet [17] as the underlying concept hierarchy. WordNet is a
domain-independent lexical database of the English language that is
structured as a lexical hierarchy – a tree with root node {entity}. Terms
are grouped in synsets (synonym sets) that represent the same lexical
concept. Several relationships connect different synsets, such as
hyperonymy/hyponymy, holonymy/meronymy and antonymy. The
hierarchy links more general synsets like {furniture, piece_of_-
furniture} to increasingly specific ones like {bed} and {bunkbed}.
Thus, the category furniture includes bed, which in turn includes
bunkbed; conversely, concepts like bed and bunkbed make up the
category furniture. To calculate relationships between concepts, we
use the JWNL Java library.8

Using WordNet enables to exploit as many information as possible
gathered from WSDL documents, without requiring any extra semantic
specification for services, such as ontologies, usually unavailable in
practice. Also, as WordNet is domain-independent, its concept hier-
archy can be used to assess WSDL documents coming from any domain
category. In fact, current Web Service repositories such as
Mashape.com and ProgrammableWeb.com organize published services
in dozens of categories as diverse as Messaging, Advertising, Real
Estate, Security and Financial, just to name a few.

In our approach, every term included in a WSDL document is
analyzed through WordNet. The original model (Section 2.2) defines
domain and non-domain terms. In our Web Service centered model,
for a given WSDL document, those terms which belong to the WordNet
dictionary are regarded as existing terms (equivalent to domain terms
in the original model), thus they are used as an input to calculate the
readability value; otherwise they are non-existing terms (i.e., non-
domain terms in the original model) and then they are left out from the
readability calculation. It is worth noticing that discarding non-existing
terms do not affect the overall readability results, since considering the
real-life documents crawled from Mashape.com (which will be also
used in the experiments in Section 4), the ratio of existing terms to
non-existing terms is 20 to 1. This is because WordNet is domain-
independent and contains most words of the English language.

As stated, using WordNet as the underlying concept hierarchy
enables considering terms belonging to different domains for the
readability calculation. We considered that any domain-specific term
that is not recognized by WordNet is a non-existing term.

Each operation in a WSDL document is individually analyzed to
calculate its readability value. Then, the average value for all operations
in a WSDL document constitutes the overall readability value of the
service. This value represents the level of ease or difficulty with which a
WSDL document can be understood by a developer. In other words, the
difficulty for a human reader to understand the only specification
available for a given Web Service.

Fig. 3 depicts the steps for calculating the Web Service centered
Readability value, which are detailed in the following sections.

3.1.1. Concept extraction
In the concepts extraction step, all terms from words and identifiers

from WSDL documents are pre-processed and identified according to
WordNet.

To parse the WSDL documents, we use the Java API of the
Membrane SOA model.9 The extracted terms belong to identifiers
included in specifics elements (parts) in WSDL documents: Definition,
Data types, Message, Operation, Port type, Port and Service. A list of
terms is extracted of each operation part, e.g., a list of message terms, a
list of sequence terms, and a list of data type terms, among others.

To extract terms from identifiers, we make use of an algorithm for
semantic separation of terms defined in a previous work [25].
Identifiers are normally restricted to a sequence of one or more letters
in ASCII code, numeric characters and underscores (“_”) or hyphens
(“-”). The algorithm supports the rules in Table 1 – i.e., the usual
programming naming conventions. A semantic level has been added to
be aware of cases that do not follow those conventions. The Term
Separation algorithm analyzes the operation identifiers, recognizing
potential terms (uppercase sequences and lowercase sequences) as
explained in the example below.

Given an identifier, the term separation algorithm first removes all
numbers from the identifier. Then, the algorithm analyses each
character from detected terms inside the identifier – i.e., uppercase
sequences and lowercase sequences. If the algorithm is analyzing a
lower case sequence, when an uppercase letter or a special character is
detected (as “_” or “-”), the previous lowercase sequence is added to the
resulting terms. In the case when an uppercase sequence is being
analyzed, when a lowercase letter is detected, two possibilities are
considered:

1. The last uppercase letter is the first letter of a term composed by the
uppercase letter and the lowercase letters after it.

2. The last uppercase letter is part of a possible acronym or abbrevia-
tion composed by the uppercase sequence detected.

Then, WordNet is used to analyze all the potential terms and determine
the most adequate term separation:

1. For the first case, if the resulting term belongs to WordNet
dictionary, then this is a term and the previous uppercase sequence
(without the last uppercase letter) is an acronym or abbreviation.

2. If not, it is the second case, where the uppercase letter belongs to the
acronym composed by whole uppercase sequence and the lowercase
sequence is other term itself. This situation is considered even when
it does not follow the naming convention.

Example: Let be the identifier “OMSLogin”. This identifier does not
strictly follow the Java Bean notation. The first analysis gives an
uppercase sequence (OMSL), and a lowercase sequence (ogin). Then,
the sequence L + ogin=Login is analyzed with WordNet; this is an
existing word in the WordNet dictionary. This determines that Login
is a term and OMS is an acronym (an abbreviation of Online Messenger
Service) that is also considered as a term.

All possible terms from a WSDL document are mapped to concepts
in the WordNet hierarchy. Those terms that do not belong to the
WordNet dictionary are considered as non-existing terms. The out-
come of this step is a collection including the lists of terms of all WSDL
elements for each operation. This structured collection is crucial to
calculate the Document Cohesion feature, which is explained latter in
this section.

Notice that lemmatization is implicitly performed when analyzing
existing concepts. Lemmatization (stemming) is a useful technique in
natural language processing, used to retrieve the base, stem or root
form of a word. WordNet provides a built-in stemmer that is implicitly
used by WordNet operations such as getSynonyms() and
getHyponyms().

3.1.2. Document scope
The original readability model (Section 2.2) defines document

scope feature as the coverage of domain concepts in a document. As
the number of domain-specific concepts in a document increases, the
readability of the document decreases. However, we have redefined this
feature for the context of Web Services, in particular considering WSDL
documents:

• Using specific terms in WSDL documents reduces ambiguity about

8 https://web.stanford.edu/class/cs276a/projects/docs/jwnl/javadoc/
9 http://www.membrane-soa.org/soa-model-doc/1.4/java-api/parse-wsdl-java-api.

htm
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service functionality and makes them self-explanatory [21]. Thus,
we consider that WSDL documents with more domain-specific terms
are more readable.

• As discussed in Section 2.2, the approach in [6] applies the read-
ability formula from the original model directly to WSDL docu-
ments. However, the obtained values for document scope in their
case studies are too small, very close to zero (for example 2. 31E−92).
Then, this value is insignificant to affect the calculation of the total
readability value (as can be seen in Formula (6)).

All in all, we redefined the scope as the specificity degree of the
concepts in a WSDL document. The deeper the concepts of a document
appear in the WordNet hierarchy, the more readable the document is,
since the concepts will be more specific and ambiguity will be less likely
[26]. The scope of a document d is computed according to Formula (2),
as the average depth of all concepts in the document divided by the
maximum depth of the concept hierarchy – i.e., 16 in the case of
WordNet. Scope values range between 0 and 1:

Scope d AverageDepth d
MaxTreeDepth

( ) = ( )
(2)

where MaxTreeDepth is the maximum depth of the WordNet hier-
archy:

AverageDepth d
depth t
n

( ) =
∑ ( )i

n
i=1

where depth t( )i is the depth of concept ti extracted from the document d
w.r.t. the WordNet hierarchy and n is the total amount of existing
terms.

