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Abstract We propose a guided dropout regularizer

for deep networks based on the evidence of a network

prediction defined as the firing of neurons in specific
paths. In this work, we utilize the evidence at each

neuron to determine the probability of dropout, rather

than dropping out neurons uniformly at random as in

standard dropout. In essence, we dropout with higher

probability those neurons which contribute more to
decision making at training time. This approach penal-

izes high saliency neurons that are most relevant for

model prediction, i.e. those having stronger evidence.

By dropping such high-saliency neurons, the network is

forced to learn alternative paths in order to maintain

loss minimization, resulting in a plasticity-like behavior,

a characteristic of human brains too. We demonstrate

better generalization ability, an increased utilization

of network neurons, and a higher resilience to network

compression using several metrics over four image/video

recognition benchmarks. Our code is available at https:

//github.com/andreazuna89/Excitation-Dropout.
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1 Introduction

Dropout Hinton et al. (2012); Srivastava et al. (2014) is

a classical regularization technique that is used in many

state-of-the-art deep neural networks, typically applied

to fully-connected layers. Standard Dropout selects a

fraction of neurons to randomly drop out by zeroing

their forward signal. In this work, we propose a scheme

for biasing this selection, which utilizes the contribution

of neurons to the prediction made by the network at a

certain training iteration.

It is well known that dropout avoids overfitting on

training data, allowing for better generalization on un-

seen test data. A recent variant of dropout that targets

improved generalization ability is Curriculum Dropout

Morerio et al. (2017): it targets adjusting the dropout

rate by exponentially increasing the unit suppression

rate during training, answering the question How many

neurons to drop out over time? Like Standard Dropout

Hinton et al. (2012); Srivastava et al. (2014), Curriculum

Dropout selects the neurons to be dropped randomly.

In this work, however, we target at determining how the

dropped neurons are selected, answering the question

Which neurons to drop out?

Our approach is inspired by brain plasticity Hebb

(2005); Song et al. (2000); Mittal et al. (2018); Miconi

et al. (2018). We deliberately, and temporarily, para-

lyze/injure neurons to enforce learning alternative paths

in a deep network. At training time, neurons that are

more relevant to the correct prediction are given a higher

dropout probability. The relevance of a neuron for mak-

ing a certain prediction is quantified using Excitation

Backprop, a top-down saliency approach proposed by

Zhang et al. (2016). Excitation Backprop conveniently

yields a probability distribution at each layer that re-

flects neuron saliency, or neuron contribution to the

prediction being made. This is utilized in the training
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Fig. 1 Training pipeline of Excitation Dropout. Step 1: A minibatch goes through the standard forward pass. Step 2: Backward
EB is performed until the specified dropout layer; this gives a neuron saliency map at the dropout layer in the form of a
probability distribution. Step 3: The probability distribution is used to generate a binary mask for each image of the batch
based on a Bernoulli distribution determining whether each neuron will be dropped out or not. Step 4: A forward pass is
performed from the specified dropout layer to the end of the network, zeroing the activations of the dropped out neurons. Step
5: The standard backward pass is performed to update model weights.

pipeline of our approach, named Excitation Dropout,

which is summarized in Fig. 1.

Dropout can be interpreted as a model averaging

technique, i.e. an economical approximation using a

very large ensemble of networks Baldi and Sadowski

(2013). Formally, consider applying dropout to a single

fully-connected layer with N units: there are 2N possible

sub-networks that can be sampled. Standard Dropout

selects, at each iteration, a random sub-network for

training, with probability p =
(
N
n

)
/2N , which is depen-

dent upon the number of dropped neurons n. Conversely,

our proposed Excitation Dropout selects with higher

probability the sub-networks that least contribute to

the correct prediction, i.e. the worst performing sub-

networks, for further training. Selecting, with higher

probability, the weaker sub-networks for further train-

ing results in a more robust ensemble.

In particular, we first study how this approach im-

proves generalization through an increased utilization

of the network’s neurons for image classification. We

report an increased recognition rate for CNN models

that are both fine-tuned and trained from scratch. This

improvement is validated on four image/video recog-

nition datasets, and ranges from 1.1% to 6.9% over

state-of-the-art dropout variants.

Next, we examine the effect of our approach on net-

work utilization. Mittal et al. (2018) and Ma et al. (2017)

introduce metrics that measure network utilization. We

show a consistent increased network utilization using

Excitation Dropout on all datasets considered. For exam-

ple, averaged over all four benchmarks, we get a 76.55%

reduction in conservative filters, which are the filters

whose parameters do not change significantly during

training, as compared to Standard Dropout.

We then study network resilience to neuron dropping

at test time. We observe that training with Excitation

Dropout leads to models that are a lot more robust

when layers are shrunk/compressed by removing units.

We demonstrate this when dropping the most relevant

neurons, the least relevant neurons, and with a random

dropping selection. This can be quite desirable for com-

pressing/distilling Hinton et al. (2015) a model, e.g. for

deployment on mobile devices.

