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PRISM PERMUTATIONS IN THE BRUHAT ORDER

BRIDGET EILEEN TENNER

Abstract. The boolean elements of a Coxeter group have been characterized and shown
to possess many interesting properties and applications. Here we introduce “prism permu-
tations,” a generalization of those elements, characterizing the prism permutations equiva-
lently in terms of their reduced words and in terms of pattern containment. As part of this
work, we introduce the notion of “calibration” to permutation patterns.

Boolean principal order ideals in the Bruhat order have been studied extensively [5–7,
9, 10, 14]. The elements corresponding to those principal order ideals have been shown to
have important combinatorial, topological, and representation theoretic properties. Most of
that previous work has focused on the symmetric group (the finite Coxeter group of type
A), although the initial characterization was done in a broader context [14] and this has
been studied from another perspective more recently [5]. People have also been interested
in boolean ideals and intervals more generally, as in [4, 12, 13].

One of the most advantageous results about the so-called “boolean” permutations is that
they are characterized by pattern avoidance. In particular, boolean elements in Sn are
exactly those permutations that avoid both 321 and 3412. In the present work, we generalize
those previous efforts by studying what we call prisms : permutations whose principal order
ideals can be written as the direct product of a nontrivial boolean algebra and another
poset. As in the original setting, this class of objects can be described both in terms of
reduced words and in terms of patterns, although classical pattern containment is no longer
a sufficient system for the purpose.

Our first main result (Theorem 2.11) is that a permutation is a prism if and only if it has
a reduced word in which there is some i that appears exactly once, not between two copies of
i+1, nor between two copies of i−1. In contrast, a permutation is purely boolean if and only
if every letter in its reduced word appears exactly once (and thus there is no possibility of
appearing between two copies of some other letter). Our second main result (Theorem 3.7)
is that a permutation is a prism if and only if it contains one of eight “calibrated” patterns.
It is interesting to note that purely boolean elements are characterized by pattern avoidance,
while prisms are characterized by pattern containment. While this might initially seem to
be counterintuitive, it is a consequence of prisms requiring a nontrivial boolean factor. It is
also worth noting that the eight calibrated patterns do prohibit certain copies of the 321-
and 3412-patterns that are universally prohibited in purely boolean elements.

1. Introduction

Permutations in Sn can be written as products of simple reflections {σi : i ∈ [1, n − 1]},
where σi is the permutation transposing i and i + 1, and fixing all other values. For a
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2 BRIDGET EILEEN TENNER

permutation w, the minimum number of simple reflections needed for such a product to
equal w is the length of w, denoted ℓ(w).

Definition 1.1. If w = σi1 · · ·σiℓ(w)
, then σi1 · · ·σiℓ(w)

is a reduced decomposition of w. This

corresponds to the, equivalently informative, reduced word [i1 · · · iℓ(w)] of w. The collection of
all reduced words of w is R(w). The support of w, denoted supp(w), is the set {i1, . . . , iℓ(w)}
of indices appearing in any reduced word of w.

Elements of R(w) are related by commutations ([ij] = [ji] when |i − j| > 1) and braids
([i(i+ 1)i] = [(i+ 1)i(i+ 1)]). Thus supp(w) is well defined, and does not depend on the
particular reduced word being considered. We think of permutations as maps, and interpret
their products as compositions.

Permutations in Sn can also be written in one-line notation, as words of the form

w(1) · · ·w(n),

or as graphs G(w) = {(x, w(x)) : 1 ≤ x ≤ n}. The notation [s] for reduced words is
meant to distinguish, for example, the reduced word [123] = σ1σ2σ3 = 2341 ∈ S4 from the
permutation 123 ∈ S3. Both one-line notation and graphs are well-suited to the study of
permutation patterns.

Definition 1.2. Fix p ∈ Sk and w ∈ Sn. If there exist indices 1 ≤ i1 < · · · < ik ≤ n such
that the subword w(i1) · · ·w(ik) is in the same relative order as p(1) · · ·p(k), then w contains
a p-pattern and we have found an occurrence of p. Otherwise, w avoids p or is p-avoiding.
When w contains p as described, then that occurrence’s positions are {i1, . . . , ik} and its
values are {w(i1), . . . , w(ik)}.

We will find it useful to reference such specific features of pattern occurrences.

