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Abstract

The recently proposed high-order TENO scheme [Fu et al., Journal of Computational

Physics, 305(2016): 333-359] has shown great potential in predicting complex fluids owing

to the novel weighting strategy, which ensures the high-order accuracy, the low numerical

dissipation, and the sharp shock-capturing capability. However, the applications are still

restricted to simple geometries with Cartesian or curvilinear meshes. In this work, a new

class of high-order shock-capturing TENO schemes for unstructured meshes are proposed.

Similar to the standard TENO schemes and some variants of WENO schemes, the candidate

stencils include one large stencil and several small third-order stencils. Following a strong

scale-separation procedure, a tailored novel ENO-like stencil selection strategy is proposed

such that the high-order accuracy is restored in smooth regions by selecting the candidate

reconstruction on the large stencil while the ENO property is enforced near discontinuities

by adopting the candidate reconstruction from smooth small stencils. The nonsmooth sten-

cils containing genuine discontinuities are explicitly excluded from the final reconstruction,

leading to excellent numerical stability. Different from the WENO concept, such unique

sharp stencil selection retains the low numerical dissipation without sacrificing the shock-

capturing capability. The newly proposed framework enables arbitrarily high-order TENO

reconstructions on unstructured meshes. For conceptual verification, the TENO schemes

with third- to sixth-order accuracy are constructed. Without parameter tuning case by

case, the performance of the proposed TENO schemes is demonstrated by examining a set

of benchmark cases with broadband flow length scales.

Keywords: TENO, WENO, unstructured mesh, high-order scheme, low-dissipation

scheme, compressible fluids, hyperbolic conservation law

Preprint submitted to XXXX May 23, 2022



1. Introduction

For computational fluid dynamics (CFD), one core research topic is to develop high-order

stable numerical methods for solving the governing hyperbolic conservation laws, i.e. the

Euler or Navier–Stokes equations. The solution complexity of this set of initial-boundary

value PDEs resides at that discontinuities may appear even when the initial condition is

sufficiently smooth [1][2][3]. The basic requirements for modern numerical methods are

that the high-order accuracy is achieved for smooth flows and the solution monotonicity is

preserved in the vicinity of discontinuities [4][5]. For more complex fluid simulations, the

low-dissipation property is also essential such that the small-scale flow structures can be

resolved with high fidelity [6][7][8].

For flows over complex geometries, the established high-order numerical methods in-

clude, e.g., the conventional finite-volume [9][10][11] method, the discontinuous Galerkin

(DG) [12][13] method, and the flux-reconstruction (FR) [14][15] method. The finite-volume

method typically relies on the data from multi-layer neighboring cells for the targeted high-

order reconstruction. On the other hand, DG and FR methods can achieve high-order

accuracy by deploying high-order polynomials within the mesh element. This compactness

allows for a dramatic reduction of programming complexity and inter-node data transfer

for high-performance parallel computing with unstructured meshes [16]. Therefore, for low-

Mach flows, DG and FR methods are more and more popular for high-fidelity simulations,

e.g. for large-eddy simulations (LES) [17][18][19] and direct numerical simulations (DNS)

[20][21][22].

However, when high-Mach flows with shockwaves are concerned, the deployment of the

shock-capturing concept in these frameworks becomes inevitable and challenging. For the

DG and FR frameworks, the most popular choice is to introduce the artificial viscosity

method [23][24][25][15] for its simplicity in terms of implementation. However, the perfor-

mance of the artificial viscosity method is typically unsatisfactory and the built-in param-

eters need intensive case-by-case tuning. One alternative avenue is to resort to a hybrid

strategy, which first detects the shockwaves based on a certain indicator and locally deploys

the finite-volume shock-capturing concept, e.g. the Total Variation Diminishing (TVD)

[26][27][28] method, the essentially non-oscillatory (ENO) [29] method, the weighted ENO

(WENO) [30] method, and the Total Variation Bounding (TVB) [31] method. Other rel-

evant work includes the class of subcell finite volume limiters introduced for DG schemes

with a posteriori MOOD detector for Cartesian and unstructured meshes [32][33][34].

In terms of the TVD-based schemes for unstructured meshes, Barth and Jespersen [35]

propose a novel oscillation-free second-order scheme involving a limiter acting on a linear
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reconstruction polynomial. Venkatakrishnan [36] further improves it by making it differ-

entiable and thus better convergence property for steady state solutions is obtained. To

extend these limiters with high-order accuracy for smooth flows, Li and Ren [37] propose

the so-called weighted biased averaging procedure (WBAP) limiter by employing non-linear

weighting coefficients for the reconstruction and up to fourth-order accuracy on unstruc-

tured meshes is achieved. Michalak and Ollivier-Gooch [38] develop the accuracy preserving

limiter for high-order accurate solution of the Euler equations, where fourth-order accu-

racy is achieved with minimal sacrifices in convergence properties comparing to existing

second-order approaches.

However, when concerning even higher-order reconstruction, the further development

of limiter-based shock-capturing schemes becomes incredibly cumbersome. Instead, the

WENO paradigm [30], originating from the ENO concept [29], is able to provide arbitrarily

high-order reconstruction and sharp shock-capturing capability within a unified framework.

