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a b s t r a c t

Hierarchical geographical traffic networks are critical for our understanding of scaling laws
in human trajectories. Here, we investigate the susceptible-infected epidemic process
evolving on hierarchical networks in which agents randomly walk along the edges and
establish contacts in network nodes. We employ a metapopulation modeling framework
that allows us to explore the contagion spread patterns in relation to multi-scale mobility
behaviors. A series of computer simulations revealed that a shifted power-law-like nega-
tive relationship between the peak timing of epidemics s0 and population density, and a
logarithmic positive relationship between s0 and the network size, can both be explained
by the gradual enlargement of fluctuations in the spreading process. We employ a semi-
analytical method to better understand the nature of these relationships and the role of
pertinent demographic factors. Additionally, we provide a quantitative discussion of the
efficiency of a border screening procedure in delaying epidemic outbreaks on hierarchical
networks, yielding a rather limited feasibility of this mitigation strategy but also its non-
trivial dependence on population density, infector detectability, and the diversity of the
susceptible region. Our results suggest that the interplay between the human spatial
dynamics, network topology, and demographic factors can have important consequences
for the global spreading and control of infectious diseases. These findings provide novel
insights into the combined effects of human mobility and the organization of geographical
networks on spreading processes, with important implications for both epidemiological
research and health policy.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The complexity of human mobility and interaction patterns has attracted much recent attention in a variety of disciplines,
including statistical physics and complex systems science [1–14]. Ever since the influential work of Brockmann et al. [4] on
the bank note dispersal, researchers have been intrigued by the revealed power-law distributions of human travel displace-
ments [3,5]. Meanwhile, such empirical studies have increasingly benefited from a variety of advanced data collection tech-
nologies (e.g. mobile phone, GPS, social-network sites etc. [15]), reporting the presence of many abnormal properties of
.
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human motion, including ultraslow diffusion [3,4] and strikingly high predictability [6]. It is these abnormal properties that
actually shape the difference between the natural human movements and the so-called Lévy flights [7,16].

Several studies have been conducted so far to address the underlying mechanisms of the discovered abnormal properties
of human spatial behavior. For the urban and intercity travels, Song et al. investigated the impact of exploration and pref-
erential return on mobility patterns [8]. For the long-range travels, Han et al. [9] demonstrated that hierarchical geographical
organization of traffic systems plays a crucial role in the emergence of scaling in human trajectories.

An important, but less studied issue in this context, is the impact of the abnormal features of human motion on the
dynamical evolution of spreading processes. For example, based on the mobile phone user data published in Ref. [3], Wang
et al. analyzed the spreading of a mobile-phone-virus outbreak [10]. Ni and Weng [11] investigated the effects of heteroge-
neous spatial properties in metapopulation networks, and more recently, Belik et al. [12,13] reported on the dynamics of a
spreading process under bidirectional mobility, that was further investigated by Balcan and Vespignani [14]. All of these
studies converge on the finding that spatially constrained mobility networks play a crucial role in shaping the key features
of spreading processes.

While the focus of most previous studies has largely been on the local temporal development of diseases and epidemics
[17,18], their geographical, multi-scale circulation is less well understood [19,20]. In the present paper, we propose a meta-
population model [21] that allows us to explore the contagion spread patterns in relation to multi-scale mobility behaviors
and the organization of traffic systems embedded in realistic geography. Thus, we assume here that besides local, close-con-
tact-driven and smaller outbreaks, it is the movement of individuals among the many different scales of a large geographical
network that is actually essential to the spread of a global epidemic.

A previously reported model [9] demonstrated that a number of realistic mobility patterns can naturally be generated by
random walks on a hierarchical geographical network, mimicking the properties of real-world traffic systems. Here, we
directly implement a hierarchical geographical network with randomly-walking agents into the susceptible-infected (SI)
epidemic model, combining thereby the study of epidemic dynamics with human-like mobility behaviors and the real-
world-like organization of traffic systems (Section 2).

We first investigate the elementary properties of the generalized SI spreading process on hierarchical geographical net-
works and then compare the obtained epidemic patterns against the scenario generated with the Lévy flight model (Sec-
tion 3; details of the employed Lévy flight model are further presented in Appendix A). We then systematically
investigate how population density and city size affect the epidemic curves in different layers of a hierarchically organized
geographical network (Section 4). A semi-analytical method is further introduced to better understand the importance of
pertinent demographic factors (Appendix B). Finally, we study the effects of a border control measure on the timing and
height of epidemic peak which is one of the main aspects of most mitigation strategies (Section 5).
2. The model

Models that explicitly address the hierarchical organization of geographical networks are capable of mimicking real-
world traffic systems in which agents can randomly percolate along the network edges and thereby take part in long-range,
inter-layer travels. In one such model [9], agents can generate not only power-law-like travel displacement distributions, but
are also able to display a scaling behavior in the probability density of having traveled a certain distance at a certain time,
which is in agreement with recent empirical observations [4]. In addition, it has been shown that inter-event or waiting time
distributions also display non-Poisson statistics. We therefore argue here that an implementation of a hierarchical network
in our present study can help us understand highly relevant aspects of real epidemics that are otherwise difficult to capture
with models that enable only local behavior, i.e. mixing at only one or two scales [22].

