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Abstract In recent years, various companies have started to shift their data services from traditional data

centers to the cloud. One of the major motivations is to save on operational costs with the aid of cloud

elasticity. This paper discusses an emerging need from financial services to reduce the incidence of idle

servers retaining very few user connections, without disconnecting them from the server side. This paper

considers this need as a bi-objective online load balancing problem. A neural network based scalable policy

is designed to route user requests to varied numbers of servers for the required elasticity. An evolutionary

multi-objective training framework is proposed to optimize the weights of the policy. Not only is the new

objective of idleness is reduced by over 130% more than traditional industrial solutions, but the original load

balancing objective itself is also slightly improved. Extensive simulations with both synthetic and real-world

data help reveal the detailed applicability of the proposed method to the emergent problem of reducing

idleness in financial services.
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ance, Cloud Computing
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1 Introduction

Elasticity forms a cornerstone of cloud computing that has helped it succeed in the past decade [1].
In many fields, the number of concurrent users of a cloud service system may vary significantly over
time, while the cloud system can reduce the idle servers elastically when the users become fewer, and
vice versa [2]. The concept of idle servers refers to those servers with few user tasks, in which most of
the hardware resources, e.g., the CPU, are running to no purpose. Despite the environmental issues,
according to [3], the energy consumption cost may amount to 30%–50% of the operational cost of those
large-scale data centers built by companies such as Google, Microsoft, and Facebook, which is a huge
waste of money. Those costs will eventually be transferred to the tenants who pay for and use the cloud
servers [4]. In financial scenarios (especially in stock trading), it is common for the number of concurrent
users at the close of the market to be over 10 times smaller than that at the opening [5]. Traditional
financial services focus more on stability than elasticity, and now the cloud native offers a new possibility
for achieving both in the same architecture [6].

Unfortunately, no industrial solution has been available to readily reduce idle servers in the financial
cloud services as it is still no trivial task. Ideally, if a server serves zero user connections, it can be shut
down to reduce idleness. In practice, when the user concurrency decreases markedly, the servers that
become idle may still retain a small number of user connections. Other services such as the entertainment
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and office sectors can simply disconnect all these users and re-connect them to the busy servers quickly. In
this regard, these idle servers become effectively empty and thus, can be shut down to save costs. However,
in financial services, the availability of the connections is extremely sensitive, as even a millisecond of
disconnection may cause a heavy loss of investment and damage to the financial market [7]. This means
that an idle server in the financial services sector must wait passively for all its users (even though very
few) to disconnect and then can be shut down afterward, while the waiting time is a direct waste of the
idle servers.

We propose that the above issue is mainly caused by the improper routing decisions of the user requests
over the servers. Specifically, given that a server can only be shut down when it serves no connection,
we know that the shutdown time of a server is decided by the latest disconnection time among all its
user connections. Once we can route the user connections with a similar disconnection time in the same
server, this server can be shut down in time and the wasted idleness can be greatly reduced. Based on
this, the present paper focuses on the load balancer module within the cloud computing architecture, as
it is responsible for routing user requests to different servers to construct connections.

As its name suggests, the traditional routing algorithms inside the industrial load balancers mainly
focus on minimizing the load imbalance, i.e., the standard deviation of the workloads among multiple
servers. The performance of those servers with heavy workloads can be very poor and will impact the
whole system negatively [8]. Furthermore, overloaded servers may fail much more easily. In the case of
servers with light workloads, the hardware resources are thereby wasted [9]. Thus, the load balance has
been a major problem in cloud computing [10, 11]. By bearing the workloads, such as user connections,
the hardware resources of the servers will be consumed and, thus, considered the indicators of the load
balance. For modern computing systems, four basic types of resources are the CPU and memory (RAM)
for computing, a disk for storage, and bandwidth (BW) for network communication. In this paper, we
consider all of them to make the proposed method more general in terms of hardware resources. The
representative routing algorithms are heuristics such as Round Robin, Random Routing, IP Hash method,
the Least Connection, and their weighted variants [8,12–14]. These algorithms are based on either some
degree of randomness or some hardware indicators of the servers. None of these considers the behavior
of users, i.e., the user connection duration. In this regard, while the users were routed to the servers for
load balance, the remaining user connections at the close of the market will also be distributed randomly
among the servers. This explains why, in real cases, the idle servers usually retain a few connections
when the user concurrency decreases significantly. Therefore, although they have contributed greatly to
enhancing the capacity (concurrent users) and the stability of the cloud services by balancing workloads,
they may perform poorly on routing the user requests concerning further reducing idle servers without
killing connections, as is required in financial services. Recently, intelligent routing algorithms have
also been developed based on meta-heuristics and reinforcement learning [15–18]. Unfortunately, their
targeted scenarios were quite different from the financial cloud and thus, did not encounter the idleness
issue.

To address this issue, this paper aims to automatically learn the optimal policy for routing incoming
user requests over the available servers so that the load imbalance and the idle time of all servers can
be minimized simultaneously. For this purpose, when routing an incoming user request, we not only
reorganize the traditional indicators of the servers along the time axis but also explicitly exploit the
historical connection duration of that user as new features. Specifically, it is assumed that the connection
duration of each user on different days follows a similar distribution. Thus, the connection duration of an
incoming user can be predicted statistically. This assumption is reasonable because most of the users of
financial services are from financial companies who usually have regular work schedules. Different degrees
of the predictability of users are simulated in the experiments to support this assumption positively. Due
to the online decision-making nature of routing incoming requests, the whole routing process is modeled
as a Reinforcement Learning (RL) problem with two objectives, namely, the load imbalance and the idle
time of all available servers. Then, a parameter-sharing neural-network-based scalable routing policy is
designed for two reasons: 1) to learn about the non-linear relationship between the statistically estimated
connection duration and the states of the servers; 2) to deal with the elastic scenarios where the number of
servers may change due to the autoscaling or servers’ failure. Considering that it is difficult to set proper
weights for aggregating the two objectives, an evolutionary multi-objective algorithm-based training
framework is proposed to optimize the parameters of the neural-network-based policy. Lastly, an action
mask operator is designed to help train the policy stably. As a result, a Multi-objective Evolutionary
Reinforcement Learning-based Load Balancer (MERL-LB) is proposed.
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Extensive simulations show that a MERL-LB can outperform comparable algorithms significantly
on the emerging task of reducing idleness without disconnecting user connections. The diverse Pareto
optimal produced by the evolutionary multi-objective training framework offers various options for the
users. Among the diverse policies, the idleness objective can be reduced by over 130% in using the
traditional methods while the load balancing objective itself is still slightly improved. Meanwhile, it has
been shown that the evolutionary multi-objective training framework facilitates a much faster convergence
rate over policy gradients [19]. The proposed scalable routing policy has also been verified successfully
against a variety of servers and request loads, with the number of users ranging from 600 to 7500. Finally,
an emerging sawtooth pattern is observed from the process of MERL-LB-based policies, which has been
studied by comparing it to the patterns of traditional methods in detail to explain its rationality and
may shed light on designing novel heuristics in the future. In a nutshell, MERL-LB is shown empirically
to be a powerful solution to the emerging problem of reducing idleness and load imbalance in financial
services.