Example: Fig. 4 shows an excerpt of the WordNet hierarchy where,
for example, the depth of the concept enclosure is 4, and the depth of
the concept birdcage is 6. These values indicate that the concept
birdcage is more specific than the concept enclosure, and then the
use of birdcage might prevent a misinterpretation.

3.1.3. Document cohesion
Document Cohesion refers to how much focused a document is on a

particular topic. Similarly to document scope, we redefined cohesion
for the Web Services context. The original readability model analyzes
the relations among each pair of concepts included in a plain-text
document. Since a WSDL document is a structured document, we
decided to exploit such structure. For this, we defined Document

Cohesion as the average operation cohesion considering each operation
included in a WSDL document. Operation cohesion is computed
considering the semantic relationship between the existing terms in
an operation signature, which is reflected by the shortest path among
such terms in the WordNet concept hierarchy. The signature of an
operation includes the following parts: operation, input, output and
types. We do not consider the relationship between terms belonging to
a single isolated part. Instead, operation cohesion assesses the relation-
ship between terms from different parts of the operation. For example,
terms in a particular type definition are not compared to each other.
This is because we assume that all terms in the type definition help to
describe a domain aspect, but they are not necessarily related to each
other.

Operation Cohesion is calculated according to Formula (3), where n
is the number of terms in a given operation O, Rn is the number of
relationships between these terms, length t t( , )i j is the shortest path
between ti and tj in the WordNet hierarchy, and MaxTreeDepth is the
maximum depth of the WordNet hierarchy (16). The opCohesion value
increases as the length between the concepts decreases:

opCohesion O
sim t t

R
( ) =

∑ ( , )
i

i j
n

i j

n

, =1

(3)

where n i j> 1, < , and

sim t t
length t t
MaxTreeDepth

( , ) = −log
( , )

2*
i j

i j

Finally, document cohesion is calculated according to Formula (4),
where n is the number of operations in document d, and w is the
weight given to document cohesion. Essentially, the more cohesive the
domain terms in the document, the more readable the document. Thus,
in the context of this work, we defined w=5 to reflect the importance of
cohesion in the readability calculation:

Fig. 3. Steps for calculating the web service centered readability value.

Table 1
Rules for decomposing identifiers.

Notation Rule Source Result

JavaBeans Splits when changing text case. getZipCode get Zip

code

Special tokens Splits when either “_” or “-”
occurs.

Get_Quote Get Quote

Fig. 4. WordNet hierarchy example.
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cohesion d w
opCohesion o

n
( ) = *

∑ ( )i
n

i=1
(4)

Example: Let us consider a WSDL document from the Car Rental
domain. Fig. 5 shows an excerpt of the WordNet hierarchy containing
concepts from such domain. The length between the concepts compact
and truck is 3, and the length between compact and motor vehicle
is 2. These values indicate that compact is more similar to motor
vehicle than to truck. Thus, the joint use of the domain concepts
compact and motor vehicle in an operation name or an operation
comment, will be more cohesive than the joint use of compact and
truck.

3.1.4. Simplified Dale–Chall's Readability Index
The simplified Dale–Chall's readability index is a formula that

considers the percentage of difficult words in a document [24]. The
rationale behind this index is that the length of the sentences in a
document and the difficulty of words are correlated to the overall
difficulty of reading and understanding the document. Since the
concept-based readability model measures readability at word level,
sentence-level complexity is not applicable and hence only word
difficulty is considered. Words in the document are identified as either
familiar or unfamiliar (difficult) words. That is, words are familiar if
they can be found in the Dale–Chall's list. Otherwise, words are
regarded as unfamiliar or difficult. The Dale–Chall's readability index
of a document d can be computed according to Formula 5, and ranges
from 0 to 1:

DaCw d PDW( ) = 100 −
100 (5)

where PDW is the percentage of difficult words among the terms
extracted from d.

3.1.5. Web service readability metric
The Web Service centered readability (WSCR) metric for a WSDL

document d determines the readability score by considering the three
features explained above: the document scope, the document cohesion
and the simplified Dale-Chall's index. Readability is computed accord-
ing to Formula 6. Theoretically, the lowest readability value is
WSCR=0, which is practically impossible to find in an actual WSDL
document (with Scope=0, Cohesion=0 and DaCw=0). The maximum
readability value depends on the weight given for cohesion in Formula
4. In the context of this work, the maximum WSCR=7, but is also
impossible to find in an actual WSDL document (with maximum
Scope=1, Cohesion=5 and DaCw=1):

WSCR d Scope d Cohesion d DaCw d( ) = ( ) + ( ) + ( ) (6)

Example: Let us consider a simple WSDL document for the
apartment rental domain with one operation, as shown in Fig. 6. The
first step for the readability calculation is concepts extraction:

• operation terms: [reserve, apartment, breakfast]

• message terms: [reserve, apartment, breakfast, request]

• type terms: [apartment, breakfasts, meal, id, date, housing,
description, rooms, number]

To calculate the scope, it is necessary to calculate the depth of each
concept. For example:

depth apartment( ) = 7

depth breakfast( ) = 8

depth room( ) = 5

Considering all the concepts in the operation definition, the total
number of terms is 16. Then, the scope is calculated as follows:

AverageDepth d( ) = 5 + 6 + ⋯
16

= 7.18

Scope d
MaxTreeDepth

( ) = 7.18 = 0.44

being MaxTreeDepth=16.
On the other side, the Simplified Dale–Chall's Readability Index

DaCw d( ) = 100 − 18
100

= 0.82

since an 18% of the terms are not included in the familiar words list.
Finally, the cohesion is calculated by comparing terms that are not

in the same WSDL section. For example, the concept room from the list
of ‘type’ terms is compared with the concept apartment from the list
of ‘operation’ terms. Then,

length room apartment( , ) = 4

– given by the shortest path between room and apartment in the
WordNet hierarchy. Then,

sim room apartment
MaxTreeDepth

( , ) = −log 4
2*

where MaxTreeDepth=16 is the maximum depth of the WordNet tree.
Therefore,

sim room apartment( , ) = 0.9

Considering the concepts meal and breakfast,
length meal breakfast( , ) = 1 since meal is an hyperonym of breakfast.
Then, sim meal breakfast( , ) = 1.5.

In the last step, the operation cohesion is calculated as:

cohesion op( ) = 1.5 + 0.9 + ⋯
71

= 1.3

where 71 is the total number of concept relationships. Recall that the
document cohesion is the average of operation cohesion values. In this
case, it is 1.3 because the WSDL document is composed by only one
operation.

Finally the Web Service centered readability (WSCR) is calculated
as follows:

WSCR d Scope d Cohesion d DaCw d( ) = ( ) + ( ) + ( ) = 0.44 + 1.3 + 0.82

= 2.56

Initially, 2.56 may appear as a low value in readability terms,
considering a maximum value of 7. However, to obtain the maximum
value, three conditions are necessary:

• All WSDL term depths have to be 16 – i.e., the maximum tree depth
of WordNet hierarchy.

• The distances between terms have to be 0 – i.e., equal terms or
synonyms.

• All terms have to belong to Dale–Chall's list.

Fig. 5. Length between compact and truck in the WordNet hierarchy.
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These conditions are not possible in a real-life WSDL document.
Therefore, a WSDL document with a readability value of 2.56 is
actually readable, but it can certainly be improved.