With respect to the infectious disease dynamics, our model is based on the SI spreading process [23,24], in which indi-
viduals can occupy one of the two possible states: ‘susceptible’, meaning they are not infected yet, and ‘infected’, meaning
they already have the disease and can spread it to the susceptibles. In the present study, we examine the case of d ¼ 2
dimensional geographical hierarchical network with the following properties:

(i) Structure of the metapopulation network. We use the regular form of the hierarchical network reported in Ref. [9]. In our
model, all units, or say subpopulations, are called cities, which can correspond to any kind of human settlements and not only
to the real-world cities. These cities are organized in L layers of the network, where the first layer corresponds to the top
network layer. A uniform 3-layer structure of the hierarchical geographical network is depicted in Fig. 1.

We first set the city located in the center of a square field as the top layer (i.e. the first layer) of the network, and we
evenly divide this field into K regular sub-regions (with a 3� 3 arrangement for K ¼ 9). We then set all the centrally located
cities of the respective sub-regions to be the 2nd-layer cities. We note here that the 2nd-layer city in the central sub-region is
also regarded as the same node of the 1st-layer city due to the overlap of the positions. Here, the sub-regions are called ‘‘2nd-
layer sub-regions’’. Similarly, each of the 2nd-layer sub-regions are further evenly divided into K 3rd-layer sub-regions with
3rd-layer central cities. This process is iterated until Lth-layer cities are generated. For 2 6 n 6 L, there are Kn�2ðK � 1Þ nth-
layer cities. The total number of cities in the network (the size of the network) is then defined as S ¼ KL�1.

In the ðL� 1Þth-layer sub-region, each Lth-layer city is connected to the central city of the sub-region. These Lth-layer
cities belonging to the same ðL� 1Þth-layer sub-region are also fully connected. Similarly, for 1 < n < L, the nth-layer cities



Fig. 1. Hierarchical structure of the geographical network used in the presented study (K ¼ 9 and L ¼ 3), (a) shows the 3-dimensional representation of the
planar hierarchical organization and the edges between the cities in different layers, (b) and (c) display the full-connected structure in the two sub-graphs
of the network, (d) shows the corresponding distribution of cities in different layers of the network on the plane. The blue, red, and green circles are the
cities in the 1st-, 2nd-, and 3rd-layer, respectively. The blue and light pink arrows denote the corresponding parts in different panels. The single topmost
node is the first or highest layer, n ¼ 1. The black arrows show the possible movements of an agent. The panel (e) zooms in an individual node, showing an
invasion of an infector (blue agent) and the local spreading within a city, whereas the grey arrow denotes the interaction and contagion spreading between
the infector and a previously healthy agent (now infected). (For interpretation of the references to colour in this figure caption, the reader is referred to the
web version of this article.)
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in the same ðn� 1Þth-layer sub-region are also connected with the central city of the ðn� 1Þth-layer sub-region and are also
fully connected to each other, as depicted in Fig. 1(b) and (c). The Fig. 1 illustrates an example with L ¼ 3, and K ¼ 9.

(ii) Random-walk of agents. The total number of agents in the model is M. At each time step, we randomly choose qM
walkers to move along the edges of the hierarchical network. The value of q corresponds to the rate of mobile agents and
is fixed in the model. In reality, the central city (hub) should have a greater attraction relative to smaller peripheral cities,
which is represented in our model by a layer-dependent weight, wn ¼ wL�n, where n denotes the layer and the ratio w P 1 is
a free parameter. The probability that the walker will move along an edge is proportional to its weight.

For each move, the move length d is defined as the Euclidean distance from the city of a given movement initialization to a
given target city. Here, the minimum distance between the two neighboring lowest-layer cities is set as one unit. For exam-
ple, the black arrows in Fig. 1(d) illustrate a possible movement trajectory of an agent with the corresponding move lengths
d1 ¼ 2:236; d2 ¼ 1:414; d3 ¼ 6:708, and d4 ¼ 1:0.

As w increases, the long-range travels to higher-layer cities become more frequent. Thus, larger w correlates with the
higher heterogeneity or diversity (i.e attractiveness) of a city. The probability Pi that an individual will move to a given
neighboring city i, is the ratio of the weight of that neighboring city and the sum over the weights of all the connected neigh-
boring cities surrounding the current city populated by the individual.