Different from ENO, WENO schemes utilize a weighted average of several low-order candi-

dates to form the high-order reconstruction on the full stencil. The nonlinear weights are

computed dynamically based on the smoothness indicators of candidate stencils such that

the optimal accuracy order is restored asymptotically in smooth regions and the ENO prop-

erty is enforced near discontinuities. While great success has been achieved for applications

on structured meshes with WENO schemes, it is, however, non-trivial to extend the WENO

weighting procedure to unstructured meshes. The main issue is that, for some mesh topolo-

gies, the optimal linear weights may become negative inducing numerical instabilities or even

do not exist [39][40][41]. One way to solve this issue is to decrease the targeted accuracy

order on the combined large stencil to that of the small candidate stencils [42][43][44][45].

Alternatively, the central WENO (CWENO) schemes [46][47][48][49], which feature stencils

of different sizes and tailored weighting strategy, can avoid these numerical difficulties since

the choice of the linear weights can be arbitrary as long as their total sum equals one. The

latest variants of CWENO schemes include the multi-resolution WENO schemes [50][51] and

the WENO schemes with adaptive orders [52]. The CWENO/CWENOZ schemes have been

extended to mixed-element unstructured meshes and multicomponent flows using unstruc-

tured meshes [53][54]. The WENO adaptive-order scheme has also been recently used for

general PNPM schemes (reconstructed DG) on fixed and moving meshes [55].

More recently, Fu et al. [56][57][58][59][60] propose a family of high-order targeted ENO

(TENO) schemes for solving the hyperbolic conservation laws. By introducing the novel

ENO-like stencil selection strategy, the TENO schemes feature low numerical dissipation

and sharp shock-capturing property. Compared to WENO schemes, one unique property of

TENO is that the background linear scheme can be restored exactly for up to intermedi-

ate wavenumbers without sacrificing the robustness for capturing strong discontinuities. In

this way, the performance of TENO schemes can be well controlled by optimizing the spec-

tral properties of the underlying background linear schemes. The TENO-family schemes
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have been widely deployed to different complex fluid simulations on structured meshes,

e.g. the multi-phase flows [61], the detonation simulations [62], the magnetohydrodynamics

(MHD) [63][64], the compressible gas dynamics [65][66][67][68][69][70], the turbulent flows

[71][72][73][74][75], etc.

As far as the authors’ knowledge, the high-order TENO schemes have not been extended

to the unstructured meshes, and consequently the applications are restricted to canoni-

cal simulations. In this work, a new class of high-order TENO schemes on unstructured

meshes are proposed. Similar to the idea in the standard TENO schemes [56][57][58] and

the WENO variants [46][48] [76][77], the candidate stencils involve one large central-biased

stencil and several small directional stencils. A tailored novel ENO-like stencil selection

strategy is proposed, which ensures that the final scheme is equipped with the high-order

reconstruction on the large stencil in smooth regions and with the low-order reconstruction

on small smooth stencils near the discontinuities. Except for the constant CT in the weight-

ing strategy, which separates the discontinuities from smooth scales in spectral space and

can be determined by aprior analyses, no additional case-by-case empirical parameters are

involved in the proposed TENO schemes. Moreover, arbitrarily high-order accurate TENO

schemes can be constructed with this unified framework. For the conceptual demonstration,

the TENO schemes with third- to sixth-order accuracy are constructed and validated with

a set of critical benchmark simulations.

The remainder of this paper is organized as follows. (1) In section 2, the high-order

finite-volume framework for solving the hyperbolic conservation laws is briefly reviewed

as well as the WENO and CWENO reconstruction schemes; (2) In section 3, the new

high-order TENO schemes for unstructured meshes are developed; (3) In section 4, the

numerical method for flux evaluations is discussed; (4) In section 5, the performance of the

proposed low-dissipation TENO schemes is demonstrated by conducting a wide range of

critical benchmark simulations; (5) Conclusions and remarks are given in the last section.

2. Fundamentals of the unstructured finite-volume methods

In this section, the basic concepts of the unstructured finite-volume method including

the classical high-order WENO and CWENO reconstruction schemes will be outlined.

2.1. Concepts of finite-volume method

For three-dimensional unsteady Euler equations, as typical hyperbolic conservation laws,

the conservative form can be written as

∂U

∂t
+∇ · (F(U)) = 0, (1)

where U = U(x, t) denotes the conservative variables and F(U) = (Fx(U),Fy(U),Fz(U))

the nonlinear convection flux functions. Assuming that the computational domain Ω is
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partitioned by elements of various shapes, e.g. triangle, quadrilateral in 2D, or tetrahedral,

hexahedral in 3D, integrating Eq. (1) over one control element Ii results in the following

semi-discrete form

dUIi
dt

= − 1

|VIi |

Nf∑
j

Nq∑
κ

FnIi,j

(
Un

Ii,j,L(xIi,j,κ , t),U
n
Ii,j,R(xIi,j,κ , t)

)
ωκ|AIi,j |, (2)

where UIi is the volume-averaged conservative variable, VIi the volume of control element Ii,
Nf the cell face number of Ii, Nq the number of quadrature points deployed for the high-order

surface integral approximation, FnIi,j the numerical flux in the normal direction (pointing

outwards) of face j, Un
Ii,j,L and Un

Ii,j,R the left- and right-biased approximated solutions on

the interface respectively, ωκ the weight for Gaussian integration point xIi,j,κ , and |AIi,j | the

surface area of face j.

