
ar
X

iv
:1

41
2.

64
63

v1
 [

cs
.N

I]
 1

9
D

ec
 2

01
4

Serving Content with Unknown Demand:
the High-Dimensional Regime

Sharayu Moharir, Javad Ghaderi, Sujay Sanghavi and Sanjay Shakkottai

Abstract—In this paper we look at content placement in the
high-dimensional regime: there aren servers, andO(n) distinct
types of content. Each server can store and serveO(1) types
at any given time. Demands for these content types arrive, and
have to be served in an online fashion; over time, there are a
total of O(n) of these demands. We consider the algorithmic
task of content placement: determining which types of content
should be on which server at any given time, in the setting where
the demand statistics (i.e. the relative popularity of eachtype of
content) are not known a-priori, but have to be inferred from
the very demands we are trying to satisfy. This is the high-
dimensional regime because this scaling (everything beingO(n))
prevents consistent estimation of demand statistics; it models
many modern settings where large numbers of users, servers
and videos/webpages interact in this way.

We characterize the performance ofany scheme that separates
learning and placement (i.e. which use a portion of the demands
to gain some estimate of the demand statistics, and then usesthe
same for the remaining demands), showing it is order-wise strictly
suboptimal. We then study a simple adaptive scheme - which
myopically attempts to store the most recently requested content
on idle servers - and show it outperforms schemes that separate
learning and placement. Our results also generalize to the setting
where the demand statistics change with time. Overall, our results
demonstrate that separating the estimation of demand, and the
subsequent use of the same, is strictly suboptimal.

I. I NTRODUCTION

Ever increasing volumes of multimedia content is now
requested and delivered over the Internet. Content delivery
systems (e.g., YouTube [1]), consisting of a large collection of
servers (each with limited storage/service capability), process
and service these requests. Naturally, the storage and content
replication strategy (i.e., what content should be stored on each
of these servers) forms an important part of the service and
storage architecture.1.

Two trends have emerged in such settings of large-scale
distributed content delivery systems. First, there has been a
sharp rise in not just the volume of data, but indeed inthe
number of content-types(e.g., number of distinct YouTube
videos) that are delivered to users [1]. Second, the popularity
and demand for most of this content isuneven and ephemeral;
in many cases, a particular content-type (e.g., a specific video
clip) becomes popular for a small interval of time after which
the demand disappears; further a large fraction of the content-
types languish in the shadows with almost no demand [3],
[4].

1An earlier version of this work appears in the Proceedings ofACM
Sigmetrics, Austin, USA, June 2014 [2].

To understand the effect of these trends, we study a stylized
model for the content placement and delivery in large-scale
distributed content delivery systems. The system consistsof n
servers, each with constant storage and service capacities, and
αn content-types (α is some constant number). We consider
the scaling where the system sizen tends to infinity. The
requests for the content-types arrive dynamically over time
and need to be served in an online manner by the free
servers storing the corresponding contents. The requests that
are “deferred” (i.e., cannot be immediately served by a free
server with requested content-type) incur a high cost. To
ensure reliability, we assume that there are alternate server
resources (e.g., a central server with large enough backup
storage and service capacity, or additional servers that can be
freed up on-demand) that can serve such deferred requests.

The performance of any content placement strategy crucially
depends on the popularity distribution of the content. Empir-
ical studies in many services such as YouTube, Peer-to-Peer
(P2P) VoD systems, various large video streaming systems,
and web caching, [3], [5]–[8] have shown that access for
different content-types is very inhomogeneous and typically
matches well with power-law (Zipf-like) distributions, i.e.,
the request rate for thei-th most popular content-type is
proportional to i−β, for some parameterβ > 0. For the
performance analysis, we assume that the content-types have
a popularity that is governed by some power-law distribution
with unknown β and further this distribution changes over
time.

Our objective is to provide efficient content placement
strategies that minimize the number of requests deferred. It
is natural to expect that content placement strategies in which
more popular content-types are replicated more will have a
good performance. However, there is still a lot of flexibility
in designing such strategies and the extent of replication of
each content-type has to be determined. Moreover, the requests
arrive dynamically over time and popularities of different
content-types might vary significantly over time; thus the
content placement strategy needs to be online and robust.

The fact that the number of contents is very large and their
popularities are time-varying creates two new challenges that
are not present in traditional queueing systems. First, it is
imperative tomeasure the performance of content replication
strategies over the time scale in which changes in popularities
occur. In particular, the steady-state metrics typically used in
queueing systems are not a right measure of performance in
this context. Second, the number of content-types is enormous

http://arxiv.org/abs/1412.6463v1

and learning the popularities of all content-types over the
time scale of interest is infeasible. This is in contrast with
traditional multi-class multi-server systems where the number
of demand classes does not scale with the number of servers
(low-dimensional setting) and thus learning the demand rates
can be done in a time duration that does not scale with the
system size.

A. Contributions

The main contributions of our work can be summarized as
follows.

Modeling Contribution: We recognize that we are in
the high-dimensional regime with unknown demand, that it
is fundamentally different from the low-dimensional setting
(finite number of content-types) and propose a model that
captures this difference.

Analytical Contributions: In Section III-A, we show that
in this high-dimensional setting where the demand statistics
are not known a-priori, the “learn-and-optimize” approach,
i.e., learning the demand statistics from requests and then
locally caching content on servers using the estimated statis-
tics, is strictly sub-optimal, even when using high-dimensional
estimators such as the Good-Turing estimator [9] (Theorem 1).
This is in contrast to the conventional low-dimensional setting
where the “learn-and-optimize” approach is asymptotically
optimal.

In addition, in Section III-B, we study an adaptive content
replication strategy which myopically attempts to cache the
most recently requested content-types on idle servers. Our
key result is that even this simple adaptive strategy strictly
outperformsany content placement strategy based on the
“learn-and-optimize” approach (Theorem 3). Our results also
generalize to the setting where the demand statistics change
with time (Theorems 2 and 4).

Overall, our results demonstrate that separating the estima-
tion of demands and the subsequent use of the estimations to
design optimal content placement policies is deprecated inthe
high-dimensional setting.

B. Organization and Basic Notations

The rest of this paper is organized as follows. We describe
our system model and setting in Section II. The main results
are presented in Section III. Our simulation results are dis-
cussed in Section IV. Section V contains the proofs of some
of our results. Section VI gives an overview of related works.
We finally end the paper with conclusions.

Some of the basic notations are as follows. Given
two functions f and g, we write f = O(g) if
lim supn→∞ |f(n)/g(n)| < ∞. f = Ω(g) if g = O(f). If
both f = O(g) and f = Ω(g), then f = Θ(g). Similarly,
f = o(g) if lim supn→∞ |f(n)/g(n)| = 0, and f = ω(g) if
g = o(f). The termw.h.p. means with high probability as
n→∞.

II. SETTING AND MODEL

In this section, we consider a stylized model for large scale
distributed content systems that captures two emerging trends,

namely, a large number of content types, and uneven and time-
varying demands.

A. Server and Storage Model

The system consists ofn front-end servers, each of which
can hold one content piece, and serve one user, at any time.
In addition, there is a back-end server that stores the entire
catalog ofm content-types (one copy of each content-type,
e.g., a copy of each YouTube video). The contents can be
copied from the back-end server and placed on the front-end
servers.

Since we are interested in the scaling performance, as
n,m → ∞, for clarity we assume that there aren servers
and each server can store1 content and can serve1 request
at any time. If instead of one content, each front-end server
can store at mostd > 1 content pieces (d is a constant) and
serve at mostd requests at each time, the performance can be
bounded from above by the performance of a system withdn
servers with a storage of1 each, and from below by that of
another system withn servers with a storage of1 each. Thus
asymptotically in a scaling-sense, the system is still equivalent
to a system ofn servers where each server can store1 content
and can serve1 content request at any time.

B. Service Model

When a request for a content arrives, it is routed to an
idle (front-end) server which has the corresponding content-
type stored on it, if possible. We assume that the service time
of each request is exponentially distributed with mean 1. The
requests have to be served in an online manner; further service
is non-preemptive, i.e., once a request is assigned to a server,
its service cannot be interrupted and also cannot be re-routed to
another server. Requests that cannot be served (no free server
with requested content-type) incur a high cost (e.g., need to be
served by the back-end server, or content needs to be fetched
from the back-end server and loaded on to a new server).
As discussed before, we refer to such requests as deferred
requests. The goal is to design content placement policies such
that the number of requests deferred is minimized.

C. Content Request Model

There arem content-types (e.g.,m distinct YouTube
videos). We consider the setting where the number of content-
typesm is very large and scales linearly with the system size
n, i.e., m = αn for some constantα > 1. We assume that
requests for each content arrive according to a Poisson process
and request rates (popularities) follow a Zipf distribution.
Formally, we make the following assumptions on the arrival
process.

Assumption 1:(Arrival and Content Request Process)
- The arrival process for each content-typei is a Poisson

process with rateλi.
- The load on the system at any time isλ̄ < 1, where

λ̄ =

∑m
i=1 λi

n
.

- Without loss of generality, content-types are indexed in
the order of popularity. The request rate for content-type

i is λi = nλ̄pi wherepi ∝ i−β for someβ > 0. This is
the Zipf distribution with parameterβ.

We have used the Zipf distribution to model the popularity
distribution of various contents because empirical studies in
many content delivery systems have shown that the distribution
of popularities matches well with such distributions, see e.g.,
[3], [5], [6], [7], [8].

D. Time Scales of Change in Arrival Process

A key trend discussed earlier is the time-varying nature
of popularities in content delivery systems [3], [4]. For
example, the empirical study in [3] (based on 25 millions
transactions on YouTube) shows that daily top 100 list of
videos frequently changes. To understand the effect of this
trend on the performance of content placement strategies, we
consider the following two change models.

