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Several constructions of optimal LCD codes over

small finite fields∗

Shitao Li†, Minjia Shi‡, Huizhou Liu§

Abstract

Linear complementary dual (LCD) codes are linear codes which intersect their
dual codes trivially, which have been of interest and extensively studied due to their
practical applications in computational complexity and information protection. In
this paper, we give some methods for constructing LCD codes over small finite fields
by modifying some typical methods for constructing linear codes. We show that all
odd-like binary LCD codes, ternary LCD codes and quaternary Hermitian LCD
codes can be constructed using the modified methods. Our results improve the
known lower bounds on the largest minimum distances of LCD codes. Furthermore,
we give two counterexamples to disprove the conjecture proposed by Bouyuklieva
(Des. Codes Cryptogr. 89(11): 2445-2461, 2021).
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1 Introduction

LCD codes were first introduced by Massey in 1992 to solve a problem in information
theory [33]. In 2004, Sendrier [34] showed that LCD codes meet the asymptotic Gilbert-
Varshamov bound by using the hull dimension spectra of linear codes. In 2016, Carlet
and Guilley [10] investigated an application of binary LCD codes against Side-Channel
Attacks (SCA) and Fault Injection Attack (FIA), and gave several constructions of LCD
codes. They also have been employed to construct entanglement-assisted quantum error
correction codes (see [30,31]). Recently, LCD codes were extensively studied [11–14,35,36].
In particular, an interesting result is that Carlet et al. [13] showed that any code over Fq

is equivalent to some Euclidean LCD code for q ≥ 4 and any code over Fq2 is equivalent
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to some Hermitian LCD code for q ≥ 3. This also motivates us to study LCD codes,
especially LCD codes over small finite fields. Codes over F2, F3 and F4 are called binary
codes, ternary codes and quaternary codes, respectively.

It is also a fundamental topic to determine the largest minimum distance of LCD
codes for various lengths and dimensions in coding theory. In recent years, much work
has been done concerning this fundamental topic. The largest minimum distance among
all binary LCD [n, k] codes was partially determined in [3, 8, 15, 16, 22, 25] for n ≤ 40.
It is worth noting that there are many unknowns in [8] and [25]. The largest minimum
distance among all ternary LCD [n, k] codes was determined in [1, 5] for n ≤ 20. The
largest minimum diatance among all quaternary Hermitian LCD [n, k] codes was partially
determined in [30–32] for n ≤ 25. More constructions of LCD codes can be seen [2, 4,
6, 19, 21, 29, 37, 38]. One of the interesting constructions is that Harada [19] gave two
methods for constructing many LCD codes from a given LCD code by modifying some
known methods for constructing self-dual codes [20, 26–28]. Using these methods, many
new binary LCD codes and quaternary Hermitian LCD were constructed. Therefore, an
open problem is to extend the above results and construct new LCD codes.

There are many typical methods for constructing new linear codes from old ones.
For example, the puncturing and shortening techniques, subcodes construction. In this
paper, we give some methods for constructing LCD codes by modifying the above typical
methods. We show that all odd-like binary LCD codes, ternary LCD codes and quaternary
Hermitian LCD codes can be constructed by our construction methods. That is to say, our
methods are efficient for constructing LCD codes. Using theses methods, we obtain that
some binary LCD codes with better parameters comparing with [8] and [25]. In addition,
we also obtain some binary LCD codes, which are not equivalent to the codes in [25]. We
extend the tables on ternary LCD codes to lengths up to 25. Some ternary LCD codes
with better parameters are constructed comparing with [19]. Finally, we also construct
some quaternary Hermitian LCD codes with new parameters comparing with [32]. These
codes improve the previously known lower bounds on the largest minimum weights. It is
worth mentioning that we give two counterexamples to disprove the conjecture proposed
by Bouyuklieva [8].

The paper is organized as follows. In Section 2, we give some notations and definitions,
which can be found in [24]. In Section 3, we give a method for constructing LCD [n −
ℓ, k− ℓ,≥ d] and [n− ℓ, k, d− ℓ] codes from a given [n, k, d] code with ℓ-dimensional hull.
We also give a general method for constructing LCD [n + 1, k] and [n, k + 1] codes from
a given LCD [n, k] code. In Sections 4-6, we construct binary LCD codes, ternary LCD
codes, quaternary Hermitian LCD codes and the related entanglement-assisted quantum
error correction codes. In Section 7, we conclude the paper. All computations in this
paper have been done with the computer algebra system MAGMA [7].

2 Preliminaries

Let Fq denote the finite field with q elements, where q is a prime power. For any x ∈ FN
q ,

the Hamming weight wt(x) of x is the number of nonzero components of x. An [N,K,D]
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linear code C over Fq is aK-dimensional subspace of FN
q , where D is the minimum nonzero

Hamming weight of C. Let Ai(C) denote the number of codewords with Hamming weight
i in C, where 0 ≤ i ≤ N . Then the sequence (A0(C), A1(C), . . . , AN(C)) is called the
weight distribution of C. A generator matrix for an [N,K] code C is any K × N matrix
G whose rows form a basis for C. For any set of k independent columns of a generator
matrix G, the corresponding set of coordinates forms an information set for C. A matrix
is monomial if it contains exactly one nonzero element per row and per column. Two
codes C and D are equivalent if there is a monomial matrix M such that MC = D. The
Euclidean dual code C⊥E of a linear code C over Fq is defined as

C⊥E = {y ∈ FN
q | 〈x,y〉E = 0, for all x ∈ C},

where 〈x,y〉E =
∑N

i=1 xiyi for x = (x1, x2, . . . , xN ) and y = (y1, y2, . . . , yN) ∈ FN
q . The

Hermitian dual code C⊥H of a linear code C over Fq2 is defined as

C⊥H = {y ∈ FN
q2 | 〈x,y〉H = 0, for all x ∈ C},

where 〈x,y〉H =
∑N

i=1 xiyi for x = (x1, x2, . . . , xN) and y = (y1, y2, . . . , yN) ∈ FN
q2 . Note

that x = xq for any x ∈ Fq2. The Euclidean hull (resp. Hermitian hull) of the linear code
C is defined as

HullE(C) = C ∩ C⊥E (resp. HullH(C) = C ∩ C⊥H ).

A linear code C over Fq is called (Euclidean) LCD if C ∩C⊥E = {0}. A linear code C
over Fq2 is called Hermitian LCD if C ∩C⊥H = {0}. The following lemma is from [18,33].

Lemma 2.1. (1) Let C be a code with the generator matrix G over Fq. Then C is LCD
if and only if GGT is nonsingular, where GT denotes the transpose of G.
(2) Let C be a code with the generator matrix G over Fq2. Then C is Hermitian LCD if

and only if GG
T
is nonsingular, where G

T
denotes the conjugate transpose of G.

Throughout this paper, let dEq (N,K) denote the largest minimum weight among all
LCD [N,K] codes over Fq (q = 2, 3), and let dH4 (N,K) denote the largest minimum
weight among all quaternary Hermitian LCD [N,K] codes. An LCD [N,K] code over Fq

is optimal LCD if it has the minimum weight dEq (N,K). An LCD [N,K] code over Fq is
called almost optimal LCD if it has the minimum weight dEq (N,K)− 1.

A vector x = (x1, x2, . . . , xn) ∈ Fn
2 is even-like if

∑n

i=1 xi = 0 and is odd-like otherwise.
A binary code is said to be even-like if it has only even-like codewords, and is said to be
odd-like if it is not even-like.