In order to advance the cell averages of the solution in time, the third-order strong-

stability-preserving (SSP) Runge-Kutta method [78] is deployed for all the following inves-

tigations unless explicitly specified. The explicit formulas are given as

U
(1)

Ii = U
n

Ii + ∆tR(U
n

Ii),

U
(2)

Ii =
3

4
U
n

Ii +
1

4
U

(1)

Ii +
1

4
∆tR(U

(1)

Ii ),

U
n+1

Ii =
1

3
U
n

Ii +
2

3
U

(2)

Ii +
2

3
∆tR(U

(2)

Ii ),

(3)

where ∆t is the timestep size, and R(U
n

Ii) denotes the right hand side of Eq. (2).

Based on the standard finite-volume framework, the remaining numerical issue is to

develop the high-order scheme to reconstruct the cell interface data, i.e. Un
Ii,j,L(xIi,j,κ , t) and

Un
Ii,j,R(xIi,j,κ , t), based on the known cell-averaged solutions, and to evaluate the cell interface

flux FnIi,j

(
Un

Ii,j,L(xIi,j,κ , t),U
n
Ii,j,R(xIi,j,κ , t)

)
.

2.2. The high-order linear reconstruction schemes

Given a polynomial PIi(x, y, z) of order r in cell Ii, if the reconstructed cell-averaged

value equals UIi , i.e.

UIi =
1

|VIi |

∫
VIi

U(x, y, z)dV =
1

|VIi |

∫
VIi

PIi(x, y, z)dV, (4)

then r + 1 order of accuracy is achieved. For unstructured meshes involving elements of

various shapes, it is beneficial to transform all the elements from physical space (X =

(x, y, z)) to a reference space (Ξ = (ξ, η, ζ)) in order to reduce the scaling effects [44][43].

Following [79][80], all types of elements are first decomposed into basic elements of triangular

or tetrahedral shape depending on the dimension of the problem. Then the coordinates of
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one of the new basic element are used as the reference to perform the transformation. Note

that the spatial transformation does not change the cell-averaged solutions, i.e.

UIi =
1

|VIi |

∫
VIi

U(x, y, z)dV ≡ 1

|V ′Ii |

∫
V
′
Ii

U(ξ, η, ζ)dξdηdζ. (5)

For detailed descriptions, one is referred to [79][81].

To calculate reconstructed values in the targeted cell I0, a compact stencil S is built with

neighboring cells of I0. The amount of elements in S, i.e. Ns, is determined by the total

number of polynomial coefficients, Nk, which is calculated by

Nk =
1

nd!

nd∏
m=1

(r +m), (6)

where nd is the number of dimension. In order to maintain good numerical stability with

an acceptable computational cost, it is recommended to choose Ns = 2 · Nk according to

various studies [80][81][82], and we follow this setup for all the investigations in the present

work.

The reconstruction polynomial P(ξ, η, ζ) can be expanded in S over the local polynomial

basis functions ψl(ξ, η, ζ) as

P(ξ, η, ζ) =

Nk∑
l=0

alψl(ξ, η, ζ) = U0 +

Nk∑
l=1

alψl(ξ, η, ζ), (7)

where U0 denotes the cell-averaged solution of the target cell I0, al the degrees of freedom

to be calculated later. The basis functions ψl(ξ, η, ζ) are defined as

ψl(ξ, η, ζ) ≡ ϕl(ξ, η, ζ)− 1

|V ′0 |
∫
V
′
0
ϕldξdηdζ, l = 1, 2, .., Nk, (8)

where

ϕl = ξ, η, ζ, ξ2, η2, ζ2, ξ · η, ..., (9)

to ensure that the constraint of Eq. (4) for the targeted cell I0 is satisfied irrespective of

choices of al.

Based on the constraint that the reconstructed cell-averaged values for all of the cells Is
in S should be equal to the corresponding cell-averaged solutions, one can obtain∫

V ′s
P(ξ, η, ζ)dξdηdζ = |V ′s |U0 +

∑Nk
l=1

∫
V ′s
alψl(ξ, η, ζ)dξdηdζ = |V ′s |Us,

s = 1, ..., Ns.
(10)

To find the unknown degrees of freedom al, Eq. (10) can be rewritten into

Nk∑
l=1

Aslal = bs, s = 1, ..., Ns, (11)
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where

Asl =

∫
V ′s

ψl(ξ, η, ζ)dξdηdζ, and bs = |V ′s |(Us −U0). (12)

The matrix Asl contains only the geometry information of each element in the considered

stencil S, and hence can be pre-calculated before the simulation. Since the matrix ATlsAsl is

invertible, al is obtained as

al = (ATlsAsl)−1ATlsbs = Âlsbs, (13)

where Âls can be further simplified by deploying a QR decomposition based on the House-

holder transformation [81][82] as

Âls =
(
(QR)T (QR)

)−1ATls =
(
RTR

)−1ATls. (14)

2.3. The high-order WENO reconstruction schemes

For a hyperbolic system, the above high-order linear reconstruction schemes are not

suitable for handling discontinuities, such as shockwaves, presented in the computational

domain. As in classical shock-capturing WENO schemes [83], the main idea is to obtain the

high-order oscillation-free reconstruction based on a nonlinear convex combination of several

candidate stencils. The discontinuity can be captured sharply and stably by enforcing the

ENO property through a nonlinear adaptation between the candidate reconstructions.

