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Abstract—Dynamic operation of flexgrid networks might cause optical spectrum to be divided into fragments, which 
makes difficult finding contiguous spectrum of the required width for incoming connection requests, leading thus to an 
increased blocking probability. To alleviate to some extend that spectrum fragmentation, the central frequency of 
already established connections can be shifted to create wider spectrum contiguous fragments to be allocated to 
incoming connections; this is called spectrum defragmentation. In this paper, we propose using the so called ABNO 
architecture, currently under standardization in the IETF, to deal with the defragmentation use case while the network is 
in operation. A workflow involving several elements in the ABNO architecture is proposed and experimentally assessed 
in a distributed test-bed connecting facilities in three mayor European cities. 
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1 INTRODUCTION 
The recent availability of novel switching technologies is driving the introduction of flexgrid optical networks [1], 

[2]. In flexgrid networks, the fixed grid spacing is removed and an optical connection is allocated to a frequency slot 
composed of a number of contiguous portions of spectrum resources, named slices, of a fixed spectral width (e.g., 
6.25GHz). To set up an optical connection on a flexgrid optical network, the Routing and Spectrum Allocation (RSA) 
[3] needs to be solved to find a physical route with a set of slices continuous along the route and contiguous in the 
optical spectrum. The width of the allocated slot should be according to the requested bitrate, the selected modulation 
format, and the considered grid. The slices are allocated around a central frequency and hence, the number of allocated 
slices must be an even number. 

In dynamic scenarios, spectrum fragmentation appears in flexgrid networks subject to both the continuity and the 
contiguity constraints. As a consequence of the high cost of spectrum converters, they are rarely used in optical 
networks and therefore, spectrum fragmentation appears, increasing the blocking probability of connection requests 
degrading the network Grade of Service (GoS). 

To improve network efficiency, defragmentation can be applied by re-configuring selected connections, thus 
compacting the utilized resources and facilitating that incoming connection requests can be served. Several re-
optimization strategies (including rerouting and spectrum reallocation) have been proposed so far for optical networks 
and can be applied to the specific case of flexgrid networks [4]-[7]; those strategies can be divided into proactive and 
reactive considering the way they are triggered [4]. The proactive strategy focuses on minimizing fragmentation itself at 
given period of time, whereas reactive, also known as provisioning-triggered, focuses on making enough room for a 
given connection request if it cannot be established with current resources allocation. Periodic defragmentation, 
requiring long computation times as a result of the amount of data to be processes, is essentially performed during low 
activity periods, e.g. during nights [5]. Conversely, path-triggered defragmentation, involving only a limited set of 
already established connections, might provide solutions in shorter times and can be run in real time [6], [7]. 

To minimize traffic disruption, the standardized make-before-break rerouting technique, included in the standardized 
resource reservation protocol traffic engineering (RSVP-TE) protocol [8], can be used for signaling the new connection 
for rerouting or reallocation and transferring traffic from the current connection to the new one before the old path is 
finally torn down. In optical networks, make-before-break requires additional resources to support two parallel 
connections such as spare transponders, which entail additional costs. 

Alternatively, the recently introduced push-pull technique [9] can be used to shift the central frequency of established 
optical connections without traffic disruption. Push-pull consists in re-tuning the transmitter laser from the original to 
the target nominal central frequency, while the receiver is automatically pulled to track the signal shifting. The 



limitation of the central frequency shifting performed using the push-pull technique resides on the fact that connections 
can be allocated to new slots as long as no other connections are established between the current and the new slot, 
reducing thus the set of reallocations available for each connection. 

To perform spectrum defragmentation in a network under operation, i.e. transporting real traffic, a carefully analysis 
of the functionalities that are needed, not only at the data plane, but also at the control and management planes, has to 
be carried out. For the control plane, in this work we rely on the recently proposed Applications Based Network 
Operations (ABNO) architecture [10]. The ABNO architecture describes an SDN-based framework, combining existing 
technologies and functional elements for managing information regarding topology and available resources in a 
network, and for requesting path computations, connection provisioning or reserving network resources. The key 
component within ABNO is the Path Computation Element (PCE) [11], [12], which can be used for computing paths 
and is further extended to provide policy enforcement capabilities for ABNO. 

As for the management plane, a Network Management System (NMS) or an Operations Support System (OSS) is 
used to operate the network. In particular, the NMS issues high-level service requests to the ABNO Controller and 
establishes the provisioning policies to exploit network resources and functionalities [10]. 

