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Abstract

Linear mixed models (LMMs) are used as an important tool in the

data analysis of repeated measures and longitudinal studies. The most

common form of LMMs utilize a normal distribution to model the ran-

dom effects. Such assumptions can often lead to misspecification errors

when the random effects are not normal. One approach to remedy the

misspecification errors is to utilize a point-mass distribution to model the

random effects; this is known as the nonparametric maximum likelihood-

fitted (NPML) model. The NPML model is flexible but requires a large

number of parameters to characterize the random-effects distribution. It

is often natural to assume that the random-effects distribution be at least

marginally symmetric. The marginally symmetric NPML (MSNPML)

random-effects model is introduced, which assumes a marginally symmet-

ric point-mass distribution for the random effects. Under the symmetry

assumption, the MSNPML model utilizes half the number of parameters

to characterize the same number of point masses as the NPML model;
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thus the model confers an advantage in economy and parsimony. An EM-

type algorithm is presented for the maximum likelihood (ML) estimation

of LMMs with MSNPML random effects; the algorithm is shown to mono-

tonically increase the log-likelihood and is proven to be convergent to a

stationary point of the log-likelihood function in the case of convergence.

Furthermore, it is shown that the ML estimator is consistent and asymp-

totically normal under certain conditions, and the estimation of quantities

such as the random-effects covariance matrix and individual a posteriori

expectations is demonstrated. A simulation study is used to illustrate the

gains in efficiency of the MSNPML model over the NPML model under

the assumption of symmetry. A pair of real data applications are then

used to demonstrate the manner in which the MSNPML model can be

used to draw useful statistical inference.

1 Introduction

Linear mixed models (LMMs) are used as a fundamental tool for the statistical

analysis of longitudinal data and data with repeated measurements; see McCul-

loch and Searle (2001, Ch. 6), Pinheiro and Bates (2000, Ch. 1), and Verbeke

and Molenberghs (2000) for introductions on the topic. In the style of Laird

and Ware (1982), an LMM can be characterized as follows.

Let Yj =
(
Yj1, ..., Yjnj

)T be a vector of nj responses belonging to individual

j, for j = 1, ..., n, where n is the total number of individuals. Further, let

each measurement Yjk, for k = 1, ..., nj , be dependent upon covariate vectors

xjk ∈ Rp and zjk ∈ Rq, and for each j, let Bj ∈ Rq be a vector of individual

random effects arising from the a priori probability distribution FB (b) with

density fB (b). We say that the data arises from an LMM if for each j and k,

Yjk| (Bj = bj) = x
T
jkβ + zTjkbj + Ejk, (1)
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where β ∈ Rp is a vector of fixed effects and Ejk is a random error with proba-

bility density fE (e). Here, a superscript T indicates matrix transposition.

The main difficulty that arises in the use of LMMs is the evaluation and

manipulation of the marginal density of yj , which has the general form

fYj
(yj) =

ˆ

Rq

[
nk∏

k=1

fE
(
yjk − xTjkβ − zTjkbj

)
]
fB (bj) dbj , (2)

and can often be quite complex due to the integration form.

The traditional approach in dealing with the complexities of (2) is to set the

error density as

fE (e) = φ
(
e; 0, σ2

)
, (3)

where

φ
(
e;µ, σ2

)
=

1√
2πσ2

exp

[
− (e− µ)2

2σ2

]

is the normal density function with mean µ and variance σ2, and to let fB (b)

be a multivariate normal density. This approach results in fYj (yj) having the

form of a multivariate normal density function, and allows for simple inference by

maximum likelihood (ML) estimation via an expectation–maximization (EM)

algorithm; see Laird and Ware (1982, Sec. 4) and McLachlan and Krishnan

(2008, Sec. 5.9) for details.

It is well known that the estimation of the fixed effects β is robust to the

specification of the random-effects distribution. However, this robustness does

not extend to the characterization of the random effects in the case of misspec-

ification. The robustness as well as the effects of misspecification are explored

in Agresti et al. (2004), Butler and Louis (1992), and McCulloch and Neuhaus

(2011). For instance, in all three articles, the authors note that the estimates for

the fixed effects tended not to be influenced greatly by the choice of the random-

effects model. However, Agresti et al. (2004) note that the usual normal model
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can be highly inefficient when the true random-effects model is polarizing, such

as in the case of binary or mixture random-effects distributions. It is further

remarked in McCulloch and Neuhaus (2011) that the estimation of random in-

tercept coefficients can be biased by making incorrect assumptions regarding

the shape of the underlying random-effects distribution.

It is well known that the specification of the random-effects density has little

effect on the estimation of the fixed effects β. However, the same cannot be said

regarding estimation and characterization of the random effects in general. see

for instance Agresti et al. (2004), Butler and Louis (1992), and McCulloch and

Neuhaus (2011).

Multiple strategies have been considered for remedying random-effects mis-

specification. For example, Pinheiro et al. (2001) and Song et al. (2007) con-

sidered t distributed random-effects and noise models, whereas Arellano-Valle

et al. (2005), Lachos et al. (2010), and Ho and Lin (2010) considered the use

of skew normal and t distributed random and noise models. Although a rich

class, the use of such distributions often do not allow for simplification of the

marginal density (2) and do not allow for enough flexibility to model random-

effects distributions with multiple modes or deviations from bell-shaped curves.

Based on the nonparametric maximum likelihood (NPML) principle of Laird

(1978), Aitkin (1999) and Butler and Louis (1992) suggested using the point-

mass density

fB (b) =

g∑

i=1

πiδ (b− λi) (4)

for the random effects, where δ (x) is the Dirac delta function, g ≥ 1 is the

number of point masses, and λi ∈ Rq and πk > 0 are the point-mass locations

and weights, for i = 1, .., g, respectively. To ensure that the total probability of

the point masses adds up to unity and that the mean of fB (b) is zero, we also

require the restrictions that
∑g
i=1 πi = 1 (which implies that πg = 1−∑g−1

i=1 πi)
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and
∑g
i=1 πiλi = 0, where 0 is a zero vector of appropriate size. We shall refer

to densities of the form (4) as NPML-fitted (NPML) densities.