Let C be an [n, k, d] code over Fq, and let T be a set of t coordinate positions in C.
We puncture C by deleting all the coordinates in T in each codeword of C. The resulting
code is still linear and has length n− t. We denote the punctured code by CT . Consider
the set C(T ) of codewords which are 0 on T ; this set is a subcode of C. Puncturing C(T )
on T gives a code over Fq of length n− t called the shortened code on T and denoted CT .
The following lemma is also valid with respect to the Hermitian inner product.

3



Lemma 2.2. [24] Let C be an [n, k, d] code over Fq. Let T be a set of t coordinates.
Then:

(i) (C⊥)T = (CT )⊥ and (C⊥)T = (CT )
⊥, and

(ii) if t < d, then CT and (C⊥)T have dimensions k and n− t− k, respectively.

3 Several methods for constructing LCD codes

3.1 LCD codes from shortened codes and punctured codes of linear codes

The puncturing and shortening techniques are two very important tools for constructing
new codes from old ones. In this subsection, we will use these two techniques to construct
new LCD codes with interesting and new parameters from some old LCD codes. Firstly,
we prove that Lemma 22 in [13] is valid with respect to the Hermitian inner product.

Theorem 3.1. Any linear code C over Fq (resp. Fq2) is the direct sum of a self-orthogonal
code and an LCD code with respect to the Euclidean (resp. Hermitian) inner product.

Proof. We only consider the Hermitian inner product. Let {α1, . . . , αℓ, αℓ+1, . . . , αk} be
a basis of C such that {α1, . . . , αℓ} is a basis of C1 = HullH(C) = C ∩ C⊥H . Let C2 be a
linear code generated by αℓ+1, αl+2, . . . , αk. Then C = C1 ⊕ C2. For any c ∈ C2 ∩ C⊥H

2 ,
we have 〈c, αi〉H = 0. This implies that c ∈ C ∩C⊥H . Since C is LCD, c = 0. Therefore,
C2 is LCD with respect to the Hermitian inner product. This completes the proof.

The following two theorems are very important and interesting.

Theorem 3.2. If there exists an [n, k, d] linear code C with ℓ-dimensional hull. Then
there exists a set of ℓ coordinates position T such that the shortened CT of C on T is an
[n− ℓ, k − ℓ,≥ d] LCD code with respect to the Euclidean and Hermitian inner product.

Proof. Let G be a generator matrix of C. Without loss of generality, we may assume that

G = (Ik|A) = (ek,i|ai)1≤i≤k,

where ek,i and ai are the i-row of Ik (the identity matrix) and A, respectively. Assume
that {rj}

ℓ
j=1 is a basis of Hull(C) such that the first non-zero position of rj is the ij-th

position. Without loss of generality, we may assume that 1 ≤ i1 < i2 < · · · < iℓ. Then
iℓ ≤ k; otherwise riℓ = 0, which is a contradiction.

Let T = {i1, i2, . . . , iℓ} and J = {1, 2, . . . , k} \ T = {j1, j2, . . . , jk−ℓ} such that j1 <
j2 < · · · < jk−ℓ. Then we know that {rj}

ℓ
j=1 ∪ {(ek,i|ai)}i∈J is a basis of C. So the code

C(T ) by generating {(ek,i|ai)}i∈J is an LCD code by Theorem 3.1. In fact, the generator
matrix for the shortened code CT on T is

GT = (ek−l,i|aji)1≤i≤k−l,

where ek−ℓ,i is the i-row of Ik−ℓ and aji is the ji-row of A for 1 ≤ i ≤ k − ℓ. It follows
from C(T ) is LCD that CT is LCD. The parameters for CT are obvious.
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Theorem 3.3. Let C be an [n, k, d] linear code with ℓ-dimensional hull. If t < d, then
there exists a set of t coordinate position T such that the punctured code CT of C on T
is an LCD [n − ℓ, k, d∗ ≥ d − ℓ] code with respect to the Euclidean and Hermitian inner
product.

Proof. The parameters for the punctured code CT of C on T are obvious from (ii) of
Lemma 2.2. Since C is an [n, k] linear code with ℓ-dimensional hull, C⊥ is an [n, n − k]
linear code with ℓ-dimensional hull. By Theorem 3.2, there exists a set of ℓ coordinate
positions T such that the shortened code (C⊥)T of C⊥ on T is an LCD [n− ℓ, n− k − ℓ]
code. It follows from (i) of Lemma 2.2 that (CT )⊥ = (C⊥)T is an LCD [n− ℓ, n− k − ℓ]
code. It turns out that CT = ((CT )⊥)⊥ is an LCD [n− ℓ, k] code.

Remark 3.4. By Theorem 3.2, CT is LCD if T is an information set of Hull(C). Compared
to the randomness of [25] and [32], we determine the shortened set T . In addition, the
corollary 25 in [13] proved that there exists an [n+ ℓ, k,≥ d] Euclidean LCD code if there
exists an [n, k, d] code with ℓ-dimensional Euclidean hull. Hence, it is easy to see that
Theorem 3.2 is more effective than [13, Corollary 25].

3.2 Construction method I

Firstly, we recall a typical construction method of linear codes. Let C be a linear [n, k]
code with the generator matrix G. Then for any x ∈ Fn

q , the following matrix

G′ =

(

1 x

0 G

)

generates a linear [n + 1, k + 1] code. In addition, any linear [n + 1, k + 1] code over Fq

can be obtained from some linear [n, k] code using the above construction.
In this subsection, we give a method for constructing many LCD [n+1, k+1] codes with

interesting parameters from a given LCD [n, k] code by modifying the above construction
method of linear codes.

Theorem 3.5. (1) Let C be a binary LCD [n, k] code with the generator matrix G. Let
x ∈ C⊥ such that wt(x) is even. Then the following matrix

G′ =

(

1 x

0 G

)

generates a binary odd-like LCD [n + 1, k + 1] code.
(2) Let C be a ternary LCD [n, k] code with the generator matrix G. Let x ∈ C⊥ such

that wt(x) 6= 2 (mod 3). Then the following matrix

G′ =

(

1 x

0 G

)

generates a ternary LCD [n + 1, k + 1] code.
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(3) Let C be a quaternary Hermitian LCD [n, k] code with the generator matrix G.
Let x ∈ C⊥H such that wt(x) is even. Then the following matrix

G′ =

(

1 x

0 G

)

.

generates a quaternary Hermitian LCD [n+ 1, k + 1] code.

Proof. We only give the proof of (1), the other cases are similar. Let ri be the i-th row
of G for 1 ≤ i ≤ k. Let r′j be j-th row of G′ for 1 ≤ j ≤ k + 1. Then we have

〈r′1, r
′
1〉E =1 + 〈x,x〉E = 1,

〈r′1, r
′
j〉E =〈x, rj−1〉E = 0 for 2 ≤ j ≤ k + 1,

〈r′j, r
′
j〉E =〈rj−1, rj−1〉E for 2 ≤ j ≤ k + 1,

〈r′j, r
′
j′〉E =〈rj−1, rj′−1〉E for 2 ≤ j < j′ ≤ k + 1.

Hence we obtain that

G′G′T =











1 0 · · · 0
0
...
0

GGT











.

If C is a binary LCD code, then it follows from Lemma 2.1 that GGT is nonsingular. This
implies that G′G′T is nonsingular. By Lemma 2.1, G′ generates a binary LCD [n+1, k+1]
code. This completes the proof.