To perform optimization-related computations, the PCE can be extended with a module featuring Global Concurrent 
Optimization (GCO) [13], [14]. However, because of its specialization, it might be desirable that a separated element, a 
so called planning tool, able to perform complex optimization-related computations, is deployed. Aiming at reducing 
network cost by minimising the over-provisioning, optimization requests can be issued to the planning tool to 
reconfigure and/or re-optimize the network on demand and in real-time. Re-optimization performed while the network 
is being operated is called in-operation planning [15]. The planning tool is also part of the ABNO architecture provided 
that standard interfaces are used for optimization requests and responses.  

The remainder of this paper is organized as follows. Section 2 first introduces the provisioning-triggered spectrum 
defragmentation problem. Then, the control and management architecture considered in this paper is presented and the 
proposed in-operation spectrum defragmentation use case is described in terms of interrelation among the elements in 
the considered architecture. Current standards are eventually reviewed to verify how they can deal with the 
defragmentation problem. Section 3 formally states the hitless defragmentation problem and presents an Integer Linear 
Programming (ILP) to solve it. As a result of the stringent computation times in which the problem needs to be solved, 
a heuristic algorithm is proposed. Section 4 presents our proposal for provisioning-triggered defragmentation. The 
distributed algorithm to be executed is presented and auxiliary algorithms are proposed together with the specific 
contents and semantic of exchanged messages that we suggest to deal with the use case. Section 5 focuses on 
experimentally evaluated the feasibility of our proposal. To that end, a distributed test-bed connecting Telefonica’s, 
CNIT’s and UPC’s premises is presented. Finally, section 6 concludes the paper. 

2 ARCHITECTURE AND USE CASE 
Aiming at illustrating spectrum fragmentation, Fig.1 shows an example on the small network topology depicted in 

Fig.1a, where each node and link is labeled. The entire spectrum width consists of 16 slices. Fig.1b represents the 
utilization of each frequency slice in the network, where a number of optical connections are already established. In this 
scenario, the connection request between nodes 4 and 7 requesting 4 slices cannot be served. Notwithstanding, each link 
in the shortest route of the new optical connection newP (through links 4-5-6) has at least 4 free slices and then, the 
request could be established shifting some of the established connections. In the example, connections p1, p3, p4, p5, 
and p6 are using one or more of the links in the computed shortest route, and thus can be considered as candidates to be 
part of the defragmentation process. Finally in Fig.1c, connections p4 and p5 have been shifted making enough room 
for newP. 
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Fig.1 Example of spectrum reallocation by shifting the central frequency of some already established optical connections. 



Let us now analyze how spectrum defragmentation can be implemented in real networks. Next section focuses on the 
proposed control and management planes architecture. 

2.1 Control and management planes 
The control plane of the network presented here is implemented in terms of the ABNO architecture [10], currently 

under standardization in the IETF. The ABNO architecture, illustrated in Fig.2, includes the functional components 
needed to efficiently satisfy high-level service requests issued by the network management system (NMS).  

The path computation element (PCE) is able to perform constrained path computation on a graph representing a 
network. The PCE can be implemented with stateless or stateful functionality. In the stateless architecture, the PCE 
relies on a traffic engineering database (TED), which includes information about resource utilization. The stateful PCE 
architecture extends the stateless one maintaining individual Label Switched Path (LSP) state information in the LSP 
State Database (LSP-DB) [16]. LSP state information includes its route, bandwidth and spectrum allocation, switching 
types and LSP constraints. Additionally, a stateful PCE may also include the active functionality that enables the PCE 
to issue recommendations to the network, e.g. to dynamically update LSP parameters. 

Besides the PCE and the topology module containing network databases, i.e. TED and LSP-DB, the architecture 
includes the following main elements: i) The ABNO controller is responsible for orchestrating the rest of the elements, 
invoking them in the right order. The controller listens for requests arriving through the north-bound interface coming 
from the NMS or any technology-specific OSS and selects the appropriate workflow to follow so as to satisfy each 
request; ii) The policy agent is the entity that regulates the use and access to network functionalities and resources. It is 
responsible for propagating those policies to other components in the ABNO architecture; iii) The provisioning 
manager is in charge of communicating the network elements in the data plane new configurations, including 
connections provisioning and updating. To that end, several protocols can be used including Generalized Multi-Protocol 
Label Switching (GMPLS) signaling (i.e. RSVP-TE) or even directly programming individual network devices by 
means of the OpenFlow protocol [17]. In this paper, without loss of generality, we assume the former. 