In Agresti et al. (2004) it was shown that NPML densities offered improve-

ments in efficiency for estimating the characteristics of the random-effects den-

sity such as the covariance and individual a posteriori estimates of the random

effects (i.e. E (Bj |Yj = yj)) when compared to the use of parametric random-

effects densities in situations, where the true random-effect densities deviated

from the assumed parametric form. However, this improvement comes at a

cost of modeling complexity, since for any given g and q, the number of pa-

rameters required for the specification and estimation of the NPML density is

(g − 1) (q + 1). This number can grow quickly if g or q are large.

We note that although unimodality or bell shape cannot be assumed in

general, it may still be acceptable to assume symmetry in the random-effects

distribution. Thus, we introduce the marginally symmetric NPML (MSMPML)

random-effects density

fB (b) =

g∑

i=1

πi
2
[δ (b− λi) + δ (b+ λi)] , (5)

where g and πi are as specified for (4) and no restrictions are made on λi as

density (5) has zero mean by definition. For any g, density (5) comprises 2g

point masses at λi and −λi, each with weights πi/2. Therefore, in situations

where marginal symmetry can be assumed, the MSNPML model doubles the

number of point masses when compared to the MPML density, for the same

number of parameters.

Aside from the the aforementioned articles, our work shares commonalities

with the mixture random-effects densities of Verbeke and Lesaffre (1996) and, by

extension, the mixture of mixture of mixed effects models of Celeux et al. (2005)

and Ng et al. (2006); in the aforementioned articles, mixtures of normal densities
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are used to model the random effects, rather than point-mass densities. When

nj = N for all j, the MSNPML model corresponds to a symmetry-restricted and

homoscedastic version of the repeated-measures linear mixture regression model

of Grun and Leisch (2008). Furthermore, the use of parameter constraints to

enforce marginal symmetry is similar to those used in Benaglia et al. (2009) and

Chauveau and Hunter (2013). A kernel density approach to mixture modeling

with symmetric components is presented in Chee and Wang (2013).

In this article, we shall consider the estimation of LMMs with the MSNPML

random-effect density under the assumption of normal random error, using ML

estimation via a multicycle expectation–conditional maximization (ECM) al-

gorithm (Meng and Rubin, 1993). This algorithm is known to monotonically

increase the log-likelihood and to lead to a stationary point of the said function

in the case of convergence. Furthermore, we demonstrate how the covariance

matrix and a posteriori expectations of the random effects can be estimated un-

der model (5), and also consider various statistical matters such as consistency

and the selection of the number of point masses. We then use numerical simu-

lations to study the efficiency gains due to MSMPML over MPML, in the style

of Agresti et al. (2004). A pair of example applications chosen from Pinheiro

and Bates (2000) are subsequently used to demonstrate the inferential process

of using MSMPML random effects.

The article shall proceed as follows. In Section 2, we shall discuss matters

regarding ML estimation. In Section 3, statistical matters and computation of

statistics are discussed. Results from simulations are then presented in Section

4, followed by example applications in Section 5. Conclusions are then drawn

in Section 6.
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2 Maximum Likelihood Estimation

Let Yj be characterized by (1) and let fE (e) and fB (b) have forms (3) and (5),

respectively. Under this model, the individual marginal density (2) is given by

fYj
(yj) =

g∑

i=1

πi
2

[
n∏

k=1

φ
(
yjk;x

T
jkβ + zTjkλi, σ

2
)
+

n∏

k=1

φ
(
yjk;x

T
jkβ − zTjkλi, σ2

)
]

(6)

and subsequently, the log-likelihood function has the form

ln (θ;y1, ...,yn) =
n∑

j=1

log fYj
(yj) , (7)

where θ =
(
βT ,λT ,πT , σ2

)T is the vector of all model parameters. Here

λ =
(
λT1 , ...,λ

T
g

)T , and π = (π1, ..., πg−1)
T . For brevity, we shall suppress

the data dependence in ln (θ;y1, ...,yn) and write it as ln (θ), where it causes

no confusion.

In order to conduct ML estimation, one generally seeks an appropriate local

maximizer of the log-likelihood function (7) (i.e. the ML estimator) over the

parameter vector θ. However, due to the log-summation form of (7), it is not

possible to obtain a maximizer in closed form.

We now present a multicycle ECM algorithm for the iterative computation

of the ML estimator.

2.1 ECM Algorithm

By noting that the individual marginal densities (6) are each 2g component nor-

mal mixture densities, we can define the random variables T(+i)j = I (bj = λi)

and T(−i)j = I (bj = −λi), and write the joint density of Yj and Tj =
(
T(+1)j , ..., T(+g)j , T(−1)j , ..., T(−g)j

)T
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as

fTj ,Yj
(tj ,yj) =

g∏

i=1



[
πi
2

n∏

k=1

φ
(
yjk;x

T
jkβ + zTjkλi, σ

2
)
]t(+i)j

×
[
πi
2

n∏

k=1

φ
(
yjk;x

T
jkβ − zTjkλi, σ2

)
]t(−i)j


 ,

where I (x = y) is an indicator variable that takes value 1 if x = y and 0

otherwise. We call fTj ,Yj (tj ,yj) the individual complete-data density and use

it to construct the complete-data log-likelihood in the form

cn (θ) =
n∑

j=1

log fTj ,Yj
(tj ,yj)

=

g∑

i=1

n∑

j=1

t(+i)j log πi +

g∑

i=1

n∑

j=1

t(−i)j log πi − n log 2

+

g∑

i=1

n∑

j=1

t(+i)j

nj∑

k=1

log φ
(
yjk;x

T
jkβ + zTjkλi, σ

2
)

+

g∑

i=1

n∑

j=1

t(−i)j

nj∑

k=1

log φ
(
yjk;x

T
jkβ − zTjkλi, σ2

)
.

Since the ECM algorithm is iterative, we need to define some initial value θ(0)

and mth cycle update θ(m). The (m+ 1) th cycle of the algorithm is conducted

in two steps, the E-step and the CM-step.