Finally, we propose a lighter version of Excitation

Dropout, named Activation Dropout. Unlike Excitation

Dropout, Activation Dropout does not require a back-

ward pass, and only utilizes the activations of the for-

ward pass to determine the dropout probability. Activa-

tion Dropout performs marginally worse than Excitation

Dropout but requires less computational overhead.

Effectiveness of regularization methods for training

neural networks depends on the architecture and train-

ing process, and is still an open problem. For example,

batch normalization, another widely used regulariza-

tion technique, cannot handle small batches. In addi-

tion, some architectures employ multiple regularization

techniques, for example Wide-ResNet Zagoruyko and

Komodakis (2016) employs both batch normalization

and dropout.
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In summary, by encouraging plasticity-like behavior,

our novel contributions are threefold:

1. Better generalization on test data.

2. Higher utilization of network neurons.

3. Resilience to network compression.

The rest of the paper is organized as follows. Sec-

tion 2 reviews related works on different variants of

dropout. Section 3 introduces our proposed approach,

Excitation Dropout. Section 4 presents our experimen-

tal setup and results on four image/video recognition

datasets and on several deep architectures. Section 5

presents a lighter version of Excitation Dropout, Activa-

tion Dropout that we apply on the large-scale ImageNet.

Section 6 draws the conclusions.

2 Related Work

Dropout was first introduced by Hinton et al. (2012)

and Srivastava et al. (2014) as a way to prevent neural

units from co-adapting too much on the training data by

randomly omitting subsets of neurons at each iteration

of the training phase.

Some follow-up works have explored different schemes

for determining how much dropout is applied to neu-

rons/weights. Wager et al. (2013) described the dropout

mechanism in terms of an adaptive regularization, estab-

lishing a connection to the AdaGrad algorithm. Inspired

by information theoretic principles, Achille and Soatto

(2018) propose Information Dropout, a generalization

dropout which can be automatically adapted to the data.

Kingma et al. (2015) showed that a relationship between

dropout and Bayesian inference can be extended when

the dropout rates are directly learned from the data.

Kang et al. (2017) introduces Shakeout which instead

of randomly discarding units as dropout does, it ran-

domly enhances or reverses each unit’s contribution to

the next layer. Gal et al. (2017) proposed an approach to

tune the dropout probabilities using gradient methods.

Wan et al. (2013) introduced the DropConnect frame-

work, adding dynamic sparsity on the weights of a deep

model. DropConnect generalized Standard Dropout by

randomly dropping the weights rather than the neuron

activations in the network. Rennie et al. (2014) proposed

a time scheduling for the retaining probability for the

neurons in the network. The presented adaptive regular-

ization scheme smoothly decreased in time the number

of neurons turned off during training. Recently, Morerio

et al. (2017) proposed Curriculum Dropout to adjust

the dropout rate in the opposite direction, exponen-

tially increasing unit suppression rate during training,

Fig. 2 The retaining probability, p, as a function of the
Excitation Backprop probability pEB . This plot was created
using N = 10 and a base retaining probability P = 0.5. In this
case, when the saliency of neurons is uniform, i.e. pEB = 0.1,
then p = P as marked in the figure.

leading to a better generalization on unseen data. Dif-

ferently to the previous cited works, our approach does

not determine how much dropout is applied.

Other works focus on which neurons to drop out.

Dropout is usually applied to fully-connected layers of a

deep network. Conversely, Ghiasi et al. (2018) proposed

dropping units in a contiguous region of convolutional

feature maps. Wu and Gu (2015) studied the effect of

dropout in convolutional and pooling layers. The se-

lection of neurons to drop depends on the layer where

they reside. In contrast, we select neurons within a layer

based on their contribution. Wang and Manning (2013)

demonstrate that sampling neurons from a Gaussian

approximation gave an order of magnitude speedup

and more stability during training. Gomez et al. (2018)

proposed a train time dropout strategy for post hoc

pruning of network weights. Li et al. (2016) proposed

to use multinomial sampling for dropout, i.e. keeping

neurons according to a multinomial distribution with

specific probabilities for different neurons. Ba and Frey

(2013) proposed Adaptive Dropout; jointly training a bi-

nary belief network with a neural network to regularize

its hidden units by selectively setting activations to zero

accordingly to their magnitude. While this takes into

consideration the magnitude of the forward activations,

it does not take into consideration the relationship of

these activations to the ground-truth. In contrast, we

drop neurons based on how they contribute to a net-

work’s decision. To the best of our knowledge, we are

the first to probabilistically select neurons to dropout

based on their task relevance.
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3 Method

3.1 Background

Saliency maps that quantize the importance of class-

specific neurons for an input image are instrumental to

our proposed scheme. Popular approaches include Class

Activation Maps (CAM) Zhou et al. (2016), Gradient-

weighted Class Activation Mapping (Grad-CAM) Sel-
varaju et al. (2017), and Excitation Backprop (EB)

Zhang et al. (2017). A thorough analysis of all saliency

methods is out of the scope of this work, and the saliency

problem in general is far from solved. We choose to use

EB since it produces a valid probability distribution for

each network layer. The saliency maps obtained using

this approach are evaluated for spatial localization of

objects and demonstrate the ability of pointing to the

right region of an image Zhang et al. (2017).