3.2. Readability best practices

No silver bullet can guarantee that potential consumers of a Web
Service will effectively discover, understand and access it [27].
However, the work in [21] has empirically shown that a WSDL
document can be improved to simultaneously address these issues,
by replacing cryptic WSDL element names with explanatory ones,
among other practices for WSDL revision [4].

For this reason, in this paper we address the quality of WSDL
documents from the readability perspective. This section presents some
guidelines or best practices to improve WSDL documents in terms of
readability according to our model. Table 2 presents a list of readability
best practices, to improve existing WSDL documents. We acknowledge
the following information about each practice:

• Practice: a descriptive name for the practice.

• Description: a brief description of the causes that raise problems to
be solved by applying the practice.

• Manifestation: A binary rank of the manifestation form of the
practice. We refer as evident practices those that manifest them-
selves in the syntax of the WSDL document. On the contrary, not
immediately apparent practices are those that require not only to
analyze the syntax of the document, but also its semantics to detect
their manifestation form.

Proper naming conventions: Evidence suggests that using proper
naming conventions is a practice that improves readability of WSDL
documents [28,29]. Sometimes, programmers tend to use names of
data types and variables such as getcustomer and createaccount,
making the code less readable. Also, neglecting camel casing or special
tokenization characters (as the ones presented in Table 1) in identifiers
with many terms decreases document readability, because it is
intuitively more difficult to visually split words upon reading a single
term.

Fig. 7 shows an excerpt of a WSDL document where the operation
name was refactored to follow naming conventions (i.e., camel case).

Fig. 6. WSDL document for apartment rental domain.

Table 2
WSDL readability best practices.

Practice Description Manifest

Proper naming conventions Identifiers do not follow naming conventions: it is convenient to adopt proper naming conventions such as
JavaBeans for identifiers

Evident

Descriptive identifiers Operations, messages and parameters names must reflect their purpose Not immediately apparent
Specific concepts Specific concepts reduce the ambiguity, as using identifiers composed by ambiguous or generic terms

reduces understandability
Not immediately apparent

Non-cryptic parameter names Parameter names that describe the conveyed data and use (in/out). The use of parameter names such as
arg1 or param or parameter is discouraged

Evident

Message names related to
operations

Operations and their messages must have related identifiers Not immediately apparent

Familiar acronyms and
abbreviations

Self-explanatory identifiers instead of unfamiliar acronyms and abbreviations Evident
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Descriptive identifiers: Descriptive identifiers consists of using
names that accurately represent the functionality of an operation, or
the data conveyed by a message or parameter. This practice will help
readers to understand what the service offers. For example, let us
consider the operation identifier getApartments from the Hotel
domain that returns all free apartments between a date range.
Fig. 8a presents its associated WSDL code. This identifier does not
precisely describe the intended functionality, because the same identi-
fier could also describe an operation that returns all apartments in the
hotel. In other words, the identifier is ambiguous and too broad in
terms of the functionality described. In addition, according to the
WSDL part in which the identifier is defined, it should be syntactically
correct. For example, the first terms in an operation name should be in
the form: <verb > “ + ” < noun>, since an operation is an action [30].
In the case of a message, a message part, or a data-type, their names
should be a noun or a noun phrase because they represent the actual
objects involved in the operation.

Fig. 8b proposes a modified version of the operation where a more
descriptive identifier (getFreeApartmentsByDateRangeRequest)
is used to describe its functionality.

Specific concepts: Specific concepts further reduce the ambiguity in
a WSDL document. It is arguable that a document with specific terms
might result more difficult to read. However, with little experience in
the service's domain, the specific terms might arguably become
familiar. Fig. 9 presents an operation from the Car Rental domain
used to rent a compact vehicle. In Fig. 9a the operation name is
bookVehicle. This identifier describes the operation functionality
with an acceptable ambiguity level, and hence does not suffer from the
problem listed above. However, since the identifier does not contain
specific concepts to fully understand the purpose of the operation, its
specificity might be improved by indicating the kind of vehicle to book.
Fig. 9b shows a possible rewriting where a more specific concept is used
to describe the operation functionality.

Non-cryptic names: Surprisingly, the usage of default parameter
names such as arg_1, arg2 or parameter is still a common bad

practice in service descriptions [10]. This is often a consequence of
using automatic tools which do not take this good practice into account
[10] to obtain a preliminary WSDL from the service code. This may
cause the WSDL document to use meaningless/cryptic identifiers to
name port-types, operations and messages. From a semantic perspec-
tive, a representative name should at least contain (domain) terms to
describe what the corresponding element represents. Thus, mean-
ingless names should be avoided, as this can hinder the actual intention
and functioning of the named element. Fig. 10 shows an occurrence of
this problem and a possible rewriting. It is important to notice that
naming problems are not always solvable, as contextual information
may not be enough to refactor the element's name.

Message names related to operation names: From a structural
perspective, operations definition in a Web Service description have
input/output messages associated. It is expectable that names of both
an operation and its messages should be cohesive. Fig. 11 shows an
example where the operation name is not related to the message
names, and a possible solution. This can lead to miss or overlook the
corresponding messages for each operation when exploring the docu-
ment. In practice, when making the message more cohesive w.r.t. its
operation, the best practices described above should be followed to
properly name the identifier.

Familiar acronyms and abbreviations: The usage of acronyms or
abbreviations created by programmers or service providers is very
common. Avoiding unusual acronyms and abbreviations is a good
practice because these normally are not familiar for every stakeholder.
Fig. 12 shows an example of the supply chain domain where the “OS”
acronym stands for “order status”. For anyone unrelated with the
service domain, this acronym can represent, for example, the noun
“operating system”. Notice that this practice is related to the “Non-
cryptic names” practice, but this latter implies that identifiers appear
cryptic to anyone. Alternatively, not following the “Familiar acronyms
and abbreviations” implies that identifiers appear cryptic/meaningless
exclusively to the service consumers who are not familiar with the
service domain and its acronyms.

Fig. 7. Proper naming conventions example.

Fig. 8. Descriptive identifiers example.

Fig. 9. Specific concepts example.

Fig. 10. Non-cryptic parameter names example.
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4. Experiments

In this section we presents both qualitative and quantitative
experiments. The first one (Section 4.1) analyzes the applicability/
utility of the readability best practices in the industry. The second one
(Section 4.2) is a controlled survey with a group of service consumers.
The third one (Section 4.3) compares readability values of a dataset of
real-life WSDL documents from the industry before and after modify-
ing them to adhere to the readability best practices. The last experi-
ment (Section 4.4) compares the proposed Web Service centered
readability metric with other existing readability metrics for plain-text
documents.

4.1. Experiment 1: applicability of best practices in industry

The goal of this experiment was to analyze the potential applic-
ability/utility of the readability measure in the industry. For this, we
measured the absence of readability best practices (as defined in
Section 3.2) in a dataset of industry Web Services crawled from the
Mashape.com platform.

4.1.1. Experiment configuration and execution
To evaluate the best practices application in the industry, we used a

dataset of 56 WSDL documents corresponding to real world Web
Services extracted from the Mashape.com platform.10 At the moment
of performing this experiment, Mashape.com is used by more than
100,000 developers over the world as a world-class marketplace and
repository of Web-accessible APIs, containing approximately 1385

public Web Services. The WSDL documents were generated using an
ad hoc Web crawler implemented for this purpose. This crawler
explores each available API (service) in the Mashape.com site and
automatically generates the corresponding WSDL documents.