In the (m+ 1) th E-step, we must compute the conditional expectation of

cn (θ) given the observed data and using the value of the parameter on the
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previous cycle, which can be expressed as

Qn

(
θ;θ(m)

)
= Eθ(m) [cn (θ) |y1, ...,yn]

=

g∑

i=1

n∑

j=1

τ(+i)j

(
θ(m)

)
log πi +

g∑

i=1

n∑

j=1

τ(−i)j
(
θ(m)

)
log πi − n log 2

+

g∑

i=1

n∑

j=1

τ(+i)j

(
θ(m)

) nj∑

k=1

log φ
(
yjk;x

T
jkβ + zTjkρi, σ

2
)

+

g∑

i=1

n∑

j=1

τ(−i)j
(
θ(m)

) nj∑

k=1

log φ
(
yjk;x

T
jkβ − zTjkρi, σ2

)
,

where

τ(+i)j (θ) = Pθ
(
T(+i)j |Yj = yj

)
(8)

=
πi
∏nj

k=1 φ
(
yjk;x

T
jkβ + zTjkλi, σ

2
)

∑g
i′=1 πi′

[∏nj

k=1 φ
(
yjk;xTjkβ + zTjkλi′ , σ

2
)
+
∏nj

k=1 φ
(
yjk;xTjkβ − zTjkλi′ , σ2

)]

and

τ(−i)j (θ) = Pθ
(
T(−i)j |Yj = yj

)
(9)

=
πi
∏nj

k=1 φ
(
yjk;x

T
jkβ − zTjkλi, σ2

)

∑g
i′=1 πi′

[∏nj

k=1 φ
(
yjk;xTjkβ + zTjkλi′ , σ

2
)
+
∏nj

k=1 φ
(
yjk;xTjkβ − zTjkλi′ , σ2

)] .

In the (m+ 1) th CM-step, we seek to obtain the maximizer of Qn
(
θ;θ(m)

)

over the space of θ. However, due to the form of Qn
(
θ;θ(m)

)
, it is simpler to

maximize over the parameter space holding either β or λ fixed in each cycle;

this partial update over the parameter vector is the difference between the EM

and ECM algorithms (cf. McLachlan and Krishnan (2008, Sec. 5.2)).

Without loss of generality, if m is even, the (m+ 1) th CM-step is conducted
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by setting λ(m+1) = λ(m) and computing the update

β(m+1) =




n∑

j=1

nj∑

k=1

xjkx
T
jk



−1

u(m), (10)

where

u(m) =

g∑

i=1

n∑

j=1

τ(+i)j

(
θ(m)

) nj∑

k=1

xjk

(
yjk − zTjkλ(m)

i

)

+

g∑

i=1

n∑

j=1

τ(−i)j
(
θ(m)

) nj∑

k=1

xjk

(
yjk + z

T
jkλ

(m)
i

)
.

If m is odd, we instead set β(m+1) = β(m) and compute the updates

λ
(m+1)
i =




n∑

j=1

nj∑

k=1

zjkz
T
jk



−1

v
(m)
i (11)

for each i, where

v
(m)
i =

n∑

j=1

τ(+i)j

(
θ(m)

) nj∑

k=1

zjk

(
yjk − xTjkβ(m)

)

−
n∑

j=1

τ(−i)j
(
θ(m)

) nj∑

k=1

zjk

(
yjk − xTjkβ(m)

)
.

Lastly, in all CM-steps, we update the remaining parameter components by

computing

π
(m+1)
i =

∑n
j=1 τ(−i)j

(
θ(m)

)
+
∑m
j=1 τ(+i)j

(
θ(m)

)

n
(12)

for each i, and

σ2(m+1) =
w(m+1)

∑n
j=1 nj

, (13)
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where

w(m+1) =

g∑

i=1

n∑

j=1

τ(+i)j

(
θ(m)

) nj∑

k=1

(
yjk − xTjkβ(m+1) − zTjkλ(m+1)

i

)2

+

g∑

i=1

n∑

j=1

τ(−i)j
(
θ(m)

) nj∑

k=1

(
yjk − xTjkβ(m+1) + zTjkλ

(m+1)
i

)2
.

We note that an iteration of the ECM algorithm is characterized by the

updating of all parameter components, and is thus made up of two consecutive

cycles.

2.2 Convergence Analysis

The E- and CM-steps are iterated until a convergence criterion is met, at which

stage we declare the final iterate the ML estimate θ̂n. In this article, we choose

to use the absolute convergence criterion

ln

(
θ(m+1)

)
− ln

(
θ(m)

)
< ε

for some small tolerance ε > 0; for all applications, we set ε = 10−8. See Lange

(2013, Sec. 11.5) for a discussion on the relative merits of convergence criteria

for optimization algorithms.

Let θ∗ = limm→∞ θ(m) (alternatively θ̂n → θ∗ as ε → 0) be a limit point

of a sequence θ(m) of the ECM algorithm, for some starting value θ0. In order

to infer the properties of θ∗ and the ECM algorithm, we make the following

observations.

Firstly, consider that for even and odd m, the updates uniquely satisfy the
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equations

(
β(m+1)T ,π(m+1)T , σ2(m+1)

)T
= argmax

β,π,σ2

Qn

(
β,λ(m),π, σ2;θ(m)

)
+η

(
θ(m)

)

(14)

and

(
λ(m+1)T ,π(m+1)T , σ2(m+1)

)T
= argmax

λ,π,σ2

Qn

(
β(m),λ,π, σ2;θ(m)

)
+ η

(
θ(m)

)

(15)

respectively, over the 2active parameter subsets in each problem (i.e. either

holding β or λ constant). Here

η (θ) = −
g∑

i=1

n∑

j=1

[
τ(−i)j (θ) log τ(−i)j (θ) + τ(+i)j (θ) log τ(+i)j (θ)

]

is known as the entropy; see McLachlan and Peel (2000, Sec. 6.10).

Next, we note that the functions from (14) and (15) are both quasi-convex

and satisfy Assumption 2 of Razaviyayn et al. (2013) and are thus both lower-

bound functions of (7), over the respective parameter subsets (minorizers in

the language of minorization–maximization algorithms; see Lange (2013, Ch.

8)). Finally, we observe that (7) is everywhere smooth; taken all together,

this implies that the ECM algorithm satisfies the conditions for Corollary 2 of

Razaviyayn et al. (2013), which yields the following convergence result.

Proposition 1. Let θ(m) be a sequence of ECM algorithm iterates with limit

point θ∗, for some initial value θ(0). If θ(m+1) is updated via the steps λ(m+1) =

λ(m), (10), (12), and (13), when m is even; and β(m+1) = β(m), (11), (12),

and (13), when m is odd, then the following statements are true.