Some other elements are also included in the ABNO architecture. However, since they are not used in this work we 
refer the reader to [10]. 
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Fig.2 ABNO architecture 

In addition to the standard ABNO architecture, we assume the front-end/back-end PCE architecture proposed in [11]. 
For the defragmentation use case, the front-end PCE must be active and stateful to be capable of updating existing 
connections and must include instantiation capabilities to be able to initiate connections set-up [18]. The back-end PCE 
is a planning tool prepared to solve optimization problems such as spectrum defragmentation. Consequently, the front-
end PCE plays the role of a Path Computation Client (PCC), delegating some complex computations to the back-end. 

2.2 Use case description 
The main purpose of spectrum defragmentation is improving network resource utilization and thus, its GoS. From a 

control and management perspective, the defragmentation process maps into a set of state changes of active 
connections. Such state changes are reflected in the change of connections’ attributes, in our case spectrum allocation 



by shifting the nominal central frequency of the slot allocated to a connection. Some other attributes, not covered in this 
work, can be updated, e.g. its allocated spectrum width (i.e., due to a change of modulation formats or bitrate). 

The optimization process can be triggered either manually by a network operator through the NMS, by an automated 
process triggered by some threshold or in a periodical fashion. In our case, let us assume that the defragmentation 
procedure is triggered after the front-end PCE fails to find a suitable route for a provisioning request. 

The request for a new connection is originally issued by the NMS and received by the ABNO controller through the 
north-bound interface. In such case, the ABNO controller is responsible for coordinating connection set-up, which 
composes and sends a specific request towards the front-end PCE, in charge of computing and finally coordinate 
connection establishment. 

The workflow that represents the provisioning-triggered defragmentation use case is detailed in Fig.3. As already 
introduced, it starts with a network operator requesting a new connection provisioning through the NMS. Establishing a 
flexible optical connection includes computing and provisioning a continuous slot between two nodes in the data plane. 
The request is received by the ABNO controller via its north-bound interface (step 1 in Fig.3). When the ABNO 
controller receives the request it asks the policy agent to check about rights of the received request (2). If access is 
granted, the ABNO controller requests the front-end PCE to compute the route and eventually set up the optical 
connection (3). 
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Fig.3 Defragmentation workflow 

Let us assume that as a result of spectrum fragmentation no end-to-end continuous slot is found (4). In that case, the 
ABNO controller may autonomously decide to perform a defragmentation process and sends a message to the front-end 
PCE (5). When the front-end PCE receives the request for defragmentation, it checks its feasibility and gathers 
information to create a GCO request that is sent towards the back-end PCE to solve the optimization problem (6). When 
the back-end PCE ends, it sends back the solution found. The front-end PCE proceeds then to execute the 
defragmentation that consists in shifting some of the candidate LSPs (7) and finally, when every LSP has been updated, 
the front-end PCE proceeds to establish the requested connection (8). Upon its completion, the front-end PCE notifies 
the ABNO controller (9), which in turn notifies the NMS (10). 

Obviously, if the request in (3) finds a feasible route and spectrum allocation, the front-end PCE proceeds with step 
(8) to establish the connection. 

All interactions between ABNO and PCEs are done by exchanging PCE protocol (PCEP) messages. In particular, 
Path Computation Request (PCReq) and Path Computation Reply (PCRep) messages are exchanged between front-end 
and back-end PCEs (step 6 in Fig.3). Next, we analyze up to what extent current standards can deal with the use case 
presented. 

2.3 Current standards review 
Let us firstly to start with the selection of the front-end PCE architecture. Since the defragmentation use case 

involves the front-end PCE updating already established connections, it is clear that related information must be 
available at the front-end PCE and hence a stateful PCE architecture is required. Note that, in contrast to the stateless 
PCE, the stateful PCE architecture explicitly includes a connection database (LSP-DB). 

In addition, currently defined PCEP RFCs and ongoing drafts have partial support for the defragmentation use case 



presented herein. In support to network optimization, PCEP extensions for GCO were standardized [13]. A GCO path 
computation request will simultaneously consider the state of network resources in the TED and a set of connections 
together with their respective constraints. GCO can be applied to the defragmentation use case, since can be applied to 
re-compute the route and spectrum allocation of a set of existing connections, taking into account also routing new 
services. 