The remainder of this work is as follows. Section 2 reviews the related works. Section 3 describes the
problem scenarios. Section 4 first models this problem as an RL problem and then presents the scalable
neural-network-based policy and its evolutionary multi-objective algorithm-based training framework.
The simulations are conducted in Section 5 to verify the effectiveness of the proposed MERL-LB. The
conclusions drawn from this work are discussed in the last section.

2 Related works

The load balancer works between the users’ applications and the servers of the backend system. In cloud
data services, the users’ requests come up in an online manner. The load balancer is expected to route
each incoming user’s request to one of the available servers so that any single server in the data center
will not be overloaded. And once the request is routed successfully, a connection is constructed between
the user’s application and the routed server to bi-directionally transmit data.

Industrial routing algorithms mostly make their decisions with certain degrees of randomness or based
on the states of the servers to keep load balance. Typical static routing algorithms include Random
Routing, Round Robin, Weighted Round Robin, and IP Hash [20]. Round Robin and Weighted Round
Robin distribute requests according to a specific probabilistic distribution among servers [14]. IP Hash
maps the IP address to the corresponding server using a hash algorithm. Static routing algorithms are
generally simple to implement but lack the ability to adapt their probabilistic distributions to the changing
characteristics of the network traffic. The other type of dynamic load balancing algorithms considers the
servers’ states as input [21]. Examples are Least Connection [12] and the Throttled method [13]. Among
them, the Least Connection dynamically assigns tasks based on the already served number of connections
of each server. The Throttled method consists of an index table of available virtual machines and their
states. Requests are allocated to the virtual machine that is available and has sufficient resources [22].
However, those methods are designed for the single objective of load balancing and cannot address the
problem of reducing idleness without disconnecting user connections.

There are also some intelligent load balancers. Meta-heuristics based load balancers [15] are general
derived from the behavior of natural evolution and iteratively search the optimal solution in the policy
space. Unfortunately, those methods can hardly be applied to the underlying online real-time routing
scenarios, as their iterative optimization process usually takes a relatively long time to find an optimal
routing solution [17]. RL-based load balancers are also warmly studied for the purpose of real-time
routing. The witnessed works mainly focus on the scenarios of Software Defined Networks [16] and
Internet of Things networks [18]. However, as the elasticity is not the major concern of those networks,
those works do not encounter the same difficulty as in the financial scenarios of keeping connections alive
while reducing idleness.

For cloud computing scenarios, the general load balance problems have been more intensively studied
in the context of job shop scheduling [23–25] in the scheduler module in the backend. Honestly, the job
scheduling problems and the connection routing problems generally follow the same vector bin-packing
mathematical model [10, 26], where a set of vector items are expected to be distributed among multiple
bins so that their loads can be balanced. Unfortunately, we discuss as follows that those job scheduling
methods cannot readily address the underlying problem of this work. The two major differences between
them emerge from practice.
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(1) A computing job is basically a sequence of predefined computing steps where any intermediate
data can be easily saved as checkpoints with established techniques. In this regard, killing a job on one
server and restarting it on another server can lose no data with extra techniques like Live Migration [27].
However, a user connection does not know what data will be delivered through it at a specific time, which
means a disconnection will lose data that can hardly be recovered. In a nutshell, those job scheduling
methods do not explicitly keep connections alive while reducing idleness.

(2) Though some online job scheduling works also consider objectives similar to reducing idleness, like
minimizing slowdown [28], makespan [29] or job completion time [30], they need the running duration of
the jobs explicitly in advance. While in the connection routing problem, the online duration of any user
connection is unknown when the request comes up.

To summarize, to our best knowledge, existing related works are not dedicated to solving the underlying
bi-objective problem, i.e., load balancing and reducing idleness without actively disconnecting users.
Thus, directly applying them may not be satisfactory.

3 Problem description

In typical financial data services, e.g., the stock market data services, the user connections usually follow
a quite regular mode. First, the number of user connections increases very rapidly at the market opening
in the morning, and then decreases gradually when the o’clock is approaching to the market closing in
the afternoon. Second, the duration of different user connections may vary significantly. Consequently,
as shown in Fig.1, the users usually disconnect from the data services at different times, leaving the
servers running with a very low utilization rate but cannot be shutdown due to few alive connections on
them, e.g., the duration from t2 to t3. This economic waste resulting from the server idleness can be
significantly scaled up as the financial data services usually run on cloud computing infrastructures with
large-scale servers.
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Figure 1 A typical phenomenon of financial services

that there exist very few connections from t2 to t3, which

are targeted to be reduced in this work.
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Figure 2 The routing process of load balancer in financial services.

Fortunately, the duration of each user connection in different days often varies slightly as most users
are staff from financial industries who often have regular schedules [31]. This simply suggests that
the disconnection time of the same user on different days can be predictive to some extent and maybe
statistically modeled following a probabilistic distribution. With this special feature in the financial
services, this work describes the problem of routing user connections to reduce idleness as follows.