Block Change Model: In this model, we assume that the
popularity of various content-types remains constant for
some duration of timeT (n), and then changes to some other
arbitrarily chosen distribution that satisfies Assumption1.
Thus T (n) reflects the time-scale over which changes in
popularities occur. Under this model, we characterize the
performance of content placement strategies over such a
time-scaleT (n).

Continuous Change Model: Under this model, we assume
that each content-type has a Poisson clock at some con-
stant rateν > 0. Whenever the clock of content-typei
ticks, content-typei exchanges its popularity with some other
content-typej, chosen uniformly at random. Note that the
average time over which the popularity distribution “com-
pletely” changes is comparable to that of the Block Change
Model; however, here the change occurs incrementally and
continuously. Note that this model ensures that the content-
type popularity always has the Zipf distribution. Under this
model, we characterize the performance of content placement
strategies over constant intervals of time.

III. M AIN RESULTS AND DISCUSSION

In this section, we state and discuss our main results. The
proofs are provided in Section V.

A. Separating Learning from Content Placement

In this section, we analyze the performance of storage
policies which separate the task of learning and that of
content placement as follows. Consider time intervals of
lengthT (n). The operation of the policy in each time interval
is divided into two phases:

Phase 1. Learning: Over this interval of time, use the
demands from the arrivals (see Figure 1) to estimate the
content-type popularity statistics.

Phase 2. Storage: Using the estimated popularity of
various content-types, determine which content-types are

to be replicated and stored on each server. The storage is
fixed for the remaining time interval. The content-types not
requested even once in the learning phase are treated equally
in the storage phase. In other words, the popularity of all
unseencontent-types in the learning phase is assumed to be
the same.

Phase 1

(Learn)

Phase 2

(Static Storage)

0 T(n)
time

Chosen Optimally

Fig. 1. Learning-Based Static Storage Policies –The intervalT (n) is split
into the Learning and Storage phases. The length of time spent in the Learning
phase can be chosen optimally using the knowledge of the value of T (n) and
the Zipf parameterβ.

Further, we allow the interval of time for the Learning phase
potentially to be chosen optimally using knowledge ofT (n)
(the interval over which statistics remain stationary) andβ (the
Zipf parameter for content-types popularity).

This is a natural class of policies to consider because it
is obvious that popular content-types should be stored on
more servers than the less popular content-types. Therefore,
knowing the arrival rates can help in the design of better
storage policies. Moreover, for the content-types which are
not seen in the learning phase, the storage policy has no
information about their relative popularity. It is therefore
natural to treat them as if they are equally popular.

The replication and storage in Phase 2 (Storage) can be
performed byany static policy that relies on the knowledge
(estimate) of arrival rates, e.g., the proportional placement
policy [10] where the number of copies of each content-type
is proportional to its arrival rate, or the storage policy of[11]
which was shown to be approximately optimal in the steady
state.

We now analyze the performance of learning-based static
storage policies under the Block Change Model defined in
Section II-D where the statistics remain invariant over the
time intervals of lengthT (n). The performance metric of
interest is the number of requests deferred by any policy
belonging to class of learning-based static storage policies in
the interval of interest. We assume that at the beginning of
this interval, the storage policy has no information about the
relative popularity of various content-types. Therefore,we start
with an initial loading where each content-type is placed on
exactly one server. This loading is not changed during Phase
1 (the learning phase) at the end of which, the content-type
on idle servers is changed as per the new storage policy. As
mentioned before, this storage is not changed for the remaining
duration in the interval of interest.

Theorem 1 in [2] provides a lower bound on the number of
requests deferred by any learning-based static storage policy
for the Block Change Model for the Zipf distribution with

parameterβ > 2. The following theorem provides a stronger
bound on the performance of all learning based policies to
extend this result forβ > 1. This includes the case where
β = 1.2, known to be a good fit for Video on Demand (VoD)
systems [12].

Theorem 1:Under Assumption 1 and the Block Change
Model defined in Section II-D, forβ > 1, if T (n) = Ω(1), the
expected number of requests deferred by any learning-based
static storage policy isΩ

(
min{(nT (n))

1

2−1/β , n}
)
.

We therefore conclude that even if the division of the
interval of interest into Phase 1 (Learning) and Phase 2
(Storage) is done in the optimal manner, no learning-based
static storage policy can defer fewer thanΩ

(
(nT (n))

1

2−1/β
)

jobs in the interval of interest. Therefore, Theorem 1 provides
a fundamental lower bound on the number of jobs deferred
by any policy which separates learning and storage. It is
worth pointing out that this result holds even when the time-
scale of change in statistics is quite slow. Thus, even when
T (n), the time-scale over which statistics remains invariant,
goes to infinity and the time duration of the two phases
(Learning, Storage) is chosen optimally based onβ, T (n),
Ω
(
min{(nT (n))

1

2−1/β , n}
)

requests are still deferred.
The next theorem provides a lower bound on the number of

requests deferred by any learning-based static storage policy
for the Continuous Change Model. As before, we assume that
at the beginning of this interval, the storage policy has no
information about content popularity and therefore, we start
with an initial loading where each content-type is placed on
exactly one server.

Theorem 2:Under Assumption 1 and the Continuous
Change Model defined in Section II-D, forβ > 1,
if T (n) = Ω(1), the expected number of requests
deferred by any learning-based static storage policy is
Ω
(
min{(nT (n))

1

2−1/β , n}
)
.

Next, we exploreadaptive storage policieswhich perform
the task of learning and storage simultaneously.

B. Myopic Joint Learning and Placement

We next study a natural adaptive storage policy called MY-
OPIC. In an adaptive storage policy, depending on the requests
that arrive and depart, the content-type stored on a server can
be changed when the server is idle while other servers of the
system might be busy serving requests. Therefore, adaptive
policies perform the tasks of learning and placement jointly.
Many variants of such adaptive policies have been studied for
decades in the context of cache management (e.g. LRU, LRU-
MIN [13]).

Let Ci refer to the ith content-type,1 ≤ i ≤ m. The
MYOPIC policy works as follows: When a request for content-
typeCi arrives, it is assigned to a server if possible, or deferred
otherwise. Recall that a deferred request is a request for which
on arrival, no currently idle server can serve it and thus its
service invokes a backup mechanism such as a back-end server
which can serve it at a high cost. After the assigment/defer
decision is made, if there are no currently idle servers with

content-typeCi, MYOPIC replaces the content-type of one of
the idle servers withCi. This idle server is chosen as follows:

- If there is a content-typeCj stored on more than one
currently idle server, the content-type of one of those
servers is replaced withCi,

- Else, placeCi on that currently idle server whose content-
type has been requested least recently among the content-
types on the currently idle servers.

For a formal definition of MYOPIC, refer to Figure 2.

1: On arrival (request forCi) do,
2: Allocate request to an idle server if possible.
3: if no other idle server has a copy ofCi, then
4: if ∃j: Cj stored on> 1 idle servers,then
5: replaceCj with Ci on any one of them.
6: else
7: find Cj : least recently requested on idle servers,

replaceCj with Ci.
8: end if
9: end if

Fig. 2. MYOPIC – An adaptive storage policy which changes the content
stored on idle servers in a greedy manner to ensure that recently requested
content pieces are available on idle servers.

Remark 1:Some key properties of MYOPIC are:
1) The content-types on servers can be potentially changed

only when there is an arrival.
2) The content-type of at most one idle server is changed

after each arrival. However, for many popular content-
types, it is likely that there is already an idle server with
the content-type, in which case there is no content-type
change.

3) To implement MYOPIC, the system needs to keep track
of the time at which the recent most request of each
content-type was made.

The following theorem provides an upper bound on the
number of requests deferred by MYOPIC for the Block
Change Model defined in Section II-D.

Theorem 3:Under Assumption 1 and the Block Change
Model defined in Section II-D, over any time intervalT (n)
such thatT (n) = o(nβ−1), the number of requests deferred
by MYOPIC isO((nT (n))1/β) w.h.p.
We now compare this upper bound with the lower bound on
the number of requests deferred by any learning-based static
storage policy obtained in Theorem 1.

Corollary 1: Under Assumption 1, the Block Change
Model defined in Section II-D, and forβ > 1, over any time
interval T (n) such thatT (n) = Ω(1) andT (n) = o(nβ−1),
the expected number of requests deferred by any learning-
based static storage policy isΩ

(
min{(nT (n))

1

2−1/β , n}
)

and
the number of requests deferred by the MYOPIC policy is
O
(
(nT (n))

1

β
)

w.h.p.
For β > 1, 1

2−1/β > 1
β and for T (n) = o(nβ−1),

(nT (n))
1

β = o(n) . Therefore, from Corollary 1, we conclude

that MYOPIC outperforms all learning-based static storage
policies. Note that:

i. Corollary 1 holds even when the interval of interest
T (n) grows to infinity (scaling polynomially inn), or
correspondingly, even when the content-type popularity
changes very slowly with time.

ii. Even if the partitioning of the(T (n)) into a Learning
phase and a Static Storage phase is done in an optimal
manner with the help of some side information(β, T (n)),
the MYOPIC algorithm outperforms any learning-based
static storage policy.

iii. Since we consider the high-dimensional setting, the learn-
ing problem at hand is a large-alphabet learning problem.
It is well known that standard estimation techniques
like using the empirical values as estimates of the true
statistics is suboptimal in this setting. Many learning
algorithm like the classical Good-Turing estimator [9]
and other linear estimators [14] have been proposed, and
shown to have good performance for the problem of
large-alphabet learning. From Corollary 1, we conclude
that, even if the learning-based storage policy uses the
best possible large-alphabet estimator, it cannot match the
performance of the MYOPIC policy.