It is easy to see that all binary LCD codes constructed by Theorem 3.5 are odd-like.
Next, we prove that all odd-like binary LCD codes can be obtained by the construction
in Theorem 3.5.

Theorem 3.6. Any binary odd-like LCD [n, k] code is obtained from some binary LCD
[n− 1, k − 1] code (up to equivalence) using the construction of Theorem 3.5.

Proof. Let C be a binary odd-like LCD [n, k] code. According to [8, Propsition 3], there
is at least one coordinate position i such that the shortened code C{i} of C on the i-th
coordinate is a binary LCD [n − 1, k − 1] code. Without loss of generality, we consider
that i = 1. Assume that C{1} has the generator matrix G1. Then there exists a binary
vector x′ = (x′

1, x
′
2, . . . , x

′
n−1) of length n− 1 such that the following matrix

G =

(

1 x′

0 G1

)

is a generator matrix of C. Since C{1} is a binary LCD code, Fn−1
2 = C{1}⊕C{1}

⊥. So there
are x = (x1, x2, . . . , xn−1) ∈ C{1}

⊥ and y = (y1, y2, . . . , yn−1) ∈ C{1} such that x′ = x+ y.

6



Using the binary vector x = (x1, x2, . . . , xn−1) ∈ C{1}
⊥ of length n− 1 and G1 we get

a generator matrix G′ of a linear [n, k] code C ′ by Theorem 3.5. And

G′ =

(

1 x

0 G1

)

∼

(

1 x+ y

0 G1

)

= G.

Thus the given code C is equivalent to C ′, as desired. We assert that wt(x) is even;
otherwise (1|x) ∈ C ∩ C⊥, which is a contradiction. This completes the proof.

Finally, we give two counterexamples to show that Conjecture 1 in [8] is invalid.

Conjecture 3.7. [8, Conjecture 1] Let k be an even position integer and n > k be
another integer. If dE2 (n, k) is even and dE2 (n− 1, k) = dE2 (n, k)− 1, then all binary LCD
[n, k, dE2 (n, k)] are even-like codes.

Proposition 3.8. There exist optimal binary odd-like LCD [14, 8, 4] and [16, 10, 4] codes.

Proof. According to [22, Table 3], there exist optimal binary odd-like LCD [13, 7, 4] and
[15, 9, 4] codes, which have the following generator matrices respectively





















1 0 0 0 0 0 0 1 1 0 1 0 1
0 1 0 0 0 0 0 0 1 1 1 1 0
0 0 1 0 0 0 0 0 0 1 1 0 1
0 0 0 1 0 0 0 1 0 0 1 1 0
0 0 0 0 1 0 0 0 0 1 0 1 1
0 0 0 0 0 1 0 1 1 1 0 1 1
0 0 0 0 0 0 1 1 1 1 1 0 0





















,





























1 0 0 0 0 0 0 0 0 1 1 0 0 0 1
0 1 0 0 0 0 0 0 0 0 1 1 1 1 0
0 0 1 0 0 0 0 0 0 0 1 1 1 0 1
0 0 0 1 0 0 0 0 0 1 1 0 0 1 0
0 0 0 0 1 0 0 0 0 0 1 1 0 1 1
0 0 0 0 0 1 0 0 0 0 1 0 1 1 1
0 0 0 0 0 0 1 0 0 1 1 1 1 1 1
0 0 0 0 0 0 0 1 0 1 1 0 1 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0





























.

By applying Theorem 3.5 to the LCD [13, 7, 4] code, a binary LCD [14, 8, 4] code C ′

is constructed, where x = (1001110001100). The code C ′ has weight distribution as:

[〈0, 1〉, 〈4, 24〉, 〈5, 36〉, 〈6, 36〉, 〈7, 60〉, 〈8, 45〉, 〈9, 28〉, 〈10, 20〉, 〈11, 4〉, 〈12, 2〉].

Similarly, a binary LCD [16, 10, 4] code is constructed, where x = (111111011001111),
which has weight distribution as:

[〈0, 1〉, 〈4, 43〉, 〈5, 81〉, 〈6, 96〉, 〈7, 189〉, 〈8, 207〉, 〈9, 162〉,
〈10, 144〉, 〈11, 66〉, 〈12, 21〉, 〈13, 13〉, 〈15, 1〉].

In the sense of equivalence, these two LCD code are also constructed by [22]. Here we
just show that we can also get such codes by our method.

Remark 3.9. Let n = 14 and k = 8. By [22, Table 3], dE2 (14, 8) = 4 and dE2 (13, 8) = 3.
The condition of Conjecture 3.7 is satisfied. However, the binary LCD [14, 8, 4] code in
Proposition 3.8 is odd-like. Therefore, Conjecture 3.7 is invalid. Similarly, the odd-like
binary LCD [16, 10, 4] is also a counterexample of Conjecture 3.7.

7



3.3 Construction method II

In this subsection, we recall another typical construction methods of linear codes. Let
C be a linear [n, k] code with the generator matrix G over Fq. For any x ∈ Fn

q \ C, the
following matrix

G′ =

(

x

G

)

generates a linear [n, k + 1] code. In addition, any linear [n, k + 1] code over Fq can be
obtained from some linear [n, k] code using the above construction.

Next, we give a method for constructing many LCD [n, k + 1] codes with interesting
parameters from a given LCD [n, k] code by modifying the above construction method of
linear codes.

Theorem 3.10. (1) Let C be a binary LCD [n, k] code with the generator matrix G. Let
y ∈ C⊥ such that wt(y) is odd. Then the following matrix

G′ =

(

y

G

)

.

generates a binary LCD [n, k + 1] code.
(2) Let C be a ternary LCD [n, k] code with the generator matrix G. Let y ∈ C⊥ such

that wt(y) 6= 0 (mod 3). Then the following matrix

G′ =

(

y

G

)

.

generates a ternary LCD [n, k + 1] code.
(3) Let C be a quaternary Hermitian LCD [n, k] code with the generator matrix G.

Let y ∈ C⊥H such that wt(y) is odd. Then the following matrix

G′ =

(

y

G

)

.

generates a quaternary Hermitian LCD [n, k + 1] code.

Proof. The proof is similar to that of Theorem 3.5, so we omit it here.

Next, we consider the converse of Theorem 3.10.

Theorem 3.11. Any binary odd-like LCD [n, k, d] code is obtained from some binary
LCD [n, k − 1,≥ d] code (up to equivalence) by the construction of Theorem 3.10.

Proof. Let C be a binary odd-like LCD [n, k, d] code with the generator matrix G. From
[11, Theorem 3], there exists a basis c1, c2, . . . , ck of C such that ci · cj = 1 if i = j and
ci ·cj = 0 otherwise. Let C0 be a binary code with the generator matrix G0 = (ci)1≤i≤k−1,
where ci is the i-th row of G0. From [11, Theorem 3], C0 is LCD. This implies that
Fn
2 = C0 ⊕ C⊥

0 . So there are x = (x1, x2, . . . , xn) ∈ C0 and y = (y1, y2, . . . , yn) ∈ C⊥
0 such

that ck = x+ y. Since ck /∈ C0, y = ck − x /∈ C0.

8



Using the binary vector y = (y1, y2, . . . , yn) ∈ C0
⊥ of length n and G0 we get a

generator matrix G′ of a linear [n, k + 1] code C ′ by Theorem 3.10. And

G′ =

(

y

G0

)

∼

(

x+ y

G0

)

=

(

ck
G0

)

∼ G.