As shown in Fig.2, each incoming user request has five types of features, including the demand of
CPU, memory (RAM), storage (HDD), bandwidth (BW) and the historical distribution of the connection
duration of this user. The first four features are hardware requirements indicating how many resources
the system needs to serve that connection and its related data services. The last feature emerges from
the financial services and is, for the first time, considered in the load balancer. Each time a new request
arrives, it first enters the ready queue and waits to be routed to one of the available servers by the
routing policy. Once the user request is successfully routed to a server, a user connection between the
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user and the server can be constructed, and data services can be provided to the user through the
connection. Otherwise, those requests that cannot be routed due to insufficient hardware resources will
be tentatively placed in the block queue until the next round of routing. The routing policy works by
optimally distributing the users’ requests to minimize the load imbalance of 4 types of resource utilization
among servers while simultaneously reducing the idle time of the servers.

In this paper, the above mentioned two objective functions are defined as follows. Suppose the load
balancer continues serving for a period of timesteps. For the objective of load balancing, it is defined as
the standard deviation of the utilization among 4 resource types:In this paper, the above mentioned two
objective functions are defined as follows. Suppose the load balancer continues serving for a period of T
timesteps. For the objective of load balancing, it is defined as the standard deviation of the utilization
among 4 resource types:

Fbalance =
1

4 · T

T∑
t=0

4∑
r=1

√∑N
i=1 (x

t
ri − µt

r)
2

N
, (1)

where xt
ri indicates the utilization of r-th resource type of the i-th server at the t-th timestep, and µt

r

denotes the average of the r-th type resource utilization among all N servers at the t-th timestep. For
the objective of reducing idle time, instead of using the commonly-seen makespan of all the servers, we
calculate the average remaining duration of the servers over all timesteps. The reason is that we want to
achieve idle reduction at any time, not just at the last moment.

Fidle =
1

T ·N

T∑
t=0

N∑
i=1

dti, (2)

where dti is maximal remaining duration among all connections of the i-th server at the t-th timestep. Note
that, the remaining duration of any connection cannot be known exactly before its disconnection. On the
other hand, as discussed previously, according to the observation that each user’s connection duration
on different official days changes slightly due to the regular schedule, we can predict the duration of
each user at the current t-th timestep as the average of the user’s historical duration. This paper also
empirically assesses the different impacts on the load balancer caused by different degree of predictability.
Also note that, in the whole problem description, the system is not allowed to actively disconnect the
user connections. Only passive disconnection from the user’s application is permitted.

4 Method

In this section, the RL-based problem formulation is first described, including the representation of
actions, the RL states, and the rewards. Then, a neural network is designed to learn the non-linear
relationship between the statistically estimated connection duration and the available servers. The ar-
chitecture of this neural network is also designed for elastic scenarios with changing numbers of servers.
After that, an evolutionary multi-objective algorithms based training framework is introduced for this
scalable policy, in terms of both minimal load imbalance and server idleness. The action mask operator
for helping stably train the policy is detailed lastly.

4.1 Reinforcement learning based formulation

In this RL model, each of the user’s requests in the ready queue is represented together with the utilization
of all servers as the RL states. Based on the states, the policy outputs the action of routing the request
to one of the servers to construct a user connection.

As shown in Fig.3, the RL states are a conjunction of both the states of one user’s request and the
states of N servers. The state of each request is represented as a 5-dimensional vector, including the
demands of 4 types of hardware resources and 1 scalar value of the predicted duration, i.e., the average
of the historical duration of that user. The state of each server is represented as a (4h+ 1)-dimensional
vector, i.e., the utilization of 4 types of resources along h looking forward timesteps and 1 scalar value of
the maximal remaining duration among all connections in the future h-th timestep. Here the remaining
duration of each connection is calculated as its predicted duration minus h timesteps, and the utilization
of each resource in some future timestep is calculated as the summation overof all alive connections at
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Figure 3 This work considers two types of states for RL: (a) the 5-dimensional states of each user request, (b) the 41N-dimensional

server states include N servers with 4 types of resources looking forward 10 timesteps into the future, and 1 maximal remaining

duration.

that moment. By using this feature along h looking forward timesteps, the future states of the servers
are involved to help the policy learn the optimal distribution of the requests for reducing idleness in the
future. In the empirical studies, we simply set h to 10. As a result, the total length of the RL states
vector is 5 + 41N .

The RL model has N+1 actions, i.e., routing the request to one of the N servers or the blocking queue
if no proper server is available. For the reward function, as we employ the evolutionary multi-objective
algorithm to train the policy, it is unnecessary to derive the intermediate rewards of each routing action.
Instead, the two objectives in Eqs.(1)-(2) are used as the accumulative rewards for each policy after the
whole simulation process [32].

4.2 The scalable policy

To learn the optimal distribution of connections over servers, the neural network based policy is preferred
due to its strong learning ability. The input of the neural network will be the above described (5+41N)-
dimensional RL states, and the output of the neural network will be the (N +1)-dimensional RL actions.
Therefore, the sizes of the input and output of the policy change with the number of available servers.
Additionally, due to the elasticity of cloud computing, the number of available servers does usually change
over time for a given data service. Besides, it is also important to generalize the trained policy to different
data services that may be supported by different numbers of servers. For these purposes, the employed
policy should be able to scale with the number of servers automatically. To this end, this paper proposes
a parameter-sharing based neural network architecture for the underlying routing tasks.
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Server 1 State

Server N State

Action 1 Score
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Action N Score

Policy
Network
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Figure 4 Inference process of the scalable policy network.

As shown in Fig.4, the policy network achieves the scalability with the global state management and
the sharing parameters among N copies, each of which corresponds to one available server. The input of
this policy network is divided into three components: the request state, the individual server state, and
the global state. The global state refers to the mean and the standard deviation among all individual
server states, either of which is basically a 40-dimensional vector with 4 resources looking forward for
10 timesteps and 1 remaining duration. There are N fully connected networks jointly for the decision
making. All networks share the same weight parameters and can receive the shared global state of servers
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as well as the 5-dimensional request state. In addition, each i-th network will individually receive the
41-dimensional states of the i-th server. For the decision making, each i-th network outputs a score. A
higher score indicates better load balance and predicted idle time reduction. At last, the action with
the highest score will be finally selected and the corresponding server will be chosen to construct the
connection. By this architecture, the whole policy is able to scale with the number of servers and can
intuitively be generalized to different data services. The update of the parameter-sharing networks is
simple. Each network targets a server. No matter how main servers there are, their corresponding
networks share the same weights. And the weights are represented as an individual in the evolutionary
multi-objective training framework.