Therefore, in the high-dimensional setting we consider,
separating the task of estimation of the demand statistics,
and the subsequent use of the same to design a static storage
policy, is strictly suboptimal. This is the key message of this
paper.

Theorem 3 characterizes the performance of MYOPIC under
the Block Change Model, where the statistics of the arrival
process do not change in interval of interest. To gain further
insight into robustness of MYOPIC against changes in the
arrival process, we now analyze the performance of MYOPIC
when the arrival process can change in the interval of interest
according to the Continuous Change Model defined in Sec-
tion II-D.

Recall that under the Continuous Change Model, on av-
erage, we expectΘ(n) shuffles in the popularity of various
content-types in an interval of constant duration. For the Block
Change Model, ifT (n) = Θ(1), the entire popularity distribu-
tion can change at the end of the block, which is equivalent to
n shuffles. Therefore, for both the change models, the expected
number of changes to the popularity distribution in an interval
of constant duration is of the same order. However, these
changes occur constantly but slowly in the Continuous Change
Model as opposed to a one-shot change in the Block Change
Model.

Theorem 4:Under Assumption 1, and the Continuous
Change Model defined in Section II-D, the number of requests
deferred by the MYOPIC storage policy in any interval of
constant duration isO(n1/β) w.h.p.

In view of Theorem 3, if the arrival rates do not vary in
an interval of constant duration, under the MYOPIC storage
policy, the number of requests deferred in that interval is
O(n1/β) w.h.p. Theorem 4 implies that the number of requests

deferred in a constant duration interval is of the same order
even if the arrival rates change according to the Continuous
Change Model. This shows that the performance of the MY-
OPIC policy is robust to changes in the popularity statistics.

We now compare the upper bound obtained in Theorem 4
for the Continuous Change Model with the lower bound on
the performance of any learning-based static storage policy
obtained in Theorem 2.

Corollary 2: Under Assumption 1, the Continuous Change
Model defined in Section II-D, and forβ > 1, over any
time interval of constant duration, the expected number of
requests deferred by any learning-based static storage policy
is Ω

(
n

1

2−1/β
)

and the number of requests deferred by the

MYOPIC policy isO(n
1

β) w.h.p.
Thus, even for the Continuous Change Model, MYOPIC

outperforms all Learning-based static policies. Comparedto
the Block Change Model, Learning-based static policies are
“unsuitable” for the Continuous Change Model due to the
following reasons:

- Content popularity can change while the system is in the
learning phase. This makes the task of estimating content
popularity more difficult.

- Once storage is optimized for the estimated content
popularity (at the end of Phase 1), it is not changed
in Phase 2. However, content popularities will change
(by a small amount) almost instantaneously after the
learning period, thus making the storage suboptimal even
if content popularity was estimated accurately in Phase
1.

C. Genie-Aided Optimal Storage Policy

In this section, our objective is to study the setting where
the demand statistics are available “for free”. For the Block
Change Model with known popularity statistics, we show that
a simple adaptive policy is optimal in the class of all policies
which know popularity statistics of various content-types. We
denote the class of such policies asA and refer to the optimal
policy as the GENIE policy.
Let the content-types be indexed fromi = 1 to m and letCi

be theith content-type. Without loss of generality, we assume
that the content-types are indexed in the order of popularity,
i.e, λi ≥ λi+1 for all i ≥ 1. Let k(t) denote the number of
idle servers at timet.

The key idea of the GENIE storage policy is to ensure
that at any timet, if the number of idle servers isk(t), the
k(t) most popular content-types are stored on exactly one idle
server each. The GENIE storage policy can be implemented
as follows. RecallCi is theith most popular content-type. At
time t,

- If there is a request for content-typeCi with i < k(t−),
then allocate the request to the corresponding idle server.
Further, replace the content-type on server storingCk(t−)

with content-typeCi.
- If there is a request for content-typeCi with i > k(t−),

defer this request. There is no storage update.

- If there is a request for content-typeCi with i = k(t−),
then allocate the request to the corresponding idle server.
There is no storage update.

- If a server becomes idle (due to a departure), replace its
content-type withCk(t−)+1.

For a formal definition, please refer to Figure 3.

1: Initialize: Number of idle-servers:= k = n.
2: while true do
3: if new request (forCi) routed to a server,then
4: if i 6= k, then
5: replace content-type of idle server storingCk with

Ci

6: end if
7: k ← k − 1
8: end if
9: if departure,then

10: replace content-type of new idle server withCk+1

11: k ← k + 1
12: end if
13: end while

Fig. 3. GENIE –An adaptive storage policy which has content popularity
statistics available for “free”. At timet, if the number of idle servers isk(t),
thek(t) most popular content-types are stored on exactly one idle server each.

Remark 2:The implementation of GENIE requires replac-
ing the content-type of at most one server on each arrival and
departure.

To characterize the performance of GENIE, we assume that
the system starts from the empty state (all servers are idle)
at time t = 0. The performance metric for any policyA is
D(A)(t), defined as the number of requests deferred by timet
under the adaptive storage policyA. We say that an adaptive
storage policyO is optimal if

D(O)(t) ≤st D
(A)(t), (1)

for any storage policyA ∈ A and any timet ≥ 0. Where
Equation 1 implies that,

P(D(O)(t) > x) ≤ P(D(A)(t) > x),

for all x ≥ 0 and t ≥ 0.
Theorem 5:If the arrival process to the content-type deliv-

ery system is Poisson and the service times are exponential
random variables with mean 1, for the Block Change Model
defined in Section II-D, letD(A)(t) be the number of requests
deferred by timet under the adaptive storage policyA ∈ A.
Then, we have that,

D(GENIE)(t) ≤st D
(A)(t),

for any storage policyA ∈ A and any timet ≥ 0.
Note that this theorem holds even if theλis are not

distributed according to the Zipf distribution. We thus conclude
that GENIE is the optimal storage policy in the class of all
storage policies which at timet, have no additional knowledge

of the future arrivals except the values ofλi for all content-
types and the arrivals and departures in[0, t). Next, we
compute a lower bound on the performance of GENIE.

Theorem 6:Under Assumption 1, forβ > 1, the Block
Change Model defined in Section II-D and if the interval of
interest is of constant length, the expected number of requests
deferred by GENIE isΩ(n2−β).

From Theorems 3 and 6 we see that there is a gap in
the performance of the MYOPIC policy and the GENIE
policy (which has additional knowledge of the content-type
popularity statistics). Since for the GENIE policy, learning
the statistics of the arrival process comes for “free”, this
gap provides an upper bound on the cost of serving content-
type withunknowndemands. We compare the performance of
the all the policies considered so far in the next section via
simulations.

As discussed before, the key property of the GENIE storage
policy is that at timet, if there arek(t) idle servers, the
policy ensures that exactly one copy of thek(t) most popular
contents is stored on the idle servers. In Figure 3, we describe
how to preserve this property at all times, in the setting
where content popularity remains constant in the interval of
interest. If content popularity is time-varying, as in the case
of the Continous Change Model, to maintain this property, the
policy needs to have instantaneous knowledge of any change
in content popularity. Moreover, contents stored on idle servers
might need to be changed at the instant of change in content
popularity to ensure that the idle servers store the currently
most popular contents at all times.

Since the MYOPIC and GENIE policies are adaptive poli-
cies, contents stored on the front-end servers are changed
dynamically. Such content changes can be classified into two
types: internal fetches and external fetches. An internal fetch
occurs when a content is available on at least one front-
end server and the storage policy needs to place a copy of
this content on an idle front-end server. In such cases, we
assume that the new copy is fetched internally from one of
the local (front-end) servers storing this content. An external
fetch occurs when the content is currently not stored on
any of the front-end servers (busy/idle) and hence the copy
needs to be fetched externally from the back-end server. The
external fetches incur a much higher cost compared to the
internal fetches as data transfer from outside is subject to
high delay and/or bandwidth consumption. The next theorem
provides bounds on the number of external fetches performed
to implement the MYOPIC and GENIE policies under the
Block Change Model. Since the comparison depends on the
initial storage of servers at the beginning of the block, we
consider the worst initial case for the MYOPIC policy which
is an empty system.

Theorem 7:Let V P∗

(T) be the number of external fetches
made while implementing the storage policyP ∗ in the time-
interval (0, T). Under Assumption 1, forβ > 1, the Block
Change Model and assuming we start from an empty system,
for T = O(1),
(i) V (MYOPIC)(T) = O(nT)1/β w.h.p.

(ii) V (GENIE)(T) = Ω{min{n, nT }} w.h.p.
Thus the MYOPIC policy incurs fewer external fetches

compared to the GENIE policy. This is not surprising as
the GENIE storage policy is designed with the objective of
minimizing the number of deferred requests, and hence it is
more aggressive in changing the contents stored on servers
in order to minimize the probability that the next request is
deferred.

IV. SIMULATION RESULTS

We compare the performance of the MYOPIC policy with
the performance of the GENIE policy and the following two
learning-based static storage policies:

- The “Empirical + Static Storage”policy uses the empir-
ical popularity statistics of content types in the learning
phase as estimates of the the true popularity statistics. At
the end of the learning phase, the number of servers on
which a content is stored is proportional to its estimated
popularity.

- The “Good Turing + Static Storage”policy uses the
Good-Turing estimator [9] to compute an estimate of the
missing mass at the end of the learning phase. The miss-
ing mass is defined as total probability mass of the content
types that were not requested in the learning phase. Recall
that we assume that learning-based static storage policies
treat all the missing content-types equally, i.e., all missing
content-types are estimated to be equally popular.
Let M0 be the total probability mass of the content types
that were not requested in the learning phase andS1 be
the set of content types which were requested exactly
once in the learning phase. The Good-Turing estimator
of the missing mass(M̂0) is given by

M̂0 =
|S1|

number of samples
.