(iii) Contact and infection of agents. At each time step, each agent randomly interacts with another agent in the same occu-
pied city. If only one of the two agents is infected, another agent will then change his state from susceptible to infected with
probability k.

In the initial series of simulations, we fix the following parameters: q ¼ 0:01; k ¼ 0:1;K ¼ 9; L ¼ 5, and M ¼ 105 (these are
also the default parameter settings in all the following discussions, unless a given parameter value is differently specified).
Starting from a random initial configuration, we first let the agents randomly move across the network for over 103 time
steps to initialize the landscape. In the first time step of the spreading process (t ¼ 0), a randomly chosen agent is set as
the first infector, while the others are set as susceptibles. Initially, the network takes a form of an 81� 81 lattice with
L ¼ 5. In later simulations (Section 5), the network size and population density (as well as other parameters) are systemat-
ically manipulated to investigate the demographic effects on the spreading process.
3. Simulation results

As demonstrated in Ref. [9], the move-length distribution of agents’ mobility in the hierarchical geographical network
obeys the power-law-like form PðdÞ � d�b. Fig. 2(a) shows that when the value of w increases from 1.0 to 2.0, the power-
law exponent, b, monotonically decreases from 2.0 to 0.74, which is in agreement with a whole range of empirical
observations on human mobility patterns [3–5]. We also see that after a sufficient number of iterations, the majority of
agents resides in higher-layer cities, which again depends on the value of the parameter w. Thus, as w increases, the
long-range jumps to higher-layer cities become more frequent (Fig. 2(b)).

Interestingly enough, we observe that intervals between the two consecutive contacts established among pairs of agents
in our model also obey a power-law-like distribution with an almost unchangeable exponent �1:35 and slight fluctuations



Fig. 2. The move-length distributions of agents in the hierarchical geographical network, each of which lasted for 105 time steps (a), and the average
number of static agents in each network node as a function of the layer rank (b), in both plots for the ratio of layer-dependent weights w ¼ 1;w ¼ 1:5, and
w ¼ 2, respectively, (c) shows the interval time distribution between the two consecutive contacts established among pairs of agents for different w. All
results are averaged over 100 independent runs.
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(Fig. 2(c)). This observation is very close to the temporal properties of natural, real-world social contacts [25] that are clearly
different from the behaviors generated by a traditional Lévy-walk system [26,27].

As in an SI model, the spreading velocity is represented by the growth of the total infection rate RðtÞ ¼ MIðtÞ=M and the
rate of new infected cases IðtÞ ¼ RðtÞ � Rðt � 1Þ, where MIðtÞ is the number of infectors at time step t. As shown in Fig. 3(a)
and (b), the spreading velocity is monotonically accelerated with the increasing value of the layer-dependent weight w.
Fig. 3(c) depicts the relationship between the peak timing of epidemics s0 (i.e. the timing of the maximum IðtÞ) and w, in
which the visible bumps are induced by the fluctuations in the move length distribution PðdÞ.
Fig. 3. Spreading patterns for different values of w in the absence of an intervention. The top panels show the growth of the total infection rate RðtÞ (a), the
rate of new infections IðtÞ as a function of time (b), and the peak timing of epidemics s0 vs. the ratio of layer-dependent weight w (c). Panels (d) and (e)
display the rate of new infections IðtÞ vs. time for different layers L and the ratio of layer-dependent weight w ¼ 1:0 and 2:0, respectively. (f) and (g) show
the spreading patterns (IðtÞ) for different infection source layers L0 and w, with (f) for w ¼ 1:0 and (g) for w ¼ 2:0. All displayed results are averaged over 100
independent simulation runs.
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When the ratio of layer-dependent weight w is held constant (Fig. 3(d) and (e)), we find that the contagion spreads first
from its source location to the closest higher-layer city (directly linked to the contagion source), and then diffuses to the sur-
rounding same-layer cities of the initially affected higher-layer city via available long-range links. Cities in the lower layers of
the network are the last ones to become infected. These results suggest that higher-layer cities are at a higher risk for fast-
growing epidemic, and long-range travelers may play the crucial role in this spreading process. Moreover, it is certainly not
by chance that hub-like nodes with great infectivity in epidemic contact networks are actually dubbed the superspreaders in
the epidemiological literature [28].

The layer-by-layer spreading observed in our simulations implies that the spreading process in the hierarchical network
is sensitive to the source location of the epidemic onset. Setting the first infector as static in an L0-th layer city at t ¼ 0, as
shown in Fig. 3(f) and (g), the disease transmission becomes faster when the source is located in higher-layer cities (i.e. when
L0 is small), and especially at larger w. This confirms previous findings suggesting that it is of utmost importance to set the
disease monitoring focus on the big cities and transport hubs with greater attraction for long-range travelers.