We initially considered only the most popular services – i.e., those
that were consumed by more than 500 developers, according to the
Mashape.com statistics. Thus, we considered a total of 56 services. The
most consumed service was selected by 6127 developers. The con-
sidered services were consumed 70,570 times by different client-side
application developers. Fig. 13 depicts the distribution of the analyzed
services according to the number of consumers. By considering the
most consumed services, we obtained an attractive panorama about the
impact of the readability approach, since more users implies more
readers accessing to descriptions.

Finally, an academic group of Web Service experts with knowledge
in the readability notions manually inspected each document to
identify when a best practice was not applied. They did not count
how many times each practice was ignored, but rather which practices
were ignored in each document.

4.1.2. Results and discussion
Fig. 14 shows the percentage of documents that ignore each

readability best practice. The results show that the 96% of the service
descriptions ignore at least one practice (overall). Particularly:

• Naming conventions practice was ignored in the 41% of the analyzed
service descriptions.

• Descriptive identifiers practice in the 76% of the analyzed service
descriptions.

• Non-cryptic parameter names in the 41% of the analyzed service
descriptions.

Fig. 11. Message names related to operation names example.

Fig. 12. Avoid unusual acronyms and abbreviations example.

Fig. 13. Number of consumers for the 56 most popular services in the Mashape.com platform.

10 https://www.mashape.com/
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• Familiar acronyms and abbreviations in the 34% of the analyzed
service descriptions.

The results of this experiment show that the most popular (most
consumed) services in the Mashape.com platform were developed
without awareness of the best practices.

One limitation of this experiment is that, as we mentioned earlier,
the WSDL dataset was automatically generated by a crawler using the
information extracted from Mashape.com site. In this process, message
names were automatically generated using operation names concate-
nated to “input/output message”. Therefore, the best practice “message
names related to operation names” was not considered.

4.2. Experiment 2: survey evaluation

We conducted a survey over 6 groups of participants from the IT
(Information Technology) sector. Participants included professionals,
practitioners, teachers and students. Each participant received WSDL
documents from different domains, including WSDLs with either low
or high readability values according to our metric. Participants were
not concerned with the readability concept prior to take the survey.
Then, we measured time and effort required to analyze the function-
ality contained in the operations defined by the WSDL document.
Following we detail the preparation, distribution and results of the
experiment.

Hypothesis: Let n be WSDL documents that implement similar
functionalities. A service consumer will easily analyze (in terms of time
and effort) the functionality self-contained in those WSDL documents
with higher readability values.

4.2.1. Survey preparation
Dataset: The dataset consisted of 6 original WSDL documents that

belong to two domains:

• Domain 1 – eCommerce. Services in this domain provide function-
ality to manage customers and their purchase orders – i.e., opera-
tions to add customers, add orders or associate orders to customers.

• Domain 2 – Hotel. Services in this domain provide functionality to
manage hotel bookings – i.e., operations to book a room, associate
breakfast to a room or list free rooms.

Each document comprises three operations and their corresponding
data types, which are specific to each domain. Moreover, the original
WSDL documents presented medium readability values (between 2 and
3). We rewrote each document following the best practices for well-
described interfaces introduced in Section 3.2.

After applying the readability best practices, the readability value
significantly increased for the rewritten WSDL documents: an incre-

ment of 43.6% for the eCommerce domain and 24.96% for the Hotel
domain. Therefore, we expect an analogous reduction in time and effort
required by participants to understand the more readable versions of
the WSDL documents.

Survey form design: For each WSDL document (12 in total) we
built a form, containing questions about both the functionality
contained in the WSDL document and the required effort to under-
stand such functionality, in terms of the analyzed parts of the WSDL.
For each operation in the document, we included two questions:

• Select the correct functionality between three possible options. This
question determines if the WSDL is descriptive enough to deduce
the operation's functionality. For example, for the operation “store”
from the eCommerce domain, the options are:

1. Stores an order corresponding to a Customer
2. Stores a Customer in the system
3. Stores the system state when the operation is executed

• Select the required effort in terms of the analyzed elements of the
WSDL. Each option refers to how many parts (operation names,
data types, parameters, messages and so on) were analyzed to
deduce the operation's functionality. Concretely, the three options
(for every operation) are:

1. Operation name and input/output messages only.
2. Operation name, input/output messages and also parameters.
3. Operation name, input/output messages, parameters and also
data types defined with their attributes.

We also saved the start and finish time when filling a form, to compute
the elapsed time participants needed to complete each form. We
considered this as an additional indicator of reading effort.

Form distribution: In this survey, 54 people participated as
experimental subjects, from which 20 were advanced IT students and
34 were teachers and professionals from the IT sector. We grouped the
participants in 6 groups of 9 persons each. Then, we distributed the
WSDL documents – as experimental objects – among the participants.
We assigned 4 WSDL documents to each group: 2 original WSDL
documents (with low readability values) of one domain, and 2 rewritten
WSDL documents (with high readability values) of the other domain.
Thus, the experimental objects have two possible values: original and
rewritten. The goal of this distribution was to make a “blind” survey,
where the participants did not know about “good and bad” WSDL
documents, in readability terms. In addition, we did not introduce
participants into readability concerns nor into good practices to
improve readability. Formally, for the experimental design, we followed
the guidelines from [31–33]:

• A balanced factorial experiment, where the same number n of
observations is gathered for each experimental subject. In this case,

Fig. 14. Percentage of absence of readability best practices in Web Services from the Mashape.com platform.
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the number of observations is the questions in each form. All
participants answered the same number of questions – 6 per
WSDL document (24 in total).

• Confused interaction in the groups, where only a portion of the
WSDL's combinations is assigned to each group [33]. As mentioned
earlier, we assigned to each participant 2 original WSDL documents
(with low readability values) of one domain, and 2 rewritten WSDL
documents (with high readability values) of the other domain. This
avoids the experimental threat of the learning effect: when the
participant changes from WSDL documents with low readability
values to WSDL documents with high readability values, the domain
switching prevents comparing with each other. Also, this allows to
perform a randomized experiment with a relatively small experi-
mental population, which is not completely randomizable otherwise.

We developed the forms using the Google forms platform, and then we
distributed the forms and guidelines by e-mail. Due to the inherent
volatility of WSDL services, we hosted the WSDL files in an institu-
tional server from our University to ensure their availability during the
conduction of the survey. Table 3 summarizes the list of WSDL files
with their domain and the URI of the corresponding form (available for
a limited time). A sample form was included in the Appendix. Table 4
summarizes the distribution of forms and WSDL files per group. The
WSDL documents were accessible from within the forms during the
survey. The complete dataset is available at http://goo.gl/In3PyS.

4.2.2. Results
Two weeks after distributing the forms, we started to collect the

results. We measured the results in terms of the following metrics:
Hit rate: This metric collects the answers for the first question

about operation's functionality. It assumes a binary value: success
(when the operation's functionality is pointed out correctly) or failure
(when it is not). Fig. 15a shows the hit rate for the first question about
operation functionality:

• The participants selected the correct operation functionality for the
68% of the original WDSL documents.

• The participants selected the correct operation functionality for the
94% of the rewritten WDSL documents.

• For the eCommerce domain, the hit rate was improved by a 32% for
rewritten WSDL documents.