See [9] for details.
Let Ni be the number of times contenti was requested
in the learning phase andCmissing be the set of content-
types not requested in the learning phase. The “Good
Turing + Static Storage” policy computes an estimate of
the content-popularity as follows:

i: If Ni = 0, pi =
M̂0

|Cmissing|
.

ii: If Ni > 0, pi = (1 − M̂0)
Ni

number of samples
.

At the end of the learning phase, the number of servers on
which a content is stored is proportional to its estimated
popularity.

We simulate the content distribution system for arrival
and service process which satisfy Assumption 1 to compare
the performance of the four policies mentioned above and
also understand how their performance depends on various
parameters like system size(n), load (λ̄) and Zipf parameter
(β). In Tables I, II and III, we report the mean and variance
of the fraction of jobs served by the policies over a duration
of 5 s (T (n) = 5).

For each set of system parameters, we repeat the simulations
between 1000 to 10000 times for each policy in order to
ensure that the standard deviation of the quantity of interest
(fraction of jobs served) is small and comparable. For the
two adaptive policies (GENIE and MYOPIC), the results
are averaged over 1000 iterations and for the learning-based
policies (“Empirical + Static Storage” and “Good-Turing +
Static Storage”), the results are averaged over 10000 iterations.
In addition, the results for the learning-based policies are
reported for empirically optimized values for the fractionof
time spent by the policy in learning the distribution.

In Table I, we compare the performance of the policies for
different values of system size (n). For the results reported
in Table I, the “Empirical + Static Storage” policy learns for
0.1 s and the “Good Turing + Static Storage” policy learns for
0.7 s. The performance of all four policies improves as the
system size increases and the adaptive policies significantly
outperform the two learning-based static storage policies.
Figure 4 is a plot of the mean values reported in Table I.

Policy n Mean σ

GENIE 200 0.9577 0.0081
400 0.9698 0.0045
600 0.9752 0.0034
800 0.9788 0.0030

1000 0.9814 0.0025
MYOPIC 200 0.8995 0.0258

400 0.9260 0.0167
600 0.9380 0.0132
800 0.9481 0.0101

1000 0.9532 0.0080
Empirical + Static Storage 200 0.6292 0.0662

400 0.6918 0.0443
600 0.7246 0.0353
800 0.7464 0.0304

1000 0.7622 0.0268
Good Turing + Static Storage 200 0.6875 0.0274

400 0.7249 0.0180
600 0.7443 0.0140
800 0.7566 0.0118

1000 0.7651 0.0104

TABLE I
The performance of the four policies as a function of the system size(n) for
fixed values of load̄λ = 0.8 andβ = 1.5. The values reported are the mean

and standard deviation (σ) of the fraction of jobs served. Both adaptive
policies (GENIE and MYOPIC) significantly outperform the two

learning-based static storage policies.

In Table II, we compare the performance of the policies
for different values of Zipf parameterβ. For the results
reported in Table II, the duration of the learning phase for
both learning based policies is fixed such that the expected
number of arrivals in that duration is 100. The performance
of all four policies improves as the value of the Zipf parameter
β increases, however, the MYOPIC policy outperforms both
learning-based static storage policies for all values ofβ
considered.

In Table III, we compare the performance of the policies
for different values of load̄λ. For the results reported in
Table III, the duration of the learning phase for both learning
based policies is fixed such that the expected number of

200 300 400 500 600 700 800 900 1000

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

n

F
ra

ct
io

n
of

 J
ob

s
S

er
ve

d

GENIE
MYOPIC
Good Turing + Static Storage
Empirical + Static Storage

Fig. 4. Plot of the mean values reported in Table I – performance of the storage
policies as a function of system size(n) for λ̄ = 0.8 andβ = 1.5.

Policy β Mean σ

GENIE 2 0.9939 0.0026
3 0.9996 0.0015
4 0.9998 0.0011
5 0.9998 0.0012
6 0.9998 0.0011

MYOPIC 2 0.9778 0.0078
3 0.9960 0.0033
4 0.9982 0.0026
5 0.9990 0.0018
6 0.9993 0.0013

Empirical + Static Storage 2 0.8594 0.0194
3 0.9228 0.0155
4 0.9397 0.0119
5 0.9453 0.0095
6 0.9495 0.0073

Good Turing + Static Storage 2 0.8436 0.0235
3 0.9198 0.0154
4 0.9378 0.0124
5 0.9456 0.0094
6 0.9491 0.0072

TABLE II
The performance of the four policies as a function of the Zipfparameter(β)

for fixed values of system sizen = 500 and loadλ̄ = 0.9. The values
reported are the mean and standard deviation (σ) of the fraction of jobs served.

The MYOPIC policy outperforms the two learning-based static storage
policies for all values ofβ considered.

arrivals in that duration is 100. The performance of all four
policies deteriorates as the load increases, however, for all
loads considered, the MYOPIC policies outperforms the two
learning-based static storage policies.

In Figure 5, we plot the mean value (with error bars of
3×std. dev.) of the number of external fetches made by the
MYOPIC and GENIE storage policies for different values of
n and β for a load of 0.9 averaged over 10000 iterations.
As expected, the GENIE storage policy makes more external
fetches than the MYOPIC policy.

V. PROOFS OFMAIN RESULTS

In this section, we provide the proofs of our results.

Policy λ̄ Mean σ

GENIE 0.500 0.9892 0.0025
0.725 0.9788 0.0013
0.950 0.9531 0.0017

MYOPIC 0.500 0.9605 0.0113
0.725 0.9484 0.0105
0.950 0.8973 0.0221

Empirical + Static Storage 0.500 0.7756 0.0222
0.725 0.7705 0.0238
0.950 0.7352 0.0235

Good Turing + Static Storage 0.500 0.7849 0.0230
0.725 0.7589 0.0249
0.950 0.6869 0.0348

TABLE III
The performance of the four policies as a function of the load(λ̄) for fixed

values of system sizen = 500 andβ = 1.2. The values reported are the mean
and standard deviation (σ) of the fraction of jobs served. The MYOPIC policy
significantly outperforms the two learning-based static storage policies for all

loads considered.

100 150 200 250 300 350 400 450 500
0

1000

2000

3000

n

N
um

be
r

of
 E

xt
er

na
l F

et
ch

es

GENIE, β = 2

MYOPIC , β = 2

GENIE, β = 3

MYOPIC , β = 3

100 150 200 250 300 350 400 450 500
0

20

40

60

n

N
um

be
r

of
 E

xt
er

na
l F

et
ch

es

MYOPIC , β = 2

MYOPIC , β = 3

Fig. 5. The mean number of external fetches (content fetched from the back-
end server to place on a front-end server) by the two adaptivepolicies as a
function of system size(n) for λ̄ = 0.9 andβ = 2 and3. The first plot shows
the performance of both GENIE and MYOPIC. The second plot focuses only
on the performance of the MYOPIC storage policy for clarity.

A. Proof of Theorem 1

We first present an outline of the proof of Theorem 1. We
consider two cases. We first focus on the case when the
learning-based storage policies use fewer thann arrivals to
learn the distribution.

1) If the learning phase lasts for the firstnγ arrivals for
some0 < γ ≤ 1, we show that under Assumption 1,
w.h.p., in the learning phase, there are no arrivals for at
leastn−O(n

γ
β) content types. (Lemma 1).

2) Next, we show that w.h.p., among the firstnγ arrivals,
i.e., during the learning phase,Ω(nγ) requests are de-
ferred (Lemma 3).

3) Using Lemma 1, we compute a lower bound on the

number of requests deferred in Phase 2 (after the learn-
ing phase) by any learning-based static storage policy
(Lemma 4).

4) Using Steps 2 and 3, we lower bound the number of
requests deferred in the interval of interest.

In the case when the learning phase lasts for more thann
arrivals, we show that the number of requests deferred in the
learning phase alone isΩ(n), thus proving the theorem for
this case.

Lemma 1:Let E1 be the event that in the firstnγ arrivals,
for 0 < γ < 1 no more thanO(n

γ
β) different types of contents

are requested. Then,

P(Ec
1) = o

(
1

n

)
. (2)

for n large enough.
Proof: Recall λi = λ̄npi wherepi = i−β

Z(β) for Z(β) =∑m
i=1 i

−β.

Z(β) =

αn∑

i=1

i−β ≥

∫ αn+1

1

i−βdi ≥
0.9

β − 1

for n large enough. Therefore, for alli,

pi ≤
β − 1

0.9
i−β.

The total mass of all content typesi = k, ..m = αn is
αn∑

i=k

pi ≤
αn∑

i=k

β − 1

0.9
i−β ≤

∫ αn

k−1

β − 1

0.9
i−βdi ≤

1

0.9

1

(k − 1)β−1
.

Now, for k = (n)γ/β + 1, we have that,
αn∑

i=k

pi ≤
1

0.9

nγ/β

nγ
.

Therefore, the expected number of requests for content types
k, k+1, ..αn is less than1

0.9 (n
γ/β). Using the Chernoff bound,

the probability that there are more than20.9 (n
γ/β) requests for

content typesk, k + 1, ..αn in the interval of interest is less
than 1

n2 for n large enough.
Therefore, with probability greater than1 − 1/n2, the

number different types of contents requests for in the interval
of interest is less thannγ/β + 2

0.9(n
γ/β). Hence the result

follows.
We use the following concentration result for Exponential

random variables.
Lemma 2:Let Xk for 0 ≤ k ≤ v, be i.i.d. exponential

random variables with mean 1, then,

P

(v∑

k=1

Xi ≤ a

)
≤ exp(v − a)

(
a

v

)v

. (3)

Proof: This follows from elementary calculations, and
is provided here for completeness. For anya and v, by the
Chernoff bound, we have that,

P

(v∑

k=1

Xi ≤ a

)
≤ min

t>0
eta(E[e−tXi])v.