However, depending on the mesh topologies, the optimal linear weights may not exist

for some circumstances [39][40][41]. To ensure the numerical robustness, the WENO scheme

in [42][43][44][45] is considered, with which the targeted accuracy order of the combined

reconstruction is identical to those of the candidate stencils.

Specifically, based on a set of candidate stencils (S0,S1, . . . , SK) with linear recon-

structions Pk(ξ, η, ζ), k = 0, . . . , K featuring the same targeted accuracy order, the final

nonlinearly combined WENO reconstruction is given as

PW(ξ, η, ζ) =
K∑
k=0

wkPk(ξ, η, ζ), (15)

where the nonlinear weight wk is defined as

ωk =
αk∑K
k=0 αk

, and αk =
dk

(βk + ε)4
, k = 0, · · · , K, (16)

with ε = 10−14 and the smoothness indicators measured following the original definition in

[83] as

βk =
r∑
q=1

∮
V
′
I0

(DqPk(ξ, η, ζ))2 (dξ, dη, dζ). (17)
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Since the optimal linear weights dk are not designed to generate an even higher-order re-

construction scheme on the combined stencil, the values can be assigned flexibly. Previous

investigations [42][43][44] reveal that the performance of the resulting WENO scheme can

be improved by increasing the weight of the central-biased candidate stencil, which is less

dissipative by construction. In practice, we set dK = 104 for the central-biased stencil SK
and dk = 1, k = 0, . . . , K−1 for the other directional stencils (S0,S1, . . . , SK−1), empirically.

Note that, all the linear candidate reconstructions Pk(ξ, η, ζ) of particular accuracy orders

are constructed in the way described in the previous subsection, and satisfy the constraints

of matching the cell-averaged solutions of involved stencil cells. All of them are obtained

by solving the overdetermined linear systems with the same constrained least-squares tech-

nique. Although there is a debate on which variable to be reconstructed by the WENO-type

schemes, it is generally believed that the numerical oscillations can be better suppressed

when the WENO reconstruction is carried out for characteristic variables than primitive or

conservative variables [83][56].

2.4. The high-order CWENO reconstruction schemes

In CWENO schemes [46][47][48][49], the candidate stencils include one large central-

biased stencil SK and several small directional stencils (S0,S1, . . . , SK−1), with which

the high-order reconstruction scheme PK(ξ, η, ζ) and the low-order reconstruction schemes

Pk(ξ, η, ζ), k = 0, . . . , K − 1 are constructed, respectively. Note that, for good numerical

robustness, the third-order reconstructions are adopted for small stencils. The most impor-

tant ingredient of CWENO schemes is the introduction of an optimal reconstruction scheme

as

Popt(ξ, η, ζ) =
1

dK

(
PK(ξ, η, ζ)−

K−1∑
k=0

dkPk(ξ, η, ζ)

)
, (18)

where the contributions of the lower-order reconstruction schemes are subtracted from the

high-order reconstruction. Subsequently, the CWENO nonlinear scheme is given as a convex

combination of the optimal candidate reconstruction scheme and other low-order candidate

reconstruction schemes following

PCW(ξ, η, ζ) =
wK
dK

(
PK(ξ, η, ζ)−

K−1∑
k=0

dkPk(ξ, η, ζ)

)
+

K−1∑
k=0

wkPk(ξ, η, ζ), (19)

where ωk denotes the nonlinear weights and can be computed in a similar way as WENO

schemes by

ωk =
αk∑K
k=0 αk

, and αk =
dk

(βk + ε)4
, k = 0, · · · , K, (20)
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where ε = 10−14. The smoothness indicator βk is defined to be the same as that in WENO

schemes. Unlike the WENO schemes, the linear weights dk should satisfy

K∑
k=0

dk = 1, and dK = 1− 1

d
′
K

, (21)

where d
′
K can be taken arbitrarily and dk, k = 0, . . . , K − 1 is calculated by

dk =
1− dK
K

. (22)

When the local flow scale is smooth, ωk ≈ dk and the high-order reconstruction is restored

asymptotically with PCW(ξ, η, ζ) ≈ PK(ξ, η, ζ); when approaching discontinuities, the con-

tribution from the large candidate stencil will vanish and the smooth small stencils will

dominate the final reconstruction. Therefore, the overall accuracy order of the resulting

CWENO scheme is determined by the reconstruction scheme on the large stencil and the

corresponding performance in nonsmooth regions is governed by the reconstruction schemes

on the small stencils.

Increasing the optimal linear weight for large stencil can improve the wave-resolution

property of the resulting CWENO scheme since the final scheme is biased to the high-order

reconstruction. However, a too large value of dK may also degrade the shock-capturing

capability. In practice, we set d
′
K = 104, i.e., dK = 1 − 10−4, for the large stencil and

dk = 10−4

K
, k = 0, . . . , K−1 for the small directional stencils, empirically. Note that different

d
′
K values can be adopted for CWENO schemes, i.e., 103, 107, and 1015 [53]. And one single

d
′
K value may not be suitable for all the discretization orders. Considering the fact that all

the present TENO schemes of different accuracy orders employ the same set of parameters

without tuning case by case, for fair comparisons, we adopt this uniform optimal d
′
K value

for CWENO schemes as well in the present study if not mentioned otherwise.