When GCO is used to request a defragmentation procedure, the front-end PCE specifies, at each request, the existing 
connections to be considered. For that end, it would be desirable to identify connections, e.g. by means of the 
SYMBOLIC_NAME attribute within the LSP object defined in [16]. Unfortunately, current drafts do not support a path 
computation request referring to existing LSPs in the LSP-DB and therefore, they need to be explicitly conveyed and 
identified using its end points and used resources, i.e. route and spectrum allocation. This is achieved by using the 
END_POINTS and record route (RRO) objects. This may entail scalability issues in case the number of connections 
included in a PCReq message is large. 

Within the GCO PCReq message, a so called request list contains the parameters associated to the request for the new 
connection: a RP object identifying the request, its endpoints and relevant constraints such as BANDWIDTH, or Include 
Route Object (IRO). The request for the new connection is complemented with a set of requests related to existing 
connections candidate to be shifted. All these requests are grouped using the synchronized vector (SVEC) object to 
ensure that existing connections and the new one are jointly considered in the optimization. Finally, note that the 
Objective Function (OF) object can be used to specify the desired network-wide GCO related criterion, such as 
“Defragmentation”. 

Regarding PCRep messages, the back-end PCE must reply to every request received in the incoming PCReq 
message. Each request can be replied including an Explicit Route Object (ERO) specifying the new spectrum allocation 
[19] or the NO-PATH object in case that no feasible solution was found. In the latter case, disregarding the computed 
ERO, no shifting should be performed to the existing connections. 

Spectrum allocation can be described using the tuple {central frequency, slot width}. The central frequency can be 
defined in terms of the number n of slices (positive, negative or 0) from a reference frequency (193.1 THz), whereas the 
number m of slices at each side of the central frequency can be used for the slot width. Therefore, the tuple {n, m} 
unambiguously describes any spectrum allocation. 

Because the relative execution order among existing connections is important, a TLV can be appended to the RP 
object of each response to specify the delete and set-up order of each existing connection. By convention, receiving set-
up and delete orders with the same value implies that the connection stays unmodified. Nonetheless, that by default 
behavior must be modified since connections are neither torn down nor set-up, simply updated, i.e. its central frequency 
shifted. 

Regarding the interactions with other modules in the ABNO architecture, no standards are available yet. This is the 
case of the Policy Manager and the north-bound interface of the ABNO controller. As a consequence, we have used our 
own implementation. 

3 THE SPECTRUM SHIFTING (SPRING) PROBLEM 
As discussed in section 2, to avoid traffic disruption we propose using spectrum shifting for defragmentation. To that 

end in this section we firstly formally state the problem and then present an ILP model to solve the defragmentation 
problem. The model is based on our previous work in [6], but adapted with specific constraints to ensure that 
connections are shifted and not reallocated, i.e. no other connections are established using slices between current and 
new slots. Finally, a heuristic algorithm providing much better trade-off between optimality and complexity is 
proposed. 

The SPRING problem can be formally stated as follows: 
Given: 
• an optical network, represented by a graph G (N, E), being N the set of nodes and E the set of optical links 

connecting two nodes, 
• a set S of frequency slices available in each link eϵE, 
• a set P of already established LSPs, 
• a new request (newP) to be established in the network. A route for the LSP has been already selected but there 

is no feasible spectrum allocation, 
Output: 
• for each LSP to be shifted, its new spectrum allocation, 
• the spectrum allocation for newP. 



Objective: Minimize the amount of LSPs to be shifted to fit newP in. 
 
An ILP model for the SPRING problem is presented next. The model takes as input the set of established LSPs that 

share common links with the shortest route for newP. The following sets and parameters are defined: 
 

E set of optical links, index e. 
P set of already established LSPs, index p. 
E(p) subset of E with those links in the route of LSP p. 
P(e) subset of P with those LSPs using optical link e. 
P(p) subset of P with those LSPs sharing at least one link with LSP p. P(p) = ⋃eϵE(p) P(e) 
Pm subset of P with the candidate LSPs. Pm = P(newP). 
S set of frequency slices, index s. 
C set of slots, index c. Each slot c contains a subset of contiguous slices. 
C(p) subset of C with those slots that can be allocated to p. 
δcs 1 if slot c uses slice s, 0 otherwise. 
ωpc 1 if LSP p was using slot c, 0 otherwise. 
ηes 1 if slice s in optical link e is free, 0 otherwise. Note that to compute ηes only LSPs in P\Pm are considered. 