1. The sequence of log-likelihoods ln
(
θ(m)

)
is monotonically increasing in m.

2. The limit point θ∗ is a stationary point of ln (θ).
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Thus, Proposition 1 implies that the ECM algorithm presented exhibits the

usual monotonicity property of EM-type algorithms, and that the obtained ML

estimate is convergent to a stationary point of the log-likelihood function. We

note that the log-likelihood functions of mixture models tend to be highly mul-

timodal. Thus care is required when optimizing such functions as different

starting values θ(0) may lead to different optima or saddle-points. Throughout

this article, we use multiple random starting values (McLachlan and Peel, 2000,

Sec. 2.12) to mitigate against such problems in order to obtain good ML esti-

mates. Finally, we remark that we have chosen to check the Razaviyayn et al.

(2013) conditions to establish the convergence properties of the algorithm, due

to their simplicity; however, it is also possible to obtain the convergence results

via the conditions of Meng and Rubin (1993).

3 Statistical Inference

3.1 Consistency and Asymptotic Normality

Establishing consistency and asymptotic normality are fundamental to the pro-

cess of drawing accurate inferences with the parameter estimate. In the case

where all nj = N for some constant N ≥ 2 (i.e. the balanced experiment set-

ting, in the language of LMMs) we can observe that the density function (6) is

simply that of a 2g component N -dimensional mixture of multivariate normal

distributions. Thus, in this setting, consistency and asymptotic normality can

be established via conventional means for establishing the asymptotic properties

of ML estimators, such as by Theorem 4.2.4 of Amemiya (1985). The validity of

the assumptions for such theorems can be assessed via the techniques of Atienza

et al. (2007). As a consequence, Theorem 4.2.4 of Amemiya (1985) establishes

the following result regarding the ML estimation of the MSMPML LMM.
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Proposition 2. Assume that the data Y1, ...,Yn is an IID sample that arises

from an MSMPML LMM with parameter θ0, where the covariates xjk and zjk

are realizations from a well-behaved random process, for all j and k. Let Θn

be the set of roots of the equation ∂ln (θ) /∂θ = 0 that corresponds to the local

maxima of ln (θ) (here ln (θ) is as in (7) and Θn = {0} if there are no roots

corresponding to a maximum). If nj = N for all j, where N ≥ 2, then the

following results hold.

1. For any ε > 0,

lim
n→∞

P
[

inf
θ∈Θn

(θ − θ0)T (θ − θ0) > ε

]
= 0.

2. If θ̂n
P→ θ0, then

√
n
(
θ̂n − θ0

)
L→ N

(
0, I−1 (θ0)

)
,

where

I (θ) = E
[
− 1

n

∂2ln (θ;Y1, ...,Yn)

∂θ∂θT

]

is the Fisher information matrix.

We make the following notes regarding the application of Proposition 2.

Firstly, the assumption that xjk and zjk be well-behaved is left purposefully

vague. This assumption simply stipulates that the covariates be such that the

uniform convergence of the average log-likelihood and its derivatives hold. For

example, one can assume thatXjk and Zjk have a continuous joint density over

a compact support, and are independent for all i and j.

Next, Part 1 of the proposition simply states that there exists a consistent

root of the log-likelihood (7). As noted in Section 2.2, the log-likelihood is likely

14



to be multimodal. Thus, one needs to choose carefully, which of the roots to

declare as the ML estimate. We acknowledge that the existence of a consistent

root allows for bypassing of the issue of identifiability, as the proposition estab-

lishes that at least one of the permutations of possible solutions is a consistent

estimate. We make a further note that although Part 2 establishes asymptotic

normality, due to identifiability issues, some hypothesis test statistics do not

retain their usual asymptotic distributions; see Boos and Stefanski (2013, Sec.

6.6.5) and McLachlan and Peel (2000, Sec. 6.5) for discussions on such issues.

Lastly, to extend the consistency and asymptotic normality of the ML esti-

mator to the setting of non-random covariates, one simply is required to make ex-

tra assumptions regarding the uniform convergence of the average log-likelihood

and its derivatives; see Theorem 4.2.4 of Amemiya (1985) for details. However,

it is non-trivial and beyond the scope of this article to extend Proposition 2 to

the unbalanced setting (i.e. when nj are allowed to be different, for all j). We

direct the interested reader to Miller (1977) and Weiss (1971) for treatments on

the asymptotic of ML estimators in such settings.

As noted by a reviewer, we have not discussed the identifiability of models

of form (2). Since we are only using the model in order to nonparametrically

infer the properties of the random-effects density function (e.g. the covariance

matrix and the shape), we do not require (2) to be identifiable in the sense of

Titterington et al. (1985, Sec. 3.1). However, it is desirable to establish a notion

of asymptotic identifiability, as considered by Redner (1981). Because (2) can

be viewed as a 2g-component mixture model, the results of Atienza et al. (2007)

establishes such an asymptotic identifiability result.
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3.2 Estimation of Statistics

As noted in Section 1, in LMMs, it is interesting to quantify the covariance of

the random-effects distribution, as well as individual a posteriori estimates of

random effects. Firstly, since the MSNPML random-effects distribution 5 is a

point-mass distribution with mean 0, the definition of a covariance matrix

cov (B) = E
(
[B − EB] [B − EB]

T
)

yields the simple expression,

cov (B) =

g∑

i=1

πiλiλ
T
i . (16)

Secondly, using the a posteriori distribution for each individual j, as char-

acterized by (8) and (9) (which is also a point-mass distribution), we can write

the a posteriori expectation for each individual as

E (Bj |Yj = yj) =

∑g
i=1

[
τ(+i)j (θ)− τ(−i)j (θ)

]
λi∑g

i=1

[
τ(+i)j (θ) + τ(−i)j (θ)

] . (17)

Of course, we do not have access to the true parameter vector θ0, in order

to evaluate the quantities above at their true values. However, as a consequence

of Proposition 2 and continuous mapping, replacing θ elements in either (16)

or (17) with elements from θ̂n will yield consistent estimates of the respective

quantities; we shall denote these estimates by V̂ and b̂j , respectively.