It is also worth noting that, to achieve the same accuracy order, the cost and com-

plexity of the CWENO scheme are much smaller than the WENO scheme, since all the

candidate stencils of WENO feature the same reconstruction order as the targeted order of

the resulting nonlinear scheme. Also, the compactness of the small directional candidate

stencils in CWENO increases the chance that at least one candidate is smooth in the high-

gradient nonsmooth region and therefore enhances the numerical robustness when compared

to WENO schemes. The CWENO/CWENOZ schemes have been extended to mixed-element

unstructured meshes and multicomponent flows using unstructured meshes [53][54].

3. The new class of high-order unstructured TENO reconstruction schemes

In this section, a new class of high-order unstructured TENO reconstruction schemes

will be developed. The unstructured TENO weighting strategy including the candidate

stencil arrangement, the strong scale separation, the novel ENO-type stencil selection will

be elaborated in detail.
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3.1. The reconstruction candidate stencils

Similar to previous TENO [84] and CWENO [46] schemes, the core of the newly proposed

unstructured TENO scheme is to design a set of candidate stencils involving both the large

central-biased stencil and several small directional stencils. The desired overall high-order

reconstruction scheme will be constructed based on the large central-biased stencil SK for

resolving smooth scales, whereas a set of third-order reconstruction schemes will be con-

structed with the small directional stencils (S0,S1, . . . , SK−1) for capturing discontinuities.

Fig. 1 shows the sketch of the central-biased and directional candidate stencils for

the TENO6 scheme on different mesh topologies. In the present work, the central-biased

stencil is built based on the Naive Cell based Algorithm (NCB) while the Type3 algorithm

is employed to construct directional stencils following [81]. The stencil arrangement for

unstructured meshes with other-type mesh elements follows a similar principle.
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Figure 1: Sketch of (a) the sixth-order large central-biased candidate stencil S3 and (b) the third-order

small directional candidate stencils (S0, S1, S2) for the TENO6 scheme on a triangular mesh; sketch of (c)

the sixth-order large central-biased candidate stencil S4 and (d) the third-order small directional candidate

stencils (S0, S1, S2, S3) for the TENO6 scheme on a mixed mesh. The index of each stencil is labelled in

the figure and different stencils are filled with different colors. The cell considered for reconstruction I0 is

marked with red color.

3.2. Strong scale separation

Similar to that in the Cartesian TENO schemes [85], in order to isolate discontinuities

from the smooth scales, one core algorithm of the TENO weighting strategy is to measure
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the smoothness of candidate stencils with strong scale separation as

γk =
1

(βk + ε)6
, k = 0, · · · , K, (23)

where ε = 10−12 is a small value to avoid the zero denominator and βk denotes the smooth-

ness function of candidate stencil k following Eq. (17) [83]. Compared to the classical WENO

[83] and CWENO [46][47][48] schemes, the exponent parameter is much larger for better scale

separation and the low-dissipation property (which is difficult to achieve for WENO with this

formula) will be retained by the following ENO-type stencil selection strategy. Note that,

while the WENO-Z [86][54][53] type measurement can be applied here, it is not adopted for

reducing the computational costs in the context of unstructured meshes and the previous

investigation with the Cartesian TENO schemes [85] reveals that a good scale-separation

capability can be achieved with the present formula.

3.3. The new ENO-like stencil selection

In contrast to classical WENO schemes [83], where the contributions of the candidate

stencils are combined in a smooth manner, for TENO, each stencil is explicitly judged to

be a smooth or nonsmooth candidate by the so-called ENO-type stencil selection strategy.

First, the measured smoothness indicator χk is renormalized as

χk =
γk∑K
k=0 γk

, (24)

and then subjected to a sharp cut-off function

δk =

{
0, if χk < CT ,

1, otherwise,
(25)

where the parameter CT determines the wavenumber, which separates the smooth and non-

smooth scales. As shown in [56][7], the parameter CT can be either a constant or adaptively

varying. If chosen as a constant, it is typically determined by the spectral analysis and by re-

taining the numerical robustness for high-Mach flows. In practice, the choice of CT is rather

flexible between 10−5 and 10−7 [56], and the numerical robustness and the low-dissipation

property can be demonstrated by conducting critical simulations with broadband flow scales

without tuning parameter case-by-case [56][57][58], as will be shown in the numerical vali-

dation part of this work.

With the present stencil arrangement, the large central-biased candidate stencil SK fea-

tures the highest accuracy order and the best spectral property and therefore is suitable for

resolving the smooth flow scales. On the other hand, the set of small directional stencils

is designed for capturing the possible discontinuity by a nonlinear adaptation among them.

Specifically, the final data reconstruction on the cell interface can be determined in two steps

as follows.
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(i) Group all the candidate stencils as (S0,S1,S2, . . . ,SK) and perform the ENO-type

stencil selection following Eq. (24) and Eq. (25). If the largest candidate stencil SK is judged

to be smooth, then the final reconstruction scheme is given as

PT(ξ, η, ζ) = PK(ξ, η, ζ); (26)

(ii) If the largest candidate stencil Sk is judged to be nonsmooth, then the nonlinear

adaptation among the small stencils will be activated to capture the discontinuities by en-

forcing the ENO property, i.e. group all the small candidate stencils as (S0,S1,S2, . . . ,SK−1)
and perform the ENO-type stencil selection. The final reconstruction scheme is given as

PT(ξ, η, ζ) =
K−1∑
k=0

wkPk(ξ, η, ζ), (27)

where the nonlinear weight

wk =
δk∑K−1
k=0 δk

, k = 0, 1, . . . , K − 1. (28)

Note that, for both stencil selection steps, the parameter CT is chosen to be the same, i.e.,

CT = 10−6. Further optimization of the choice of CT is beyond the scope of this paper and

interested readers are referred to the discussions in [56][57][7].