Thus the given code C is equivalent to C ′, as desired. It turns out that wt(y) is odd;
otherwise y ∈ C0 ∩ C⊥

0 , which is a contradiction. This completes the proof.

Theorem 3.12. Any ternary Euclidean (resp. quaternary Hermitian) LCD [n, k] code is
obtained from some ternary Euclidean (resp. quaternary Hermitian) LCD [n, k − 1] code
by the construction of Theorem 3.10.

Proof. According to [23, Propsition 4], we know that any ternary LCD [n, k] code contains
a ternary LCD [n, k−1] subcode and any quaternary Hermitian LCD [n, k] code contains
a quaternary Hermitian LCD [n, k − 1] subcode. The rest of the proof is similar to that
of Theorem 3.11, so we omit it here.

4 New binary LCD codes

The constructions of optimal binary LCD [n, k] codes were studies in [3,8,15,16,19,22,25].
It is worth noting that there are many unknowns in [8] and [25]. Hence, we will construct
these unknown binary LCD codes by Constructions I and II in Section 3.

4.1 Some important inequalities

Let dE2 (n, k) denote the largest minimum weight among all binary Euclidean LCD [n, k]
codes. By adding zero column, the following inequality is obvious.

Lemma 4.1. Suppose that k ≤ n. Then dE2 (n+ 1, k) ≥ dE2 (n, k).

The following lemmas are nontrivial and they were proved in [11] and [8].

Lemma 4.2. [11, Theorem 8] Suppose that 2 ≤ k ≤ n. Then dE2 (n, k) ≤ dE2 (n, k − 1).

Lemma 4.3. [8] Let k and n be two integers such that 1 ≤ k ≤ n. Then we have

(1) If k is odd, then dE2 (n, k) ≤ dE2 (n− 1, k − 1).

(2) If k is even and dE2 (n, k) is odd, then dE2 (n+ 1, k) ≥ dE2 (n, k) + 1.

(3) If dE2 (n, k) is odd, then dE2 (n+ 2, k) ≥ dE2 (n, k) + 1.

Combining Theorem 3.2 and [8, Proposition 5], we give an improved upper bound.

Corollary 4.4. Let k and n be two integers such that 2 ≤ k ≤ n. Then we have

dE2 (n, k) ≤ max{dE2 (n− 1, k − 1), dE2 (n− 2, k − 2)}.

9



Proof. Assume that C is a binary [n, k, d] LCD code. Let Ci be the shortened code of
C on i-th coordinate for some i ∈ {1, 2, . . . , n}. By [8, Proposition 5], we know that
dim(Hull(Ci)) ≤ 1. If dim(Hull(Ci)) = 0, then there exists a binary [n − 1, k − 1, d]
LCD code. If dim(Hull(Ci)) = 1, then there exists a binary [n − 1, k − 1, d] code with
one-dimension hull. By Theorem 3.2, there exists a binary [n − 2, k − 2, d] LCD code.
This completes the proof.

Let Cℓ
[n,k,d]2

denote a binary [n, k, d] linear code with the generator matrix Gℓ
[n,k,d]2

,

where ℓ is the dimension of hull for such code. When ℓ = 0, let C[n,k,d]2 = C0
[n,k,d]2

denote

a binary LCD [n, k, d] code.

4.2 New binary LCD codes

From [8], only the exact value of dE2 (29, 11) remains unknown for n = 29.

Proposition 4.5. There is a binary LCD [29, 11, 9] code.

Proof. By the MAGMA function BKLC, there is a binary linear [30, 11, 10] code C1
[30,11,10]2

with one-dimensional hull. By Theorem 3.2, the shortened code (C1
[30,11,10]2

){1} on the first

coordinate position is a binary LCD [29, 10, 10] code C[29,10,10]2 . We apply Construction
II to the code C[29,10,10]2 . Let us take y = (00010101101110101001100010001), one can
construct a binary LCD [29, 11, 9] code C[29,11,9]2 .

Although the binary LCD code C[29,11,9]2 in Proposition 4.5 has the same parameters
with the binary LCD [29, 11, 9] code in [25, Proposition 3], their construction methods are
different. In addition, the parameters in bold in Tables 1-3 denote that the corresponding
code has new parameters according to [8] and [25].

Proposition 4.6. There are binary LCD [30, 11, 9] and [30, 15, 7] codes.

Proof. It follows from Lemma 4.1 and Proposition 4.5 that there is a binary LCD [30, 11, 9]
code. By the MAGMA function BKLC, there is a binary linear [36, 21, 7] code C6

[36,21,7]2

with 6-dimensional hull. By Theorem 3.2, the shortened code (C6
[36,21,7]2

)T of C6
[36,21,7]2

is

a binary LCD [30, 15, 7] code C[30,15,7]2, where T = {1, 2, 3, 5, 17, 19}.

Remark 4.7. We list in Tables 1-2 some binary LCD codes obtained by Theorems 3.2,
3.5 and 3.10. To save the space, the codes in Tables 1 and 2 can be obtained from
https://ahu-coding.github.io/code1/.

10



Table 1: The binary LCD codes from Theorem 3.2

The code Cℓ
[n,k,d]2

The set T CT References

C1
[30,11,10]2

{1} [29, 10, 10] Theorem 3.2

C6
[36,21,7]2

{1, 2, 3, 5, 17, 19} [30,15,7] Theorem 3.2

C1
[32,21,6]2

{1} [31, 20, 6] Theorem 3.2

C1
[34,15,9]2

{1} [33, 14, 9] Theorem 3.2

C0
[33,22,6]2

\ [33, 22, 6] Theorem 3.2

C0
[34,22,6]2

\ [34, 22, 6] Theorem 3.2

C0
[36,16,10]2

\ [36, 16, 10] Theorem 3.2

C7
[43,27,7]2

{1, 2, 3, 5, 9, 17, 25} [36,20,7] Theorem 3.2

C3
[40,13,13]2

{2, 3, 5} [37,10,13] Theorem 3.2

C8
[45,29,7]2

{1, 2, 3, 5, 9, 17, 21, 25} [37,21,7] Theorem 3.2

Note that the code Cℓ
[n,k,d]2

is the best-known binary [n, k, d] code from MAGMA [7].

Table 2: The binary LCD codes from Theorem 3.5 and Theorem 3.10

The given C[n,k,d]2 The vector x or y C ′ References

[30,15,7] (110001101111110101111111001001) [31,16,7] Theorem 3.5
[31,16,7] (1110101000111010001110111011001) [32,17,7] Theorem 3.5
[32,17,7] (11010011101011101011011000110111) [33,18,7] Theorem 3.5
[33,14,9] (111000000011111011010110010000110) [34,15,9] Theorem 3.5
[34,18,8] (1100000000000110001000101101010110) [35,19,7] Theorem 3.5
[34,22,6] (1111111111111111111111111111111111) [35,23,6] Theorem 3.5
[36,16,10] (110100000100001000011010100001101110) [37,17,9] Theorem 3.5
[37,21,7] (0011101010001001101010110111111001111) [38,22,7] Theorem 3.5
[38,10,14] (11110000110000000000000000000111111110) [39,11,13] Theorem 3.5
[38,22,7] (10011010101101001101010111000000101111) [39,23,7] Theorem 3.5
[29,10,10] (00010101101110101001100010001) [29,11,9] Theorem 3.10
[31,20,6] (0000111101010000100101010011100) [31,21,5] Theorem 3.10

Note that the given code C[n,k,d]2 in Table 2 is from Tables 1-2. In addition, the codes C[34,18,8]2 and
C[38,10,14]2 are the extendcodes of the codes C[33,18,7]2 and C[37,10,13]2 , respectively (see Table 3).