3.3 Number of Point Masses

In the discussion thus far, it has been assumed that the number of point masses

2g is fixed. This is due to the semi-parametric formulation of the MSNPML

16



LMM, which makes it is difficult to incorporate the determination of g within

the maximization process described in Section 2.

Due to the mixture model form of the marginal density (6), we can utilize

the techniques available from the mixture model literature, for the determina-

tion of the number of components in a model; see McLachlan and Peel (2000,

Ch. 6). Much of the literature on hypothesis testing for determining g is bespo-

ken to specific distributions and contexts, or requires computationally intensive

resampling techniques; however, the information theoretical approach to com-

ponents selection remains relatively portable. Thus, in this article, we shall use

the Akaike information criterion (AIC) (Akaike, 1974) and Bayesian information

criterion (BIC) (Schwarz, 1978) for the purpose of determining g.

Let G = {g1, ..., gM} be a set of M potential values for g, where gh ≥ 1

for each h = 1, ...,M . Furthermore, let g0 ∈ G, where g0 is the true value of

g. For each h, we fit the MSNPML LMM with 2gh point masses via the ECM

algorithm to obtain the ML estimate θ̂(h)n. Using the estimates, we can then

compute the AIC and BIC values for each model as

AIC (h) = −2ln
(
θ̂(h)n

)
+ 2 [gh (q + 1) + p]

and

BIC (h) = −2ln
(
θ̂(h)n

)
+ log




n∑

j=1

nj


 [gh (q + 1) + p] ,

respectively. Here, gh (q + 1) + p is the total number of parameter elements in

the model with 2gh point masses.

Using either of the criteria, the rule is to choose to set g = gh, for which h =

1, ...,M is the argument which minimizes the criterion in use. If the assumption

that g0 ∈ G is valid, then under some regularity conditions, it is provable that

the AIC rule will asymptotically select a model where g ≥ g0 (cf. Leroux (1992,

17



Sec. 3)) and that the BIC rule will asymptotically select a model where g = g0

(cf. Keribin (2000, Sec. 3)). Simulation results in McLachlan and Peel (2000,

Sec. 6.11) show that both criteria are capable of selecting the correct number

of components in simple mixture model situations, and as expected from the

theory, the BIC rule tends to outperform the AIC rule. Furthermore, results

from Grun and Leisch (2007), Depraetere and Vandebroek (2014), and Nguyen

and McLachlan (2016) confirm this observation in regression settings.

4 Numerical Simulations

We now perform a set of numerical simulation studies to assess the performance

of MSNPML versus the NPML random-effects model, when the random-effects

density is marginally symmetric. Our simulations follows in the style of Agresti

et al. (2004) and are conducted as follows.

All computation and random data generation in Sections 4 and 5 are con-

ducted within the R computing environment (R Core Team, 2013). Data gener-

ation of exponential, normal, and uniform random variates are conducted using

the rexp, rnorm, and runif functions of the stats package (R Core Team, 2013),

respectively. Data generation of triangular random variates are conducted us-

ing the rtriangle function from the triangle package (Carnell, 2013). The ECM

algorithms for both the NPML and MSNPML models are programmed in R,

and computationally intensive components are implemented in C and integrated

into R using the Rcpp and RcppArmadillo packages (Eddelbuettel, 2013).

4.1 Simulation Setup

We simulate R = 1000 instances of n ∈ {50, 100} individuals, each with nj =

N ∈ {50, 100} responses according to model (1), where β = (0, 0)
T , σ2 = 1,

and xjk = zjk = (1, νjk)
T , where νjk is a realization from Uniform (−1, 1),

18



for each i and j. The random effects bj = (b1j , b2j)
T are simulated under

the following six mean 0 scenarios: uniform over (−1, 1)2 (S1); multivariate

normal with mean 0 and covariance diag (1, 1) (S2); equal mixture of two uni-

form distributions over (−2, 0) × (0, 2) and (0, 2) × (−2, 0) (S3); equal mix-

ture of two multivariate normal distributions with means and covariance ma-

trices (1,−1)T and diag (1/4, 1/4), and (−1, 1)T and diag (1/4, 1/4) (S4); Bj =

(C1 − 1/3, C2 − 1/3)
T , where C1 and C2 are independent and triangularly dis-

tributed with parameters (−1, 0, 2)T (cf. Kotz and Van Dorp (2004, Ch. 1))

(S5); and Bj = (D1 − 1/12, D2 − 1/12)
T , were D1 and D2 are independently

observations from an equal mixture of an exponential distribution with mean

1/2 and a negative exponential distribution with mean −1/3 (S6). This yields

a total of 20 different simulation scenarios. Here, S1–S4 are marginally sym-

metric whereas S5 and S6 are not. Figure 1 shows a single instance of n = 100

realizations of the random-effects vectors Bj under each of the six scenarios.

We can write the covariance matrix of the random-effects distribution as

cov (B) =



V11 V12

V12 V22


 , (18)

where, we note that V11 = V22 in all six scenarios. The exact values of V11 and

V12 for each scenario are as follows: V11 = 1/3 and V12 = 0 in S1; V11 = 1 and

V12 = 0 in S2; V11 = 4/3 and V12 = −1 in S3; V11 = 5/4 and V12 = −1 in S4;

V11 = 7/18 and V12 = 0 in S5; and V11 = 17/48 and V12 = 0 in S6.

For each r = 1, ..., R, and under each of the 20 scenarios, we compute an

ML estimate θ̂[r] for both the MSNPML and NPML LMMs with g ∈ {2, 3, 4, 5}

(here, we skip g = 1 because the NPML model would have no variability). Using

the same approach as Agresti et al. (2004), we then compute the efficiency of

each set of estimates via the mean absolute deviation (MAD) criterion. That is,
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Figure 1: Typical samples of n = 100 realizations from each of the four simula-
tion scenarios described in Section 4.1.
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to assess the fixed-effects estimates, we compute R−1
∑R
r=1

∣∣∣β̂[r]h − βh
∣∣∣ for h =

1, 2; to assess the error variance estimates, we compute R−1
∑R
r=1

∣∣∣σ̂2
[r] − σ2

∣∣∣;

and to assess the covariance matrix estimate, we computeR−1
∑R
r=1

∣∣∣V̂[r]h1h2
− Vl1l2

∣∣∣

for h1 ≤ h2. Here

V̂[r] =



V̂[r]11 V̂[r]12

V̂[r]12 V̂[r]22




is the estimated covariance matrix using the ML estimate θ̂[r].