To compare the dynamics of disease transmission emerging on our hierarchical geographical network with that generated
by the Lévy flight model, we additionally simulated the spreading process with Lévy-walking agents in same-sized, 81� 81
lattices. To enable comparison, the move-length distribution originating from the Levy-flight model was the same as the one
found in the hierarchical network structure (see Appendix A for details). However, relative to the hierarchical network sce-
nario, the movements of agents in the Lévy-flight scenario were not limited to those along the edges and contact intervals
did not show scaling properties.

As depicted in Fig. 4(a) and (b), the spreading velocity in the hierarchical network structure is somewhat slower than that
observed in the scenario with the Lévy-flight model (when w is close to 1:0). When the value of w > 1, the growth rate of
infections in the hierarchical structure is higher in the early stages of the spreading process (relative to the scenario with
Lévy-flight agents), but slower in the later stages, such that the overall relaxation time from the start of the epidemic to
the full-infected state is longer than that found in the Lévy-flight model, as illustrated in Fig. 4(c) and (d).
4. Population size and population density effects

Previous research on the role of socio-demographic factors in disease spreading yielded many conflicting results [29–31].
In fact, relatively little is known about the relationship between the peak timing of epidemics and socio-demographic factors
such as population density and city size (e.g. epidemic spreading differences between rural and urban areas). In particular,
the effects of population size and density have not been comprehensively studied in the context of hierarchical spreading
behaviors, driven by large, hub-like population centers [30].

In Fig. 5, we see that population size M significantly affects both the height and timing of IðtÞ. Moreover, we find that the
population size affects only the peak timing of epidemics in lower-layer cities (see Fig. 5(c)), while this effect vanishes in
higher-layer cities, resulting thus in rather synchronized epidemic peaks across a variety of population sizes. Furthermore,
we observe that the population size effect becomes obvious only in sufficiently large networks (see the inset in Fig. 5(c)).

Similar effects of population density were observed in our model (Fig. 6), where the average population density
hmsi ¼ M=S. However, one important difference is that the population density plays a role in epidemic timing even in a wider
Fig. 4. Contagion spread patterns for the hierarchical network (black curves) for different w, and the corresponding epidemic scenario generated with the
Lévy-flight model on lattices (red dashed curves), both in the absence of an intervention. (a) and (c) show the growth of total infection rate RðtÞ, and (b) and
(d) are the rate of new infections IðtÞ. All results are the averages over 100 independent simulation runs. (For interpretation of the references to colour in
this figure caption, the reader is referred to the web version of this article.)



Fig. 5. The rate of new infections for different L and fixed M (a), and different M and fixed L (b). Panel (c) is the dependence of the peak time s0 on different L
and M (without border control); the inset shows the peak time s0 as a function of the size of the network S for different M. Here w ¼ 1:0 and other
parameters are specified as in the default settings. All results are the averages over 100 independent simulation runs.

Fig. 6. Panel (a) shows the dependence of s0 on hmsi and different L when w ¼ 1:0; the inset in (a) shows the dependence between the peak time s0 and the
size of the network S for different hmsi; The dashed lines in panel (a) are the fitting shifted-power functions: s0 ¼ 330:0hmsi�0:73 þ 87:4 (black),
s0 ¼ 931:2hmsi�0:95 þ 150:1 (red), and s0 ¼ 1126hmsi�0:80 þ 191:2 (blue). The dashed lines in the inset represent the fitting logarithmic functions:
s0 ¼ 164:6 logðSÞ � 123:9 (black), s0 ¼ 99:6 logðSÞ � 61:2 (red), and s0 ¼ 80:9 logðSÞ � 40:9 (blue). Panel (b) shows the dependence of s0 on different w and
hmsi when L ¼ 5. The dashed lines in panel (b) are the fitting shifted-power functions: s0 ¼ 1196:8hmsi�0:84 þ 195:8 (black), s0 ¼ 619:1hmsi�0:90 þ 184:1
(red), and s0 ¼ 138:6hmsi�0:43 þ 130:2 (blue). All other parameters are set as in the default settings and all displayed results are the averages over 100
independent simulation runs. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this article.)
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range of network layers (however, the effect is again stronger in the lower layers; see Fig. 6(a), revealing a shifted-
power-function-like relationship). Next, as we were wondering why the spreading velocity negatively correlates with the
population density, we found that this particular relationship emerges from the gradual fluctuation enlargement effect on
the export time of infectors (see Appendix B for details). When the population density is large enough, then the population
size in each city and the amount of travelers moving between different cities is also large, which consequentially results in
much smoother contagion spreading patterns across cities.