4.3 Evolutionary multi-objective training framework

As discussed above, the underlying load balancer has two objectives (see Eqs.(1)-(2)), i.e., the long term
rewards. In traditional RL policy training, it is common to aggregate these two rewards into a single one
by weights sum. Unfortunately, due to the different scales of those two objectives, it is quite difficult to
set proper weights, and the two objectives might not easily be satisfied.

In recent years, evolutionary algorithms based RL policy training methods have been warmly studied,
and form a new topic called evolutionary RL [33–35]. This type of new methods enjoys several advantages
over the policy-gradient methods which use gradient descent to optimize the policy. Apart from the ability
of global search [36] and learning from sparse reward [37], one major benefit of evolutionary RL is the
flexibility of incorporating the evolutionary multi-objective framework [38] to train the policy. Inspired
by this progress, we propose to employ the evolutionary multi-objective algorithms [39, 40] to optimize
the weights of the policy directly for three reasons. First, evolutionary multi-objective algorithms have
been the mainstream methods for multi-objective optimization problems and have successfully shown
their power in many real-world applications [41–44]. Second, it does not need to set the aggregation
weights manually but directly compare solutions with the domination relation. Third, it suffices to
output a set of optimal solutions called non-dominated Pareto set, which is equivalent to the optima
with different weights sum aggregation [45, 46], thus offering the users the flexibility to select the policy
online. Here we employ the well-established NSGA-II [47], i.e., almost the most successful evolutionary
multi-objective algorithm developed by Deb et al. in 2002, to construct the evolutionary multi-objective
training framework for the policy. For more details on NSGA-II, please refer to [47]. It is worth to
mention that several advanced evolutionary multi-objective reinforcement learning methods have been
proposed recently [48–52]. Though they are not developed for the underlying routing problem, their
algorithmic insights can shed light on the further improvement of training the proposed policy network.
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The proposed NSGA-II based training framework shown in Fig.5 is an iterative process. At the
beginning of the training (step (a)), a population of the routing policy network is randomly initialized.
Second, we evaluate each individual policy in the simulation environment (steps (b)-(c)). Here, the
objective functions in Eqs.(1)-(2) are directly used for evaluation, as evolutionary algorithms usually
measure the accumulated performance of a candidate policy over the whole simulation period [37]. It is
important to note that the settings of the simulation environment, e.g., the requests sequence and the
servers’ initial states, are identical for the evaluation of all individual policies. After the evaluation, we
obtain the bi-objective fitness values for all individuals in the current population, which distributes in a
2-dimensional objective space (step (d)). In this space, the closer to the origin, the better the individual
will be.

Then, the individuals in the current population are sorted by the fast non-dominated sorting of NSGA-
II, and L non-dominated solution sets S1, S2, . . . , SL are obtained (step (e)). Here, a non-dominated
solution set means that an individual within the solution set cannot dominate any other individuals
within the same solution set, but is dominated by the sets prior to it, e.g., S1 dominates S2, . . . , SL.
More specifically, an individual A dominates an individual B means that A is not inferior to B in all
objectives and is superior to B in at least one objective. The elite individuals are selected from the current
population based on the precedence of the non-dominated solution sets and the crowding comparison (step
(f)), where the crowding comparison algorithm is used to avoid selecting similar individuals and thus
ensure the diversity of the population. Finally, based on the elite population, the offspring population
is generated with typical operators of evolutionary algorithms (step (h)) and forms. It forms the new
population for the next iteration together with the elite population (steps (g)-(i)). And then the iteration
continues until some stop-criteria is met, and the individuals in S1 are output as the trained policies.

In the above framework, each policy is represented as a vector of weight parameters of the network
described in section 4.2. The offspring generation step is to generate two new vectors based on two
parent vectors. As shown in Fig.6, the two parent vectors crossover at a uniformly randomly chosen
point to produce two tentative vectors. Then, based on the two tentative vectors, two offspring vectors
are generated by the commonly used Gaussian mutation operator. Specifically, for each i-th weight
parameter of the policy network, with a probability of γ, it will be mutated by sampling from the
Gaussian distribution N (θi, β), where θi denotes the i-th weight parameter of a tentative vector, and β
denotes the magnitude of the mutation.

Parent 1

Parent 2

Randomly 
Slicing

Gaussian

Mutation

Crossover

Child 1

Child 2

Figure 6 The process of generating offspring.

4.4 Actions mask operator

Note that, while simulating the individual policies within the step (c) of Fig.5, the policies will not be
updated unless the simulation ends. This might be a major difference between evolutionary RL and
traditional policy gradient based RL. Though it has been revealed that this evolutionary RL training
paradigm has merits for those scarce reward problems [53], it indeed causes an issue in the load balancer.
That is, the policy may be trapped in the situation of continuously routing the incoming requests to the
same server, making that server fully utilized quickly. As a result, the subsequent requests cannot be
connected to that server and thus have to be put into the block queue. Once the block queue overflows,
the simulation will be stopped, and the evaluated objective fitness of that policy will be very poor.

As the initial policies are randomly generated, they are highly likely to face this issue. And the training
may easily fail. To stabilize the training process, a simple action mask operator is proposed. That is, after
N sharing networks in a policy outputting their scores, those servers whothat cannot satisfy the hardware
demand of the current request will be mask and the score of the corresponding sharing networks will be
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set to 0. After that, the server with the highest score will be selected. By doing so, the above issue has
been addressed and the action mask operator can be viewed as a specific kind of diversity enhancement.

5 Experiments

The experimental studies are designed to answer the following research questions.

(1) How does MERL-LB perform on the task of reducing idleness without disconnecting user connec-
tions, in comparisons with traditional methods?

(2) How does the proposed evolutionary multi-objective framework facilitate the training of RL-based
routing policy, in terms of the convergence rate and the diversified user options?

(3) How is the stability of MERL-LB against different loads?