βpp’ 
0 if originally the index of the first slice allocated to LSP p was lower than that of the first slice allocated to 
LSP p’, provided that p’ was sharing at least one link with LSP p, i.e. c<c’, c ϵ C(p), c’ ϵ C(p’), p’ ϵ P(p)). 
1 if c>c’. Note that βpp’ is not defined for those LSPs not sharing any link. 

 
Additionally, the decision variables are: 
 

xpc binary, 1 if slot c is allocated to LSP p, 0 otherwise. 
yp binary, 1 if LSP p is shifted, 0 otherwise. 
 
Then, the ILP for the SPRING problem is as follows: 

∑
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The objective function (1) minimizes the number of LSPs that need to be reallocated in the spectrum so newP can be 
served. Constraint (2) ensures that every candidate LSP and the received request for newP have one slot allocated. 
Constraint (3) stores whether LSP p needs to be shifted comparing current and assigned slots. Constraint (4) guarantees 
that each frequency slice in every optical link is assigned to one path at most. Constraints (5) and (6) ensure feasible 
shifting by taking care of relative spectral position between LSPs pairs sharing any link, i.e. if two LSPs p and p’ 
sharing a common link were originally allocated to slots with indexes c<c’ (βpp’ = 0), then that relative spectral position 
mush be kept in the solution. The same must be ensured when c>c’ (βpp’ = 1). Note that when LSPs p and p’ do not 
share any link, these constraints do not apply. 

Although the size of the problem is limited –the number of variables is O(|Pm|·|C|) and the number of constraints is 



O(|Pm|2 + |Pm|·|C|+|E|·|S|)– it must be solved in real time, e.g. tens milliseconds, to minimize set-up delay of newP. For 
this very reason, we propose to use the heuristic algorithm described in Table 1. 

The algorithm iterates on every frequency slice s to find the set of LSPs in the route of newP allocated using the 
closest slice with index lower than s (s-), the set of LSPs allocated using the closest slice with index greater to s (s+) and 
the set of LSPs allocated using s (lines 3-10 in Table 1).  

Procedure getMaxShift find the largest continuous slot that can be generated by shifting LSPs (line 11). LSPs in set P- 
are left shifted, LSPs in P+ are right shifted, and LSPs in Ps are shifted left and right and the option generating the 
widest slot is chosen. If a slot with, at least, nd contiguous slices by shifting LSPs is found and the set of LPSs involved 
is lower than that of the best solution found so far, the set of LPSs is stored as the best solution and the number of LSPs 
involved is updated (lines 12-17). The best solution found is eventually returned. 

Table 1. Algorithm for the SPRING problem 

INPUT: E, nd 
OUTPUT: Solution 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 

Solution ← Ø 
numLSPs ← INFINITE 
for s = 1..|S| do 

P+ ← Ø, P- ← Ø, Ps ← Ø 
for each e ∈ E(newP) do 

if p(e,s-1) ≠ p(e,s) then 
P- ← P- U {p(e,s-)} 
P+ ← P+ U {p(e,s+)} 

else 
Ps ← Ps U {p(e,s)} 

{shift, conn} ← getMaxShift(P-, Ps, P+, s) 
if shift ≥ nd AND conn < numLSPs then 

Solution.P- ← P- 
Solution.Ps ← Ps 

Solution.P+ ← P+ 

Solution.s ← s 
numLSPs ← conn 

return Solution 
 

In the next section, we describe our proposal to integrate SPRING into the control plane using the ABNO 
architecture. 

4 DESCRIPTION OF THE PROPOSAL 
In this section we present our proposal for provisioning-triggered hitless defragmentation. Firstly, we describe the 

complete distributed algorithm and identify the different steps that need to be performed, together with the ABNO 
module in charge. Second, we define the specific contents and semantic of PCReq and PCRep messages to deal with 
defragmentation. We assume that a back-end PCE is used to solve optimization problems, so the SPRING algorithm is 
implemented in that back-end PCE and can be invoked from the front-end PCE using a specific code carried in OF 
objects. 

4.1 Proposed distributed algorithm for provisioning-triggered defragmentation 
The workflow for provisioning-triggered defragmentation was introduced in Fig.3. In this section we focus on the 

steps performed once a request arrives at the front-end PCE (step 3 in Fig.3). From that point on, the distributed 
algorithm shown in Fig.4 is executed. To facilitate the explanation, steps in Fig.4 relate to those in Fig.3. 