Further, for each r, under each of the 20 scenarios, we compute the av-

erage AIC and BIC values for both the MSNPML and NPML LMMs with

g ∈ {2, 3, 4, 5}, and determine the number of components g that minimize the

average values over the 20 scenarios. Here, we also compare the MAD of the

covariance matrix estimates between the most selected number of components

of the two models.

4.2 Results

The results of simulations S1–S4 are reported in Tables 1–4, respectively. Firstly,

we make the general observation regarding the MADs in each of these scenarios.

The MSNPML model appears to uniformly outperform the NPML model with

respect to the estimation of the marginal variances V11 and V22, and the error

variance σ2. Here, on many occasions, the MAD of the MSNPML model esti-

mates are approximately 1/3 that of the corresponding NPML model estimates.
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We observe that on most occasions throughout the four scenarios, the MSNPML

model estimate of the covariance V12 is lower than that of the corresponding

NPML model estimate, or is close in value. We note that both models appear to

estimate the covariance matrix of the random-effects distribution equally well,

with very little differences across all cases.

We shall discuss the estimation of the fixed effects β in parts. Firstly, we

notice that in S3 and S4, the MAD of the MSNPML model estimates are uni-

formly smaller than those of the NPML model estimates, often by a significant

fraction. However, this is different to the results found in S1, where the MAD

of the MSNPML model estimates are very close to those of the NPML model

estimates, often slightly greater; and in S2, the MAD of the MSNPML model

estimates are uniformly greater that those of the NPML model estimates. We

offer the following reasons for these observations.

In Figure 1, we observe that the S3 and S4 samples clearly arise from

marginally symmetric distributions, due to the clustered nature of the distribu-

tions and the separations between the modes. This is consistent with the results

from Agresti et al. (2004). However, in S1 and S2, a small sample can often

appear skewed, as is most evident in S2 panel of Figure 1.

Thus, the small sample skewness can be better modeled by the flexibility

of the NPML model, since it does not enforce symmetry on the estimated den-

sity. The MSNPML model estimates tend to model the outlier random effects, in

small samples, thus shifting the fixed-effects parameter elements away from their

true value. However, when the random effects exhibit symmetry in small sam-

ples, there are less biasing effects on the fixed-effects estimates of the MSNPML

model, as is observable in the results of Tables 3 and 4.

Further, we observe that under both models, an increase in g results in

decreases in the MAD of the estimates for the random-effects covariance matrix

26



and the error variance. However, there appears to be little effects of increasing g

on the MAD of the fixed-effects estimates. This is in agreement with the results

reported in Agresti et al. (2004), Butler and Louis (1992), and McCulloch and

Neuhaus (2011). We observe that there is an decrease in the MAD of the fixed

effects due to increase in sample size, across all four scenarios, which is in line

with general asymptotic theory.

The MAD results for simulations S5 and S6 are reported in Tables 5 and 6,

respectively. In both scenarios, we notice that NPML uniformly outperforms

MSNPML with respect to the estimation of the fixed effects. However, the

estimated efficiency for V11 of both methods appear to be similar in S5 and

S6. Surprisingly, MSNPML is uniformly more efficient at estimating the error

variance σ2. Furthermore, in both scenarios, MSNPML produces more efficient

estimates of V22. These results indicate that MSNPML may still be useful for

estimating variance components, even when the random-effects distribution is

not symmetric.

We report the AIC and BIC selection results for scenarios S1–S6 in Tables

1–6, respectively. We observe that, in general, the AIC and BIC preferred the

most complex models (i.e. g = 5) for both MSNPML and NPML, across all n

and N values, with few exception. That is, in S1, the BIC preferred g = 4 for

both MSNPML and NPML, when n = 50 and N = 50, and MSNPML only,

when n = 50 and N = 100; in S5 and S6, the BIC preferred g = 4, when

n = 50 and N = 50. Further, across all scenarios, both the AIC and BIC

preferred the MSNPML models to the NPML models, across all numbers of

components, and with respect to the models that are preferred over all values of

g. In scenarios S1–S4, the selected MSNPML models uniformly outperform the
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respective NPML models, with respect to the MAD of the covariance matrix

and error variance. However, in S1, the preferred MSNPML and NPML perform

equally with respect to the fixed effects, and in S2, was uniformly more efficient.

In S5, the MADs for V11 and V12 in the NPML models tended to be smaller than

those of the respective MSNPML models, but the MAD for σ2 and V22 were

uniformly larger for each n and N . In S6, the MADs for V11 and V12 in both

models appear to be similar; however the MAD for σ2 and V22 were uniformly

larger for NPML than MSNPML models, again.

The AIC and BIC results from Tables 1–6 are not surprising, considering that

the error variance is smaller for MSNPML models compared to the respective

NPML models, across all scenarios in Tables 1–6. This indicates that MSNPML

tends to fit the data better overall, even when it is less efficient for estimating

the fixed effects.

Finally, we observe that across scenarios S1–S4, there is little difference be-

tween the MAD of covariance matrix estimates when using the MSNPML model

with g = 2 and that of the NPML model with g = 4. Thus, we observe that

when the random effects are symmetric, the MSNPML model and the NPML

model with the same number of point masses, perform similarly. Furthermore,

upon inspecting the AIC and BIC values from Tables 1–6, we observe that the

corresponding values for g = 2 MSNPML models, and g = 4 NPML models

are highly comparable. Given that the NPML model requires twice the num-

ber of random-effects parameter elements for the same number of point masses,

this implies the MSNPML model confers an economy benefit in computational

requirement and parsimony of specification in cases where the random-effects

densities are marginally symmetric. Additionally, the evidence from Tables 5

and 6 suggest that MSNPML may still be useful even when there are deviations

away from symmetry.
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5 Example Applications

In this section, we demonstrate the use of the MSNPML LMM on a pair of data

sets from the nlme R package (Pinheiro et al., 2014). The data sets that we

use as examples are the Female subset of the Orthodont data set (Pinheiro and

Bates, 2000, App. A.17) and the Oxboy data set (Pinheiro and Bates, 2000,

App. A.19). The analyses are as follows.