(4) How is the scalability of the proposed parameter-sharing routing policy against different numbers
of user requests and servers?

(5) How does MERL-LB tolerate to the different variances of the user connection time?

5.1 Simulation environment

The experiment simulates a commonly encountered scenario of financial data services. The simulation
starts at the opening of the stock market and ends after all users disconnect from the servers naturally,
which will be later than the close of the stock market. For the major experiments, we simulate around
1500 user requests coming up gradually to 10 servers. The coming up duration simulates between the
opening and close time of the stock market, which is set to 2 hours. Later, for the stability and scalability
tests, the number of user requests varied up to 7500, and the number of available servers increases from
10 to 50.

All simulations are conducted on a Discrete Event Simulation based virtual data center implemented
with Python1). The configurations of the virtual data center are shown in Table 1. The number of servers
in the data center is set to 10; Each server has four resources (CPU, RAM, HDD, and BW), and the
capacity of each resource is set to 500 units; At the beginning of the simulation, all the resource utilization
is initialized to zero. The queue sizes of the ready queue and block queue in the data center are fixed to
200 connections, respectively. The event of the simulation process is triggered five times every minute.
That is, the minimum simulation interval is set to 12 seconds. The predicted range for the future states of
the data center is 120 minutes, among which h = 10 timestamps are sampled to represent the prediction
of the system’s future state.

Table 1 Configurations of the simulated virtual data center.

Parameters Value

time step 12 (seconds)

server num 10

cpu capacity 500 (units)

ram capacity 500 (units)

hdd capacity 500 (units)

bw capacity 500 (units)

ready queue size 200

block queue size 200

predicted range 120 (minutes)

future sample 10

Table 2 Simulation data generation parameter setting.

Parameters Value

data time 120 (minutes)

time step 12 (seconds)

mean req num 3

min res req 0 (units)

max res req 10 (units)

min user duration 1 (minutes)

max user duration 120 (minutes)

1) https://github.com/zlaom/MERL-LB
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5.2 Compared algorithms

Four classic rule-based heuristic routing methods and two RL based algorithms were used for comparisons.
As discussed in section 2, three industrial algorithms, like Random routing, Round Robin, and the Least
Connection are selected as they merely consider load balancing. Another algorithm named Least Duration
Gap is designed based on Least Connection to only consider the reduction of idleness, ignoring the load
balancing. The core idea of the Least Duration Gap is to greedily route the user requests with similar
predicted remaining duration to the same server with the following rule:

a = argmin
i

(∣∣dis − dr
∣∣) , (3)

wheredis indicates the maximum predicted remaining duration of the i-th server, while dr is the predicted
duration of the request.

For the two RL based methods, they are designed to show the effectiveness of the proposed evolutionary
multi-objective training framework. For this purpose, the Proximal Policy Optimization (PPO) [19] and
the Independent-input Policy Gradient (IPG) [54] are employed to train the proposed parameter-sharing
policy. The former is a well-established RL method that has been successfully applied in many fields.
The latter is a variant of the original IPG method for job scheduling problems that are similar to the
traditional load balancing problem. Both of them follow the policy gradient training framework. PPO
calculates the gradient based on the temporal-difference error by an incomplete sequence of interactions,
while IPG calculates the gradient with a complete sequence of interactions. The immediate rewards
of a routing action at the specific t-th timestep can be simply derived from Eqs.(1)-(2) by eliminating
the summation over t, as shown in Eqs.(4)-(5). And the two rewards are linearly aggregated with fixed
weights to form the training signal, as shown in Eqs.(6).

rewardtbalance =
1

4

4∑
r=1

√∑N
i=1 (x

t
ri − µt

r)
2

N
, (4)

rewardtidle =
1

N

N∑
i=1

dti, (5)

rewardt = wi · rewardtbalance + w2 · rewardtidle. (6)

5.3 Implementation details

The architecture of the parameter-sharing neural network is introduced as follows. The network is
basically a multi-layer perceptron with a 126-dimensional input layers, a 32-dimensional hidden layers,
and a 1-dimensional output layer. The Relu is used as the activation function of the hidden layer.
The 126-dimensional input refers to the 5-dimensional resource state of each incoming request, the 41-
dimensional individual server state of the corresponding server, and the 80-dimensional global state with
half for the average and half for the standard deviation of all individual servers on the 4 types of hardware
indicators along 10 steps forward. The 1-dimensional output is the score of routing the incoming request
to the corresponding server. The network with the highest output score among all N networks is found,
and the corresponding server is chosen to be routed. The number of weight parameters of the network
is 4097, and all N networks share the same weights 2). All three RL-based methods train this network
through the experiments.

The major hyperparameters of the PPO-LB and IPG-LB are described as follows. For the major
simulation settings, both PPO-LB and IPG-LB share the same parameters. The maximum number of
training simulations is set to 750000 for both algorithms, which is kept the same for MERL-LB. The
learning rate of the network is set to 0.001, the discount factor γ is 0.99, and the aggregation weights
of the load balancing reward and the idle time reward are 0.5, respectively, for both algorithms. The
network of PPO-LB is updated every 256 steps of interaction. Each interaction sequence is reused for 5
epochs. The clipping threshold ϵ of PPO-LB is set to 0.2. The weight α1 of the loss of the value network
in the loss function is 0.5, and the weight α2 of the entropy term coefficient is 0.01. The batch size during
training is set to 512 for IPG-LB, and each data instance randomly samples 10 interaction sequences

2) The codes can be found https://github.com/zlaom/MERL-LB
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using the same policy. In general, those parameters are all suggested by the original paper of PPO [19]
and IPG [54]. The 4 rule-based heuristics also do not involve hyperparameters.

For the major hyperparameters of the proposed MERL-LB, we set the population size to 50, the
number of elites selected from the population per iteration to 25, and the number of offspring generated
by elites to 25. The probability of mutation on each variable is 0.25, and the magnitude of mutation is
0.05. The time budget of the simulation is the same as PPO-LB and IPG-LB for fairness.

Table 3 Performance of different algorithms for two objectives on a validation set of 10 servers with a 75% load.