• For the Hotel domain, the hit rate was improved by a 14% for
rewritten WSDL documents.

Effort: This metric collects the answers for the second question
about the effort of analyzing the WSDL file. It is an integer that is
mapped to the following qualitative values, according to the selected
option for the corresponding question:

1. Low effort: The participant only needed to analyze operation name

and messages. Effort=1.
2. Medium effort: The participant needed to analyze operation name,

messages and parameters. Effort=2.
3. High effort: The participant needed to analyze operation name,

messages, parameters and complex data types with their attributes.
Effort=3.

As stated earlier, each possible option of the second question was
mapped to a numeric value according to required effort to deduce the
operation functionality, ranging from 1 (low effort) to 3 (high effort).
Fig. 15b shows the average effort that the participants needed to
deduce the operations functionality:

• The average effort for original WSDL documents was 2.65 (med-
ium–high).

• The average effort for refactored WSDL documents was 2.15
(medium).

• The results present an effort reduction of 12% for the eCommerce
domain and 32% percent for the Hotel domain.

Time: This represents the elapsed time between starting and
submitting each form. It assumes a continuous value using the format
MM:SS (minutes and seconds). In that matter, we indicated to the
participants that the form should be completed without interruption.

Fig. 15c presents the average time taken to analyze the WSDL
documents and answer the forms. The results show that:

• The average time to analyze original WSDL documents was
9:30 min.

• The average time to analyze refactored WSDL documents was 5 min.

• The refactored WSDL documents presented a time reduction of 40%
and 55% for eCommerce and Hotel domains, respectively.

4.2.3. Discussion
The experimental results presented in this section validate the

experimental hypothesis, as participants required less time and effort
to analyze WSDL documents with higher readability values. In
particular, we can emphasize the following aspects.

Regarding the relationship between readability values and experi-
mental results, Table 5 shows the readability improvement (percen-
tage) for rewritten and original WSDL documents, and their correlation
with the improvements reported in the experiment – in terms of hit
rate, effort and time. We observed an overall readability improvement
of 34% (considering both domains). This improvement relates to the
results observed in hit rate, effort and time – which were improved in
24%, 21% and 46% respectively in the rewritten WSDL documents.

Moreover, the analysis of operations functionality presented a
higher hit rate for rewritten WSDL documents. This means that the
analysis of more readable documents was easier, having a higher
number of positive results. For the Customer domain, the hit rate
improvement for refactored documents with regard to original ones

Table 4
Forms distribution per group.

Group WSDLs Group WSDLs

1 Customer-1-O, Customer-2-
O

4 Customer-1-O, Customer-3-
O

Hotel-1-R, Hotel-2-R Hotel-1-R, Hotel-3-R
2 Customer-1-R, Customer-3-

R
5 Customer-2-O, Customer-3-

O
Hotel-1-O, Hotel-3-O Hotel-2-R, Hotel-3-R

3 Customer-1-R, Customer-2-
R

6 Customer-2-R, Customer-3-
R

Hotel-1-O,Hotel-2-O Hotel-2-O, Hotel-3-O

O, Original; R, Refactored.

Table 3
WSDL files used in the experiment.

Domain WSDL Form

Customer (original) CustomerSBO-1 goo.gl/forms/q2MXgTtFOu
CustomerSBO-2 goo.gl/forms/JQh4yszcOk
CustomerSBO-3 goo.gl/forms/4I6p5D8AXT

Customer (refactored) CustomerSBO-1 goo.gl/forms/oJAClS4xas
CustomerSBO-2 goo.gl/forms/4rkTvGaKjX
CustomerSBO-3 goo.gl/forms/twlG8WTSGp

Hotel (original) Hotel-1 goo.gl/forms/ouNwjkAPkM
Hotel-2 goo.gl/forms/R4SCyPFe9g
Hotel-3 goo.gl/forms/igcdp9dYwd

Hotel (refactored) Hotel-1 goo.gl/forms/XTVeNoZhiQ
Hotel-2 goo.gl/forms/7zAQF0tOI2
Hotel-3 goo.gl/forms/TeTES3r9Ym
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was 33%, while for Hotel it was 14%. The slightest improvement for the
Hotel domain is because the original documents of such domain
presented a higher hit rate. The overall success rate for refactored
documents of both domains was 94%.

In the case of average effort to deduce the operations functionality,
it was reduced by a 21% overall. However, we expected an even higher
reduction for rewritten documents. This is because, in general, service
consumers exploit all available information in the documents before
selecting a likely functionality. Nevertheless, average effort improve-
ment for rewritten documents was 22%, while the readability values
improved around 24 and 43% for the eCommerce and Hotel domain,
respectively. Likewise, the required time to analyze the WSDL docu-
ments and fill the survey forms was significantly lower (46% overall) for
rewritten documents. This suggests that documents with higher read-
ability were simpler to read and analyze.

It is worth mentioning that a possible threat to the validity of an
experiment involving people, such as the one performed, is demand
characteristics [34]. Demand characteristics result from cues in the
experimental environment or procedure that lead participants to make
inferences about the purpose of the experiment and to respond in
accordance with (or in some cases, contrary to) the perceived purpose.

Software engineers are inherently problem solvers. When they are told
to perform a task, the majority will try to figure out what is expected
from them and perform accordingly. Demand characteristics influence
a participant's perceptions of what is appropriate or expected and,
hence, their behavior [33]. In the context of this experiment, the
participants may figure out the notion of “good” and “bad” WSDLs
(more and less readable documents). Thus, the participants will
indicate a lower effort when analyzing readable WSDL documents.
Since the experiment adopted confused interaction in the groups, the
learning effect was reduced and this implies that the deduction was
indirectly reduced.

Another experimental threat is the language. Original and rewritten
documents were implemented using concepts of the English language.
However, even when all participants had some formal English knowl-
edge, they were not native English speakers. Therefore, due to the lack
of proficiency in the language, this could generate a slight noise to
understand the WSDL documents and complete the survey, specially in
terms of time.

4.3. Experiment 3: rewriting evaluation

The goal of this experiment was to measure the Web Service
centered readability of WSDL documents in comparative terms. We
hypothesize a likely relationship between the Readability value and the
application of readability best practices presented in Section 3.2.

4.3.1. Experiment configuration and execution
To evaluate the Web Service centered readability model we used a

dataset of 84 WSDL documents extracted from [35]. We have

Fig. 15. Survey evaluation results.

Table 5
Readability, hit rate, effort, and time improvement (%) for rewritten WSDL documents.

Domains Readability (%) Hit rate (%) Effort (%) Time (%)

Overall 34 24 21 46
Customer 44 33 11 38
Hotel 25 14 32 54
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implemented a Java application to calculate the readability values
for all WSDL documents in the dataset. Then, we applied the read-
ability best practices introduced in Section 3.2 to rewrite a subset of
WSDL documents that presented low readability values. Finally, we
compared the readability values from the original and refactored
documents.

Using as input the WSDL documents in the dataset, we executed the
Web Service centered readability procedure. The results consist on the
readability value WSCR d( )i for each WSDL document di – as defined in
Section 3.1.