We list in Table 3 some binary LCD codes by using some inequalities, where the given
code C in Table 3 is from Tables 1-3.
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Table 3: The binary LCD codes from some inequalities

The given C C ′ References The given C C ′ References

[29,11,9] [30,11,9] Lemma 4.1 [35,21,6] [36,21,6] Lemma 4.1
[29,11,9] [31,11,10] (3) of Lemma 4.3 [35,23,6] [36,23,6] Lemma 4.1
[31,16,7] [31,15,7] Lemma 4.2 [36,18,8] [37,18,8] Lemma 4.1
[31,16,7] [32,16,8] (2) of Lemma 4.3 [35,19,7] [37,19,8] (3) of Lemma 4.3
[32,16,8] [32,15,8] Lemma 4.2 [36,20,7] [37,20,8] (2) of Lemma 4.3
[31,21,5] [32,21,5] Lemma 4.1 [36,23,6] [37,23,6] Lemma 4.1
[32,15,8] [33,15,8] Lemma 4.1 [37,10,13] [38,10,14] (2) of Lemma 4.3
[32,16,8] [33,16,8] Lemma 4.1 [37,17,9] [38,17,9] Lemma 4.1
[32,17,7] [33,17,7] Lemma 4.1 [37,19,8] [38,19,8] Lemma 4.1
[33,22,6] [33,21,6] Lemma 4.2 [37,20,8] [38,20,8] Lemma 4.1
[33,18,7] [34,18,8] (2) of Lemma 4.3 [37,21,7] [38,21,7] Lemma 4.1
[34,18,8] [34,17,8] Lemma 4.2 [37,23,6] [38,23,6] Lemma 4.1
[34,17,8] [34,16,8] Lemma 4.2 [38,10,14] [39,10,14] Lemma 4.1
[33,21,6] [34,21,6] Lemma 4.1 [38,20,8] [39,20,8] Lemma 4.1
[34,17,8] [35,17,8] Lemma 4.1 [38,22,7] [39,22,8] (2) of Lemma 4.3
[34,18,8] [35,18,8] Lemma 4.1 [39,22,8] [39,21,8] Lemma 4.2
[34,21,6] [35,21,6] Lemma 4.1 [39,10,14] [40,10,14] Lemma 4.1
[34,15,9] [36,15,10] (3) of Lemma 4.3 [39,11,13] [40,11,13] Lemma 4.1
[35,17,8] [36,17,8] Lemma 4.1 [39,21,8] [40,21,8] Lemma 4.1
[35,18,8] [36,18,8] Lemma 4.1 [39,22,8] [40,22,8] Lemma 4.1
[35,19,7] [36,19,7] Lemma 4.1 [39,23,7] [40,23,7] Lemma 4.1

Remark 4.8. We give Tables 4 and 5 by combining Tables 1-3, [25, Tables 1-3] and [8,
Tables 1-2]. Furthermore, the diamond “⋄” indicates that the construction method of the
corresponding binary LCD code is different from that of [25]. The asterisk “∗” indicates
that the corresponding binary LCD code has new parameters comparing with [8] and [25].

Table 4: Bounds on the minimum diatance of binary LCD codes

n\k 9 10 11 12 13 14 15 16 17

29 10 10 9⋄ 8 8 8 6 6 6
30 11 10 9⋄-10 9 8 8 7∗ 6 6
31 11 10 10⋄ 10 9 8 7⋄-8 7∗ 6
32 12 11 10 10 9-10 8-9 8∗ 8∗ 7∗

33 12 12 10-11 10 10 9-10 8⋄-9 8⋄ 7∗-8
34 13 12 11-12 11 10 10 9⋄-10 8⋄-9 8∗

35 13-14 12-13 12 12 10-11 10 9-10 9-10 8∗

36 14 12-14 12-13 12 10-12 10-11 10⋄ 10 8⋄-9
37 14 13∗-14 12-14 12-13 10-12 10-12 10-11 10 9⋄-10
38 14-15 14∗ 12-14 12-14 11-12 10-12 10-12 10-11 9⋄-10
39 14-16 14⋄-15 13⋄-14 12-14 11-13 11-12 10-12 10-12 10-11
40 15-16 14⋄-16 13⋄-15 13-14 12-14 11-13 10-12 10-12 10-12
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Table 5: Bounds on the minimum diatance of binary LCD codes

n\k 18 19 20 21 22 23 24 25 26 27 28 29 30

29 6 5 4 4 4 3 2 2 2 2 2 1
30 6 5-6 5 4 4 4 3 2 2 2 2 1 1
31 6 6 6 5⋄ 4 4 4 3 2 2 2 2 2
32 6 6 6 5⋄-6 5 4 4 3-4 3 2 2 2 2
33 7∗ 6 6 6⋄ 6 5 4 4 4 3 2 2 2
34 8∗ 6-7 6 6⋄ 6 5-6 4 4 4 3-4 3 2 2
35 8∗ 7∗-8 6-7 6∗ 6 6⋄ 5 4 4 4 4 3 2
36 8∗ 7⋄-8 7∗-8 6⋄-7 6 6⋄ 6 5 4 4 4 3-4 3
37 8⋄-9 8∗ 8∗ 7∗-8 6-7 6⋄ 6 5-6 5 4 4 4 4
38 9-10 8⋄-9 8⋄ 7⋄-8 7∗-8 6⋄-7 6 6 6 5 4 4 4
39 10 9-10 8⋄-9 8∗ 8∗ 7∗-8 6-7 6 6 5-6 5 4 4
40 10-11 9-10 9-10 8∗-9 8⋄ 7⋄-8 6-8 6-7 6 6 6 5 4

5 New ternary LCD codes

The constructions of optimal ternary LCD [n, k] codes were studies in [1,5,19]. Hence, we
will construct some unknown ternary LCD codes and extend a result of Araya, Harada
and Saito to length 25 by Constructions I and II in Section 3.

5.1 Some important inequalities

Let dE3 (n, k) denote the largest minimum weight among all ternary Euclidean LCD [n, k]
codes. By adding zero column, we have dE3 (n + 1, k) ≥ dE3 (n, k).

Lemma 5.1. [23] Suppose that 2 ≤ k ≤ n. Then dE3 (n, k) ≤ dE3 (n, k − 1).

Lemma 5.2. [5] If 20 ≤ n ≤ 25, then we have

dE3 (n, n− 2) = 2, dE3 (n, n− 3) = 2, dE3 (n, n− 4) = 3.

According to [1], we know that dE3 (n, n−1) = 1 if n ≡ 0 (mod 3) and dE3 (n, n−1) = 2
if n ≡ 1, 2 (mod 3). The following proposition is a generalization of [8, Proposition 5].

Proposition 5.3. Let C be a ternary linear [n, k, d] code and dim(C∩C⊥) = s. If Ci is the
shortened code of C in i-th coordinate for some 1 ∈ {1, . . . , n}, then dim(Ci∩C⊥

i ) ≤ s+1.