However, the case with a small population density is clearly different. Here, it is very likely that in the long term, no trav-
elers will move from small-sized to larger cities simply because of the random selection of travelers from a small-sized pop-
ulation pool. Thus, a given small-sized city cannot immediately export infectors even though it is fully infected. This
phenomenon will significantly delay the spreading process, which in turn will be gradually enlarged by the hierarchical orga-
nization of the system, ultimately resulting in the negative correlation between the spreading velocity and population den-
sity. This further implies that the actual population distribution deeply impacts the spreading process: The hierarchical
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system with many small and loose settlements will result in slower spreading velocity and higher unpredictability. The de-
tailed discussions of this phenomenon based on the mean field approach can be found in the Appendix B.

In addition, we discovered that the peak timing of epidemics scales logarithmically with network size (and thus linearly
with L), showing a regularity across several ’urban systems’ in our model, i.e. across a range of population densities (see the
inset in Fig. 6) and across different time-scales. Our semi-analytical approach revealed that this logarithmic growth results
from the gradual fluctuation enlargement effect on the export time of infectors (see again the Appendix B).

Finally, our simulations revealed that the density effect is weakened for the condition with a large geographical diversity
(large w), as shown in Fig. 6(b). The reason is that, in this condition, many agents gather in the higher layer cities where the
spreading is mainly driven by the local infections within a city, and thus the gradual enlargement effect no longer plays an
important role.

5. Entry screening of long-range travelers

One of the most prominent features of the hierarchical network structure is that a few higher-layer cities are usually con-
nected by several long-range edges. Since higher-layer cities are also facing higher risks for fast-growing infectious out-
breaks, it is the question how to select an optimal countermeasure that would effectively delay the timing of local
outbreaks in higher-layer cities in order to prevent further spreading to less endangered, peripheral areas.

In the influenza pandemic of 1918, strict border control measures delayed the disease invasion for more than one year in
several Pacific countries [32]. This entry screening policy has also played a major role in the combat against the Severe Acute
Respiratory Syndrome (SARS) in 2003. However, the full extent to which border control measures actually contribute to real-
world epidemic preventions is still rather unknown. While some reports [33–36] provided rather pessimistic estimations on
the effectiveness of border control, recent evaluations of the entry screening policies adopted by different nations during the
2009 H1N1 pandemic [37] demonstrated that long-range travel control significantly delayed disease transmission, relative
to countries which did not employ a strategy for screening of incoming passengers. Due to such conflicting reports, more
studies on the relevance of border control measures are needed.

Although the time delay of an epidemic outbreak (such as that resulting from entry screening of long-range travelers) has
been explored in a few recent studies [36,37], the impacts of various intervention strategies on the height and timing of peak
infections, especially in the context of more realistic epidemic scenarios, have remained rather understudied. In this section,
we will therefore investigate the efficiency of long-range travel screening as implemented in on our present model. To this
effect, we first set the threshold dc for the move length d of agents that will be subject to a border screening procedure.

More specifically, all agents with the move length d who at a given time step satisfy the condition d P dc will be screened.
Here we define the cost of screening C as the average number of agents traveling along the edges longer than the threshold
length dc : C ¼ hmci=M. Obviously, the cost C correlates negatively with dc: When dc is large, only a few higher-layer cities
will be screened. On the other hand, small dc implies that much more cities will be involved in the screening procedure. Since
there are more long-range travelers for larger w, the cost C also increases with the value of w. Fig. 7(a) shows the relationship
between C and dc for different values of w (in the inset). The bumps visible in Fig. 7(a) are due to the bumpy move
length distribution PðdÞ (shown in Fig. 2(a)). Under this border screening regime, each infected individual participating in
Fig. 7. Disease spreading patterns in the hierarchical network (L ¼ 5) under long-range travel control, (a) shows the cost of border screening C vs. the ratio
of layer-dependent weights w for the critical move length dc ¼ 3;9 and 27, and C vs. dc for different values of w (the inset), (b) shows the ratio between the
peak time of IðtÞ for the situations with (s) and without (s0) entry screening of long-range travelers vs. w for different dc when the efficiency of border
control p ¼ 0:8, and the inset of (b) shows the ratio s=s0 vs. the cost C for different w in semi-log plot, where the total number of agents M ¼ 105. (c) shows
the ratio s=s0 as a function of p for w ¼ 1:0 and 2:0 and hmsi ¼ 10 and 30 in a semi-log plot, where the dashed pink curve shows the fitting function
s=s0 ¼ 1:03 expð0:017e4:69pÞ, and the inset of (c) depicts in a log–log plot the ratio s=s0 vs. the average population density hmsi for different values of w when
p ¼ 0:8, where the dashed line shows the fitting function s=s0 ¼ 3:24hmsi�0:48 + 0.99. All results are the averages over 103 independent simulation runs. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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a long-range travel (with move length not smaller than dc) will subsequently be quarantined with probability p, or it will
keep its infectivity with probability 1� p; thus, p can serve here as the measure of efficiency of border control.