After calculating the readability values for the 84 documents, we
selected a subset of 34 documents with the lowest readability values to
be rewritten. Then remaining documents have a relatively high read-
ability value (greater than 4). It is not worthy to rewrite these
documents because only a slight improvement could be obtained –

demanding a large effort.
An academic group of Web Service experts with knowledge in the

explained readability notions manually rewrote each document (from
the selected subset) by applying the best practices presented in Section
3.2. The rewriting criteria were free as it was not prescribed in any
guideline. Then, we calculated the readability value for each rewritten
WSDL document. Finally, we compared readability values of rewritten
documents with the value of their corresponding original documents.
Assuming as hypothesis that the rewriting improves the readability, our
goal was to quantify these improvements over real-life documents. This
provides a precise notion about the potential impact of best practices
upon real-life WSDL documents.

4.3.2. Results and discussion
Fig. 16 shows the average readability values from original and

rewritten WSDL documents. Original documents presented an average
readability value of 3.15 while rewritten documents presented an
average value of 4.82. The standard deviations were 0.56 and 0.67
for original and rewritten documents, respectively.

According to the first experiment, it is arguable that documents
with higher readability values are easier to read, thus demanding less
time and effort to detect key functionality and to be analyzed. The
results show an average readability improvement of 52% for rewritten
WSDL documents. By drawing a parallel with the previous experiment
(survey), the results suggest that rewritten documents would require
less time and effort to be analyzed by service consumers.

It is worth noticing that original readability values in the considered
dataset are high – around 3.15 – as the WSDL documents are relatively
well-written. For example, the terms used in identifiers are well formed
and contain existing words, but are not significant enough to infer the
corresponding functionality for the operation.

4.4. Experiment 4: comparison with other readability metrics

The goal of the last experiment was to compare the proposed
readability metric with other existing readability metrics. For this,

we used a third-party readability API published in Mashape.com
repository.11 This API can be used to compute a set of readability
metrics for a given textual document. The API currently supports the
following metrics: Automated Readability Index, Coleman–Liau Index,
Flesch–Kincaid Grade Level, Gunning–Fog Index, SMOG score, and
SMOG Index. The service is deployed in the Google App Engine and
available at http://ipeirotis.appspot.com/readability/. The code and
documentation are available on Github at https://github.com/
ipeirotis/ReadabilityMetrics. In this section, we briefly present each
readability metric used in the comparison and finally we show the
result of this evaluation.

4.4.1. Readability metrics involved in the comparison
The readability metrics offered by the service published in

Mashape.com are the following:
Automated readability index: The automated readability index

(ARI) is a readability test designed to measure the understandability
of a text. It produces an approximate representation of the U.S. grade
level needed to comprehend the text. The formula for calculating the
ARI is given below, where characters is the number of letters and
numbers, words is the number of spaces, and sentences is the number
of sentences, manually counted as each text was typed:

characters
words

words
sentences

4.71 + 0.5 − 21.43
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Coleman–Liau index: The Coleman–Liau index was designed to be
easily calculated mechanically from samples of hard-copy texts. Unlike
syllable-based readability indexes, it does not require to analyze the
character content of words, only their length in characters. Therefore, it
could be used in conjunction with theoretically simple mechanical
scanners that would only need to recognize character, word, and
sentence boundaries, removing the need for full optical character
recognition or manual keypunching. The Coleman–Liau index is
calculated with the following formula, where L is the average number
of letters per 100 words and S is the average number of sentences per
100 words:

CLI L S− 0.0588* − 0.296* − 15.8

Flesch–Kincaid readability: The Flesch–Kincaid readability tests
are designed to indicate how difficult is to understand a reading
passage in English. There are two tests, the Flesch reading ease, and
the Flesch–Kincaid grade level. The “Flesch–Kincaid Grade Level
Formula” instead presents a score as a U.S. grade level, making it
easier for teachers, parents, librarians, and others to judge the read-
ability level of various books and texts. The grade level is calculated
with the following formula:

total Words
total Sentences

total Sillables
total Words

0.39 + 11.8 − 15.59
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

SMOG: The SMOG (Simple Measure of Gobbledygook) grade is a
measure of readability that estimates the years of education needed to
understand a piece of text. The SMOG grade yields a 0.985 correlation
with a standard error of 1.5159 grades with the grades of readers who
had 100% comprehension of test materials. Three steps are needed to
calculate SMOG: Count a number of sentences (at least 30); then, in
these sentences, count the polysyllables (words of 3 or more syllables);
and finally calculate the SMOG value using the following formula:

grade number Of Polysyllabes
number Of Sentences

− 1.0430 × 30 *3.1291

Gunning fog index: The index estimates the years of formal
education needed to understand a text on a first reading. A fog index
of 12 requires the reading level of a U.S. high school senior (around 18

Fig. 16. Average readability values from original and rewritten WSDL documents
(higher is better).

11 https://market.mashape.com/ipeirotis/readability-metrics/
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years old). The fog index is commonly used to confirm that a text can be
easily read by the intended audience. The complete formula is:

words
sentences

complexWords
words

0.4 + 100
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

4.4.2. Experiment configuration
In this experiment we used as dataset the 32 original and 32

rewritten WSDL documents also used in the second experiment
(Section 4.3). Then, we generated a representative text in natural
language for each WSDL document. For each service operation we
generated a sentence with the following structure:

[operation terms] + “based on” + [param1] + ”,” +⋯+ and +
[paramN]+”. It returns” + [returnParam]+ ”.”

Then, we consumed the service from Mashape.com to calculate the
readability metrics using as an input the natural language documents
previously generated. Finally we analyzed the obtained results for
original and rewritten documents.

4.4.3. Results and discussion
Fig. 17 summarizes the obtained results in two groups: original and

rewritten documents. The Y -axis represent the average value obtained
for each readability metric.

As expected, the metrics do not present significant changes between
original and rewritten documents, since all metrics are based on
attributes such as words number, syllables number and sentences.
Also, these metrics do not consider the relationship between words,
their existence in a dictionary, or their complexity. For service
descriptions, analyzing relationships between words is a viable (and
desirable) practice because service description documents contain a
word set that is smaller than a typical natural language text.

In addition, all metrics provided by the Mashape API do not exploit
structural aspects of Web Service descriptions. Then, we conclude that
the natural language readability metrics do not perform well for the
Web Service context.

Considering Fig. 16 in Experiment 3 and Fig. 17 in this experiment,
we could compare our metric and the existing readability metrics
previously mentioned. The comparison concerns the readability varia-
tions (positives/negatives) between original and rewritten documents.
Besides, this is the only way to compare all the metrics since their
values are not normalized – which make them not directly comparable.
Table 6 shows such variations on readability. We observe a meaningful

difference in our metric w.r.t. original documents and those improved
following the proposed best practices. Conversely, readability metrics
for natural language texts do not present meaningful changes between
original and rewritten documents. Besides, values for certain metrics
were reduced by the application of best practices, since these metrics
are indicators of complexity – i.e., rewritten documents are less
complex.

5. Related work

Certainly, our work is related to a number of efforts that can be
grouped into two broad classes. On the one hand, there is a substantial
amount of research concerning to readability-oriented approaches
applied to several areas. On the other hand, several approaches are
focused on improving the quality of WSDL documents considering
different attributes. In this sense, our approach is related to both kinds
of efforts since we share similar goals: proposing a readability metric
and improving the quality of WSDL documents.