Methods Fbalance(units) ↓ Fidle(minutes) ↓

Random 30.15±2.55 106.26±0.83

Round Robin 22.15±1.96 107.12±0.85

Least Connection 16.27±1.04 106.98±0.95

Least Duration Gap 66.89±6.12 69.91±1.56

IPG-LB 17.05±1.12 79.75±1.41

PPO-LB 16.23±1.14 80.67±1.34

MERL-LB-1 15.70±1.17 88.68±1.56

MERL-LB 4 16.88±1.06 76.75±1.25

MERL-LB-6 23.42±1.50 72.44±1.26

MERL-LB-11 66.58±4.93 61.63±1.26

MERL-LB-25 178.77±4.88 46.48±1.73

5.4 Overall comparisons

Table 3 reports the overall comparison results between MERL-LB and the compared algorithms, and
is divided into three parts. The top part shows the performance of the heuristic-based algorithms, the
middle part is about the two policy gradient based reinforcement learning load balancers , and the
bottom part shows representative solutions generated by the proposed MERL-LB algorithm, where the
suffix indicates different individuals in the last population.

First of all, the three RL-based methods generally perform better than the heuristic-based methods,
especially on the load balancing objective. Furthermore, MERL-LB has been able to find the best solution
for either objective and also offers different options for various balances between the two objectives.

It can be seen that MERL-LB-1 focuses more on the load balancing objective and performs the best
among all algorithms. Compared with the Least Connection method, which merely targets such an
objective and performs the best among the compared heuristics, MERL-LB-1 reduces the idle time by
17.11% while achieving better load balancing performance. MERL-LB-25 focuses more on the idle time
objective and can reduce up to 33.51% over the Least Duration Gap method, who is specifically designed
for reducing idleness.

The other 3 solutions of MERL-LB successfully show how evolutionary multi-objective optimization
can offer users different options. MERL-LB-4 not only achieves a better load balancing objective than
IPG-LB but reduces the idle time by 3.76%. MERL-LB-6 achieves similar idleness to the Least Duration
Gap method and can improve the load balancing objective by 64.99%. MERL-LB-11 performs similarly
to the Least Duration Gap in terms of the load balance while successfully reducing the idleness by
11.87%. To summarize, the Pareto optima output by MERL-LB can effectively balance the two objectives
automatically.

Fig.7 shows the distribution of the optimal policies generated by different algorithms in the objective
space. The figure clearly shows that compared with PPO-LB and IPG-LB, MERL-LB can generate a
set of diverse policies that are non-dominated to each other on both objectives. That means any one
of the policies is a good choice for a specific need. By looking at the error bars of the policies in both
directions (i.e., both objectives) in the figure shows that the policies generated by MERL-LB are mostly
stable, especially compared with the Least Duration Gap method. Also note that, MERL-LB generalizes
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Figure 7 Performance of different algorithms on two objectives. The cross-like error bars indicate the standard deviation on both

objectives.
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Figure 8 The convergence curves of RL-based load balancers on two objectives in the training process.

well as the testing instances are different from the training instances, while the Pareto policies trained
by MERL-LB still distribute well on the objective space of the testing instances.

To further demonstrate the effectiveness of the proposed evolutionary multi-objective training frame-
work, Fig.8 depicts how the three RL-based methods converge during the first 300000 simulations in the
training process. There are two part of the training overhead, i.e., the algorithmic part and the simu-
lation part. We repeat the training processes of IPG-LB, PPO-LB, and MERL-LB for 50 runs and the
average of the computational time of each algorithm is recorded. It shows that the total computational
costs at each iteration (one complete simulation) of IPG-LB, PPO-LB, and MERL-LB are 14.64 seconds,
9.3498 seconds, and 11.3127 seconds, indicating that MERL-LB is competitive in terms of the wall-clock
training time3). Furthermore, it has been found that the main overhead of training lies in the simulation
process, as it costs 9.3426 seconds for simulating 1 thousand users. Therefore, we mainly use the number
of simulations to measure the training cost of the algorithm in this paper. Each curve is composed of the
scores over the training simulation. For each score, it is an average of two min-max normalized objective
values. In short, all three methods have converged, and MERL-LB achieves better convergence rate. One
major reason is that, as the optimization process goes, the conflict between two objectives becomes more
significant. This makes PPO-LB and IPG-LB more difficult to express the non-dominated relationship
between solutions with the weighted sum method. Simpler objective may impact the weighted objective
more heavily and thus leads to significant bias to the search. As a result, PPO-LB and IPG-LB bias to
the load balance objective and eventually converge slower with the indicator of normalized average score
in Fig.8.

3) Experiments run on a workstation with 2 Intel(R) Xeon(R) Gold 6240 CPU (2.60GHz), in total with 72 threads, 377GB

memory, and 4 TITANX GPUs.
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5.5 Impacts on different numbers of user requests

Fig.9 shows how different numbers of user requests may impact the performance of the algorithms on
the two objectives. Through this group of experiments, the number of available servers is fixed to 10.
The number of user requests is simulated from 600 to 2100 by increasing the mean value of the employed
Poisson distribution. With a fixed 2 hours of the simulated opening of the market, not only does the
total number of user requests increase but the concurrently incoming user requests at each time interval
are enlarged, which leads to the increased loads of servers. As a result, this group of experiments assesses
the algorithms for different numbers of user requests and different loads of servers in the same way.

For the load balancing objective, the performance of Random, Round Robin, the Least Connection,
PPO-LB, and MERL-LB-6 gradually deteriorate as the load increases. This is mainly because higher
resource utilization rates may lead to a greater load imbalance among servers, as the standard deviation
among servers can be larger. With the increase of loads, the load balancing performance of LDG, MERL-
LB-11 and MERL-LB-25 all first deteriorated and then gradually improved. This is mainly because those
algorithms all pay more attention to reducing idleness. When the load is at a low level, it leads to a
greater imbalance among servers. However, when the load increases, even servers with lower loads will
be assigned more requests, which will gradually reduce the differences in resource utilization rates among
servers.