3.4. Analysis and discussions

As demonstrated by previous investigations [56][57][58], the TENO weighting strategy

can accurately identify the nonsmooth discontinuities from smooth flow scales. On the other

hand, in smooth regions, the desirable high-order reconstruction will be restored exactly

without any compromise. In other words, in low-wavenumber regime, the nonlinear TENO

scheme degenerates to the optimal linear scheme on the large stencil SK . In terms of

resolving the small-scale features, such a property renders TENO schemes superior over

WENO, for which the nonlinear adaptation (i.e., the nonlinear dissipation) is added even

for low-wavenumber smooth regions.

Another notable property of the proposed unstructured TENO schemes is that neither

the optimal linear weights dk in WENO nor the artificial weights d
′
K in CWENO schemes

are necessary to specify, suggesting the highly general applicability.

4. Numerical flux evaluations

In this section, we discuss the numerical method for flux evaluations to complete the

spatial discretization under the finite-volume framework.
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4.1. Riemann problem definition

As proved in [87], based on the rotational invariance property, the following relation,

FnIi,j (U) = T−1Ii,jF
x
(
TIi,jU

)
, (29)

where TIi,j denotes the unique rotation matrix for local cell face j of cell i (note that TIi,j is

fixed for specific mesh topology), applies to the Euler equations, and the projected numerical

flux can be further evaluated by

Kij =

Nq∑
κ

FnIi,j

(
Un

Ii,j,L(xIi,j,κ , t),U
n
Ii,j,R(xIi,j,κ , t)

)
ωκ|AIi,j | =

Nq∑
κ

T−1Ii,jF
x
(
ÛL, ÛR

)
ωκ|AIi,j |,

(30)

where the rotated variables are defined as

ÛL = TIi,jU
n
Ii,j,L(xIi,j,κ , t), ÛR = TIi,jU

n
Ii,j,R(xIi,j,κ , t). (31)

To close the spatial discretization, the remaining work reduces to evaluate the numerical

flux Fx
(
ÛL, ÛR

)
by solving the simple one-dimensional Riemann problem

∂

∂t
Û +

∂

∂s
F̂x = 0, F̂x = Fx(Û), Û(s, 0) =

{
ÛL, s < 0,

ÛR, s > 0.
(32)

4.2. HLL Riemman solver

Hereafter, the HLL [88][89] approximate Riemann solver, which has been demonstrated

to be robust and reliable for Euler equations, is briefly reviewed. The approximate Riemann

solution for the discontinuous left and right state ÛL, ÛR is

Ũ(x, t) =


ÛL, if 0 ≤ SL,

Ûhll, if SL ≤ 0,

ÛR, if 0 ≥ SR,

(33)

and the corresponding interface flux is

F̂x,hll =


F̂x
L, if 0 ≤ SL,

SRF̂
x
L−SLF̂

x
R+SLSR(ÛR−ÛL)
SR−SL

, if SL ≤ 0 ≤ SR,

F̂x
R, if 0 ≥ SR.

(34)

where F̂x
L = Fx(ÛL) and F̂x

R = Fx(ÛR). The acoustic wave-speed SL and SR are evaluated

by [90][91]

SL = min(uL − cL, ũ− c̃), SR = max(uR + cR, ũ+ c̃), (35)

14



where the Roe-averaged quantities are defined as
Dρ =

√
ρR
ρL
,

ũ = uL+uRDρ
1+Dρ

,

H̃ = HL+HRDρ
1+Dρ

,

c̃ =
√

(γ − 1)[H̃ − 1
2
ũ2].

(36)

5. Numerical validations

In this section, the proposed TENO schemes of third- to sixth-order are validated by

solving the linear advection problem, the 1D and 2D Euler equations. If not mentioned

otherwise, the third-order SSP Runge-Kutta scheme [78] is adopted for the temporal ad-

vancement with a constant CFL number 0.4. For all the simulations, the built-in param-

eters of TENO schemes are fixed and the results from CWENO and WENO schemes are

provided for comparisons. All the present schemes are implemented in the research plat-

form [79][92][81][53][54], i.e., UCNS3D available at http://www.ucns3d.com, which has been

extensively validated with both canonical and real-world simulations based on unstructured

meshes.

While HLL [88] Riemman solver is a bit more dissipative than HLLC [89] and Roe [93], it

has lots of merits, e.g., featuring better numerical robustness, free from Carbuncle problem

and the necessity of entropy fix. Since our main concern is the low-dissipation property

offered by the new TENO schemes, the choice of the Riemann solver does not affect our

conclusion anyway and HLL provides a robust platform for these comparisons.

5.1. Accuracy order tests

We consider the 2D linear advection equation

∂u

∂t
+
∂u

∂x
+
∂u

∂y
= 0, (37)

with the initial condition as

u(x, y, 0) = sin(2πx) · sin(2πy). (38)

Periodic condition is imposed for all boundaries and the simulation is run until t = 1.