In a standard CNN, the forward activation of neuron

aj is computed by âj = φ(
∑

i wij âi + bi), where âi is

the activation coming from the previous layer, φ is a

nonlinear activation function, wij and bi are the weight

from neuron i to neuron j and the added bias at layer i,

respectively. EB devises a backpropagation formulation

that is able to reconstruct the evidence used by a deep

model to make decisions. It computes the probability of

each neuron recursively using conditional probabilities

P (ai|aj) in a top-down order starting from a probability

distribution over the output units, as follows:

P (ai) =
∑

aj∈Pi

P (ai|aj)P (aj) (1)

where Pi is the parent node set of ai. EB passes top-

down signals through excitatory connections having

non-negative activations, excluding from the competi-

tion inhibitory ones. EB is designed with an assumption

of non-negative activations. Most modern CNNs use

ReLU activation functions, which satisfy this assump-

tion. Therefore, negative weights can be assumed to

not positively contribute to the final prediction. Assum-

ing Cj the child node set of aj , for each ai ∈ Cj , the

conditional winning probability P (ai|aj) is defined as

P (ai|aj) =

{
Zj âiwij , if wij ≥ 0,

0, otherwise
(2)

where Zj is a normalization factor such that a probabil-

ity distribution is maintained, i.e.
∑

ai∈Cj P (ai|aj) = 1.

Recursively propagating the top-down signal and pre-

serving the sum of backpropagated probabilities, it is

possible to highlight the salient neurons in each layer

using Eqn. 1, i.e. neurons that mostly contribute to a

specific task. We will refer to the distribution of P (ai)

as pEB(ai).

Type Layer Size Filter Size Pad./Stride
conv 96 filters 5x5 2/1

max pool 3x3 0/2
conv 128 filters 5x5 2/1

max pool 3x3 0/2
conv 256 filters 5x5 2/1

max pool 3x3 0/2
fc 2048 units
fc 2048 units

softmax # classes

Table 1 Details of the CNN-2 architecture used for experi-
ments on the Cifar10, Cifar100, and Caltech-256 datasets.

3.2 Excitation Dropout

In the standard formulation of dropout Hinton et al.

(2012); Srivastava et al. (2014), the suppression of a

neuron in a given layer is modeled by a Bernoulli ran-

dom variable p which is defined as the probability of

retaining a neuron, 0 < p ≤ 1. Given a specific layer
where dropout is applied, during the training phase,

each neuron is turned off with a probability 1− p.
We argue for a different approach that is guided in

the way it selects neurons to be dropped. In a training

iteration, certain paths have high excitation contributing

to the resulting classification, while other regions of the

network have low responses. We encourage the learning

of alternative paths (plasticity) through the temporary

damaging of the currently highly excited path. We re-

define the probability of retaining a neuron as a function

of its contribution in the currently highly excited path

p = 1− (1− P ) ∗ (N − 1) ∗ pEB

((1− P ) ∗N − 1) ∗ pEB + P
(3)

where pEB is the probability backpropagated through

the EB formulation (Eqn. 1) in layer l, P is the base

probability of retaining a neuron when all neurons are

equally contributing to the prediction and N is the

number of neurons in a fully-connected layer l or the

number of filters in a convolutional layer l. The retaining

probability defined in Eqn. 3 drops the neurons that

contribute the most to the recognition of a specific class,

with higher probability. Dropping out highly relevant

neurons, we retain less relevant ones and thus encourage

them to awaken.

Fig. 2 shows p as a function of pEB, as in Eqn. 3

for N = 10 and P = 0.5. Eqn. 3 was designed to fit

the following three constraints starting from a general

hyperbolic function. Specifically, 1) if neuron ai has

pEB(ai) = 1, this results in a retaining probability of

p = 0. We do not want to keep a neuron that has a high

contribution to the correct label. 2) If neuron ai has

pEB(ai) = 0, this results in a retaining probability of p =

1. We want to keep a neuron that has not contributed



5

Dataset Architecture
Adaptive

Dropout (%)
Information
Dropout (%)

Curriculum
Dropout (%)

Excitation
Dropout (%)

Cifar10 CNN-2 76.82 79.41 80.03 81.94
Cifar100 CNN-2 44.55 49.79 50.74 52.04
Caltech256 CNN-2 23.32 28.66 28.91 35.77
UCF101 AlexNet 63.96 64.21 64.55 67.56

Table 2 Accuracy comparison for: Adaptive Dropout, Information Dropout, Curriculum Dropout, and Excitation Dropout.
Excitation Dropout has highest classification accuracy results compared to the other dropout variants on the four benchmark
datasets: Cifar10, Cifar100, Caltech256, and UCF101. The numbers reported in this table are the average test set accuracy over
five trained models for each dataset.