SinceXk is an exponential random variable with mean 1, we
have that,

P

(v∑

k=1

Xi ≤ a

)
≤ min

t>0
eta

(
1

1 + t

)v

= exp(v − a)

(
a

v

)v

.

Lemma 3:Suppose the system starts with each content
piece stored on exactly one server. LetE2 be the event that
in the first nγ arrivals for γ such that0 < γ < 1, at most
O(nγ/β)(logn+1) are served (not deferred). Then, forβ > 1,

P(E2) ≥ 1−
1

logn
. (4)

Proof: This proof is conditioned on the eventE1 defined
in Lemma 1. Conditioned onE1, in the firstnγ arrivals, at
mostO(nγ/β) different content types are requested. Therefore,
at mostO(nγ/β) servers can serve requests during the firstnγ

arrivals.
Let E3 be the event that the time taken for the firstnγ

arrivals is less than2n
γ

λ̄n
. Since the expected time for the first

nγ arrivals isnγ

λ̄n
, by the Chernoff bound,P(E3) ≥ 1−o(1/n).

The rest of this proof is conditioned on the eventE3.
If the system serves (does not defer) more than

O(nγ/β(logn + 1)) requests in this interval, at least one
server needs to serve more thanlogn requests. By substituting
a = cn−1+γ andv = logn in Lemma 2, we have that,

P

(logn∑

k=1

Xk ≤ cn−1+γ

)
≤ exp(log n− cn−1+γ)

×

(
cn−1+γ

logn

)logn

= o

(
1

n

)
.

Therefore, the probability that a server serves more thanlogn
requests in an interval of2n

γ

λ̄n
time is o

(
1
n

)
. Therefore, using

the union bound, the probability that none of theseO(nγ/β)
servers serve more thanlogn requests each in2n

γ

λ̄n
time is

greater than1−O(nγ/β)o(1n). Therefore, we have that,

P(Ec
2) ≤ O(nγ/β)o

(
1

n

)
+ P (Ec

1) + P (Ec
3)

≤
1

logn

for n large enough.
Lemma 4:Let the interval of interest beT (n) such that

T (n) = Ω(1). If the learning phase of the storage policy lasts
for the firstnγ arrivals,0 < γ < 1, the expected number of
requests deferred in Phase 2 isΩ

(
T (n)n1−γn

γ
β
)
.

Proof: Let N2 be the number of arrivals in Phase 2, then
we have that,E[N2] = T (n)λ̄n− nγ .

LetE4 be the event thatN2 > E[N2]/2. Using the Chernoff
bound, it can be shown thatP (Ec

4) = o(1/n).
The rest of this proof is conditioned onE1 defined in

Lemma 1 andE4 defined above. We consider the following
two cases depending on the number of servers allocated to
content types not seen in Phase 1.

Case I: The number of servers allocated to content types not
seen in Phase 1 is less thanǫn for someǫ ≤ 1 − λ̄

1000 . For
β > 1,

Z(β) =
αn∑

i=1

i−β ≤
∞∑

i=1

i−β = cz <∞.

Therefore, for alli, pi ≥ 1
cz
i−β . The total mass of all content

typesk, k + 1, ..αn is
αn∑

i=k

pi ≥

αn∑

i=k

1

cz
i−β ≥

∫ αn+1

k

1

cz
i−βdi

=
0.9

cz(β − 1)

1

kβ−1
,

for n large enough.
Therefore, the expected number of arrivals of types

not requested in Phase 1 in Phase 2 is at least

(T (n)λ̄n−nγ

2) 0.9
cz(β−1)

n
γ
β

nγ .
Let E5 be the event that in Phase 2, there are at least

(T (n)λ̄n−nγ

4) 0.9
cz(β−1)

n
γ
β

nγ arrivals of types not requested in
Phase 1. Using the Chernoff bound,P(Ec

5) = o(1/n).
Conditioned onE1, all but O(nγ/β) content types, are not

requested in Phase 1. Recall that all learning-based policies
treat all these content types equally and that the total number
of servers allocated to store the content types not seen in Phase
1 is less thanǫn. Let η be the probability that a content is not
stored by the storage policy under consideration. Then,

η ≥ 1−
ǫn

n−O(nγ/β)
≥ 1−

ǫ

2
,

for n large enough.

Let E6 = E1 ∩ E3 ∩ E4 ∩ E5 andD2 be the number of
requests deferred in Phase 2.

E[D2|E6] ≥ η

((
T (n)λ̄n− nγ

2

)
0.9

2cz(β − 1)

nγ/β

nγ

)

≥

(
1−

ǫ

2

)(
T (n)λ̄n− nγ

2

)
0.9

2cz(β − 1)

nγ/β

nγ

= Ω
(
T (n)n1−γnγ/β

)
.

Therefore,

E[D2] ≥ E[D2|E6]P(E6)

≥ E[D2|E6]

(
1−

1

logn
−

3

n

)

= Ω
(
T (n)n1−γnγ/β

)
.

Case II: The number of servers allocated to content types not
seen in Phase 1 is more thanǫn for someǫ > 1− λ̄

1000 .
Let f(n) be the number of servers allocated to store all

content types that are requested in Phase 1. By our assumption,
f(n) ≤ λ̄

1000n.
Let C1 be the set of content types requested in Phase 1. Let

p =
∑

c∈C1
pc be the total mass of all content typesc ∈ C1.

Let p̂c be the fraction of requests for content-typec in Phase 1.
By the definition ofC1, the total empirical mass of all content
typesc ∈ C1 is obviouslyp̂ =

∑
c∈C1

p̂c = 1.
Recall that there arenγ arrivals in Phase 1. Letr = nγ .

We now use the Chernoff bound to compute a lower bound
on the true massp, using a technique similar to that used in
[9] (Lemma 4). By the Chernoff bound, we know that,

P(p̂ > (1 + κ)p) ≤ exp

(
−

prκ2

3

)
.

Let δ = exp

(
−

prκ2

3

)
, then, we have that, with probability

greater than1− δ,

p̂− p >

√
−3p log δ

r
.

Solving for p, we get that, with probability greater than1 −

δ, p > 1 −
3 log(1/δ)

2r
, for n large enough. Letδ = 1/n,

then we have that, with probability greater than1− 1/n, p >

1 −
3 logn

2nγ
. Conditioned on the eventE4, there are at least

T (n)λ̄n−nγ

2 arrivals in Phase 2. The remainder of this proof is
conditioned onE4. Let A2 be the number of arrivals of types
c ∈ C1 in phase 2. LetE7 be the event that

A2 >
T (n)λ̄n− nγ

2

(
1−

3 logn

2nγ

)
.

Since the expected number of arrivals of content typesc ∈ C1

in Phase 2 is at least

(T (n)λ̄n− nγ)

(
1−

3 logn

2nγ

)
,

using the Chernoff bound, we can show thatP(Ec
7) = o(1/n).

The rest of this proof is conditioned onE7. By our assumption,
the number of servers which can serve arrivals of typesc ∈ C1

in Phase 2 isf(n). Therefore, if at leastA2/2 requests are to
be served in Phase 2, the sum of the service times of these
A2/2 requests should be less thanT (n)f(n) (since the number
of servers which can serve these requests isf(n)). Let E8

be the event that the sum ofA2/2 independent Exponential
random variables with mean 1 is less thanT (n)f(n). By
substitutingv = A2/2 and a = T (n)f(n) in Lemma 2, we
have that,

P(E8) ≤ exp

(
A2

2
− T (n)

)(
2T (n)f(n)

A2

)A2

2

≤ exp

(
A2

2

)(
2T (n)f(n)

A2

)A2

2

= o

(
1

n

)

for n large enough. Hence,

P

(
D2 ≥

A2

2

)
≥ 1− P(Ec

1)− o

(
1

n

)

⇒ E[D2] = Ω
(
T (n)n1−γnγ/β

)
.

Proof: (Proof of Theorem 1)
We consider two cases:
Case I: The learning phase lasts for the firstnγ arrivals where
0 ≤ γ < 1.
Let D1 be the number of requests deferred in Phase 1 andD
be total number of requests deferred in the interval of interest.
Then, we have that,

E[D] = E[D1] + E[D2].

By Lemmas 3 and 4 and sinceT (n) = Ω(1), we have that,

E[D] ≥ nγ − (nγ logn)
1

β−1 logn+ E[D2]

= Ω(nT (n))
1

2−1/β .

Case II: The learning phase lasts for longer than the time taken
for the firstn arrivals.
By Lemma 3, the number of requests deferred in the firstn
arrivals is at leastn−O(n1/β logn) with probability greater
than1− 1/ logn. Therefore, we have that,

E[D] ≥

(
n−O(n1/β logn)

)(
1−

1

logn

)
= Ω(n)

= Ω(nT (n))
1

2−1/β .

B. Proof of Theorem 2

In this section, we provide an outline of the proof of
Theorem 2. The proof follows on the same lines as the proof
of Theorem 1.

1) First, we show that w.h.p., among the firstnγ arrivals,
i.e., during the learning phase,Ω(nγ) requests are de-
ferred (Lemma 3).

2) Since we are studying the performance of the MYOPIC
policy for the Continuous Change Model, the relative
order of popularity of contents keeps changing in the
interval of interest. If the learning phase lasts for the
first nγ arrivals for some0 < γ ≤ 1, we show that
under Assumption 1, w.h.p., in the learning phase, only
O(nγ/β) content types are requested.

3) Next, we show that the expected the number of requests
in Phase 2 for content types not requested in Phase 1 is
Ω(n1−γnγ/β). Using this, we compute a lower bound
on the number of requests deferred in Phase 2 (after
the learning phase) by any learning-based static storage
policy. This results follows by the same arguments as
the proof of Lemma 4.