Example 1.3. The permutation 453261 is 312-avoiding and contains several 231-patterns.
One of these has positions {3, 5, 6} and values {3, 6, 1}.

While one-line notation and graphs are good frameworks for questions about permutation
patterns, reduced words define an important poset on Sn.

Definition 1.4. The Bruhat order gives a partial ordering to Sn, defined so that

v � w

if and only if there exist [s] ∈ R(v) and [t] ∈ R(w) such that s is a subword of t.

The Bruhat order is an important structure with many interesting features – some well
understood and others less so. The curious reader is encouraged to begin exploring this topic
using [2, Chapter 2].

Our interest here relates to the principal order ideals of permutations in this poset; for
w ∈ Sn, we write

B(w) := {v : v � w in the Bruhat order}.

The Bruhat order has a complicated structure in general, although some of its elements have
particularly “nice” principal order ideals. In previous work, we characterized those elements.

Theorem 1.5 ([14, Theorem 4.3]). For a permutation w ∈ Sn, the following statements are
equivalent:

• B(w) is isomorphic to a boolean algebra,
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• every [s] ∈ R(w) has the property that s has no repeated letters,
• there exists [s] ∈ R(w) for which s has no repeated letters, and
• w is 321- and 3412-avoiding.

Theorem 1.5 led to the notion of boolean permutations (more generally, boolean elements
in any Coxeter group), which are exactly those permutations satisfying the properties listed
in Theorem 1.5. In this work, we generalize that result to consider a broader class of
permutations.

Definition 1.6. A permutation w is a prism if B(w) ∼= B ×X for some nontrivial boolean
algebra B. Due to the associativity of direct products (see, for example, [11, §3.2]), it suffices

to consider B = .

Note that, like boolean elements, prisms can be defined for any Coxeter group. Addition-
ally, any prism that can be written with X = is also “purely” boolean. The only purely
boolean element that is not a prism is the identity permutation e.

Example 1.7. Table 1 classifies each element of S4 as boolean, a prism, or neither, and
Figure 1 marks them in the Hasse diagram of S4. Foreshadowing the main results of this
work, we note that

B(4132) ∼= B(2431) ∼= × B(1432) and B(4213) ∼= B(3241) ∼= × B(3214).

Prism Neither boolean
Boolean but not boolean nor prism

1234 = [∅] 2314 = [12] 2431 = [1232] 1432 = [232]

1243 = [3] 2341 = [123] 3241 = [1213] 3214 = [121]

1324 = [2] 2413 = [312] 4132 = [2321] 3412 = [2132]

1342 = [23] 3124 = [21] 4213 = [3121] 3421 = [21232]

1423 = [32] 3142 = [213] 4231 = [12321]

2134 = [1] 4123 = [321] 4312 = [23212]

2143 = [13] 4321 = [123121]

Table 1. The elements of S4, identified as boolean, prisms, and neither. In
each case, a reduced word of the permutation (sometimes one of many) is also
given.

In this work, we characterize prisms in two ways: first using the language of reduced
words in Section 2, and then using the language of permutation patterns in Section 3.
The latter characterization will introduce calibrated permutation patterns (Definition 3.3).
The two equivalent characterizations of prisms, presented in Theorems 2.11 (equivalently,
Corollary 2.12) and Theorem 3.7, echo and extend previous work translating between pattern
properties and properties of reduced words [14–17]. We conclude with Section 4, proposing
several directions for further study.
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1234

4321

2134

1324

1243

13421423 2143 23143124

1432 32144123 23412413 3142

4132 4213 32412431
3412

4231
4212 3421

Figure 1. The Bruhat order of S4. The boolean elements are marked with
small red circles. The prisms are marked with large red circles.

2. Characterizing prisms via reduced words

Our first analysis of prisms is from the perspective of reduced words. We begin by estab-
lishing that prisms are not just isomorphic to the product of a boolean algebra and a generic
poset X , but that X is actually the principal order ideal of a particular smaller permutation.

Lemma 2.1. A permutation w is a prism if and only if there exists v ≺ w with supp(v) (
supp(w) and

B(w) ∼= × B(v).

Moreover, supp(w) \ supp(v) = {i} for some i, and v is obtained by deleting a copy of i from
a reduced word for w. To emphasize the role of this i, we will write B(w) ∼= B(σi)× B(v).

Proof. If B(w) has the given form, then certainly w is a prism.
Now suppose that w is a prism. Then there is an isomorphism

α : B(w) −→

(

0

1
×X ′

)

.