Fig. 3 We compare the test accuracy of different dropout training strategies on four image/video recognition datasets: Cifar10,
Cifar100, Caltech256, UCF101. Results presented here are averaged over five trained models and the standard deviation is
depicted around the mean curve using a lighter shade. Excitation Dropout is a data-dependent approach. At early iterations,
the model is at early stages of optimizing its parameters, and hence more uniform/random saliency in the first iterations. This
means that we are not as aggressively regularizing at first, and hence Excitation Dropout takes longer before its effect kicks in,
after which it out-performs other techniques.

to the correct classification of an image. 3) If neuron ai
has pEB(ai) = 1/N , i.e. pEB is a uniform probability

distribution, this results in a retaining probability p = P .

We want to keep a neuron with base probability P since

all neurons contribute equally. A different choice of the

monotonic function that satisfies the three constraints

does not change the general pipeline.

Eqn. 3 provides a dropout probability for each neu-

ron, which is then used as the parameter of a Bernoulli

distribution giving a binary dropout mask. During train-

ing, each image in a batch leads to different excita-

tory connections in the network and therefore has a

different pEB distribution, consequently leading to a dif-

ferent dropout mask. Following the standard practical

implementations for Standard Dropout, when Excitation

Dropout is employed during training, the activations are

rescaled according to the fraction of dropped neurons,

and no dropout or rescaling is employed at test time.

Fig. 1 presents the pipeline of Excitation Dropout at
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Architecture
No

Dropout (%)
Standard

Dropout first fc (%)

Standard
Dropout both fcs (%)

Curriculum
Dropout (%)

Excitation
Dropout (%)

VGG16 69.37 71.93 (+2.56%) 73.01 (+ 3.64%) 72.14 (+2.77%) 73.23 (+3.86%)
VGG19 71.32 72.52 (+1.29%) 73.40 (+ 2.08%) 73.18 (+1.86%) 74.34 (+3.02%)
AlexNet 62.89 64.50 (+1.61%) 65.83 (+ 2.94%) 64.55 (+1.66%) 67.56 (+4.67%)

Table 3 Test accuracy comparison between No, Standard, Curriculum and Excitation Dropout in the three architectures:
AlexNet, VGG16 and VGG19, fine-tuned for the action recognition task on UCF101. The numbers reported are the test
accuracies together with improvements (in parenthesis) with respect to No Dropout, averaged over five trained models.

training time, and a run-time analysis is presented in

Section 5.

4 Experiments

In this section, we present how Excitation Dropout im-

proves the generalization ability on four image/video

recognition datasets in fully connected layers of differ-

ent architectures. We then present an analysis of how

Excitation Dropout affects the utilization of network

neurons on the same datasets. Finally, we examine the

resilience of a model trained using Excitation Dropout

to network compression.

4.1 Datasets and Architectures

We present results on four image/video recognition

datasets. Cifar10 and Cifar100 Krizhevsky et al. (2009)

are image recognition datasets, each consisting of 60000

32 × 32 tiny RGB natural images. Cifar10 images are

distributed over 10 classes with 6000 images per class,
and Cifar100 images are distributed over 100 classes

with 600 images per class. Standard training and testing
splits contain 50K and 10K images, respectively. We

feed the network with the original image dimensions

shuffling the training images within the standard de-

fined splits when training multiple models. Caltech256

Griffin et al. (2007) is an image recognition dataset

consisting 31000 RGB images divided in 256 classes.

We consider five different random splits of 50 training

images and 20 testing images for each class. Images

were reshaped to 128 × 128 pixel to feed the network.
UCF101 Soomro et al. (2012) is a video action recogni-

tion dataset consisting of 13320 action videos belonging

to 101 action classes, from which we sample two million

frames. For this dataset we consider a frame-based ac-

tion recognition task. The images are resized to 224×224

and 227 × 227 to fit the input layers of the VGG and

AlexNet architectures, respectively.

We present results on four architectures. Relatively

shallow architectures are trained from scratch, and

deeper popular architectures are fine-tuned after be-

ing pre-trained on ImageNet Deng et al. (2009).

Acc.(%)
@ Dropout Rate

Dataset
(Architecture)

Dropout
Scheme

0.25 0.5 0.75

Cifar10
(CNN-2)

Standard first fc 79.16 80.13 81.19
Standard both fcs 79.47 80.80 81.72

Excitation 81.38 81.94 81.55

Cifar100
(CNN-2)

Standard first fc 48.44 50.36 51.64
Standard both fcs 50.30 51.96 49.46

Excitation 53.23 52.04 51.87

Caltech256
(CNN-2)

Standard first fc 26.23 28.73 32.51
Standard both fcs 27.70 31.77 33.54

Excitation 33.60 35.77 36.81

UCF101
(VGG16)

Standard first fc 71.01 71.93 72.92
Standard both fcs 71.48 73.01 72.89

Excitation 73.56 73.23 73.06

Table 4 Hyper-parameter sensitivity analysis for the Stan-
dard Dropout probability, and the Excitation Dropout base
dropout probability. The accuracy is reported on the test set
of each dataset. The retaining probability p or P is one minus
the dropout rate.

Models trained from scratch: We train the CNN-

2 architecture used in Morerio et al. (2017), which adopts

the state-of-the-art dropout variant, for comparison pur-

poses. This architecture consists of three convolutional

and two fully-connected layers. Table 1 shows the details

of the CNN-2 architecture adopted in the experiments.