4) Using Steps 1 and 3, we lower bound the number of
requests deferred in the interval of interest.

C. Proof of Theorem 3

We first present an outline the proof of Theorem 3.

1) We first show that under Assumption 1, on every arrival
in the interval of interest (T (n)), there areΘ(n) idle
servers w.h.p. (Lemma 6).

2) Next, we show that w.h.p., in the interval of interest of

length T (n), only O
(
(nT (n)

) 1

β) unique content types
are requested (Lemma 7).

3) Conditioned on Steps 1 and 2, we show that, the
MYOPIC policy ensures that in the interval of interest,
once a content type is requested for the first time, there
is always at least one idle server which can serve an
incoming request for that content.

4) Using Step 3, we conclude that, in the interval of
interest, only the first request for a particular content
type will be deferred. The proof of Theorem 3 then
follows from Step 2.

Lemma 5:Let the cumulative arrival process to the content
delivery system be a Poisson process with rateλ̄n. At time t,
let χ(t) be the number of occupied servers under the MYOPIC
storage policy. Then, we have that,χ(t) ≤st S(t), whereS(t)
is a poisson random variable with rateλ̄n(1− e−t).

Proof: Consider anM/M/∞ queue where the arrival
process is Poisson(λ̄n). Let S(t) be the number of occupied
servers at timet in this system. It is well known thatS(t)
is a Poisson random variable with rateλ̄n(1− e−t). Here we
provide a proof of this result for completeness. Consider a
requestr∗ which arrived into the system at timet0 < t. If the
request is still being served by a server, we have that,

t0 + µ(r∗) > t,

whereµ(r∗) is the service time of requestr∗. Sinceµ(r∗) ∼
Exp(1), we have that,

P(µ(r∗) > t− t0|t0) = e−(t−t0).

Therefore,

P(r∗ in the system at timet) ≤

∫ t

0

1

t
e−(t−t0)dt0

=
1− e−t

t
.

Therefore, every request that arrived in the system is stillin
the system with probability at most1−e−t

t . Since the arrival
process is Poisson, the number of requests in the system
at time t is stochastically dominated by a Poisson random
variable with ratēλnt

(
1−e−t

t

)
= λ̄n(1− e−t).

To show χ(t) ≤st S(t), we use a coupled construction
similar to Figure 6. The intuition behind the proof is the
following: the rate of arrivals to the content delivery system
and theM/M/∞ system (where each server can serve all
types of requests) is the same. The content delivery system
serves fewer requests than theM/M/∞ system because some
requests are deferred even when the servers are idle. Hence,
the number of busy servers is the content delivery system is
stochastically dominated by the number of busy servers in the
M/M/∞ queueing system.

Lemma 6:Let the interval of interest be[t0, t0 + T (n)]
whereT (n) = o(nβ−1) and ε ≤ 1−λ̄

2 . Let F1 be the event
that at the instant of each arrival in the interval of interest, the
number of idle servers in the system is at least

(
1− λ̄− ε

)
n.

Then,P(F c
1) = o

(
1
n

)
.

Proof: Let F2 be the event that the number of arrivals in
[t0, t0+T (n)] ≤ nT (n)(λ̄+ε). Using the Chernoff bound for
the Poisson process, we have that,

P(F c
2) = o

(
1

n

)
.

Consider anyt ∈ [t0, t0+T (n)]. By Lemma 5,χ(t) ≤st S(t),
whereS(t) ∼ Poisson(̄λn(1− e−t)). Therefore,

P(χ(t) > (λ̄+ ε)n) ≤ P(S(t) > (λ̄+ ε)n).

Moreover, S(t) ≤st W (t) where W (t) = Poisson(̄λn).
Therefore, using the Chernoff bound forW (t), we have that,

P(S(t) > (λ̄ + ε)n) ≤ P(W (t) > (λ̄+ ε)n) = e−c1n,

for some constantc1 > 0. Therefore,

P(F c
1) ≤ P(F c

2) + (λ̄+ ε)nT (n)P(χ(t) > (λ̄ + ε)n)

= o

(
1

n

)
.

Lemma 7:Let F3 be the event that in the interval of
interest of durationT (n) such thatT (n) = o(nβ−1), no more
thanO((nT (n))1/β) different types of contents are requested.
Then,P(F c

3) = o
(
1
n

)
.

Proof: Recall from the proof of Lemma 1 that the total
mass of all content typesk, ..m = αn is

αn∑

i=k

pi ≤
1

0.9

1

(k − 1)β−1
.

Now, for k = (nT (n))1/β + 1, we have that,
αn∑

i=k

pi ≤
1

0.9
(nT (n))−

β−1

β .

Conditioned on the eventF2 defined in Lemma 6, the expected
number of requests for content typesk, k + 1, ..αn is less
than 1

0.9 (λ̄ + ε)(nT (n))1/β . Using the Chernoff bound, the
probability that there are more than20.9 (λ̄ + ε)(nT (n))1/β

requests for content typesk, k + 1, ..αn in the interval of
interest is less than1n2 for n large enough.

Therefore, with probability greater than1− 1/n2− P(F c
2),

the number different types of contents requests for in the inter-
val of interest is less than(nT (n))1/β+ 2

0.9 (λ̄+ε)(nT (n))1/β.
Hence the result follows.

Proof: (Proof of Theorem 3)
Let F4 be the event that, in the interval of interest, every
request for a particular content type except the first request
is not deferred. The rest of this proof is conditioned onF1

and F3. Let U(t) be the number of unique contents which
have been requested in the interval of interest before time
t for t ∈ [t0, t0 + T (n)]. Conditioned onF3, as defined in
Lemma 7,U(t) ≤ k1(nT (n))

1/β for some constantk1 > 0
and n large enough. Conditioned onF1, there are always
(1− λ̄− ε)n idle servers in the interval of interest.

CLAIM: For every i andn large enough, once a contentCi

is requested for the first time in the interval of interest, the
MYOPIC policy ensures that there is always at least 1 idle
server which can serve a request forCi.

Note that sinceT (n) = o(nβ−1), (nT (n))1/β = o(n). Let n
be large enough such thatk1(nT (n))1/β < (1− λ̄− ε)n, i.e.,
at any timet ∈ [t0, t0 + T (n)], the number of idle servers
is greater thanU(t). We prove the claim by induction. Let
the claim hold for timet− and let there be a request at
time t for contentCi. If this is not the first request forCi

in [t0, t0 + T (n)], by the claim, att = t−, there is at least
one idle server which can serve this request. In addition, if
there is exactly one server which can serveCi at t−, then
the MYOPIC policy replaces the content of some other idle
server withCi. Since there are more thank1(nT (n))1/β idle
servers andU(t) < k1(nT (n))

1/β , at t+, each content type
requested in the interval of interest so far, is stored on at least
one currently idle server. Therefore, conditioned onF1 and
F3, every request for a particular content type except the first
request, is not deferred.

Hence, putting everything together,

P(F4) ≥ 1− P(F c
1)− P(F c

3),

thusP(F4)→ 1 asn→∞ and the result follows.

D. Proof of Theorem 4

We first present an outline of the proof of Theorem 4.

1) Since we are studying the performance of the MYOPIC
policy for the Continuous Change Model, the relative
order of popularity of contents keeps changing in the
interval of interest. We show that w.h.p., the number of
content types which are in then1/β most popular content
types at least once in the interval of interest isO(n1/β)
(Lemma 8).

2) Next, we show that w.h.p., in the interval of interest
of length b, only O(n1/β) content types are requested
(Lemma 9).

3) By Lemma 6 and the proof of Theorem 3, we know
that, conditioned on Step 3, the MYOPIC storage policy
ensures that in the interval of interest, once a content
type is requested for the first time, there is always at least
one idle server which can serve an incoming request
for that content. Using this, we conclude that, in the
interval of interest, only the first request for a particular
content type will be deferred. The proof of Theorem 4
then follows from Step 2.

Lemma 8:Let G1 be the event that, in the interval of
interest of lengthb, the number of times that a content
among the current topn1/β most popular contents changes its
position in the popularity ranking is at most4bα n1/βν. Then,
P (G1) ≥ 1− o

(
1
n

)
.

Proof: The expected number of clock ticks inb time-
units is bnν. The probability that a change in arrival process
involves at least one of the currentn1/β most popular contents

is n1/β

αn . Therefore, the expected number of changes in arrival
process which involve at least one of the currentn1/β most
popular contents is2bνα n1/β. By the Chernoff bound, we have
thatP (G1) ≥ 1− o

(
1
n

)
.

Lemma 9:Let G2 be the event that in the interval of
interest, no more thanO(n1/β) different types of contents are
requested. Then,P(Gc

2) = o
(
1
n

)
.

Proof: Conditioned on the eventG1 defined in Lemma 8,
we have that in the interval of interest, at most

(
2b
α ν+1

)
n1/β

different contents are among the topn1/β most popular con-
tents. Given this, the proof follows the same lines of arguments
as in the proof of Lemma 7.
The proof of the theorem then follows from Lemma 9 and
uses the same line of arguments as in the proof of Theorem
3.

E. Proof of Theorem 5

To show that GENIE is the optimal policy, we consider the
processX(t) which is the number of occupied servers at time
t when the storage policy is GENIE. LetY (t) be the number
of occupied servers at timet for some other storage policy
A ∈ A. We construct a coupled process(X∗(t), Y ∗(t)) such
that the marginal rates of change inX∗(t) andY ∗(t) is the
same as that ofX(t) andY (t) respectively.