30 45 60 75 90 105
Servers average load (%)

0

50

100

150

Sc
or

es
of

lo
ad

ba
la

nc
e

(u
ni

ts
)

Random
Round Robin

Least Connection
Least Duration Gap

IPG-LB
PPO-LB

MERL-LB-1
MERL-LB-6

MERL-LB-11
MERL-LB-25

(a) The impacts of different loads on the load balance objective.
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(b) The impacts of different loads on the idleness objective.

Figure 9 Performance of algorithms on two objectives under different loads, i.e., different numbers of user requests.

For the idleness objective, as the load increases, the idle time of all algorithms increases accordingly.
This is mainly because an increase in the load means an increase in the number of long connection
requests, which would need more servers to serve the connections, while the number of servers is fixed at
10.

In general, MERL-LB-1 performs similarly to the Least Connection method at all loads and is able to
reduce the idle time by 10-20%. MERL-LB-6 achieves a similar idleness objective value to LDG at 75%-
105% loads while it improves the load balancing objective by about 50%-60%. Compared to PPO-LB
and IPG-LB, MERL-LB can generate diverse policies and consistently outperform the two at different
loads. Therefore, MERL-LB performs more robustly overall when the number of requests or loads varies.
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5.6 Impacts on different numbers of available servers

Fig.10 shows the performance of the algorithms on two objectives under different numbers of servers,
while the average load is fixed at 75%. Thus, by varying the number of servers from 10 to 50, the number
of user requests also changes proportionally, up to around 7500 requests in total for the case of 50 servers.
For the load balancing objective, it can be observed that as the number of servers increases, the load
balance of each algorithm does not deteriorate too much, except the Least Duration Gap method, who is
the only algorithm that never considers the load balance objective. Similarly, for the idleness objective,
the performance of the Least Duration Gap method improves most significantly as the number of servers
increased, though it still cannot outperform MERL-LB-25 in all tested cases. The other algorithms
perform rather stably, regardless of the changed number of servers. Overall, this suggests that the
proposed scalable policy network can be flexibly applied to scenarios with different numbers of servers
and can maintain stable routing capabilities on the two objectives.
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(a) The impacts of different numbers of user requests on the load balance objective.
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(b) The impacts of different numbers of user requests on the idleness objective.

Figure 10 Performance of algorithms on two objectives with different numbers of servers.

5.7 Impacts on the predictability of user duration

This work assumes that we can predict the duration of a user by statistically analyzing their connection
time over a recent period (for example, the average value of the user’s recent connection duration). In real
cases, the actual duration of users may vary over time, and is highly unlikely identical to the predicted
value. Thus, this group of experiments aims to assess how different degrees of the predictability may
impact the performance of the algorithms, reflecting how effective MERL-LB can behave in real-world
noisy environment.

For this purpose, we generate new testing data sequences based on the original 50 testing instances
by adding a random noise to each user’s connection time. More specifically, the random noise follows a
Gaussian distribution N(µ, σ), where µ is the duration of the original data, and σ represents the standard
deviation of noise, resulting in different predictability of the user connection time. The random noise is
truncated at a 3σ level.

Fig.11 shows the impacts of different user duration predictability on the algorithms for two objectives
respectively. In general, for the three heuristics that do not consider the idleness objective, their perfor-
mance does not improve when the predictability increases. For the Least Duration Gap method, which
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focuses on the idleness objective but does not rely on the prediction of user connections, its performance
on the idleness objective improves near 20 minutes. For the other RL-based policies that share the same
scalable routing network, the prediction of the user connections has been involved in their training pro-
cesses. As can be seen, the various predictability does not deteriorate their performance unexpectedly.
That is, as the predictability increases, their performance on the idleness objective becomes better similar
to the Least Duration Gap method. This shows that with up to a standard deviation of 30 minutes error
on the prediction of the user connection time (maximally 120 minutes), the proposed scalable routing
network works quite stable.

On the other hand, the policies that tend to focus more on the idleness objective deteriorate on the
load balance objective as the predictability increases. The reason is that as the predictability of the user
connection increases, the randomness of the data as well as the routing decreases. And the randomness
usually forms a source of load balancing, as suggested by the Random method.
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(a) The impacts of different user predictability on the load balance objective.
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Figure 11 Performance of algorithms on two objectives under different user predictability.

5.8 Understanding the trade-off between two objectives

To understand how the load balancing objective and the idleness objective are balanced during the
learning of MERL-LB, we show how the two objectives change over time for the Least Duration Gap
method, the Least Connection method, and MERL-LB-6. For the Least Duration Gap method, only the
idleness objective is considered, while for the Least Connection method, only the load balancing objective
is considered. MERL-LB-6 is selected here as it balances the two objectives well. We depict the curves
of the idle time and the CPU resource utilization in Fig.12. For clarity, the simulated opening period is
enlarged to a full range of 6 hours to make the observation easier. As shown in Fig.12 (a), (b), (c), each
curve in the figure represents the change of the remaining duration of each server per minute (known
from the ground truth of the testing data). In Fig.12 (d), (e), (f), each curve in the figure represents the
change of CPU resource utilization of each server per minute.

During the opening period, the number of users continues to come up, so the CPU utilization of the 10
servers rises up and fluctuates, and becomes stable after the number of concurrent alive users is stabilized.
Then, after the close of the market, no new user request comes up, and the number of connections as well
as the CPU utilization, continues to decrease. The closer the utilization rate among servers per minute,
the better the load balance is. In Fig.12 (e), each server’s CPU resource utilization of MERL-LB-6
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server in MERL-LB-6.
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Figure 12 Comparison of Least Duration Gap, MERL-LB-6, and Least Connection characteristics on 10 servers.

fluctuates about half of that in Fig.12 (d), so MERL-LB-6 has better load balancing performance than
the Least Duration Gap. In Fig.12 (f), the Least Connection’s CPU utilization fluctuates even smaller
than MERL-LB-6, so its load balancing performance is better correspondingly.

An interesting phenomenon can be observed by comparing Fig.12 (a), (b), (c) that the Least Duration
Gap and MERL-LB-6 minimize the idleness very differently. In Fig.12 (a), the curve of the remaining
duration of each server is completely separated and even shows a layered distribution. In this regard, the
Least Duration Gap actually minimizes the idleness by clustering each incoming user request with all the
alive connections based on their predicted remaining durations. On the other hand, as shown in Fig.12
(b), the curves of MERL-LB-6 overlap with each other and show a sawtooth pattern. This pattern may
trade off the load balance better and contribute to better idleness as all curves drop to 0 in the shortest
expectation time. In either above-mentioned case, the spectrum of the curves is much larger than that
of the Least Connection, indicating that both the Least Duration Gap and MERL-LB-6 have a better
trade-off on both objectives.