Proof. Without loss of generality, we can consider the shortened code C1 of C on the
first coordinate. If all codewords have 0 as a first coordinate, then dim(C1 ∩ C1) =
dim(C ∩ C⊥) = s. Otherwise C = (0|C1) ∪ (1|u + C1) ∪ (2|2u + C) for a codeword
(1, u) ∈ C. Let H = C∩C⊥ and H1 = C1∩C⊥

1 . There are two possibilities for H, namely
H = (0|H′) or H = (0|H′) ∪ (1|v +H′) ∪ (2|2v +H′). In both cases, H′ ⊆ H1.

(i) If H′ = H1, then dim(H1) = dim(H) or dim(H)− 1.
(ii) If H′ $ H1. Take y1, y2 ∈ H1\H

′ ⊆ C1 ∩ C⊥
1 . It follows from yi ∈ C1 that

(0, yi) ∈ C. If follows from yi ∈ C⊥
1 = (C⊥)1 that (λi, yi) ∈ C⊥ for some λi ∈ F3. If

λi = 0, then (0, yi) ∈ C∩C⊥ = H. Implying that yi ∈ H′, which is a contradiction. Hence
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λi 6= 0. So (0, λ2y1 − λ1y2) ∈ H, which implies that λ2y1 − λ1y2 ∈ H′. It turns out that
H1 = H′ ∪ (y1 +H′) ∪ (2y1 +H′) and dim(H1) = dim(H′) + 1. Since dim(H′) = dim(H)
or dim(H)−1, we have dim(H1) = dim(H) or dim(H)+1. This completes the proof.

Corollary 5.4. Let k and n be two integers such that 2 ≤ k ≤ n. Then we have

dE3 (n, k) ≤ max{dE3 (n− 1, k − 1), dE3 (n− 2, k − 2)}.

Proof. The proof is similar to that of Corollary 4.4. The main difference is that we use
Proposition 5.3 instead of [8, Proposition 5].

5.2 New ternary LCD codes

Firstly, we give some known ternary LCD codes from [5].

13 ≤ d3(23, 4) ≤ 14, d3(24, 4) = 15, 15 ≤ d3(25, 4) ≤ 16.

According to [5], there are ternary LCD codes C[19,6,9]3, C[20,5,11]3, C[20,6,10]3 and C[20,8,8]3,
they have the following generator matrices respectively.

















1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 1 1 2 2 2 1 1 1 0 0
0 0 1 0 0 0 1 1 1 2 1 1 1 1 0 0 0 0 0
0 0 0 1 0 0 1 2 2 2 1 2 0 0 1 1 0 0 0
0 0 0 0 1 0 1 2 0 1 2 1 1 0 1 0 0 1 0
0 0 0 0 0 1 1 1 2 1 0 1 0 1 2 0 1 1 0

















,













1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 2 2 2
0 0 1 0 0 0 1 2 2 1 2 2 1 0 2 1 1 2 2 1
0 0 0 1 0 1 1 2 1 1 0 2 2 2 2 1 0 0 0 0
0 0 0 0 1 1 2 0 1 2 2 0 2 1 2 1 2 1 0 1













,

















1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 1 1 1 2 2 1 1 1 1 0 0 0
0 0 1 0 0 0 1 1 2 1 1 1 1 1 0 0 0 1 0 0
0 0 0 1 0 0 1 2 0 2 1 1 1 0 1 1 0 0 1 0
0 0 0 0 1 0 0 1 1 1 2 1 0 0 2 0 1 1 1 0
0 0 0 0 0 1 1 2 2 0 0 1 2 2 1 2 0 0 0 1

















,

























1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0
0 0 1 0 0 0 0 0 1 1 1 2 2 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0 1 2 2 1 0 1 0 2 1 0 0 0
0 0 0 0 1 0 0 0 1 2 2 2 1 0 0 1 0 1 0 0
0 0 0 0 0 1 0 0 1 1 2 0 2 2 0 2 0 0 2 0
0 0 0 0 0 0 1 0 1 2 0 1 2 2 0 0 0 1 1 0
0 0 0 0 0 0 0 1 0 2 0 2 0 2 2 2 1 1 1 0

























.

Proposition 5.5. There are ternary LCD [20, 7, 9] and [20, 12, 6] codes.

Proof. We start from the ternary LCD code C[19,6,9]3. By applying Theorem 3.5, we can
construct a ternary LCD [20, 7, 9] code C[20,7,9]3 with the generator matrix

G[20,7,9]3 =





















1 1 1 0 2 0 0 1 1 0 0 0 0 0 1 1 0 2 2 2

0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 1 0 0 0 0 0 0 0 1 1 2 2 2 1 1 1 0 0
0 0 0 1 0 0 0 1 1 1 2 1 1 1 1 0 0 0 0 0
0 0 0 0 1 0 0 1 2 2 2 1 2 0 0 1 1 0 0 0
0 0 0 0 0 1 0 1 2 0 1 2 1 1 0 1 0 0 1 0
0 0 0 0 0 0 1 1 1 2 1 0 1 0 1 2 0 1 1 0





















.

By the MAGMA function BKLC, one can construct a ternary LCD [20, 12, 6] code.
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Remark 5.6. We list in Tables 6-7 some ternary LCD codes obtained by Theorems
3.2, 3.3, 3.5 and 3.10. To save the space, the codes in Table 6 can be obtained from
https://ahu-coding.github.io/code1/.

Table 6: The ternary LCD codes from Theorems 3.2 and 3.3

The code Cℓ
[n,k,d]3

The set T CT References

C0
[20,12,6]3

\ [20,12,6] Theorem 3.2

C0
[21,12,6]3

\ [21,12,6] Theorem 3.2

C0
[21,15,4]3

\ [21,15,4] Theorem 3.2

C0
[21,17,3]3

\ [21,17,3] Theorem 3.2

C3
[25,9,11]3

{1,2,3} [22,6,11] Theorem 3.2

C3
[25,13,8]3

{1,2,9} [22,10,8] Theorem 3.2

C0
[23,17,4]3

\ [23,17,4] Theorem 3.2

C0
[24,18,4]3

\ [24,18,4] Theorem 3.2

C9
[44,29,8]3

{2,3,4,5,6,7,8,9,10} [35,20,8] Theorem 3.2

C1
[40,29,6]3

{2} [39,28,6] Theorem 3.2

The code Cℓ
[n,k,d]3

The set T CT References

C3
[27,5,16]3

{1,2,5} [24,5,13] Theorem 3.3

C4
[29,6,16]3

{1,2,3,4} [25,6,13] Theorem 3.3

Note that the code Cℓ
[n,k,d]3

is the best-known ternary [n, k, d] code from MAGMA [7].

Proposition 5.7. There are ternary LCD [22, 11, 7] and [24, 16, 5] codes.