Recallλ̄ =

∑m
i=1 λi

n
. At time t, let CGENIE(t) andCA(t)

be the sets of contents stored on idle servers by GENIE
andA respectively. The construction of the coupled process
(X∗(t), Y ∗(t)) is described in Figure 6. We assume that the
system starts at timet = 0 andX∗(0) = Y ∗(0) = 0. In this
construction, we maintain two countersZX∗ andZY ∗ which
keep track of the number of departures from the system. Let
ZX∗(0) = ZY ∗(0) = 0. Let Exp(µ) be an Exponential random
variable with mean1

µ and Ber(p) be a Bernoulli random
variable which is 1 with probability (w.p.)p.

Lemma 10:X∗(t) andY ∗(t) have the same marginal rates
of transition asX(t) andY (t) respectively.

Proof: Consider a small interval of time[t0, t0 + δ]. By
the definition ofX(t),

P(X(t0 + δ) = X(t0) + 1) ≈

(∑

i∈CGENIE(t)

λi

)
δ,

P(X(t0 + δ) = X(t0)− 1) ≈ X(t0)δ.

The above probabilities are implicitly conditioned on a suit-
able state definition for the system; we henceforth drop the
conditioning on the state for notational compactness. For the
processX∗(t),

P(X∗(t0 + δ) = X∗(t0) + 1) ≈ nλ̄

(∑
i∈CGENIE(t) λi

nλ̄

)
δ

=

(∑

i∈CGENIE(t)

λi

)
δ.

If (X∗(t0) ≥ Y ∗(t0)),

P(X∗(t0 + δ) = X∗(t0)− 1) ≈ X∗(t0)δ,

1: Generate: ARR∼ Exp(nλ̄), DEP∼ Exp(max{X∗, Y ∗})

2: t = t+min{ARR,DEP}
3: if ARR<DEP, then
4: if (X∗ = Y ∗) then

5: Generateu1 ∼ Ber

(∑
i∈CGENIE(t) λi

nλ̄

)

6: if (u1 = 1) then
7: X∗ ← X∗ + 1

8: Generateu2 ∼ Ber

(∑
i∈CA(t) λi∑

i∈CGENIE(t) λi

)

9: if (u2 = 1) then Y ∗ ← Y ∗ + 1
10: end if
11: else

12: Generateu1 ∼ Ber

(∑
i∈CGENIE(t) λi

nλ̄

)

13: if (u1 = 1) then X∗ ← X∗ + 1

14: Generateu2 ∼ Ber

(∑
i∈CA(t) λi∑

i∈CGENIE(t) λi

)

15: if (u2 = 1) then Y ∗ ← Y ∗ + 1
16: end if
17: else
18: if (X∗ ≥ Y ∗) then
19: X∗ ← X∗ − 1, ZX∗ ← ZX∗ + 1

20: Generateu3 ∼ Ber

(
Y ∗

X∗

)

21: if (u3 = 1) then Y ∗ ← Y ∗ − 1, ZY ∗ ← ZY ∗ + 1
22: else
23: Y ∗ ← Y ∗ − 1, ZY ∗ ← ZY ∗ + 1

24: Generateu4 ∼ Ber

(
X∗

Y ∗

)

25: if (u4 = 1) then X∗ ← X∗ − 1, ZX∗ ← ZX∗ + 1
26: end if
27: end if
28: Goto 1

Fig. 6. Coupled Process

and if (X∗(t0) < Y ∗(t0)),

P(X∗(t0 + δ) = X∗(t0)− 1) ≈ Y ∗(t0)
X∗(t0)

Y ∗(t0)
δ

= X∗(t0)δ.

The approximations become exact asδ → 0, since the
inter-event (arrival or departure) times are exponential.This
proves the lemma forX∗ andX .

By the definition ofY (t),

P(Y (t0 + δ) = Y (t0) + 1) ≈

(∑

i∈CA(t)

λi

)
δ,

P(Y (t0 + δ) = Y (t0)− 1) ≈ Y (t0)δ.

Consider the case whenY ∗(t0) = X∗(t0).
From Section III-C, we know that, under the GENIE storage
policy, if the number of idle servers at timet is k(t), they

store thek(t) most popular contents. Given this, ifX∗(t0) =

Y ∗(t0),

∑
i∈CA(t) λi∑

i∈CGENIE(t) λi
≤ 1. Therefore,u2 as defined in

Step 8 of the coupling construction is a valid bernoulli random
variable and in addition,u1×u2 is a bernoulli random variable

with parameter

(∑
i∈CA(t) λi

nλ̄

)
. Therefore, we have that,

P(Y ∗(t0 + δ) = Y ∗(t0) + 1) ≈ nλ̄

(∑
i∈CA(t) λi

nλ̄

)
δ

=

(∑

i∈CA(t)

λi

)
δ.

If Y ∗(t0) 6= X∗(t0),

P(Y ∗(t0 + δ) = Y ∗(t0) + 1) ≈ nλ̄

(∑
i∈CA(t) λi

nλ̄

)
δ

=

(∑

i∈CA(t)

λi

)
δ.

If (X∗(t0) ≥ Y ∗(t0)),

P(Y ∗(t0 + δ) = Y ∗(t0)− 1) ≈ X∗(t0)
Y ∗(t0)

X∗(t0)
δ

= Y ∗(t0)δ,

and if (X∗(t0) < Y ∗(t0)),

P(Y ∗(t0 + δ) = Y ∗(t0)− 1) ≈ Y ∗(t0)δ

= Y ∗(t0)δ.

This completes the proof.
Lemma 11:Let D(GENIE)(t) be the number of jobs de-

ferred by timet by the GENIE adaptive storage policy and
D(A)(t) to be the number of jobs deferred by timet by a policy
A ∈ A. In the coupled construction, letW ∗(t) be the number
of arrivals by timet. Let,DX∗

(t) = W ∗(t)−Z(X∗)(t)−X
∗(t)

and DY ∗

(t) = W ∗(t) − Z(Y ∗)(t) − Y ∗(t). Then, DX∗

(t)

and DY ∗

(t) have the same marginal rates of transition as
D(GENIE)(t) andD(A)(t) respectively.

Proof: This follows from Lemma 10 due to the fact that
X(t) have the same distribution asX∗(t) and the marginal
rate of increase ofDX∗

(t) given X∗(t) is the same as the
rate of increase ofD(GENIE)(t) given X(t). The result for
DY ∗

(t) follows by the same argument.
Lemma 12:X∗ ≥ Y ∗ for all t on every sample path.

Proof: The proof follows by induction.X∗(0) = Y ∗(0)
by construction. LetX∗(t−0) ≥ Y ∗(t−0) and let there be an
arrival or departure at timet0. There are 4 possible cases:

i: If ARR<DEP and X∗(t−0) = Y ∗(t−0), Y ∗(t0) =
Y ∗(t−0) + 1 only if X∗(t0) = X∗(t−0) + 1. Therefore,
X∗(t0) ≥ Y ∗(t0).

ii: If ARR<DEP and X∗(t−0) > Y ∗(t−0), Y ∗(t0) ≤
Y ∗(t−0) + 1 ≤ X∗(t−0) ≤ X∗(t0). Therefore,X∗(t0) ≥
Y ∗(t0).

iii: If DEP<ARR andX∗(t−0) = Y ∗(t−0), X
∗(t0) = Y ∗(t0).

iv: If DEP<ARR and X∗(t−0) > Y ∗(t−0), X∗(t0) =
X∗(t−0) − 1 ≥ Y ∗(t−0) ≥ Y ∗(t0). Therefore,X∗(t0) ≥
Y ∗(t0).

Lemma 13:ZX∗ ≥ ZY ∗ for all t on every sample path.
Proof: The proof follows by induction. Since the system

starts at timet = 0, ZX∗(0) = ZY ∗(0). Let ZX∗(t−0) ≥
ZY ∗(t−0) and let there be a departure at timet0. By Lemma
12, we know that,X∗(t−0) ≥ Y ∗(t−0). Therefore,ZX∗(t0) ≥
ZY ∗(t0) by the coupling construction.

Proof: (Proof of Theorem 5)
By Lemmas 12 and 13, for any sample path,

X∗(t) + ZX∗(t) ≥ Y ∗(t) + ZY ∗(t).

Therefore, for every sample path, the number of requests
already served (not deferred) or being served by the servers
by a content delivery system implementing the GENIE policy
is more than that by any other storage policy. This implies
that for each sample path, the number of requests deferred by
GENIE is less than that of any other storage policy. Sample
path dominance in the coupled system implies stochastic
dominance of the original process. Using this and Lemma 11,
we have that,

D(GENIE)(t) ≤st D
(A)(t).

F. Proof of Theorem 6

Proof: The key idea of the GENIE policy is to ensure that
at any timet, if the number of idle servers isk(t), the k(t)
most popular contents are stored on exactly one idle server
each. Since the total number of servers isn, and the number
of content-types ism = αn for some constantα > 1, all
content-typesCi for i > n are never stored on idle servers by
the GENIE policy. This means that under the GENIE policy,
all arrivals for content typesCi for i > n are deferred. For
β > 1,for all i,pi ≥ 1

cz
i−β, for some constantcz < ∞. The

cumulative mass of all content typesi = n+ 1, ..αn is

αn∑

i=n+1

pi ≥

αn∑

i=k

1

cz
i−β ≥

∫ αn+1

n+1

1

cz
i−βdi

≥
0.9

cz(β − 1)

1

(n+ 1)β−1
,

for n large enough.
Let the length of the interval of interest beb. The expected

number of arrivals of typesn+ 1, n+ 2, ..αn, in the interval

of interest is at least
0.9bλ̄n

cz(β − 1)
1

(n+ 1)β−1
. Therefore, the expected number of jobs deferred

by the GENIE policy in an interval of lengthb is Ω(n2−β).