We now focus our discussion on the peak timing ratio between the situation with (s) and without (s0) border control. The
higher the ratio s=s0 the longer the relative delay of the peak timing of epidemic spreading. When compared against the sce-
nario without border control, our simulations show that the efficiency of the screening of long-range travelers is deeply af-
fected by several socio-demographic factors such as city size and population density.

First, we find that border control of long-range travelers would be a more efficient measure when the diversity of cities is
rather small (i.e. small w). As shown in Fig. 7(b), the ratio s=s0 rapidly decreases with the growth of w. As expected, the bor-
der control of long-range travelers was found to be more efficient for small w, which corresponds to more homogeneous cit-
ies and a lower influx of passengers from distant regions. As mentioned previously, when w is large, only a few higher-layer
cities can manage to collect the largest fractions of the simulated population, such that a swift local outbreak in higher-layer
cities has much more contribution to the overall spread of infections in the rest of the network. Moreover, since larger w
implies a more costly border control for the same threshold dc (Fig. 7(a)), the feasibility of this control measure for the con-
dition with the larger city diversity is further reduced. Additionally, the relationship between the ratio s=s0 and the cost of
border screening C is logarithmic for w ¼ 1 (the inset in Fig. 7), indicating that the improvement of the border screening effi-
ciency would be rather limited if one would only enlarge the screening range.

Thus, the above discussed results regarding the efficiency of border control are rather pessimistic, however, the observed
sensitivity of the epidemic delay to the probability p of isolating an infected agent shows another picture. The growth of the
ratio s=s0 with p is quite fast and surprisingly shows a super-exponential form (Fig. 7(c)), suggesting that the efficiency of the
proposed border control mechanism can largely be improved if the screening procedure is more dedicated to increasing the
probability of infector detection and isolation.

Moreover, in this context, we further investigated the impact of population density on the efficiency of border control.
Fig. 7(c) shows that border screening is more efficient for the condition with a lower average population density. The specific
relationship between the epidemic delay and population density is plotted in the inset of Fig. 7(c), and is shift-power-law
like for the condition with smaller w. When w is large, the effect of population density is weakened, because in this case,
the rise of local infections within a city weakens the gradual enlargement effect. Thus, we find here that besides w, the pop-
ulation density also has an additional impact on the outcome of a control measure, which would be more efficient in hier-
archical systems with many small and loose settlements.
6. Discussion

The hierarchical structure of our epidemic model contains two relevant aspects. Firstly, our hierarchical geographical net-
work mimics the real-world traffic systems, and secondly, as indicated in Ref. [9], random walks in such hierarchical net-
works can naturally generate scaling mobility patterns, which are quantitatively in agreement with recent empirical
studies on human mobility. Consequentially, the geographical hierarchical network presented in our model not only pro-
vides a novel framework for modeling the interaction among various subpopulations, but it also introduces the effects of
uniquely human patterns of motion on the contagion spread processes.

Taken together, our simple metapopulation model was able to reproduce some of the key features that are typically ob-
served in more complex natural systems with spreading processes. We first investigated contagion spread patterns on hier-
archical networks and then compared the observed behavior against the scenario generated by the Lévy-flight model. In the
early stages of disease transmission, higher-layer cities are at a higher risk for a fast-growing outbreak, which is mainly
caused by the infected long-range travelers. This in turn may necessitate top-down procedures such as exit and entry screen-
ings at international borders [38] which were quantitatively studied in our paper.

However, we note here that larger cities and transport hubs with greater attraction for long-range travelers are not nec-
essarily the key players in the spreading process. For example, Kitsak et al. [39] have shown that quite differently from the
common belief, the most central or the most connected nodes in a network are not the best spreaders of a contagion. Instead,
it is those individuals positioned within the core of a given network who are actually responsible for the largest-scale spread-
ing of a disease [39].

In the present model, the links between the nodes of the investigated hierarchical network were undirected. However, the
directedness of links [40,41] was recently reported to play an important role in the spreading process [42], resulting in
behaviors that are distinct from those observed on undirected networks [43,42]. Generally, studies of epidemic spreading
on directed networks are relatively rare [44], even though directed flow is known as an essential characteristic of many
asymmetric real-world processes such as contagion spread in trade networks [45], in which the availability of a given net-
work link does not guarantee the reciprocal connection. Future investigations of epidemics on hierarchical networks should
not ignore these issues. For example, in a hierarchically organized system, some starting peripheral nodes could have only
out-links, while the majority of others could allow for mobility in both directions; however, some inter-layer transitions or
quarantined areas could be specified with in-links only.