The size of the softmax layer depends upon the number

of classes for each dataset. We train this network from

scratch for 100K iterations using the Adam solver on

the datasets: Cifar-10, Cifar-100 and Caltech-256. We

use a batch size of 100 images and fix the learning rate

to be 10−3, decreasing to 10−4 after 25K iterations, and

a weight decay of 0.005.

Fine-tuned models: We fine-tune the commonly

used architectures: AlexNet Krizhevsky et al. (2012),

VGG16 and VGG19 Simonyan and Zisserman (2014)

pre-trained on ImageNet. We fine-tune the models for a

frame by frame action recognition task on UCF101 using

the Adam solver. The learning rate is fixed to 10−3 for

all the processes. We fine-tune AlexNet for 5K while

VGG16 and VGG19 for 30K iterations. We use a batch

size of 128 and 50 images for AlexNet and VGG16/19,

respectively, and a weight decay of 0.005.
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Neurons ON Peak pEB

Entropy of Activations Entropy of pEB

Fig. 4 Cifar100. # Neurons ON, Peak pEB , Entropy of Activations, and Entropy of pEB over time during training.

Neurons ON Peak pEB

Entropy of Activations Entropy of pEB

Fig. 5 UCF101. # Neurons ON, Peak pEB , Entropy of Activations, and Entropy of pEB over time during training.
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Dataset
(Architecture)

Metric
Standard
Dropout

Curriculum
Dropout

Excitation
Dropout

C
if

a
r1

0
(C

N
N
-2
)

# Neurons ON 1194 (±153) 1169 (±61) 1325 (±61)
Peak pEB 0.011 (±0.004) 0.009 (±0.001) 0.003 (±0.0002)

Entropy of Activations 3.55 (±0.72) 3.50 (±0.12) 4.29 (±0.28)
Entropy of pEB 3.28 (±0.56) 3.32 (±0.13) 4.26 (±0.26)

Conservative Filters∆=0.25 1204 (±37) 959 (±34) 124 (±22)

C
if

a
r1

0
0

(C
N
N
-2
)

# Neurons ON 453 (±183) 460 (±75) 943 (±131)
Peak pEB 0.011 (±0.0004) 0.012 (±0.0004) 0.005 (±0.0005)

Entropy of Activations 1.67 (±0.31) 1.70 (±0.29) 3.21 (±0.44)
Entropy of pEB 1.64 (±0.27) 1.67 (±0.26) 3.17 (±0.41)

Conservative Filters∆=0.30 2048 (±51) 2038 (±44) 14 (±13)

C
a
lt

ec
h
2
5
6

(C
N
N
-2
)

# Neurons ON 412 (±126) 471 (±146) 702 (±171)
Peak pEB 0.014 (±0.0007) 0.013 (±0.0006) 0.007 (±0.0003)

Entropy of Activations 1.63 (±0.32) 1.84 (±0.35) 2.63 (±0.23)
Entropy of pEB 1.58 (±0.29) 1.77 (±0.31) 2.59 (±0.22)

Conservative Filters∆=1.25 2048 (±46) 2048 (±49) 1671 (±31)

U
C

F
1
0
1

(V
G
G
1
6
)

# Neurons ON 1120 (±25) 1143 (±22) 1404 (±37)
Peak pEB 0.007 (±0.0002) 0.007 (±0.0002) 0.004 (±0.0002)

Entropy of Activations 2.04 (±0.23) 2.08 (±0.21) 2.51 (±0.18)
Entropy of pEB 1.92 (±0.22) 1.95 (±0.20) 2.42 (±0.18)

Conservative Filters∆=0.15 3599 (±66) 3859 (±53) 44 (±36)

Table 5 Different metrics to reflect the usage of network capacity in the first fully-connected layer of the CNN-2 architecture
consisting of 2048 neurons and the VGG16 consisting of 4096 neurons. Results presented here are averaged over five trained
models for each of the datasets: Cifar10, Cifar100, Caltech256 and UCF101 (σ in brackets). Excitation Dropout consistently
produces more neurons with non-zero activations, has a more spread saliency map leading to a lower saliency peak, has a higher
entropy of both activations and saliency, and has a lower number of conservative filters; all reflecting an improved utilization of
the network neurons using Excitation Dropout.

4.2 Setup and Results: Generalization

We start by comparing Excitation Dropout with pop-

ular variants of dropout: Adaptive Dropout Ba and

Frey (2013), Information Dropout Achille and Soatto

(2018), and Curriculum Dropout Morerio et al. (2017).