G. Proof of Theorem 7

Proof: From the proof of Theorem 3, we know that if
T = o(nβ−1), w.h.p.,

- no more thanO(nT)1/β different types of contents are
requested,

- once a contentCi is requested for the first time, the
MYOPIC policy ensures that there is always at least 1
idle server which can serve a request forCi.

It follows that once a content is requested for the first time,
there is at least one copy of that content in the system (more
specifically, there is at least one copy of that content on an
idle server). Therefore, w.h.p., the number of external fetches
is equal to the number of unique content types requested in
the interval of interest and the result follows.

For the GENIE policy, before the first arrival, the GENIE
policy fetches then most popular contents to place on the
servers.

Let the number of idle servers att− be k(t) and let there
be a departure from the system at timet. After this departure,
the content of the new idle server is replaced withCk(t−)+1.
From Lemma 6, we have that with probability≥ 1 − o

(
1
n

)
,

Θ(n) servers are idle at all times in the interval of interest.
Therefore,k(t−) + 1 > ǫn for someǫ > 0 andλk(t−)+1 ≤
λ̄n

(ǫn)β
. The number of currently busy servers serving a request

for contentk(t−)+1 is stochastically dominated by a Poisson
random variable with rate λ̄n

(ǫn)β . Therefore, at timet+, with

probability≥ 1 − λ̄n
(ǫn)β

, there is no currently busy server in
the system serving a request forCk(t−)+1. By the properties
of the GENIE policy, the otherk(t−) idle servers store the
k(t−) most popular contents. Therefore, contentk(t−) + 1 is
not available in the system (on a busy or idle server) at time
t+ and will be fetched from the back-end server. Therefore,
w.h.p., each departure is followed by an external fetch. Since
there areΘ(nT) departures in an interval of durationT , the
result follows.

VI. RELATED WORK

Our model of content delivery systems shares several fea-
tures with recent models and analyses for content placement
and request scheduling in multi-server queueing systems [10],
[11], [15], [16]. All these works either assume known demand
statistics, or a low-dimensional regime (thus permiting “easy”
learning). Our study is different in its focus on unknown, high-
dimensional and time-varying demand statistics, thus making
it difficult to consistently estimate statistics. Our setting also
shares some aspects of estimating large alphabet distributions
with only limited samples, with early contributions from Good
and Turing [17], to recent variants of such estimators [9], [14].

Our work is also related to the rich body of work on
the content replication strategies in peer-to-peer networks,
e.g., [18]–[25]. Replication is used in various contexts: [18]
utilizes it in a setting with large storage limits, [19], [20]
use it to decrease the time taken to locate specific content,
and [23]–[25] use it to increase bandwidth in the setting of

video streaming. However, the common assumption is that
the number of content-types does not scale with the number
of peers, and that a request can be served in parallel by
multiple servers (and with increased network bandwidth as
the number of peers with a specific content-type increases)
which is fundamentally different from our setting.

Finally, our work is also related to the vast literature on con-
tent replacement algorithms in server/web cache management.
As discussed in [26], parameters of the content (e.g., how large
is the content, when was it last requested) are used to derive
a cost, which in-turn, is used to replace content. Examples
of algorithms that have a cost-based interpretation include
the Least Recently Used (LRU) policy, the Least Frequently
Used (LFU) policy, and the Max-Size policy [27]. We refer
to [26] for a survey of web caching schemes. There is a huge
amount of work on the performance of replication strategiesin
single-cache systems; however the analysis of adaptive caching
schemes in distributed cache systems under stochastic models
of arrivals and departures is very limited.

VII. C ONCLUSIONS

In this paper, we considered the high dimensional setting
where the number of servers, the number of content-types, and
the number of requests to be served over any time interval all
scale asO(n); further the demand statistics are not known a-
priori. This setting is motivated by the enormity of the contents
and their time-varying popularity which prevent the consistent
estimation of demands.

The main message of this paper is that in such settings,
separating the estimation of demands and the subsequent use
of the estimations to design optimal content placement poli-
cies (“learn-and-optimize” approach) is order-wise suboptimal.
This is in contrast to the low dimensional setting, where the
existence of a constant bound on the number of content-
types allows asymptotic optimality of a learn-and-optimize
approach.

REFERENCES

[1] www.youtube.com/yt/press/statistics.html.
[2] S. Moharir, J. Ghaderi, S. Sanghavi, and S. Shakkottai. Serving content

with unknown demand: the high-dimensional regime. Inthe 14th ACM
SIGMETRICS Conference, 2014.

[3] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. YouTube traffic characteri-
zation: A view from the edge. In7th ACM SIGCOMM Conference on
Internet Measurement, pages 15–28, 2007.

[4] M. Ahmed, S. Traverso, M. Garetto, P. Giaccone, E. Leonardi, and
S. Niccolini. Temporal locality in today’s content caching: why it matters
and how to model it. ACM SIGCOMM Computer Communication
Review, 43(5):5–12, October 2013.

[5] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching
and Zipf-like distributions: Evidence and implications. In IEEE INFO-
COM’99, pages 126–134, 1999.

[6] H. Yu, D. Zheng, B.Y. Zhao, and W. Zheng. Understanding user behavior
in large scale video-on-demand systems. InEuroSys, April 2006.

[7] A. Iamnitchi, M. Ripeanu, and I. Foster. Small-world file-sharing
communities. InIEEE INFOCOM, March 2004.

[8] E. Veloso, V. Almeida, W. Meira, A. Bestavros, and S. Jin.A hierarchical
characterization of a live streaming media workload. InProceedings
of the 2nd ACM SIGCOMM Workshop on Internet measurment, pages
117–130, 2002.

[9] A.D. McAllester and R.E. Schapire. On the convergence rate of Good-
Turing estimators. InCOLT Conference, pages 1 – 6, 2000.

[10] M. Leconte, M. Lelarge, and L. Massoulie. Bipartite graph structures
for efficient balancing of heterogeneous loads. Inthe 12th ACM
SIGMETRICS Conference, pages 41–52, 2012.

[11] M. Leconte, M. Lelarge, and L. Massoulie. Adaptive replication in
distributed content delivery networks. http://arxiv.org/abs/1401.1770.

[12] C. Fricker, P. Robert, J. Roberts, and N. Sbihi. Impact of traffic mix on
caching performance in a content-centric network. InComputer Com-
munications Workshops (INFOCOM WKSHPS), 2012 IEEE Conference
on, pages 310–315. IEEE, 2012.

[13] S. Williams, M. Abrams, C.R. Standridge, G. Abdulla, and E.A. Fox.
Caching proxies: limitations and potentials. Inthe 4th International
WWW Conference, December 1995.

[14] G. Valiant and P. Valiant. Estimating the unseen: An n/log (n)-sample
estimator for entropy and support size, shown optimal via new clts.
In Proceedings of the 43rd annual ACM Symposium on Theory of
Computing, pages 685–694, 2011.

[15] J.N. Tsitsiklis and K. Xu. Queueing system topologies with limited
flexibility. In SIGMETRICS ’13, 2013.

[16] R. B. Wallace and W. Whitt. A staffing algorithm for call centers with
skill-based routing. Manufacturing and Service Operations Manage-
ment, 7:276–294, 2007.

[17] I. J. Good. The population frequencies of species and the estimation of
population parameters.Biometrika, 40(3-4):237–264, 1953.

[18] B. Tan and L. Massoulie. Optimal content placement for peer-to-peer
video-on-demand systems.IEEE/ACM Trans. Networking, 21:566–579,
2013.

[19] J. Kangasharjua, J. Roberts, and K.W. Ross. Object replication strategies
in content distribution networks.Computer Communications, 25:376–
383, 2002.

[20] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication
in unstructured peer-to-peer networks. In16th international conference
on Supercomputing, 2002.

[21] J. Kangasharju, K.W. Ross, and D.A. Turner. Optimizingfile availability
in peer-to-peer content distribution. InINFOCOM, 2007.

[22] W. Wu and J.C.S. Lui. Exploring the optimal replicationstrategy in
P2P-VoD systems: Characterization and evaluation.IEEE Transactions
on Parallel and Distributed Systems, 23, August 2012.

[23] Y. Zhou, T.Z. Fu, and D.M. Chiu. On replication algorithm in P2P-VoD.
IEEE/ACM Transactions on Networking, pages 233 – 243, 2013.

[24] D. Ciullo, V. Martina, M. Garetto, E. Leonardi, and G.L.Torrisi.
Stochastic analysis of self-sustainability in peer-assisted VoD systems.
In IEEE INFOCOM, pages 1539–1547, 2012.

[25] X. Zhou and C. Xu. Optimal video replication and placement on a
cluster of video-on-demand servers. InInternational Conference on
Parallel Processing, pages 547–555, 2002.

[26] J. Wang. A survey of web caching schemes for the Internet. ACM
SIGCOMM Computer Communication Review, 29:36–46, 1999.

[27] S. Williams, M. Abrams, C.R. Standridge, G. Abdulla, and E.A. Fox.
Removal policies in network caches for world-wide web documents. In
SIGCOMM’96, 1996.

	I Introduction
	I-A Contributions
	I-B Organization and Basic Notations

	II Setting and Model
	II-A Server and Storage Model
	II-B Service Model
	II-C Content Request Model
	II-D Time Scales of Change in Arrival Process

	III Main Results and Discussion
	III-A Separating Learning from Content Placement
	III-B Myopic Joint Learning and Placement
	III-C Genie-Aided Optimal Storage Policy

	IV Simulation Results
	V Proofs of Main Results
	V-A Proof of Theorem 1
	V-B Proof of Theorem 2
	V-C Proof of Theorem 3
	V-D Proof of Theorem 4
	V-E Proof of Theorem 5
	V-F Proof of Theorem 6
	V-G Proof of Theorem 7

	VI Related Work
	VII Conclusions
	References