As shown in Table 1, 2, 3, and 4, the desired accuracy order is restored for all the

considered TENO schemes with respect to both the L∞ and L2 norms. Moreover, the

numerical truncation errors from the nonlinear TENO schemes are identical to those from

the linear schemes for all the resolutions indicating that the targeted linear schemes are

restored exactly.
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Table 1: Accuracy order test for third order schemes
h Ne1 L∞ error L∞ order2 L2 error L2 order

Linear 1/13 374 8.65E-02 - 4.58E-02 -

1/20 918 2.37E-02 2.88 1.30E-02 2.81

1/40 3674 3.33E-03 2.83 1.64E-03 2.98

1/80 14860 3.78E-04 3.12 2.01E-04 3.01

1/160 58330 5.14E-05 2.92 2.56E-05 3.01

TENO3 1/13 374 8.65E-02 - 4.58E-02 -

1/20 918 2.37E-02 2.88 1.30E-02 2.81

1/40 3674 3.33E-03 2.83 1.64E-03 2.98

1/80 14860 3.78E-04 3.12 2.01E-04 3.01

1/160 58330 5.14E-05 2.92 2.56E-05 3.01

Table 2: Accuracy order test for fourth order schemes
h Ne L∞ error L∞ order L2 error L2 order

Linear 1/13 374 7.99E-03 - 3.52E-03 -

1/20 918 2.26E-03 2.81 8.29E-04 3.22

1/40 3674 9.05E-05 4.64 3.28E-05 4.66

1/80 14860 6.59E-06 3.75 2.15E-06 3.90

1/160 58330 5.60E-07 3.61 1.57E-07 3.83

TENO4 1/13 374 7.99E-03 - 3.52E-03 -

1/20 918 2.26E-03 2.81 8.29E-04 3.22

1/40 3674 9.05E-05 4.64 3.28E-05 4.66

1/80 14860 6.59E-06 3.75 2.15E-06 3.90

1/160 58330 5.60E-07 3.61 1.57E-07 3.83

Table 3: Accuracy order test for fifth order schemes
h Ne L∞ error L∞ order L2 error L2 order

Linear 1/13 374 9.16E-03 - 4.80E-03 -

1/20 918 1.06E-03 4.80 5.58E-04 4.79

1/40 3674 3.43E-05 4.95 1.59E-05 5.13

1/80 14860 9.68E-07 5.11 4.95E-07 4.97

1/160 58330 3.33E-08 4.93 1.61E-08 5.01

TENO5 1/13 374 9.16E-03 - 4.80E-03 -

1/20 918 1.06E-03 4.80 5.58E-04 4.79

1/40 3674 3.43E-05 4.95 1.59E-05 5.13

1/80 14860 9.68E-07 5.11 4.95E-07 4.97

1/160 58330 3.33E-08 4.93 1.61E-08 5.01

1Ne the total number of elements
2Both L∞ and L2 order are calculated based on Ne
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Table 4: Accuracy order test for sixth order schemes
h Ne L∞ error L∞ order L2 error L2 order

Linear 1/13 374 7.94E-04 - 3.17E-04 -

1/20 918 8.25E-05 5.04 2.60E-05 5.57

1/40 3674 1.21E-06 6.08 3.50E-07 6.22

1/80 14860 2.21E-08 5.73 5.48E-09 5.95

1/160 58330 3.72E-10 5.97 9.69E-11 5.90

TENO6 1/13 374 7.94E-04 - 3.17E-04 -

1/20 918 8.25E-05 5.04 2.60E-05 5.57

1/40 3674 1.21E-06 6.08 3.50E-07 6.22

1/80 14860 2.21E-08 5.73 5.48E-09 5.95

1/160 58330 3.72E-10 5.97 9.69E-11 5.90

5.2. 2D isentropic vortex evolution

We consider the 2D isentropic vortex evolution problem in the computational domain of

[0, 10]× [0, 10] with periodic boundary conditions on all sides [39]. The unperturbed initial

condition is (ρ, u, v, p) = (1, 1, 1, 1), and the vortex perturbations (no pertubation in entropy

S = p/ργ) are given as

(δu, δv) =
ε

2π
e0.5(1−r

2) (− (y − 5) , (x− 5)) ,

δT = −(γ − 1) ε2

8γπ2
e(1−r

2),
(39)

where the temperature is defined as T = p/ρ, the vortex strength is ε = 5, the gas constant

γ = 1.4 and r2 = (x− 5)2 + (y − 5)2. The simulation time is t = 10.
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Figure 2: 2D isentropic vortex evolution: convergence statistics of the L∞ error from all the considered

TENO schemes.
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As shown in Fig. 2, the desired convergence order is achieved for all the considered TENO

schemes.

5.3. 2D solid body rotation problem

Next we consider the solid body rotation problem from Leveque [94]. The computational

domain is [0, 1] × [0, 1] with periodic boundary conditions applied for all directions. Three

bodies are considered in this case, i.e., a cosine function (SB01), a sharp cone (SB02) and

a slotted cylinder (SB03). The functions, center locations and radius to describe the three

bodies are provided in Table 5. The bodies are advected by an initial velocity v(x, y) =

(0.5 − y, x − 0.5) around the center of the domain, i.e. (xc, yc) = (0.5, 0.5). At t = 2π,

the analytical profile coincides with the initial solution. A uniform triangular mesh of edge

length h = 1/80 is used and the total number of mesh elements is 14860.