5.1 Orthodont

The Female subset of the Orthodont data set (which we shall henceforth refer

to as the Orthodont data set) consists of the measurements of distance between

the pituitary and the pterygomaxillary fissure (in millimeters) for n = 11 girls,

at nj = N = 4 time points: ages 8, 10, 12, and 14 years old. The use of the

measurement as a proxy for overall growth is due to the ease of identifiability

of the features in x-ray images. The data were originally studied in Potthoff

and Roy (1964), and reanalyzed in Pinheiro and Bates (2000, Sec. 1.4) as an

example.

In our analysis, we study the data using the same model as applied in Pin-

heiro and Bates (2000, Sec. 1.4). In reference to (1), we set yjk to the distance,

and xjk = (1, agek)
T and zjk = 1, for each girl j = 1, ..., 11 and time points

k = 1, ..., 4, where agek = 6+ 2k; this is an analysis of covariance model with a

random intercept bj = bj for each girl j.

Using the AIC/BIC rule, we selected an MSNPML LMM with 2g = 4 point

masses, where the AIC/BIC value was 143.79/146.17; the AIC/BIC values for

the 2g = 2 and 2g = 6 cases were 176.47/178.06 and 147.68/150.86, respec-

tively. Over the range g = 2, ..., 6, the NPML LMMs yielded AIC/BIC values of

175.69/177.28, 163.63/166.02, 146.77/149.95, 150.77/154.75, and 154.77/159.54,

respectively. Thus the MSNPML can be seen as being a better fit for this data.
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Table 7: Parameter estimates for the components of θ in the 2g = 4 MSNPML
LMM for the Orthodont data set.

Parameter β =

[
β1
β2

]
σ2 π1 π2 λ1 λ2

Estimate
[

16.87
0.4795

]
0.6182 0.7274 0.2726 −0.9782 −3.534

Standard Error
[

(0.5961)
(0.05301)

]
(0.1323) (0.1343) — (0.2308) (0.1427)

Under the 2g = 4 MSNPML LMM, the parameter estimates are listed in

Table 7. In order to calculate the standard errors, we utilized a numerical

approximation of the information matrix I (θ), evaluated at the parameter es-

timate θ̂n; the numerical differentiation was conducted using the numDeriv R

package (Gilbert and Varadhan, 2012).

The random-effects variance var (B) = V = π1λ
2
1 + π2λ

2
2 can be estimated

as V̂ = 4.101, with a standard error of 1.626. Here, we obtain the standard er-

ror via the Delta method (e.g. see Theorem 1.3 of Boos and Stefanski (2013)),

which states that V̂ asymptotically has an approximately normal distribution

with mean var (B) and variance n−1∇V (θ0) I
−1 (θ0) [∇V (θ0)]

T , under the as-

sumption that θ̂n is a consistent estimator; since θ0 is unknown, the variance

can be estimated by evaluation at θ̂n. As expected, the 95% confidence inter-

val of V , (0.9140, 7.288), indicates that there is heterogeneity in the individual

growth patterns of the girls in the data.

Here, we utilized confidence intervals as an approximate inferential heuristic

for assessing the necessity of the random-effects model. As noted by a reviewer,

it is well known that the test of V = 0 versus V 6= 0 is difficult and cannot

be performed using general asymptotic theory (cf. Stram and Lee (1994)).

As suggested by a reviewer, we also computed a 95% bootstrapped percentile

interval (cf. Efron and Tibshirani (1993, Ch. 13)) using a parametric bootstrap

via in the style of McLachlan (1987). The resulting interval, (1.266, 7.399),

compares favorably with the asymptotic interval that we have reported.
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Figure 2: Estimated distribution function with 2g = 4 point masses, for the
Orthodont data set.

To visually portray the results, we plot the MSNPML distribution function

in Figure 2. A plot of the empirical distribution function of the estimated a pos-

teriori expectations of the random effects b̂j (as calculated using equation (17))

appears in Figure 3. By comparing Figures 2 and 3, we note that although the

MSNPML distribution can only take four distinct values, the possible values of

b̂j can potentially be any convex combination of the point masses. Furthermore,

unlike the random-effects distribution, b̂j need not be symmetrically distributed.

Suppose that we wish to predict the unknown response Y ∗j of individual j,

where we only know the covariates x∗j and z∗j . Given estimates b̂j and β̂n, we

can write the estimated expectation of Y ∗j as

Ê
(
Y ∗j |B = b̂j

)
= β̂Tnx

∗
j + b̂

T
j z
∗
j . (19)

We shall refer to (19) as the individual estimated expectation of j. The indi-

vidual estimated expectation line for each of the 11 girls is plotted in Figure 4,
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Figure 3: Empirical distribution function of the a posteriori expectations of the
random effects b̂j , estimated from the MSNPML model, for the Orthodont data
set.

for agej ∈ (8, 14). As expected, we observe that the estimated expectation lines

are all parallel (due to there being no random effects on age), and are clustered

around four point masses, as was visually evident in Figure 3. Regardless, the

clustered estimated lines are fairly well fitted to the data of each individual, as

only the green points are missed entirely.

To conclude the analysis of the Orthodont data set, we present the parameter

estimates from the analysis of Pinheiro and Bates (2000, Sec. 1.4) in Table 8;

here, the authors utilize a conventional LMM with a normal random-effects

model (i.e. fB (b) = φ
(
b; 0, σ2

B

)
). We notice that the estimates from Table 8

are very similar to that of the MSNPML LMM. Furthermore, we observe that

the standard errors of the intercept estimate is slightly larger than the ones from

Table 7. This is unsurprising, as the standard errors obtained from Table 8 are

finite sample corrected and are therefore more conservative than our asymptotic

standard errors. Finally, we note that the AIC and BIC for the normal LMM
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Figure 4: Individual estimated expectation lines for each of the 11 girls from
the the Orthodont data set. Each color indicates a different individual.

Table 8: Parameter estimates of the LMM model for the Orthodont data set,
from Pinheiro and Bates (2000, Sec. 1.4). Here, σ2

B is the variance of the normal
random-effects model. Dashes indicate where no information was provided.

Parameter β =

[
β1
β2

]
σ2 σ2

B

Estimate
[

17.373
0.480

]
0.6084 4.278

Standard Error
[

(0.85874)
(0.05259)

]
— —

are 149.22 and 156.17, respectively. This indicates that the MSNPML LMM

achieved a better fit than the usual normal model in this data set.