The poset B(w) is bounded, so 0
1 ×X ′ is also bounded. Let its maximum and minimum be

(1, m) and (0, e), respectively. Thus m is the maximum of X ′ and e is the minimum. Define
i ∈ supp(w) and v ≺ w so that

σi := α−1 ((1, e)) and v := α−1 ((0, m)) .
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The map α is an isomorphism, so the principal order ideal B(v) ⊂ B(w) is isomorphic to
{0} ×X ′ ∼= X ′. Hence B(w) ∼= B(σi)×B(v).

The element α(σi) = (1, e) is not less than α(v) = (0, m) in B(σi)×B(v). Thus i 6∈ supp(v).
The element (0, m) is a coatom in B(σi)×B(v), so v is a coatom in B(w). In other words,

there is a reduced word for v that is obtained by deleting a single letter from a reduced word
for w. Since i ∈ supp(w) \ supp(v) (in fact, {i} = supp(w) \ supp(v)), that letter is i. �

This has an immediate implication for the reduced words of a prism.

Corollary 2.2. Suppose that B(w) ∼= B(σi)×B(v) as defined in Lemma 2.1. Then i appears
exactly once in all reduced words of w.

Proof. Suppose, for the purpose of obtaining a contradiction, that there is some [s] ∈ R(w)
with at least two copies of i. These must be separated by at least one i ± 1, so B(w)
contains a principal order ideal isomorphic to B(321), where one of its atoms corresponds to
(σi, e) ∈ B(σi)× B(v), and this is impossible. �

In order to appreciate the implications of Corollary 2.2, we use two previous results about
the repetition of letters in reduced words.

Lemma 2.3 ([15, Lemma 2.8]). Fix a permutation w ∈ Sn. The following are equivalent:

• i ∈ supp(w),
• {w(1), . . . , w(i)} 6= {1, . . . , i},
• {w(i+ 1), . . . , w(n)} 6= {i+ 1, . . . , n},
• w contains a 21-pattern in positions {x1, x2} such that x1 ≤ i < x2 and with values
{y1, y2} such that y1 ≤ i < y2.

Lemma 2.4 ( [16, Theorem 3.3]). Fix a permutation w ∈ Sn and i ∈ supp(w). Then i

appears exactly once in all elements of R(w) if and only if:

• w has no 321-pattern with positions x1 < x2 < x3 satisfying x1 ≤ i < x3 and values
y1 < y2 < y3 satisfying y1 ≤ i < y3, and

• w has no 3412-pattern with positions x1 < x2 < x3 < x4 satisfying x2 ≤ i < x3 and
values y1 < y2 < y3 < y4 satisfying y2 ≤ i < y3.

We are now ready to understand one consequence of Corollary 2.2. In fact, it is a special
case of the following, more general, result.

Corollary 2.5. Suppose that w is a permutation in which i ∈ supp(w) appears exactly once
in all elements of R(w). Then deleting i from any element of R(w) yields a word that is still
reduced, and all such deletions are reduced words for the same permutation v.

Proof. Fix [s][i][t] ∈ R(w), so i 6∈ s and i 6∈ t. Lemma 2.3 means that [s] ∈ R(u) for

u = permutation of [1, i] permutation of [i+ 1, n] .

Set a := u(i) ≤ i and b := u(i+ 1) ≥ i+ 1. Thus [s][i] is a reduced word for

uσi = permutation of [1, i] \ {a} b a permutation of [i+ 1, n] \ {b} ,

and [s][i][t] ∈ R(w) describes

w = permutation of [1, i] \ {a} ∪ {b} permutation of [i+ 1, n] \ {b} ∪ {a} .
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Let v be the permutation obtained from w by swapping the values a and b in the one-line
notation of v. Note that b = max{w(1), . . . , w(i)} and a = min{w(i + 1), . . . , w(n)}, so v

depends only on w and i, and not on s or t. The length of a permutation is equal to the
number of its inversions, and it follows from the first item of Lemma 2.4 that v has exactly
one fewer inversion than w has. Thus ℓ(v) = ℓ(w)− 1, and so [s][t] ∈ R(v). �

Corollary 2.5 does not require the permutation w to be a prism, but it does ensure that
the permutation v described in Lemma 2.1 is defined entirely by w and i, and not by a
particular choice of reduced word for w.