5.1. Readability-oriented approaches

In [36], authors propose a bilingual (English and Chinese) assess-
ment scheme for Web page and Web site readability based on their
textual content, and conduct a series of experiments with real Web data
to evaluate the proposal. The authors adopt two classical formulas for
readability (one per language), defined in [37,38]. In this approach, the
Web site readability is considered as an indicator of the overall
difficulty level of a site, considering the readability of all the pages
composing the site. Unlike our work, this approach neither includes a
semantics basis nor assesses the relations between the words that
compose the document – the adopted readability formulas are merely
syntactic-based. Then, it would not be possible to calculate how much
focused the document is on a particular topic (i.e., cohesion). Also, a
document that contains only senseless words could have a good
readability value.

The work in [12] (already introduced in Section 2.2) suggests that
non-expert users may be interested in searching for domain-specific
(e.g., medical and health) information from online resources. However,
many users may experience a problem since search results are always a
mixture of documents with different levels of readability. With this
motivation, authors propose a concept-based model for text readability.
In addition to textual content of a document, the model considers how
the domain-specific concepts contained in the document affect its
readability. Using domain-specific concepts allowed the authors to

Table 6
Average readability variations for rewritten WSDL documents.

WSCR ARI COLEMAN_LIAU FLESH_KINCAID SMOG GUNNING_FOG

52% 7% −7% −9% −4% −12%

Fig. 17. Average readability values (according to different metrics) for original and rewritten documents.

A. De Renzis et al. Computer Standards & Interfaces 50 (2017) 124–141

137



define a readability formula developed for textual materials. However,
as we pointed out in Section 3.1, the lack of complete and relevant
domain-specific ontologies hinders the applicability of ontology-based
approaches in practice [13,14]. For this reason, we adapted and
extended the readability measure by means of WordNet [17] as the
underlying concept hierarchy.

In [39], the authors propose a readability metric for Web pages
based on link structure. The metric considers the correlation between
readability of source and linked pages, assuming that Web pages would
typically link to other pages with the same difficulty level. Scores are
propagated from good pages in an attempt to separate useful Web
pages from Spam. This approach is suitable to measure the readability
of Web pages that have little text and to complement readability
measures which rely only on textual content. To calculate the read-
ability values for English-written pages, the authors adopted a syntac-
tical formula based on the average number of syllables per word and
the average number of words per sentence. As in [36], this readability
formula does not consider semantic aspects such as cohesion or word
sense.

Lastly, the work in [40], measures document readability at two
levels. The first is the surface level readability, that relates to the
surface content. It can be assessed by a series of classical readability
features. Beyond the surface content, a higher level, namely the topic
level readability, reflects whether it is easy for a user to comprehend the
hidden topics in documents. Thus, the approach is a topic-based
readability model, which can be used to enhance domain-specific
information retrieval by considering both the surface and the topic
level readability of documents. In our work, we hypothesize that the
overall higher taxonomy depths of identified topics in the specific
taxonomy would indicate a better document readability. Similarly, the
work in [40] also employs the average tree depth of the identified topics
to calculate the metric.

5.2. Service descriptions assessment approaches

Several efforts address the problem of the quality of WSDL
documents – which should not be confused with considering QoS of
the corresponding Web Service. The work in [19] found a high
correlation between well-known object-oriented metrics measured
directly in the code implementing services, and the occurrences of
“anti-patterns” in the corresponding WSDL specifications. Anti-pat-
terns represent a set of indicators of poor quality service interfaces.
However, such work is mainly focused in evaluating and improving
service discoverability. That is, how easy is to retrieve a service through
an automatic mechanism by means of a query. Particularly, service
descriptions are assessed from a purely structural perspective. Thus,
only morphology of WSDL parts is considered, ignoring their semantic
aspects – e.g., meaning of concepts into operation names. In contrast,
our main goal is to accomplish service readability/understandability
from a dual perspective, including both semantics and human com-
prehension. Thus, we assess how easy is for a developer to understand
the functional capabilities enclosed in a service description. Such
capabilities are described by domain concepts in WSDL documents.

The work in [41] measures the impact of naming tendencies on
service discovery. The analysis revealed many tendencies, such as
Subsumption relationships, which consists in naming WSDL parts
based on common phrases. For example, using the common phrase
“name” to mean “surname”, “first_name” or “user_name”. The occur-
rence of many naming tendencies hinders service discoverability as
services descriptions become too general. The authors supply a
standard-complaint discovery system with heuristics designed for
dealing with the identified naming tendencies. As a result, the
discovery system achieves better retrieval effectiveness than its original
version. Our work could be seen as a complement of such research
since readability could improve service discoverability as well, by
adding specificity to service descriptions.

The work in [42] extends Web Service data types specifications
inside WSDL in order to solve the difficulty for service requester to
understand, select and adapt Web Services in the context of a certain
application. The proposed model consists of adding descriptions,
annotations and constraining facets to the data types, to then generate
the corresponding UML class diagram. This process is similar to the
application of readability best practices to rewrite WSDL documents.

The work in [43] presents a model of semantic annotations for
describing Web Services and an algorithm to discover and compose
these Web Services. Semantic annotations are described in OWL-S12

(Ontology Web Language for Services). In this approach, ontology
engineering plays a leading role in adding semantics to service
descriptions. However, as mentioned early, it is known that discovering
(or even creating) a specific ontology for a given domain requires a
large effort even by skillful developers [14,13,7].

The work in [44] presents a metric for understandability of WSDL
descriptions called WSDL Understanding Degree (WSDLUD). The
authors define a criteria tree for each part of WSDL descriptions
composed by the following characteristics: (i) Type Understanding
Degree, (ii) Message Understanding Degree, (iii) Port Type
Understanding Degree, (iv) Binding Understanding Degree and (v)
Service Understanding Degree. Each characteristic has an associated
sub-criterion tree – e.g., Type Name Quality is a sub-criterion from
Type Understanding Degree. For sub-criteria concerning identifiers
like Type Name Quality, Message Name Quality or Binding Name
Quality the authors use identifier analysis techniques through the
formula WordsWithMean/NumberOfWords. WordsWithMean is the
number of words with meaning included in the identifier (according to
a predefined list of words with mean), and NumberOfWords is the total
number of words included in the identifier. The principal difference
with our approach is that the WSDLUD metric does not compare
correlation between words that should be related, such as words
included in names of messages and their corresponding operations.

Several works have addressed the Web Service anti-patterns detec-
tion. The work in [45,46] use knowledge from a base of examples that
contains real instances of Web Service anti-patterns. These examples
are used to generate a set of Web Service anti-pattern detection rules
using two different techniques: a Search-based technique and genetic
programming. Additionally, the work in [47] assesses the design and
QoS of Service-based Systems (SBSs). Their authors present a frame-
work to automatically specify and detect well-known SOA anti-patterns
[48–50] in SBSs. While these approaches adopt a catalog of anti-
patterns different from ours, the approach presented in this paper
complements and increases the existing tools (e.g., those focused in
discoverability) to improve the quality of Web Services from the
readability perspective.

Similar to our goal, in [51] the authors present an approach to
improve the quality of service descriptions. They propose a solution to
describe a complete set of structural constraints for a particular
business object in all its use cases. This approach is implemented in
XML Schema (XSD) – the de facto standard for description of Web
Service message structures. Authors define a set of XSD extensions to
enable the definition of XSD types and elements to be used in different
use cases, each with its own set of specific structural constraints.