Proof. We start from the ternary LCD codes C[22,10,8]3 and C[24,15,6]3 (see Tables 6 and 7).
By applying Theorem 3.10, we can construct ternary LCD codes C[22,11,7]3 and C[24,16,5]3

with the following generator matrices, respectively,

G[22,11,7]3 =







































1101222110122211012200

1000010000002002210122
0100020000102002111010
0010010000101020000122
0001020000222012211022
0000110000110010202010
0000001000011020021021
0000000100221002122200
0000000010212022221211
0000000001101002102021
0000000000000111111110







































, G[24,16,5]3 =



























































001121202101001122102021

100000000000000120201111
010000000000000112011000
001000000000000112110022
000100000000000020110211
000010000000000020021220
000001000000000002002122
000000100000000012220010
000000010000000001222001
000000001000000021102102
000000000100000011100011
000000000010000022120200
000000000001000002212020
000000000000100000221202
000000000000010012012221
000000000000001022211121



























































.
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Table 7: The ternary LCD codes from Theorem 3.5 and Theorem 3.10

The given C[n,k,d]3 The vector x or y C ′ References

[19,6,9] (1102001100000110222) [20,7,9] Theorem 3.5
[20,5,11] (21112201000000010021) [21,6,10] Theorem 3.5
[20,6,10] (02112000000000121221) [21,7,9] Theorem 3.5
[20,8,8] (12021210000020212222) [21,9,8] Theorem 3.5
[21,6,10] (200002221000002020221) [22,7,10] Theorem 3.5
[21,7,9] (222210000000002002222) [22,8,9] Theorem 3.5
[21,12,6] (120000022222120122212) [22,13,6] Theorem 3.5
[21,15,4] (010000111012101011211) [22,16,4] Theorem 3.5
[21,17,3] (010021201100021201212) [22,18,3] Theorem 3.5
[22,6,11] (1211021222210000112200) [23,7,11] Theorem 3.5
[22,7,10] (1112202121010001202201) [23,8,10] Theorem 3.5
[22,8,9] (2210022110000011120021) [23,9,9] Theorem 3.5
[22,11,7] (0010002100121001211101) [23,12,7] Theorem 3.5
[22,13,6] (2110210002112020111112) [23,14,6] Theorem 3.5
[23,7,11] (10112100000000000102211) [24,8,10] Theorem 3.5
[23,12,7] (00100211121000112121012) [24,13,7] Theorem 3.5
[23,14,6] (22100010002211222202121) [24,15,6] Theorem 3.5
[24,8,10] (020212110000000020010011) [25,9,10] Theorem 3.5
[24,15,6] (102200010201120202000120) [25,16,6] Theorem 3.5
[24,16,5] (010000010021012212210010) [25,17,5] Theorem 3.5
[24,18,4] (121000002021110021222212) [25,19,4] Theorem 3.5
[35,20,8] (12202110000000002101221001212020220) [36,21,8] Theorem 3.5
[36,21,8] (100200212100000112200221222000012121) [37,22,8] Theorem 3.5
[39,28,6] (021020210000200202112021120012101111112) [40,29,6] Theorem 3.5

[22,10,8] (1101222110122211012200) [22,11,7] Theorem 3.10
[22,13,6] (0020100000102202121012) [22,14,5] Theorem 3.10
[23,14,6] (00020100000102202121012) [23,15,5] Theorem 3.10
[24,15,6] (001121202101001122102021) [24,16,5] Theorem 3.10
[25,9,10] (1112101001021000011020001) [25,10,9] Theorem 3.10
[25,10,9] (1222121000002000212020021) [25,11,8] Theorem 3.10

Note that the given code C[n,k,d]3 in Table 7 is from Tables 6-7.

Corollary 5.8. dE3 (21, 9) = 8, dE3 (22, 10) = 8, dE3 (23, 11) ∈ {7, 8}, dE3 (24, 12) ∈ {7, 8}.

Proof. By Tables 6 and 7, there are ternary LCD [21, 9, 8], [22, 10, 8], [23, 11, 7] and
[24, 12, 7] codes. From [5, Table 7], we know that dE3 (19, 7) = dE3 (20, 8) = 8. It fol-
lows from Corollary 5.4 that dE3 (21, 9) ≤ max{dE3 (20, 8), d

E
3 (19, 7)} = 8. Similarly, we

have dE3 (22, 10) ≤ 8, dE3 (23, 11) ≤ 8 and dE3 (24, 12) ≤ 8.

Remark 5.9. Combining the Database [17] and the above results, we give lower and upper
bounds on minimal distance of ternary LCD codes with length 20 ≤ n ≤ 25, where the
parameters for ternary LCD codes of the length 20 can be found in [5]. All results are
listed in Tables 8-9.
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Table 8: Bound on the minimum distance of ternary LCD codes

n\k 4 5 6 7 8 9 10 11 12 13 14

20 12 11 10 9 8 7-8 7 6 6 5 4
21 12 11-12 10-11 9-10 8-9 8 7-8 6-7 6 5-6 4-5
22 12-13 11-12 11-12 10-11 9-10 8-9 8 7-8 6-7 6 5-6
23 13-14 11-13 11-12 11-12 10-11 9-10 8-9 7-8 7-8 6-7 6
24 15 13-14 11-13 11-12 10-11 9-11 8-10 7-9 7-8 7-8 6-7
25 15-16 13-15 13-14 11-13 10-12 10-11 9-11 8-10 7-9 7-8 6-8

The parameters in bold denote the corresponding code has new parameters according to [5].

Table 9: Bound on the minimum distance of ternary LCD codes

n\k 15 16 17 18 19 20 21 22 23 24 25

20 3-4 3 2 2 2 1
21 4 3 3 2 2 1 1
22 4-5 4 3 3 2 2 2 1
23 5-6 4-5 4 3 3 2 2 2 1
24 6 5-6 4-5 4 3 3 2 2 1 1
25 6-7 6 5-6 4-5 4 3 3 2 2 2 1

Proposition 5.10. There are ternary LCD [37, 22, 8] and [40, 29, 6] codes.

Proof. We start from the ternary LCD code C[35,20,8]3 (see Table 6). By applying Theorem
3.5, we can construct a ternary LCD [36, 21, 8] code C[36,21,8]3, where x = (122021100000000
02101221001212020220). We start from the ternary LCD code C[36,21,8]3. By applying The-
orem 3.5, we can construct a ternary LCD [37, 22, 8] code C[37,22,8]3 with the generator
matrix

G[37,22,8]3 =



















































































1 1 00200212100000112200221222000012121

0 1 12202110000000002101221001212020220

0 0 10000000000000000002022221010101110
0 0 01000000000000000001000102121110222
0 0 00100000000000000001012011212012220
0 0 00010000000000000001020101211002220
0 0 00001000000000000001011202212110220
0 0 00000100000000000000011011011221211
0 0 00000010000000000001000222021120121
0 0 00000001000000000002010122110001211
0 0 00000000100000000001001002211120122
0 0 00000000010000000001000000220120202
0 0 00000000001000000001022110121221020
0 0 00000000000100000002002210101110220
0 0 00000000000010000000012210020002210
0 0 00000000000001000001010102100010121
0 0 00000000000000100002011110121220211
0 0 00000000000000010002001211010111101
0 0 00000000000000001001011201001200001
0 0 00000000000000000102020021111120020
0 0 00000000000000000010001212121210201
0 0 00000000000000000000101202110122001



















































































.
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We start from the ternary LCD code C[39,28,6]3 (see Table 6). By applying Theorem 3.5, we
can construct a ternary LCD [40, 29, 6] code C[40,29,6]3 , where x = (021020210000200202112
021120012101111112).

Remark 5.11. We can construct some ternary LCD codes with better parameters com-
pared with [19]. For example, the ternary LCD code of the length 37 with the dimension
22 has the minimum distance 8, while the ternary LCD code of the length 37 with the di-
mension 22 in [19, Corollary 6.3] has the minimum distance 7. That is to say, the ternary
LCD code C[37,22,8]3 we obtained is also considered new. The code C[40,29,6] also has better
parameters compared with [19, Corollary 6.3].

6 New quaternary Hermitian LCD codes

Let F4 = {0, 1, ω, ω2}. Let dH4 (n, k) denote the largest minimum distance among all
quaternary Hermitian LCD [n, k] codes.

Proposition 6.1. There are quaternary Hermitian LCD [22, 12, 7], [23, 13, 7], [24, 14, 7]
and [25, 15, 7] codes.