After a request arrives at the front-end PCE, an RSA algorithm is run to compute the route and find a feasible 
spectrum allocation. Assuming that no end-to-end continuous slot is found (4), the ABNO controller decides to perform 
a defragmentation process and sends a PCReq message to the PCE (5). When the PCE receives the request for 
defragmentation, it finds the set of already established LSPs candidate to be part of the defragmentation process (Table 
2). The procedure computes the shortest path between source and destination nodes of the requested connection, and the 
requested slot width (lines 2-3 in Table 2). Next, it verifies that every link in the found route has enough available 
spectrum resources and creates the set of candidate LSPs (P) as the LSPs using any of those links (lines 4-7). Both, the 
route and the set of LSPs are eventually returned (line 8). 
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Fig.4 Defragmentation distributed algorithm 

Table 2 Procedure Find_Candidate_LSPs 

INPUT TED, LSP-DB, sliceWidth, source, destination, bitrate 
OUTPUT P, R 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 

P ← Ø 
newP ← shortestPathByLenght(TED, source, destination) 
m ← computeSlotSize(R, bitrate, sliceWidth) 
for each e ∈ E(newP) do 

if freeSlices(e) < m then 
return {Ø, Ø} 

P ← P U getLSPs(LSP-DB, e) 
return {P, newP} 

 
Once the set of candidate LSP is found, the PCE sends a PCReq message to the back-end PCE to solve the 

optimization problem (6). When the back-end PCE ends, it sends back a PCRep message detailing the solution found. 
The front-end PCE proceeds then to execute the defragmentation that consists in shifting some of the candidate LSPs. 
To that end, a PCUpd message is sent towards each ingress PCC of a LSP that needs to be shifted (7); PCCs report 
updating completion back using PCRpt messages. Finally, when every LSP has been updated, the PCE proceeds to 
establish the requested connection by sending a PCInit message to the source PCC (8). 

4.2 PCEP issues 
Owing to the input parameters needed to solve SPRING, the algorithm in Table 2 finds the route and the set of 

candidate LSPs. That input data has to be coded and sent in a PCReq message; Table 3 shows the specific format that 
we use to convey the parameters. 

A list named re_opt request-list contains the candidate LSPs. The information includes source and 
destination nodes for the LSP (END-POINTS object) and its current route and spectrum allocation in the RRO object. 
With that information, the back-end PCE can find the associated LSP in its LSP-DB. Information regarding the new 
connection requested follows, including source and destination nodes, requested bitrate (BANDWIDTH object) and 
computed route (IRO object). 

Since all the requests have to be jointly considered, they are grouped by a SVEC object. Finally, the PCReq message 
uses the OF object to specify the objective function requested; spectrum defragmentation in our case. 

Once the SPRING problem is solved, the solution is coded in a PCRep message. Table 4 shows the specific format 
that we use to convey the solution. 

All the received requests have to be replied. To that end, the response-list contains an ERO object of each of 
the re-optimization requests. The route in the ERO must be invariant, since no rerouting is performed, however, the 
spectrum allocation can be either the same or a different one. Hence, an algorithm needs to be used in the front-end 
PCE to find the LSPs to be updated; that algorithm is detailed in Table 5.  



Table 3. PCReq message contents 

<PCReq Message>::= <Common Header> 
                <SVEC> 
                <OF> 
                <re_opt request-list> 
                <request> 
where: 
   <re_opt request-list>::=<re_opt request>[<re_opt request-list>] 
 
   <re_opt request>::= <RP> 
                <END-POINTS> 
                <RRO> 
 
   <request>::= <RP> 
                <END-POINTS> 
                <BANDWIDTH> 
                <IRO> 

 

Table 4. PCRep message contents 

   <PCRep Message> ::= <Common Header> 
                       <response-list> 
   where: 
      <response-list>::=<response>[<response-list>] 
      <response>::=<RP> 
                   <NO-PATH> | <ERO> 

 

Table 5 Procedure Do_Shifting 

INPUT LSP_DB, P 
1: 
2: 
3: 
4: 

for each p in P do  
if p.ERO ≠ getERO(LSP_DB, p) then 

update(p) 
return 

 

Regarding the request for the new connection, an ERO object can be received provided that a feasible solution for the 
SPRING problem has beed found. Note that the ERO object must follow the route specified in the incoming IRO object. 
A NO-PATH object is included if no feasible solution is found. 