Adaptive Dropout drops neurons with low activations

during training, Information Dropout is another data-

dependent dropout approach, and Curriculum Dropout

adjusts the dropout rate over time selecting neurons

uniformly at random. We train a CNN-2 model from

scratch on the datasets: Cifar10, Cifar100, Caltech256;

We fine-tune an AlexNet pre-trained on ImageNet for

the UCF101 dataset. We perform dropout in the first

fully-connected layer of the networks (fc1 for CNN-2 and

fc6 for AlexNet and VGGs) for Adaptive, Information,

Standard, Curriculum, and Excitation Dropout. For

Curriculum Dropout we fix the parameter γ to 5 ∗ 10−4

as in Morerio et al. (2017). Table 2 reports classification

accuracy (averaged over five trained models) over four

benchmark datasets. Excitation Dropout has a higher

accuracy compared to Adaptive, Information, and Cur-

riculum Dropout. Curriculum Dropout is the second
runner-up, and therefore we use it for comparison in the

following extensive experimental analysis.

Fig. 3 depicts the test accuracies over training itera-

tions for the three datasets averaged over five trained

models. After convergence, Excitation Dropout demon-

strates a significant improvement in performance com-

pared to other methods. We hypothesize that Excitation

Dropout takes longer to converge due to the additional

loop (Steps 2-4 in Fig. 1) introduced in the learning

process, and due to the learning of the alternative paths.

We note that Excitation Dropout, during training, uses

a different binary mask for each image in a minibatch,

while in Standard Dropout, one random mask is em-

ployed per minibatch. To prove that it is precisely the

fact that masks reflective of the particular input give

rise to a boost in accuracy, and not the fact that dif-

ferent masks are used for different images, we add a

comparison with Standard Dropout having a different

random mask for each image. We refer to this accuracy

as ‘Standard Dropout + Mask/Img’ in the plots. As

expected, the latter approach is comparable to Standard
Dropout in performance.

Next, we evaluate the effectiveness of Excitation

Dropout on popular network architectures that employ

dropout layers: AlexNet, VGG16, VGG19. This is done

by fine-tuning on the video recognition dataset UCF101.

Fig. 3 shows superior Excitation Dropout performance

on AlexNet fine-tuned on UCF101. Table 3 presents

more comparative results on other deep architectures by

reporting the accuracy after convergence. Again, Exci-

tation Dropout demonstrates higher generalizability on

the test data for all architectures. We also find that Exci-

tation Dropout, applied in fc6 only, demonstrates higher

performance compared to applying Standard Dropout in

both fc6 and fc7 layers as in the original proposed archi-
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Excitation Dropout

Curriculum Dropout

Standard Dropout

No Dropout

k = 0 k = 100 k = 200 k = 300 k = 400 k = 500

Fig. 6 Visualizations for a VGG16 network fine-tuned on UCF101. The middle columns display the saliency map over
the same video frame of the action HorseRiding while incrementally switching off the most k relevant/salient neurons
(k = 0, 100, 200, . . . , 500) in the fc6 layer at test time. Excitation Dropout shows more robustness when more neurons are
switched off. This is demonstrated through its ability to recover more of the saliency map even when a high percentage of the
most salient neurons is dropped-out. This ability reflects the alternative learnt paths. Histograms of the leftmost and rightmost
saliency maps are presented to demonstrate that Excitation Dropout has a wider range of saliency values.

tectures (AlexNet: 67.56% vs. 65.83%, VGG16: 73.23%

vs. 73.01%, VGG19: 74.34% vs. 73.40%).

In all experiments thus far, we set p = 0.5 for Stan-

dard Dropout and P = 0.5 for the base retaining prob-

ability of Excitation Dropout for fair comparison. For

completeness, we add a sensitivity analysis of the param-

eters p and P in Table 4. Among the different dropout

rates, the lowest accuracy for Excitation Dropout is

greater than the highest accuracy of Standard Dropout

for most datasets.

Excitation Dropout is a generic formulation that can

be applied to any neural network layer. For a convo-

lutional layer, a generic convolutional activation map

is in the form of [w, h,N ], where N is the number of

feature maps while w and h are the spatial dimensions.

To apply Excitation Dropout to a convolutional layer,

first pEB is computed for each feature map N as the

sum of pEB across spatial locations w and h. Specific 2D

feature maps are then dropped-out following Eqn. 3. We

test this on CNN-2 for Cifar-10. We observe an improve-

ment respect to No Dropout (76.91%), but consistent

with Hinton et al. (2012); Srivastava et al. (2014), the

improvement is not as large as using dropout in fully

connected layers (Excitation Dropout at conv3 78.01%

vs. Excitation Dropout at fc1 81.94%).

4.3 Setup and Results: Utilization of Network Neurons

In this section we examine how Excitation Dropout

expands the network’s utilization of neurons through

the learnt alternative paths for a certain task.

Mittal et al. (2018) introduced scoring functions

to rank the filters in specific network layers including

the average percentage of zero activations, a metric to

count how many neurons have zero activations, and

the entropy of activations, a metric to measure how

much information is contained in the neurons of a layer.

We analogously compute the Neurons ON, which is the

average number of non-zero activations, and the entropy

of pEB which is higher when the probability distribution

is spread out over more neurons in a layer. We also

compute the peak pEB , which is expected to be lower on
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a more spread distribution. Moreover, Ma et al. (2017)

introduced conservative filters : filters whose parameters

do not change significantly during training. Conservative

filters reduce the effective number of parameters in a

CNN and may limit the CNN’s modeling capacity for

the target task. A conservative filter is a filter k in layer

n whose weights have changed by ∆k
n = ‖ŵk

n − wk
n‖,

where ∆k
n is less than a threshold ∆ (empirically set).