We illustrate the results so far with an example from Table 1.

Example 2.6. For w = 2431, we can use i = 1 and v = 1432 to see that

B(2431) ∼= B(σ1)× B(1432).

Note that R(2431) = {[1232], [1323], [3123]}, the permutation 1432 can be obtained by
deleting 1 from any of w’s reduced words: R(1432) = {[232], [323]}, and 1 6∈ supp(1432).
The poset B(2431) is drawn in Figure 2, and colored to highlight its decomposition as
B(σ1)× B(1432).

Figure 2. The principal order ideal B(2431) ∼= B(σ1) × B(1432). Covering
relations corresponding to {e} × B(1432) are solid black lines, those corre-
sponding to {σ1} × B(1432) are dotted black lines, and those corresponding
to (e, x)⋖ (σ1, x) are draw in red.

When w is a prism, there is yet more to say about the appearance of this i in elements of
R(w).

Definition 2.7. Fix a permutation w, a reduced word [s] ∈ R(w), and a letter i ∈ supp(w)
that appears exactly once in [s]. If that appearance is not between two copies of i + 1 and
not between two copies of i− 1, then i is unconfined in [s].

Being unconfined is independent of the choice of reduced word [s].

Lemma 2.8. Fix a permutation w and a letter i ∈ supp(w). If i is unconfined in [s] ∈ R(w),
then i appears exactly once in all elements of R(w), and i is always unconfined.

Proof. If i is unconfined in [s], then i cannot be part of any braid moves applied to [s]. No
sequence of commutation moves can produce another copy of i, so i appears exactly once in
all elements of R(w). Because σi does not commute with σi±1, no sequence of commutation
moves will land i between two copies of i + 1 or i − 1. Thus i remains unconfined in all
elements of R(w). �
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Thus we can talk about a letter i being “unconfined in elements of R(w).” Unconfined
letters are relevant to the architecture of the Bruhat order, particularly in the context of
prisms.

Proposition 2.9. If B(w) ∼= B(σi) × B(v) as defined in Lemma 2.1, then i is unconfined
in elements of R(w).

Proof. We will prove the contrapositive statement. Suppose that i is not unconfined in ele-
ments ofR(w). Then, without loss of generality, we have σi ≺ u � w, where u = σi+1σiσi+1 =
σiσi+1σi. The permutation u is not a prism, and hence B(w) does not decompose in the
desired sense. �

From this, we see how the unconfined quality of a letter filters downward in the principal
order ideal of a prism. The result below follows immediately from the definition of the
Bruhat order, because it is impossible to introduce any confinement while deleting letters
from a reduced word.

Lemma 2.10. Fix a permutation w ∈ Sn in which some i ∈ supp(w) is unconfined. Then,
for each u ∈ B(w), either i 6∈ supp(u) or i is unconfined in u.

We can now give a complete characterization of prism permutations in terms of their
reduced words.

Theorem 2.11. A permutation w is a prism if and only if there exists i ∈ supp(w) that is
unconfined in elements of R(w).

Proof. If we start with a prism w, then the result follows from Proposition 2.9.
For the other direction, suppose that there is such an i ∈ supp(w). Following Corollary 2.5,

let v be the permutation obtained by deleting i from a reduced word for w. Define an
operation q on B(w) as follows. For any u ∈ B(w), if i 6∈ supp(u) then q(u) := u. Otherwise,
q(u) is the permutation whose reduced word is obtained by deleting i from any reduced
word for u. By Lemma 2.10 and Corollary 2.5, this is well defined. Now define φ : B(w) →
(

B(σi)× B(v)
)

as

φ : u 7→

{

(e, q(u)) = (e, u) if i 6∈ supp(u), and

(σi, q(u)) if i ∈ supp(u).

The map φ is certainly surjective. To establish that it is injective, we consider two cases
of φ(u) = φ(u′). If q(u) = u, then certainly u = u′. Now suppose that q(u) 6= u (and hence
q(u′) 6= u′). The letter i is unconfined in w, meaning that if i − 1 (resp., i + 1) is in the
support of q(u) = q(u′), then i appears on the same side of all copies of i − 1 (resp., i + 1)
in u as it does in u′. These facts in combination mean that u = u′. Therefore φ is injective.

Because relations in the Bruhat order correspond to deleting letters from reduced words,
the bijection φ is an isomorphism. Therefore, by Lemma 2.1, the permutation w is a prism.