6. Conclusions and future work

Broadly, readability is defined as the level of ease or difficulty with
which text material can be understood by a particular reader who is
reading that text for a specific purpose [5]. In the context of Web
Services, service descriptions should be understood with ease so that
these descriptions can be used as a strategy by service providing
organizations to attract service consumers [6], and to simplify the

12 https://www.w3.org/Submission/OWL-S/
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process of finding and reusing external functionality outsourced by
client applications. This latter is due to the fact that service consump-
tion always involves a manual inspection phase after service descrip-
tions have been retrieved from a registry [3].

Motivated by the problems of metrics designed for natural text
documents to quantify Web Service readability, this paper presented a
readability metric for WSDL documents. In contrast to previous work
in the field [12,6], which assume/associate ontologies for representing
service descriptions, we propose the use of WordNet as the underlying
concept hierarchy, in replacement of a domain-specific ontology for
each possible domain. The use of a general, lightweight concept
hierarchy makes the approach widely applicable, as meaningful
domain-specific ontologies are not usually available in practice
[13,14,8]. It is arguable that terms that do not belong to WordNet
are left out from the readability calculation in our approach, although
they may be significant in certain contexts. However, this does not
affect the overall readability calculation, since most terms in (English
written) real-life documents belong to WordNet dictionary. For exam-
ple, in the documents crawled from Mashape.com site, the ratio of
WordNet terms to non-WordNet terms is 20 to 1. Moreover, the
proposed readability metric is not intended to be used in isolation. As
mentioned in Section 5.2, it is complementary to other metrics such as
discoverability/understandability metrics [19] or maintainability me-
trics [9] that measure the complexity of the messages in WSDL
documents.

In addition, we proposed a set of readability best practices to be
adopted during the development or rewriting of WSDL documents.
These practices suggest the adoption of naming conventions, specific
concepts, non-cryptic parameter names, message names related with
their corresponding operation and familiar acronyms and abbrevia-
tions. As reported in the experiments, considering these practices
improve overall readability of the resulting service descriptions.

In the first experiment, we analyzed the applicability/utility of the
readability metric in the industry. For this, we measured the absence of
readability best practices in a large dataset of industry Web Services
from the Mashape.com site. The results show that a 96% of the most
popular services in this platform were developed without awareness of
the best practices, and thus there is an interesting place for improve-
ment of real-world documents.

As qualitative evaluation, we conducted a survey over 6 groups of
participants from the IT field (54 persons), where each participant
evaluated a set of WSDL documents from different domains, including
WSDL documents with either low or high readability values. The
experiment has shown that it is easier, in terms of required time and
effort, to analyze the self-contained functionality in the WSDL docu-
ments with higher readability values. Thus, such documents can be
used by service providers to attract potential consumers effectively.

Additionally, in another experiment we calculated readability
values for WSDL documents in a public dataset. Then, a subset of
documents was rewritten by applying the readability best practices and
re-calculated readability values. The readability values from original
and rewritten documents were compared, showing that the readability
values increased in average 52% for the latter. According to the
experiments, it is arguable that documents which acknowledge the
readability best practices defined in Section 3.2, not only may have
higher readability values but also may reduce the understandability
effort by consumers, as shown by the different experiments in Section
4. When faced with little readable documents, consumers were forced
to make a (likely) large effort on deducing the functional capabilities of
such services [11]. Therefore, the proposed readability model is
potentially useful for its application in industry and real-life scenarios
of service consumption.

Regrettably, previous work in the field of readability for WSDL
documents [6] did not present experimental evaluation to be compared
with our results. In the last experiment, we compared our metric with
existing readability metrics for plain-text documents using a third-

party readability API published in the Mashape.com repository. We
conclude that these metrics are too general to be applicable to Web
Service descriptions, and thus a specific metric is needed.

As future work we are planning to extend the readability model to
support code-first services. Code-first is a popular approach to build
Web Services in the industry [16]. With this approach, developers first
implement a service and then generate the corresponding WSDL by
automatically extracting and deriving the interface from the imple-
mented code. This means that WSDL documents are not directly
created by developers but are instead automatically derived via
language-dependent tools. In the case of a contract-first approach,
WSDL documents are manually developed before service implementa-
tion, therefore developers can apply the best practices when crafting
the WSDL. Using the code-first approach, developers partially delegate
the control of the WSDL generation to such tools. For this reason, we
propose to analyze the existing language-dependent tools and propose
a readability model extension that considers a code-first service
developing approach.

Other future work consists of exploiting and integrating other
alternative semantic basis such as DISCO (DIStributed COllocations)
[52,25] and NER (Named Entity Recognition) [53] for readability
calculation. On the one hand, DISCO is a pre-computed database of
collocations and distributionally similar words. The similarity of words
is based on the statistical analysis of very large text collections (e.g.,
Wikipedia), through co-occurrence functions. Thus, DISCO could be an
alternative to WordNet as the concept hierarchy that allows calculating
document cohesion and scope. On the other hand, NER is a technique
to detect and replace entities (e.g., names, organizations, acronyms,
places, etc.) with their definition, by means of big corpus of annotated
text such as Wikidata13 and Babelnet.14 We are analyzing how these
aspects affect readability. In this context, an important challenge is the
disambiguation of overloaded terms and acronyms.

In addition, we are working in algorithms and tooling support to
automatize the detection of potential readability improvements and
their application. WordNet allows to detect the corresponding part-of-
speech (POS) for each word. Thus, it can be assessed, for example,
whether the form <Verb > + < Noun> in the first words of an
operation name is used or not. In this work, we have presented the
minimum set of notions (metrics + practices) that we consider
necessary to transfer this metric to the industry. The automatic
detection is desirable but not mandatory, and might be further
addressed.

Finally, we intend to apply our approach to RESTful Web Services
[54], which still present open problems for their description [8]. If we
follow the approach proposed by IBM [55], where a REST Web Service
is described with WSDL 2.0, then our approach could be directly
applied. Otherwise, we will have to adapt our approach to the context of
RESTful Web Services.
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Appendix A. Form example

This WSDL document (link given below) describes a Customer
Management service. By analyzing only the self-contained information

13 http://wikidata.org
14 http://babelnet.org
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in the WSDL (operation names, messages, data types, etc.), select the
most adequate answers.

PLEASE COMPLETE THE STARTING TIME BEFORE
ANSWERING

WSDL: CustomerSBO-1 http://goo.gl/In3PyS
Starting time (Required): ___:___

• Name and Surname (optional):
_____________________________

• Student Number (only for students):
________________________

• Knowledge level in the Web Services field (optional):
1. Basic
2. Medium
3. Advanced

• The operation “Store”…
1. Stores the state of the system when executed
2. Stores a new Customer in the system
3. Stores an Order for a given Customer

• The functionality of the “Store” operation is inferable from…

1. Operation name and input/output messages only
2. Operation name, input/output messages and parameters
3. Operation name, input/output messages, parameters and
corresponding data types with their attributes

• The operation “addOrd”…
1. Stores a new Order Type in the system
2. Stores a new Order for a given Customer
3. Stores a new Order for the logged Customer

• The functionality of the “addOrd” operation is inferable from…

1. Operation name and input/output messages only
2. Operation name, input/output messages and parameters
3. Operation name, input/output messages, parameters and
corresponding data types with their attributes

• The operation “Auth”…
1. Authenticates the user who is logging in the system
2. Given an user name and a password, returns a Customer
3. Given a security code, authenticates an Order

• The functionality of the “Auth” operation is inferable from…
1. Operation name and input/output messages only
2. Operation name, input/output messages and parameters
3. Operation name, input/output messages, parameters and
corresponding data types with their attributes
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