5.2 Oxboy

The Oxboy data set contains the height measurements (in centimeters) of n = 26

boys from Oxford, England. The boys are each measured at nj = N = 9

time points which were converted to a standardized age (an age measurement

approximately between −1 and 1).
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For each boy j = 1, ..., 26 and each time of measurement k = 1, ..., 9, we set

yjk to be the measured height and xjk = zjk =
(
1, agejk

)T , where agejk is the

standardized age of boy j at time of measurement k. For our analysis, we fit

an MSNPML LMM with random effects on both the intercept and the slope of

the regression between height and age.

Using the AIC/BIC rule, we selected an MSNPML LMM with 2g = 16

point masses, where the AIC/BIC value was 843.61/876.32; the AIC/BIC values

for the 2g = 14 and 2g = 18 cases were 883.95/912.88 and 874.34/910.82,

respectively. Over the range g = 14, ..., 18, the NPML LMMs yielded AIC/BIC

values of 1104.96/1156.55, 978.89/1034.24, 907.19/966.32, 914.28/977.19, and

1122.63/1189.31, respectively. Thus, like in the Orthodont data, the MSNPML

can be seen as being a better fit for this data as well.

Under the 2g = 16 MSNPML LMM, the parameter estimates are as appear

in Table 9. Further, using Equation (16) and the notation of (18), we obtain

the estimates for the distinct elements of the random-effects covariance matrix

to give V̂11 = 62.64 (17.20), V̂12 = 8.253 (3.053), and V̂22 = 2.550 (0.5558);

again, the standard errors reported in the parentheses are obtained via the

Delta method. Considering the sizes of the standard errors as compared to

the estimates, we can conclude that there is likely heterogeneity in the growth

patterns of the boys in the data.

Here, we note again that our conclusion should be taken to be a heuristic

assessment, as opposed to formal tests of hypotheses. For completeness, the

95% bootstrapped percentile intervals for V11, V12, and V22 are (33.50, 99.65),

(1.970, 14.30), and (1.186, 3.139), respectively. These intervals are very similar

to those that would be obtained via the standard errors from the Delta method.

In Figure 5, we plot the point masses and the estimates b̂j , in order to

visualize the a priori random-effects density and the density of the estimated
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Figure 5: The estimated random-effect density for the Oxboy data set is plotted
as plus signs, where the size is relative to the weight of that point mass (see
Table 9). The circles are each of individual estimated a posteriori expectations
b̂j .

a posteriori expectations. We note from the figure that the positive correlation

observed in the estimated covariance matrix is visually evident. Further, we once

again see that the estimated a posteriori expectations are clustered around the

point masses, with few deviating any significant distance from the nearest point

mass. Unlike in the Orthodont data, however, we observe that some of the point

masses have no nearby a posteriori expectation estimates. This is likely due to

the large proportions of estimates around their respective mirrored masses.

Lastly, we plot the individual estimated expectation lines for each of the 26

boys in Figure 6. Unlike in Figure 4, the estimated lines are no longer parallel

since there is are now random effects on the slope as well as the intercept. We

see that the lines are fairly well fitted to each individual’s data, especially in the

centre of the distribution. However, there is some lack of fit in the peripheries.

For example, the green points are missed all together at the bottom of the graph.
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Figure 6: Individual estimated expectation lines for each of the 26 boys from
the the Oxboy data set. Each color indicates a different individual.

6 Conclusions

In this article, we have introduced the MSNPML LMM for modeling random

effects under the assumption of marginal symmetry. Under such conditions,

the MSNPML model utilizes half the number of parameters to model the same

number of point masses as the NPML model.

An ECM algorithm is presented for the ML estimation of the parameters

of the MSNPML LMM. The algorithm is shown to exhibit monotonicity in the

sequence of iterate likelihoods, as well as convergent to a stationary point of the

log-likelihood function. Furthermore, the ML estimator is shown to be consis-

tent and asymptotically normal in balanced experiments and when covariates

are random. Conditions are discussed regarding the necessary conditions in the

case of fixed covariates. The estimation of interesting quantities such as the

random-effects covariance matrix and the individual a posteriori expectations

is discussed, as well as the selection of the number of point masses via the AIC
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or BIC rules.

We then demonstrated that the MSNPML model was more efficient than

the NPML model, via a set of four numerical simulations. In these simulations,

it was found that the MSNPML model was better able to estimate accurately

the random-effects marginal variances and error variance in all settings. The

estimation of random-effects covariance matrix appear to be similar in both

models across all cases. In the cases where the random-effects distributions

are obviously marginally symmetric in small samples, the MSNPML model was

more efficient in estimating the fixed effects. However, in the cases where there

is possible skewness in small samples, the NPML model can outperform the

MSNPML model.

A pair of examples from Pinheiro and Bates (2000) was used to demonstrate

the manner in which an MSNPML model could be used to conduct statistical

inference. In the Orthodont data set, it was found that the inferences produced

via the MSNPML model corresponded closely to those obtained via the normal

LMM model (cf. Pinheiro and Bates (2000, Sec. 1.4)). In the Oxboy data set,

we demonstrated how the model could be used to draw inferences regarding the

heterogeneity in the data set. We also demonstrated a variety of visualization

tools for graphically interpreting MSNPML model estimates.

In the future, it would be interesting to extend the MSNPML model to LMM

cases where the error variances are not normal. For instance, we could use

the mixture regression results of Nguyen and McLachlan (2016) or Galimberti

and Soffritti (2014) to estimate MSNPML LMMs with Laplace or t distributed

errors, respectively. It is also possible to allow for skewed error distributions via

the mixture results of Lee and McLachlan (2016).

Further, it is possible to extend the model to the so called generalized LMM

context. We note that this was explored in part by Agresti et al. (2004) and
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Aitkin (1999) in the case of NPML models. However, in neither articles are

algorithms presented that exhibit the monotonicity properties of proper EM-

type algorithms. It is possible to modify the estimation techniques for mixtures

of experts from Nguyen and McLachlan (2016) for use in estimating NPML

and MSNPML multinomial regressions. Additionally, we may also explore algo-

rithms for applying NPML and MSNPML models in other generalized settings

such as in beta and gamma regressions.
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