The proposed algorithm for the SPRING problem and the described workflow have been experimentally validated in 
a distributed test-bed connecting infrastructures in Madrid and Barcelona in Spain, and Pisa (Italy). The next section 
describes the scenario and the tests performed. 

5 EXPERIMENTAL ASSESSMENT 
In this section, we experimentally validate our proposal for in-operation spectrum defragmentation. We start with a 

brief description of the deployed distributed set-up including the implemented modules. Next, the set-up is used to run 
the experiment in Fig.1. Protocol captures show the exchanged PCEP messages. 

5.1 Scenario 
The set-up has been deployed in three locations: Madrid, Barcelona and Pisa (Fig. 5). The ABNO controller and the 

NMS are located in Telefonica’s premises, while the back-end PCE runs in UPC. The data plane, the GMPLS nodes 
and the front-end PCE are in CNIT’s premises. The ABNO controller, the front-end PCE and the back-end PCE 
communicate through PCEP interfaces, where sessions are established on top of IPSec tunnels. 

The Telefonica’s ABNO controller [20] has been developed in Java and supports multiple workflows (e.g. 
connection set-up or re-optimization); the specific workflow to be executed is defined in the incoming request. As 
stated in section 2, no standard north-bound interface with the ABNO controller is defined. Our implementation is 
based on a representational state transfer (REST) interface with the following parameters: 
• Operation ID: uniquely identifies each user operation. The value is used to correlate different operations within the 

ABNO controller.  
• Operation Type: maps the workflow to be executed by the ABNO controller.  
• Source and Destination Node: IP addresses for the source and destination nodes.  
• Bandwidth: Requested connection bitrate. 
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Fig. 5. Distributed test-bed set-up. IP addresses used in each interface are shown. 

The CNIT front-end PCE has been implemented in C/C++ for Linux, extended to support active stateful path 
computation (i.e., PCUpd, PCRpt, and PCInit messages), with respect to previous versions focused on single-domain 
multi-format impairment-aware [21] and inter-domain path computation [22], respectively. The front-end PCE includes 
a PCEP Server module, a Path Solver module and the databases (i.e., the TED and the LSP-DB). The TED and the LSP-
DB are kept updated by means of PCNtf and PCRpt messages sent by LSP source nodes. The PCEP Server has been 
extended to enable back-end computation, functionally separated from PCEP sessions established locally with the data 
plane nodes. The Path Solver has been extended with the Find_Candidate_LSPs procedure of Table 2. 

The data plane includes four programmable spectrum selective switches (SSS); to complete the network topology, 
four node emulators are additionally deployed. Nodes are handled by co-located GMPLS controllers running RSVP-TE 
with flexgrid and push-pull operation extensions [9]. GMPLS controllers communicate with the front-end PCE by 
means of PCEP. The GMPLS controllers connected to a SSS (by means of a USB interface) runs a dedicated 
programmable configuration tool for automatic filter re-shaping with a resolution of 1 GHz.  

Finally, the UPC’s PLATON back-end PCE [23] has been developed in C++ for Linux operating system and is 
organized into 3 main building blocks. The first block is responsible for managing communications with other ABNO 
modules using standard protocols. The second block, the controller, manages PLATON execution: when incoming 
messages arrive, the controller decides the action to be taken among updating either the local network topology or the 
state of network resources, and running optimization algorithms. The last block handles optimization algorithms, which 
are deployed as dynamically linked libraries to allow that third party algorithms can be easily added into PLATON. 

5.2 Experimental results 
Before running the experiments, local TED and LSP-DB databases where populated with the same configuration. In 

particular, the topology and LSPs shown in Fig.1 were loaded locally. 
Next, a request for a new connection between nodes 4 and 7 was issued from the NMS to the ABNO controller, 

which resulted in the PCEP exchange depicted in the capture in Fig. 6. For the sake of easily follow the subsequent 
discussion, messages are correlated to the steps described in the workflow in Fig.3. The capture, done at the front-end 
PCE, includes PCEP messages exchanged inside the ABNO architecture (IP sub-network 172.16.x.x) as well as those 
exchanges between the front-end PCE and the PCCs (IP sub-network 10.10.x.x). 