We evaluate these metrics for Excitation Dropout

and compare against Standard and Curriculum Dropout

in Table 5. This is done on the same datasets and ar-
chitectures considered in Section 4.2. All metrics are

computed for the first fully-connected layer of the CNN-

2 and VGG16 nets consisting of 2048 and 4096 neurons,

respectively. We compute each metric over the test set

of each dataset. Excitation Dropout consistently out-

performs Standard and Curriculum Dropout in all the

metrics over all datasets. Excitation Dropout shows a

higher number of active neurons, a higher entropy over

activations, and a probability distribution pEB that is

more spread (higher entropy over pEB) among the neu-

rons of the layer, leading to a lower peak probability

of pEB and therefore less specialized neurons. Averag-

ing models having less specialized neurons results in

higher robustness to information loss. We also observe

a significantly smaller number of conservative filters

when using Excitation Dropout. Fewer filters remain un-

changed, i.e. do not sufficiently learn anything far from

the random initialization. These results show that the

models trained with Excitation Dropout were trained

to be more informative, i.e. the contribution for the

classification task is provided by a higher number of

network neurons, reflecting the alternative learnt paths.
Finally we report an extended analysis of the met-

rics: # Neurons ON, Peak pEB , Entropy of Activations,

and Entropy of pEB during training. Excitation Dropout

shows a higher number of active neurons, a higher en-

tropy over activations, and a probability distribution
pEB that is more spread (higher entropy over pEB)

among the neurons of the layer, leading to a lower peak

probability of pEB and therefore less specialized neurons.

These results are observed to have consistent trends over

all training iterations for all datasets. We present sam-

ple plots for Cifar100 (Fig. 4), a network trained from

scratch, and UCF101 (Fig. 5), a fine-tuned network.

4.4 Setup and Results: Resilience to Compression

In this section, we simulate ‘Brain Damage’ by dropping

out neurons at test time. Fig. 6 demonstrates how a net-

work utilizes the learnt alternative paths to capture the

evidence of the class HorseRiding in a video frame of the

UCF101 dataset. A VGG16 model is randomly selected

from the five trained models used to report results in

Table 3, and is fine-tuned once with each of Excitation,

Curriculum, Standard, and No Dropout at the fc6 layer.

We show the excitation saliency map obtained at the

conv5-1 layer as we drop out a fixed number of the

most relevant neurons from the layer in which dropout

is applied at training time. A neuron is considered to be

more relevant if it has a higher pEB . In the first column

of frames of Fig. 6, the original saliency maps for the

different models are shown. As already highlighted in

Table 5, the original saliency map obtained from the
model trained with Excitation Dropout is more spread

as compared to that of the other schemes, which present

more pronounced red peaks. In the remaining columns

of Fig. 6, we present the saliency maps the model is

able to maintain when the 100, 200, 300, 400, 500 most

relevant neurons are dropped-out. Despite the increasing

number of relevant neurons being dropped-out, Excita-

tion Dropout is capable of restoring more of the saliency

map contributing to HorseRiding. This means that the

network with Excitation Dropout was trained to find

alternative paths that belong to the same HorseRid-

ing-relevant cues of the image. Despite the fact that we

are considering the worst-case scenario, where we are

switching off the most relevant neurons at test time,

Excitation Dropout shows the most robustness. The

histograms of the leftmost and rightmost saliency maps

show that Excitation Dropout has a wider range of

saliency values.

While Fig. 6 visualizes one example qualitatively,

Fig. 7 presents a complete quantitative analysis on the

entire test set after training is complete. We study how

the predicted ground-truth (GT) probability changes as

more neurons are dropped-out at test time. On the left

we present the worst case when the neurons dropped

are the most relevant to the prediction. The horizontal

axis in the graph represents pc, where 0 ≤ pc ≤ 1 is

the cumulative sum of pEB of neurons which will be

switched off starting from the most ‘important.’ The

analysis is performed for pc = {0, 0.05, . . . , 0.90, 0.95}.
In the center, we present an analogous analysis starting

to drop from the ‘least’ relevant neurons. On the right,

we present the random case (more realistic) when k

neurons (k = 0, 128, 256, . . . , 4096) for VGG16, when

k neurons (k = 0, 128, 256, . . . , 2048) for CNN-2 are

randomly switched off. As we drop more neurons, Exci-

tation Dropout (purple curves) is capable of maintaining

a much less steep decline of GT probability, indicating

more robustness against network compression. We ob-

tain a similar behaviour for all the considered datasets.
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Cifar10