�

Note that when a non-identity element w is purely boolean, every letter in its reduced
words appears exactly once, and thus every letter is unconfined.

Given [s] ∈ R(w) in which some i is unconfined, we can use commutation moves to produce
an equivalent characterization of prisms as follows.
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Corollary 2.12. A permutation w is a prism if and only if it has a reduced word with one
of the following formats:

(a) [(letters greater than i) i (letters less than i)],
(b) [(letters less than i) i (letters greater than i)],
(c) [i (letters greater than i) (letters less than i)], or
(d) [(letters less than i) (letters greater than i) i],

where the parenthetical phrases could be empty.

From these characterizations, we can inductively derive a statement about the degree to
which a permutation is boolean.

Corollary 2.13. Fix a permutation w, and let d be the number of distinct letters that are
unconfined in elements of R(w). Then

(1) B(w) ∼=
( )d

× B(w′)

for some permutation w′ ≺ w that is not a prism.

When w is purely boolean, this d is its length; when w is not a prism, this d is 0. In all
cases, it is a consequence of the definition that 2d divides |B(w)|.

3. Characterizing prisms via patterns

Previous work has shown a strong connection between reduced words and permutation
patterns (see, for example, [14–17]). Thus the characterization of prisms given in Theo-
rem 2.11 prompts one to wonder whether these elements can also be characterized by their
patterns. In fact they can, and that characterization is quite specific about how the patterns
must be contained. That precision can be captured, almost entirely, by mesh patterns, which
were defined by Brändén and Claesson in [3] and have since been studied in many places,
including [19].

Definition 3.1. Fix a permutation p ∈ Sk and consider its graph G(p) as living in the grid
[0, k + 1]× [0, k + 1]. Shade a subset M (the mesh) of the cells in that grid. A permutation
w contains the mesh pattern (p,M) if there is an occurrence of G(p) in G(w) in which no
points of G(w) appear in the regions that correspond to the mesh in G(p).

Mesh patterns are a generalization of classical patterns, in which case the mesh is empty.

Example 3.2. Let w = 24153 and consider two mesh patterns:

µ = µ′ = .

The permutation w has four (circled) occurrences of the classical pattern 21
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but only the first and second of these are occurrences of the mesh pattern µ. The permutation
w has three occurrences of the classical pattern 213

and none of them are occurrences of µ′. Therefore w contains µ and avoids µ′. In each figure
above, any points of G(w) that land in a mesh have been colored red.

We now introduce what we call calibrated mesh patterns, in which we are allowed to specify
positions and values in an occurrence.

Definition 3.3. A calibrated mesh pattern C is a mesh pattern µ in which positions and
values may be labeled with positive integers. A permutation w contains C if w has an
occurrence of the mesh pattern µ in which any position in µ marked “x” appears in position
x in w, and any value in µ marked “y” is represented by the value y in w.

Calibration requirements on a mesh pattern could be achieved using a union of other mesh
patterns (for example, avoidance of the calibrated pattern C in Example 3.4 is equivalent
to avoidance of twelve mesh patterns whose underlying classical patterns are in S4), but
calibration has an efficiency and, indeed, a clarity that such an alternative representation
notably lacks. In [18], Úlfarsson proposed the possible utility of attaching rules to the cells
in a mesh pattern, like “must contain at least three points of G(w)” or “must avoid 321,”
and calibration fits that model.

Example 3.4. Consider the calibrated mesh patterns:

C =
4

3

C ′ =
4

3

both of which are calibrations of the mesh pattern µ from Example 3.2. We saw in that
example that the permutation w = 42153 contains µ in two ways, but only the second of
those ways is an occurrence of the calibrated pattern C (repeated in Figure 3), and neither
of those µ-occurrences is an occurrence of C ′.

required by C →

Figure 3. The permutation 42153 contains the calibrated mesh pattern C

described in Example 3.4.

Our goal in this section is to translate Theorem 2.11 into a statement about patterns in
prisms. We start by considering a special class of these permutations.
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Proposition 3.5. Suppose that w ∈ Sn is a prism with i unconfined in elements of R(w).
If |{i± 1} ∩ supp(w)| ≤ 1, then w has a 21-pattern occurrence

• with values {i, i+ 1}, where w(i+ 1) = i and/or w(i) = i+ 1, or
• in positions {i, i+ 1}, where w(i+ 1) = i and/or w(i) = i+ 1.