No. Time Source Destination Prot Le Info

LSP5

LSP6

newP

3
4
5

6

7

8

9  
Fig. 6. PCEP messages exchanged. 

Fig. 7 presents the contents of the PCEP messages exchanged between the ABNO controller and the front-end PCE. 
PCReq message 3 includes the IP address of the end nodes and the requested bitrate (50Gb/s). When no solution is 
found in the front-end PCE for the request, the PCRep message 4 including a NO-PATH object is sent back to the 
ABNO controller. 

Next, PCReq messages 5 includes an OF object with the objective function code “defragmentation”. When the 
defragmentation process finishes, the front-end PCE replies with PCRep message 9 that includes the route and spectrum 
allocated for the new connection. In our experiments, we defined as reference frequency that between slices 8 and 9, so 
the new connection has been established using slices 5-8 (n=-2, m=2). 

3 4

 
5 9

Defragmentation

n=-2 m=2

 
Fig. 7. PCEP messages exchanged between the ABNO controller and the front-end PCE. 

Finally, Fig. 8 shows the PCEP messages exchanged between front-end and back-end PCEs. The front-end PCE 
computes the set of candidate LSPs that will participate in the optimization process, and includes them into PCReq 
message 6, indicating the current route and spectrum allocation. For instance, the RRO object for LSP 5 is detailed in 
Fig. 8. Together with the candidate LSPs, the request for the new connection is included, constrained to the route 
specified in the IRO object. 

After the optimization problem has been solved, the back-end PCE sends back to the front-end PCE the PCRep 
message 6 shown in Fig. 8, where an ERO object is included in response to every already established LSP. To illustrate 
the defragmentation, we can observe that the original spectrum allocation for LSP5 was n=-1 and m=1 (slices 7-8) and 
the computed one was n=+1 and m=1 (slices 9-10), i.e. LSP5 has been shifted 2 slices to make room for the new 
connection. 
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Fig. 8. PCEP messages exchanged between front-end and back-end PCE at step 6. 

Once the front-end PCE receives the response with the solution, finds which are the LSPs that need to be updated and 
starts that updating process sending PCUpd messages to the source PCCs (step 7). Note, in view of messages in Fig. 6 
that defragmentation is performed sequentially, following the order specified in RP objects. After all the LSP updating 
process ends, the new connection is set up using a PCInit message (step 8). Finally, PCRep message 9 is sent back to 
the ABNO controller, which in turns notifies connection set up to the NMS. 

6 CONCLUSIONS AND OPEN ISSUES 
In this work, the ability of ABNO architecture to deal with the defragmentation use case, which arises when 

operating dynamically flexgrid networks, has been experimentally assessed. To that end, the provisioning-triggered 
spectrum defragmentation use case was firstly investigated. The use case, an example of in-operation planning, starts 
when a connection request cannot be served as a consequence of spectrum fragmentation in the links of the network. As 
subset of already established connections are candidate to be part of the defragmentation problem, where it is possible 
that, by shifting the central frequency of some of them, enough room is made to serve the new connection requested. 
Aiming at evaluating the feasibility of the network control plane to deal with such use case, ABNO, the latest 
architecture of control plane currently under standardization in the IETF, has been evaluated. In particular, a front-
end/back-end PCE architecture was considered. The defragmentation use case was modeled as a workflow and the 
relation among ABNO modules was examined. Specifically, the possibility of using the standard PCEP protocol to 
convey complex requests and responses between front-end to back-end PCEs, was analyzed. 

Next, the spectrum shifting (SPRING) problem was formally stated and modelled using an ILP formulation, based on 
previous spectrum defragmentation works and adding specific constraints to limit connection reallocations where 
connections can be reallocated in any part of the optical spectrum, to just central frequency shifting that can be done in 
a hitless manner. An algorithm to be run within the back-end PCE was also proposed. 

Our proposal for provisioning-triggered defragmentation was presented afterwards. The proposed workflow, in the 
form of distributed algorithm running in several modules of the ABNO architecture, was detailed and the PCEP 
messages exchanged between front-end and back-end PCEs were specified. 

Finally, the feasibility of the ABNO architecture to deal with the defragmentation use case was experimentally 
demonstrated on a distributed test-bed connecting Telefonica’s premises in Madrid, CNIT’s premises in Pisa, and 
UPC’s premises in Barcelona. The relevant PCEP messages were shown and its contents analyzed. 

It is worth noting that in a distributed PCE architecture such that the one proposed in this work, link-state and traffic 
engineering information stored in PCE databases need to be synchronized. To that end, the BGP protocol is currently 
being extended within the IETF. 
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