Cifar100

Caltech256

UCF101

Fig. 7 Robustness of predicted ground-truth class probabilities as more neurons are dropped out for each dataset’s test images.
For Cifar10, Cifar100 and Caltech256 we train CNN-2 from scratch with Excitation, Curriculum, Standard, and No Dropout at
the fc1 layer. For UCF101 we fine-tune VGG16 with Excitation, Curriculum, Standard, and No Dropout at the fc6 layer.
For both architectures we average results over five trained models. The standard deviation is depicted around the mean curve
using a lighter shade. Left: the most relevant neurons with respect to the pc threshold are switched off. Center: the least
relevant neurons with respect to the pc threshold are switched off. Right: k neurons are randomly switched off. In all scenarios,
Excitation Dropout shows more robustness to network compression (dropping fc neurons ≡ removing filters).
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Standard
Dropout first fc

Standard
Dropout both fcs

Activation
Dropout

Excitation
Dropout

Dataset

Cifar10 80.13% 80.80% 81.33% 81.94%
Cifar100 50.36% 51.96% 51.43% 52.04%
Caltech256 28.73% 31.77% 35.29% 35.77%
UCF101 71.93% 73.01% 72.56% 73.23%

Runtime
CNN-2 (1 iter) 0.152 ± 0.007 0.161 ± 0.006 0.184 ± 0.006 0.189 ± 0.007
VGG16 (1 iter) 2.279 ± 0.028 2.290 ± 0.018 2.803 ± 0.024 2.820 ± 0.031

Table 6 Accuracy and runtime comparison between Standard, Activation and Excitation Dropout: Average training time
of 100 iterations (in seconds, batch size=50) for a Caffe python layer on a GTX Titan X GPU and Intel(R) Xeon(R) CPU
E5-2650 v3 @ 2.30GHz.

5 Activation Dropout: A lighter version

Popular dropout methods (e.g. Adaptive Dropout) drop

useless neurons with low activations. So far we have

demonstrated that dropping neurons based on their

top-down attention brings benefits. We now introduce a

lighter version of Excitation Dropout, Activation Dropout,

where, in contrast with Excitation Dropout, the for-

ward activations only are used to determine dropout
probabilities. As in the Excitation Dropout formula-

tion, the forward activation of neuron aj is defined as

âj = φ(
∑

i wij âi+bi), where N is the number of neurons

in the specific layer in which dropout will be applied.
For Activation Dropout, we normalize the activations as

follows: pAct(aj) = âj/
∑

i∈1...N âi. We now define the

retaining probability p of Activation Dropout as:

p = 1− (1− P ) ∗ (N − 1) ∗ pAct

((1− P ) ∗N − 1) ∗ pAct + P
(4)

where pAct is the probability distribution computed over

the activations of the layer in which we apply dropout.

While Excitation Dropout utilizes top-down attention,

a function of the forward and backward passes, Activa-

tion Dropout is a computationally simpler measure that

only utilizes the forward activations. The top part of

Table 6 presents a comparison of classification accuracy

between the two proposed dropout variants applied at

the first fc layer. The bottom part of Table 6 presents a

run-time analysis for Excitation, Activation and Stan-

dard Dropout, for the two main architectures used in

this work. Excitation Dropout consistently outperforms

Standard Dropout, with zero increase in test-time com-

putational complexity. In training, there is a moderate

increase in computation: in the worst case, Excitation

Dropout will take double (same O-notation complexity)

the training time of Standard Dropout. This will hap-

pen when the utilized Excitation Dropout maps are at

the first layer of the network. If a middle layer is used,

Excitation Dropout requires only a partial additional

forward-backward pass. We apply dropout to fc layers

close to the end of the network to reduce this overhead.

An efficiency-accuracy trade-off exists between Ac-

tivation Dropout and Excitation Dropout. The latter

utilizes the backward pass as additional information for

determining the contribution of a neuron to a model’s

prediction, hence the added accuracy. The former in-

stead, only utilizes the forward pass, hence the higher

efficiency. Therefore, pAct can be used as a rough ap-

proximation of pEB when efficiency is a priority over a

slight compromise in accuracy.

We now apply the lighter Activation Dropout to

(a) the more modern WideResNet architecture, and

(b) the larger-scale ImageNet dataset. First, we re-

place the dropout of WideResNet (WRN-28-10) by our

lighter version Activation Dropout obtaining on Cifar10:

3.88% test error (compared to 4.17% Zagoruyko and

Komodakis (2016)). We use the default depth and width

architecture parameters of 28 and 10 respectively, start-

ing learning rate of 10−1 with a decay ratio of 0.2, and

batch size of 128. Second, we train an AlexNet from

scratch on ImageNet, once using Standard Dropout and

another using our Activation Dropout, both applied to

fc6 layer. Using basic training with an Adam optimizer,

batch size of 50, and a learning rate of 10−5, Activation

Dropout obtained a test accuracy of 48.54% while Stan-

dard Dropout achieved a test accuracy of 44.43%. This
further demonstrates the generalization ability of our

proposed dropout technique.

6 Conclusion

We propose a new regularization scheme that encourages

the learning of alternative paths in a neural network

by deliberately paralyzing high-saliency neurons that

contribute more to a network’s prediction during train-

ing. In experiments on four image/video recognition

datasets, and on different architectures, we demonstrate

that our approach yields better generalization on unseen

data, higher utilization of network neurons, and higher

resilience to network compression.
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