For geographical regions with greater variations in socio-demographic factors (e.g. larger amount of city layers) and suf-
ficiently large sizes, we found that population density and city size become good predictors of the epidemic timing. More-
over, we discovered a shifted power-law-like negative relationship between the peak timing of epidemics s0 and population
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density hmsi, and a logarithmic positive relationship between s0 and the network size S. This may further indicate that just as
many other natural phenomena, also epidemic spread patterns may have some universal properties that are shared by all
world cities and sustained across different cultures and times [46]. In addition, our mean-field approximation showed a
gradual enlargement effect in the spreading process on a hierarchical network, and revealed that the smooth-spreading
assumption cannot always provide an appropriate description of epidemic spreading in complex networks, especially not
in hierarchically organized systems.

Finally, the efficiency of the employed border control strategy and its cost are quantitatively studied. At first, the reduced
screening efficiency for situations with large city diversity and the logarithmic relationship between the screening efficiency
and cost of border control confirm the previously reported pessimistic outcomes of travel restrictions (see e.g. [35] for travel
control measures related to the global spread of 2009 H1N1 pandemic, exploring mobility restrictions that differ with re-
spect to their magnitude and timing). On the other hand, the observed super-exponential growth of s=s0 with p is an indi-
cation of a possible improvement of this control measure e.g. by means of enhancing the detectability of infectors at each
entry during the screening procedure.

However, we point out here that the ideal intervention, especially in the early stages of an outbreak, may depend on the
actual aim(s) of an intervention [47], as some intervention goals may have a multitude of roughly equally effective strategies,
while others may require only one specific action. This, in turn, indicates the relevance of more precise descriptions of policy
objectives when planning a given mitigation strategy. Our study finds that the effectiveness of border control is sensitive to
the specific pattern of cities and the associated population distribution. This in turn suggests that the conclusions of previous
studies related to special regions [33–35] could be carefully promoted to other situations. Generally speaking, the underde-
veloped and developing countries usually have more homogeneous cities, and some countries with low population density
typically have loose population configurations. Accordingly, border control measures may be of higher relevance for arrest-
ing epidemics in these countries.

In summary, based on the metapopulation modeling framework, we have introduced a novel disease transmission model,
derived from the combined study of real-world human mobility patterns and the multi-scale spread of infectious diseases,
which can be employed to investigate the effects of early epidemic countermeasures on the height and timing of peak infec-
tions in hierarchically organized, complex geographical networks. Our results suggest that the interplay between the dynam-
ics of human spatial behavior and network topology can have important consequences for the global spreading of infectious
diseases. We therefore hope that our results can motivate further model extensions that should provide broader insights into
the combined effects of human mobility and the organization of geographical networks on spreading processes, with rele-
vant outcomes for both epidemiological studies and health policy.
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Appendix A. The Lévy-flight scenario

To ensure comparability with the dynamics of disease transmission on our hierarchical geographical network, the Lévy-
flight model employed in our simulations had following characteristics:

(i) The size of the network (81� 81 lattices), the number of agents M, and the algorithms governing the local interactions
and the spreading behavior among agents within a city, are identical to those of the hierarchical network scenario.

(ii) Differently from the hierarchical network scenario, agents can directly jump between any pair of nodes in the Lévy-
flight scenario. The move length of each move is here again defined as the Euclidean distance from the starting to the
target city, as in the previously discussed hierarchical network structure.

(iii) The move-length distribution of the Lévy-flight model was set to accurately correspond to the move-length distribu-
tion of the hierarchical network scenario. To this effect, we first create a data set containing a record of a large number
of move lengths in the hierarchical network model with given parameter settings. In the Lévy-flight model, for each
individual movement (starting e.g. with city A), we then randomly pick a move length (e.g. d ¼ d0) from the hierar-
chical network dataset and we set it as the length of this move. Next, for the target city of this movement we randomly
select one city from the set of cities having exactly the distance d ¼ d0 from the city A.

(iv) As in the hierarchical network scenario, agents cannot move across the boundary of the lattice.

Appendix B. Understanding the population density effect

For the source city of the epidemic, assuming the population density is hmsi and the spreading is smooth enough, it is easy
to write the equation of the growth of the total number of infectors mI in the city:
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mIðt þ 1Þ �mIðtÞ ¼
k
hmsi

ðhmsi �mIðtÞÞmIðtÞ ðB:1Þ
We consider a temporal mean field assumption that ignores the randomness of the timing of infection events within a city;
the left-hand side of Eq. (B.1) can be approximately replaced by the differential form dmIðtÞ

dt . According to the initial condition
mIð0Þ ¼ 1, we can obtain the approximate function of the mIðtÞ,
mIðtÞ �
hmsiekt

ekt þ hmsi � 1
: ðB:2Þ
The probability that the source city exports an infector to another city for the first time at some time point t is proportional to
the current total number of infectors mIðtÞ, and we thus obtain this probability immediately from:
X1ðtÞ ¼ qmIðtÞ 1�
Xt�1

t0¼0

X1ðt0Þ
 !