Put another way, if i+ 1 6∈ supp(w) then w contains

i+1

i+1

or
i+1

i+1

,

and if i− 1 6∈ supp(w) then w contains

i

i

or i

i

.

Proof. Omitting at least one of i±1 from supp(w) means that the cases of Corollary 2.12 col-
lapse to two cases: (c) and (d). The result follows from analyzing the kinds of permutations
produced by these reduced words. �

In the calibrated mesh patterns listed in Proposition 3.5, additional calibration labels are
forced by the mesh. For example, the other horizontal line in the first figure must necessarily
refer to the value i in w.

Similar to Proposition 3.5, when {i ± 1} ⊆ supp(w), being a prism with unconfined i

implies a sort of displacement around the positions and values {i, i+ 1}.

Proposition 3.6. Suppose that w ∈ Sn is a prism with i unconfined in elements of R(w).
If i± 1 ∈ supp(w), then w contains one of the following calibrated mesh patterns.

(a)
i

i

i

(b)
i

i

i

(c)
i

i

i

(d)
i

i

i

Proof. The labels of the patterns in the statement of this result corresponds to the labels of
the word forms listed in Corollary 2.12. Consider case (a), where [s] ∈ R(w) with

[s] = [(letters greater than i) i (letters less than i)].

We can thus construct w by reading [s] from left to right and acting on the positions
of the identity permutation. In particular, because i + 1 ∈ supp(w), the reduced word
[(letters greater than i)] produces

1 2 · · · i− 1 i y permutation of [i+ 1, n] \ {y}

for some y > i+ 1. Next multiplying on the right by [i] produces

1 2 · · · i− 1 y i permutation of [i+ 1, n] \ {y} .

Finally, multiplying by [(letters less than i)] produces

permutation of [1, i− 1] ∪ {y} \ {x} x i permutation of [i+ 1, n] \ {y} ,
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where x ≤ i− 1 due to the fact that i− 1 ∈ supp(w). The substring

y x i i+ 1

forms an occurrence of the calibrated mesh pattern (a) above. In particular, the requirement
that y is the only value larger than i appearing to the left of w(x) = i is forced by the
calibrations and the mesh: values less than i must all appear in the first i positions of the
permutation. The value y also appears in those positions, so the other i − 1 positions are
forced to be exactly the values [1, i− 1].

The other cases follow from analogous arguments. �

It is interesting to note that the four patterns in the statement of Proposition 3.6 have
some common characteristics: namely, the calibrated position i and value i, and the meshes’
“central cross,” which force the additional calibration of position i+ 1 and value i+ 1.

We now use these results to give a pattern characterization for prisms, with the assistance
of Lemma 2.3.

Theorem 3.7. A permutation w ∈ Sn is a prism if and only if there exists an i for which
w contains one or more of the following calibrated mesh patterns.

i+1

i+1
i

i+1

i+1
i

i

i
i

i

i
i

i

i

i

i

i

i

i

i

Proof. One direction of the result follows from Propositions 3.5 and 3.6, together with
Lemma 2.3.

For the other direction, we will show that w has a reduced word of one of the forms
described in Corollary 2.12, and the result will follow. We will prove the result for the
second, fifth, and eighth calibrated patterns listed above and leave the other, symmetric,
arguments to the reader.

First suppose that w contains the calibrated mesh pattern

i+1

i+1
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for some i. This means that {w(1), . . . , w(i + 1)} = [1, i + 1] and so i + 1 6∈ supp(w) by
Lemma 2.3. Set v := wσi, in which v(i+1) = w(i) = i+1 and v(i) = w(i+1) < i+1. Then

{v(1), . . . , v(i)} = {w(1), . . . , w(i+ 1)} \ {w(i)}

= {w(1), . . . , w(i+ 1)} \ {i+ 1}

= {1, . . . , i},

and so i 6∈ supp(v) by Lemma 2.3. Therefore we can find [t] ∈ R(v) of the form

[(letters less than i) (letters greater than i+ 1)],

and the concatenation [t][i] ∈ R(w) has the form described in Corollary 2.12(d). Thus w is
a prism.