5.9 Understanding the sawtooth pattern of MERL-LB

To further understand the above sawtooth pattern of MERL-LB, the utilization rates of 4 types resources
of MERL-LB-6 over time are visualized in Fig.13. In each figure, 4 curves are depicted, i.e., the corre-
sponding resource utilization of a server, the range of the corresponding resource utilization among all
servers, the number of alive connections, and the ground truth remaining duration of this server.

It can be observed that the number of alive connections generally increases though keeps fluctuating.
This indicates that new user requests are routed to the server continuously and some existing connections
become disconnected coincidently. With the increase of the number of connections, the remaining duration
does not go up accordingly. In fact, its sawtooth pattern suggests that the requests routed to this server
are mostly with remaining durations smaller than that of this server. Thus, the remaining duration of
this server gradually drops as time goes by.

If we look at the place where the remaining duration of the server goes up significantly, it is usually
found that the utilization of one resource type drops to the bottom of the corresponding range. If the
utilization curve goes below its range, it means that the load balance in this resource type is enlarged.
And it is necessary to route a request with a larger remaining duration to this server so that the resource
utilization can be enlarged for a long time. On the other hand, once the utilization of one resource type
goes to the top of the range, the number of alive connections will not increase. This is the opposite
strategy learned by the policy to minimize the load balance by forcing the resource utilization not to
exceed the range.
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Figure 13 Analysis of the sawtooth pattern of MERL-LB-6 on a server.

5.10 A Real-world Application on the Alibaba Cluster-trace dataset

The simulations have also been carried out in a real-world scenario with the well-known Alibaba Cluster-
trace-v2017 dataset. This dataset was released by Alibaba Cloud in September 20174), consisting of
detailed statistics of 11089 online service jobs and 12951 batch jobs co-locating on 1300 machines over
12 hours. The dataset has been found with four characteristics [11]:1) Heterogeneous resource utilization
across machines and workloads. 2) Greatly time-varying and multi-dimensional resource usages per
workload and machine. 3) Imbalanced resource demands and runtime statistics (duration and task
number) between online service and offline batch jobs. Thus, we believe this dataset is well suited to
verify the proposed method.

In this experiment, we randomly picked 500 thousands user requests with their hardware demands
and duration from the online service jobs. The picked requests were used as one simulation scenario
for training the routing policies. We randomly generated 50 testing simulation scenarios by disturbing
the picked data. Thus, each of the 50 testing simulation scenarios also consisted of 500 thousands user
requests that were different from the picked one. All the compared algorithms were involved in the
comparison and the experimental settings kept the same to the synthetic simulation cases.

The results in Table 4 and Fig.14 clearly show that our MERL-LB can still beat the compared algo-
rithms in the similar pattern with the synthetic scenarios. The general performance of each algorithm
does not surprisingly change. First, the pareto solutions obtained by MERL-LB still distribute well.
Second, there are always solutions of MERL-LB can significantly outperform the compared algorithms
on either objective. Third, for each of the compared algorithm, there is always at least one solution of
MERL-LB that dominates its output on both objectives. This verifies the effectiveness of the proposed
MERL-LB in real-world datasets.

6 Conclusions

This paper first introduced the new issue of reducing idleness in the financial servers where the user
connections were only allowed to be naturally disconnected by users. This paper targeted the issue
as a constrained online routing problem and identified the limitations of existing load balancers in not
considering user connection duration information. To address this issue, this paper proposes to take into
account the user connection duration information and model the problem as a bi-objective RL problem,
i.e., the load balancing objective and the idleness objective. With this modeling, a parameter-sharing

4) https://github.com/alibaba/clusterdata
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Figure 14 Performance of different algorithms on two objectives. The cross-like error bars indicate the standard deviation on

both objectives.

Table 4 Solution distribution of different algorithms in the objective space.

Methods Fbalance(units) ↓ Fidle(minutes) ↓

Random 25.11±2.23 103.77±0.66

Round Robin 13.87±1.99 104.70±0.62

Least Connection 9.43±0.91 104.48±0.79

Least Duration Gap 43.99±4.50 70.08±1.48

IPG-LB 15.99±1.09 70.95±1.55

PPO-LB 13.20±1.06 72.54±1.16

MERL-LB-1 4.56±0.39 102.61±1.01

MERL-LB-5 6.45±0.54 76.51±1.74

MERL-LB-6 13.67±1.29 69.43±0.99

MERL-LB-12 44.58±4.28 58.80±1.93

MERL-LB-25 121.19±6.73 46.76±2.89

routing policy is designed for varied numbers of servers, and an evolutionary multi-objective training
framework is proposed based on NSGA-II to train the policy.

Extensive experimental studies have been conducted to reveal the advantages of the proposed method
in detail. It is found that the proposed method generally beats comparable algorithms, including the
traditional heuristics and advanced RL-based ones. The evolutionary multi-objective training framework
not only facilitates policy training with a much faster convergence rate but also offers a set of diverse
non-dominated policies for users’ options. To consolidate the experiments, we tested the algorithms with
different numbers of user requests and different numbers of servers. It was observed that the proposed
method performed in a quite stable manner due to the proposed scalable routing policy. Then, the
proposed method generated a sawtooth pattern of decision-making strategy, which has been analyzed to
be beneficial in balancing the two objectives. Finally, the proposed method is verified on a real-world
dataset released by Alibaba Cloud. The comparisons again support the effectiveness of MERL-LB.

We look forward to applying this policy to real-world financial cloud systems soon. In this regard,
it is important to study the more robust and efficient evolutionary training method for MERL-LB in a
realistic noisy environment [55] and expensive simulation environment [56]. Moreover, novel heuristics or
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solvers [57] inspired by the effective sawtooth pattern can be studied with sound theoretic guarantees.
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