ðB:3Þ
where
Pt�1

t0¼0X1ðt0Þ represents the probability that the city exports an infector before the time point t. We find it difficult to get
the analytical formula of X1ðtÞ. From Eqs. (B.2) and (B.3), the numerical result of X1ðtÞ is shown in Fig. B.8(a), which is unimo-
dally varying with time. For smaller population densities ms, due to the slower decay of X1ðtÞ (Fig. B.8(a)), the width of the
peak is wider and the average value of the export time of infectors hti is slightly larger, which is mainly caused by stronger
fluctuations of export time at smaller ms.

After the export of an infector from the source city, the second connected city will become infected. Since the spreading in
the second city starts from the time at which the export from the source city has been carried out, and since the local spread-
ing process also obeys Eq. (B.1), the probability X2ðtÞ that the second infected city further exports an infector for the first
time at a time point t depends on X1ðtÞ,
X2ðtÞ ¼
Xt�1

t0¼0

X1ðt � t0ÞX1ðt0Þ ðB:4Þ
where X1ðt � t0Þ and X1ðt0Þ respectively represent the probability that the initially infected city (the source city) exports an
infector for the very first time at time t � t0, and that the second city exports an infector for the first time after t0 import steps.
Since X1ðtÞ is unimodal, X2ðtÞ is also having a single-peak, and due to the slower decay of X1ðtÞ for small ms and the corre-
sponding larger average export time, the peak-time of X2ðtÞwill be delayed and the peak-time difference for different ms will
also be enlarged.

Similarly, for each additional cross-city spreading, a new local spreading process is added, and the X for the following
infected cities in the spreading chain can be written directly
. The numerical results of the applied semi-analytical method (see Appendix for details), showing the probability X that an infected city exports the
ector at time step t for the different ranks ns of a node in the chain of spreading from the infection source and varying hmsi (a)–(d). Panel (e) shows
k time sp of X vs. hmsi for different values of ns; The inset of (e) displays the peak time sp vs. ns , for different values of hmsi. The three dashed curves in
) are the fitting functions: sp ¼ 336:1hmsi�1:12 þ 121:6 (black), sp ¼ 483:7hmsi�1:12 þ 161:6 (red), and sp ¼ 659:8hmsi�1:16 þ 202:2 (blue); In the inset

he two fitting lines respectively are sp ¼ 31:7ns � 12:8 (black) and sp ¼ 20:8ns � 1:13 (blue). (For interpretation of the references to colour in this
aption, the reader is referred to the web version of this article.)
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X3ðtÞ ¼
Xt�1

t0¼0

X2ðt � t0ÞX1ðt0Þ;

� � � � � � ;

Xns ðtÞ ¼
Xt�1

t0¼0

Xðns�1Þðt � t0ÞX1ðt0Þ:

ðB:5Þ
where ns is the rank of the city in the spreading chain of cities. The difference of the peak-time will be enlarged along with
the growth of ns. Defining the peak time difference of X2ðtÞ and X1ðtÞ as Ds, and since the enlargement of this difference is
mainly generated by the local spreading process, from Eqs. (B.4) and (B.5), the peak-time of Xns ðtÞ would be semi-linearly
correlated with the rank ns in the spreading chain.

The numerical solutions of Eqs. (B.2)–(B.5) confirmed the cascading enlargement effect of the fluctuations of the interre-
gional spreading process (see Fig. B.8). In the hierarchical structure, the length of the spreading chain is generally propor-
tional to L; for example, in our model, if the source city is in the bottom layer, the lowest possible minimum length of
the spreading chain is 2L� 1, so the peak time sp for ns ¼ 2L� 1 is generally proportional to s0. As shown in the inset of
Fig. B.8(e), the linear dependence of the peak time sp of Xns ðtÞ vs ns is observed in the numerical solution. Because the size
of the network is ML�1, the logarithmic relationship s0 vs. L (the inset in Fig. 6(a)) is easily understandable from the linear
form of sp. Also, as shown in Fig. B.8(e), the curve of sp vs. hmsi also shows a shifted-power-function-like form, which is gen-
erally in agreement with the simulation results of our model.

Similarly, the fluctuations in the local contagion spreading also showed the cascading enlargement effect, but they were
ignored in the above mean field discussions. This is why the fitting slope in the inset of Fig. B.8(e) is smaller than that in the
inset of Fig. 6(a). Above all, both the shifted-power-function-like negative relationship between s0 and the population den-
sity hmsi and the logarithmic positive relationship between s0 and S can be explained by the gradual enlargement of the fluc-
tuations in the spreading process. This analysis additionally implies that the smooth-spreading assumption cannot always
provide a meaningful description of the spreading process, in particular in hierarchically organized networks. Furthermore,
the observed enlargement of the width of the curve of X with larger ns and smaller hmsi implies that the spreading process
has less predictability and more variability in the hierarchical organization [48], especially in networks with more layers or
many small and loose settlements.
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