Now suppose that w contains the calibrated mesh pattern

i

i

for some i. The mesh requirements mean that the values [1, i − 1] all appear in the first i

positions of w. Let u ∈ Sn be such that wu is obtained by putting {w(1), . . . , w(i)} into
increasing order. In particular, supp(u) ⊆ [1, i− 1], and the permutation wu fixes the values
[1, i − 1] because of the mesh restrictions in the pattern. Moreover, in the permutation
v := wuσi, the values [1, i] are fixed. Thus supp(v) ⊆ [i+ 1, n− 1]. Take any reduced words
[s] ∈ R(u−1) and [t] ∈ R(v). Because supp(u) = supp(u−1), the concatenation [t][i][s] ∈ R(w)
has the format described in Corollary 2.12(a) and hence w is a prism.

Finally, suppose that w contains the calibrated mesh pattern

i

i

for some i. Thus

{w(1), . . . , w(i− 1)} ∪ {w(i+ 1)} = [1, i].

Consider v := wσi, in which v(i+ 1) = w(i) > i+ 1 and v(i) = w(i+ 1) < i. Then

{v(1), . . . , v(i)} = {w(1), . . . , w(i+ 1)} \ {w(i)} = [1, i],

and so Lemma 2.3 means that i 6∈ supp(v). It follows that v has a reduced word [t] ∈ R(v) of
the form [(letters less than i) (letters greater than i)], and the concatenation [t][i] ∈ R(w)
has the form described in Corollary 2.12(d). Thus w is a prism.

The remaining cases can be proved with analogous arguments. �

The pattern-analogue of Corollary 2.13 holds in this setting, as well: the number of values
i satisfying the statement of Theorem 3.7 determines the exponent d in Equation (1).
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4. Further research

A natural direction of study after this work is to explore properties of boolean elements
that have analogues for prisms. To put a slightly different spin on it, we can ask: how can
the known properties of boolean elements be used to shed light on properties of prisms? The
works cited earlier have described numerous features of boolean elements, and the structure
of these objects suggests that they might influence properties of the substantial class of
elements defined in this paper.

Our work here is focused on the symmetric group, but the basic objects that we study
(reduced words, patterns, the Bruhat order) have analogues in Coxeter groups of other
types. In particular, boolean elements – those whose principal order ideals in the Bruhat
order are isomorphic to boolean algebras – have already been characterized by reduced
words and pattern avoidance in other types [5, 14], and perhaps those groups’ prisms can
be characterized in those languages as well. One can also consider the poset defined by the
weak order on Coxeter group elements, and boolean ideals and intervals have been studied in
that setting, too [4, 13]. The central question of this paper, to characterize prism elements,
would be interesting to study in any of those contexts as well.

In terms of extending the study of prisms in Sn under the Bruhat order, one natural goal
is to enumerate these elements. We have counted various classes related to prisms (including
prisms, prisms that are not purely boolean, and non-prism elements) for n ≤ 10, and none
of these sequences currently appear in [8]. Permutations that are purely boolean have an
attractive enumeration (they are the odd-indexed Fibonacci numbers [8, A001519]) and it is
vexing to, as yet, have no “nice” enumeration of the prisms.

For another avenue of study related to this work, recall the permutation w′ ≺ w discussed
in Corollary 2.13. It would be interesting to explore the relationship between w′ and w. Or,
for another perspective, it could be fruitful to explore the “w′-prisms” for a fixed w′; namely,
the collection

{

w : w ≻ w′ and there exists dw ≥ 1 such that B(w) ∼=
( )dw

× B(w′)

}

.

This brings to mind some of the earlier work looking at the collection of all boolean elements
in a Coxeter group (for example, the topological properties of this subposet were studied
in [9, 10]). Perhaps the analogous class for prisms would be the collection of all w′-prisms
for a given w′.

Finally, the introduction of calibrated patterns suggests their utility in other settings. To
start with, existing results could benefit from this language. For example, [16, Theorem 4.1]
is about the maximum number of times that the letter k can appear in elements of R(w),
and it can be restated in terms of occurrences of the calibrated patterns















i

j

or

i

j















and





















 i j

or

i j























for pairs (i, j) with i ≤ k < j. Likewise, there might be new phenomena that are char-
acterized by some sort of calibrated pattern containment or avoidance. It would also be
interesting to understand enumerations related to calibrated patterns: either the number of
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permutations containing/avoiding a given calibrated pattern, or the number of times that a
particular calibrated pattern occurs in a permutation, as studied in [1].
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