Proof. By the MAGMA function BKLC, one can construct a quaternary [25, 15, 7] code
C4

[25,15,7]4
with 4-dimensional Hermitian hull. According to Theorem 3.2, the shortened

code (C4
[25,15,7]4

)T on T = {1, 2, 3, 4} is a quaternary Hermitian LCD [21, 11, 7] code
C[21,11,7]4, which has the following generator matrix

G[21,11,7]4 =





































1 0 0 0 0 0 0 0 0 0 0 ω ω2 0 ω2 ω2 ω 1 ω 1 ω2

0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 ω2 0 ω ω ω
0 0 1 0 0 0 0 0 0 0 0 ω2 1 ω2 ω2 0 0 ω2 1 1 ω2

0 0 0 1 0 0 0 0 0 0 0 ω2 1 ω ω2 ω2 ω 0 ω ω2 0
0 0 0 0 1 0 0 0 0 0 0 ω2 ω2 ω 0 ω 1 0 ω ω2 ω
0 0 0 0 0 1 0 0 0 0 0 0 ω2 1 0 ω ω ω2 0 ω 1
0 0 0 0 0 0 1 0 0 0 0 ω ω2 1 1 0 ω 0 0 0 ω
0 0 0 0 0 0 0 1 0 0 0 ω ω2 ω 0 ω2 ω2 ω2 ω2 ω2 ω2

0 0 0 0 0 0 0 0 1 0 0 0 ω 0 1 0 ω2 ω ω 0 ω2

0 0 0 0 0 0 0 0 0 1 0 1 0 ω2 ω2 ω 0 ω 1 ω2 ω
0 0 0 0 0 0 0 0 0 0 1 1 1 ω ω 1 0 0 ω 1 ω





































.

By applying Theorem 3.5, one can construct a quaternary Hermitian LCD [22, 12, 7] code,
where x = (1ω1100000ω0ωω2ωω00ω2ω2ω20).

By the MAGMA function BKLC, one can construct a quaternary [26, 16, 7] code
C3

[26,16,7]4
with 3-dimensional Hermitian hull. According to Theorem 3.2, the shortened

code (C3
[26,16,7]4

)T on T = {1, 2, 3} is a quaternary Hermitian LCD [23, 13, 7] code C[23,13,7]4,
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which has the following generator matrix

G[23,13,7]4 =













































1 0 0 0 0 0 0 0 0 0 0 0 0 0 ω2 ω2 0 ω2 ω2 0 1 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 ω 0 1 ω2 0 ω2 0 0 1 1
0 0 1 0 0 0 0 0 0 0 0 0 0 ω2 1 0 1 ω 1 ω2 1 ω2 ω2

0 0 0 1 0 0 0 0 0 0 0 0 0 ω2 ω2 0 0 ω2 0 ω ω2 0 ω
0 0 0 0 1 0 0 0 0 0 0 0 0 ω2 ω 0 ω2 1 ω2 1 1 ω2 ω
0 0 0 0 0 1 0 0 0 0 0 0 0 1 ω ω2 ω ω ω2 1 1 1 ω
0 0 0 0 0 0 1 0 0 0 0 0 0 ω2 1 0 ω ω ω2 0 ω 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 ω 1 ω2 0 0 ω ω 1 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 ω ω ω ω2 1 1 1 ω 1 1
0 0 0 0 0 0 0 0 0 1 0 0 0 ω 0 1 0 ω2 ω ω 0 ω2 0
0 0 0 0 0 0 0 0 0 0 1 0 0 ω2 ω2 ω ω 1 ω2 0 0 ω2 ω2

0 0 0 0 0 0 0 0 0 0 0 1 0 ω ω ω2 1 1 1 ω2 ω ω2 ω2

0 0 0 0 0 0 0 0 0 0 0 0 1 ω2 0 1 0 1 1 1 ω2 1 ω2













































.

By applying Theorem 3.5 to the code C[23,13,7]4, one can construct a quaternary Her-
mitian LCD [24, 14, 7] code C[24,14,7]4 , where x = (0ωω20ω001ω01ωωω2ω2ω200ω11ωω).

By applying Theorem 3.5 to the code C[24,14,7]4 , one can construct a quaternary Hermi-
tian LCD [25, 15, 7] code C[25,15,7]4 , where x = (11001ω21ωω20ω2ω2100ω2ω2ωωω201ω2ω).

Remark 6.2. Compared with Table 3 in [32], the quaternary Hermitian LCD codes in
Lemma 6.1 have better parameters than their parameters. For example, the quaternary
Hermitian LCD code of the length 24 with the dimension 14 has the minimum distance
7, while the quaternary Hermitian LCD code of the length 24 with the dimension 14
in [32, Table 3] has the minimum distance 6. That is to say, the quaternary Hermitian
LCD code C[24,14,7]4 we obtained is also considered new.

As an application, we can construct some EAQECCs with different parameters from
quaternary Hermitian LCD codes. We use [[n, k, d; c]]2 to denote a binary entanglement-
assisted quantum error correcting code (EAQECC) that encodes k information qubits
into n channel qubits with the help of c pre-shared entanglement pairs, and d is called
the minimum distance of the EAQECC. EAQECCs were introduced by Brun et al. in [9],
which include the standard quantum stabilizer codes as a special case. It has shown that
if there is a quaternary Hermitian LCD [n, k, d] code, then there is a binary EAQECC
with parameters [[n, k, d;n − k]]2 (see [31, Lemma 2.1’]). Hence, as a consequence of
Proposition 6.1 and [2, Lemma 3.3], we have that

Corollary 6.3. For (n, k, d) ∈ {(22, 12, 7), (23, 13, 7), (24, 14, 7), (25, 15, 7)} and a non-

negative integer s, there is a binary EAQECC with parameters [[n+ 4k−1
3

s, k, d+4k−1s;n+
4k−1
3

s− k]]2.

Proof. Combining with Proposition 6.1 and [2, Lemma 3.3], we know that there is a qua-

ternary Hermitian LCD [n+ 4k−1
3

s, k, d+4k−1s] code for (n, k, d) ∈ {(22, 12, 7), (23, 13, 7),
(24, 14, 7), (25, 15, 7)} and a nonnegative integer s. According to [31, Lemma 2.1’], there

is a binary EAQECC with parameters [[n+ 4k−1
3

s, k, d+ 4k−1s;n+ 4k−1
3

s− k]]2.
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Example 6.4. According to Corollary 6.3, there are binary EAQECCs with parameters
[[22, 12, 7; 10]]2, [[23, 13, 7; 10]]2, [[24, 14, 7; 10]]2 and [[25, 15, 7; 10]]2. However, the best
known binary EAQECCs in [17] have parameters [[22, 12, 6; 6]]2, [[23, 13, 6; 7]]2, [[24, 14, 6; 7]]2
and [[25, 15, 6; 8]]2. The EAQECCs we construct have larger minimum distances.

7 Conclusion

In this paper, we have introduced some methods for constructing LCD codes over small
finite fields by modifying some typical methods. We have constructed many new binary
LCD codes, ternary LCD codes and quaternary Hermitian LCD codes, which improve
the known lower bounds on the largest minimum weights. As a consequence, we used
two counterexamples to disprove the conjecture proposed by Bouyuklieva. Finally, as an
application of quaternary Hermitian LCD codes, we found some binary EAQECCs with
new parameters. We believe that our methods can produce more results for LCD codes.
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