Table 5: Initial condition for the 2D solid body rotation problem

f(x, y) center (x0, y0) radius r0

SB01
1

4
(1 + cos(πr(x, y))) (0.25, 0.5) 0.15

SB02 1− (1/r0)
√

(x− x0)2 + (y − y0)2 (0.5, 0.25) 0.15

SB03


1, if |x− x0| ≥ 0.025 or y ≥ 0.85,

0, otherwise.

(0.5, 0.75) 0.15

As shown in Fig. 3, the high-order TENO schemes, i.e. TENO4, TENO5 and TENO6,

show much less numerical dissipation than the third-order TENO3 in capturing the slotted

cylinder. Moreover, as demonstrated in Fig. 4, TENO5 generates less numerical overshoots

than WENO5 and less dissipation than CWENO5 in preserving the shape of the cylinder.
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(a) (b) (c) (d)

Figure 3: 2D solid body rotation problem: results from the (a) TENO3, (b) TENO4, (c) TENO5 and

(d) TENO6 schemes after one rotation evolution at t = 2π. The uniform triangular mesh of edge length

h = 1/80 is used.
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(a)

(b)

(c)

Figure 4: 2D solid body rotation problem: results from the (a) WENO5, (b) CWENO5 and (c) TENO5

schemes after one rotation evolution at t = 2π. The uniform triangular mesh of edge length h = 1/80 is

used.

5.4. 1D shock-tube problems

The initial state for the 1D shock tube (ST) problems [95] is

(ρ, u, p) =

{
(ρL, uL, pL), if 0 ≤ x < xd,

(ρR, uR, pR), if xd ≤ x ≤ 1,
(40)

where L and R denotes the left and right states regarding to the location of discontinuity at

x = xd. The final simulation time is t = tend. We consider three variations of this problem,
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i.e. ST01/02/03, and all the parameters are given in Table 6. The computational domain

is [0, 0.2] × [0, 1]. For this case, the uniform Cartesian mesh is employed with an effective

resolution of h = 1/100 and the conservative variables are deployed for the high-order

reconstruction due to the simplicity.

Table 6: Parameters of the 1D shock-tube problems.
ρL uL pL ρR uR pR tend xd

ST01 (Sod) 1.0 0.0 1.0 1.0 0.125 0.0 0.2 0.5

ST02 (Lax) 0.445 0.698 3.528 3.528 0.5 0.0 0.14 0.5

ST03 1.0 0.0 1000 1000 1.0 0.0 0.012 0.6

The computed density profiles are given in Fig. 5. Overall speaking, the discontinuities

are captured without spurious oscillations by the TENO schemes of various orders. There

are slight overshoots near the contact waves for the ST02 problem, which are also observed

even for the results from other finite-difference low-dissipation schemes on structured meshes

[56].

Figure 5: 1D shock-tube problems: results of (a) ST01, (b) ST02 and (c) ST03 with TENO schemes of

different orders. The mesh resolution is h = 1/100.

In order to verify the capability of the present TENO schemes in maintaining the 1D

symmetry, both the ST01 and ST02 problems are simulated additionally on a genuinely

unstructured mesh with 1967 uniform triangular elements. As shown in Fig. 6 and Fig. 7,

the present TENO schemes with various orders preserve the 1D symmetry well.
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Figure 6: 1D shock-tube problem (ST01): solutions from all the considered TENO schemes. Left: density

contours and mesh typologies; right: density profiles.

Figure 7: 1D shock-tube problem (ST02): solutions from all the considered TENO schemes. Left: density

contours and mesh typologies; right: density profiles.
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5.5. 1D shock-density wave interaction

The initial condition is given as [96]

(ρ, u, p) =

{
(3.857, 2.629, 10.333), if 0 ≤ x < 1,

(1 + 0.2 sin(5(x− 5)), 0, 1), if 1 ≤ x ≤ 10.
(41)

The computational domain is [0, 2] × [0, 10] with 18, 282 uniformly distributed triangular

mesh cells, i.e. h ≈ 1/20, and the final evolution time is t = 1.8. The “exact” solution is

obtained by the 1D fifth-order finite-difference WENO5-JS scheme with 2000 cells.

As shown in Fig. 8, 9, and 10, with increasing accuracy order, the TENO schemes resolve

the high-wavenumber fluctuations significantly better while maintaining the sharp shock-

capturing capability. No artificial overshoots and oscillations are observed. In particular,

the TENO5 and TENO6 schemes perform better than the CWENO schemes of the same

accuracy order, suggesting less numerical dissipation.

(a) (b) (c) (d)

Figure 8: 1D shock-density wave interaction: density distributions from the (a) TENO3, (b) TENO4, (c)

TENO5 and (d) TENO6 schemes. Also shown is the mesh topology on top of the density distributions. The

uniformly distributed triangular mesh with h ≈ 1/20 is adopted.

(a) (b) (c) (d)

TENO5 CWENO5 TENO6 CWENO6

Figure 9: 1D shock-density wave interaction: density distributions from the (a) TENO5, (b) CWENO5, (c)

TENO6 and (d) CWENO6 schemes. Also shown is the mesh topology on top of the density distributions.

The uniformly distributed triangular mesh with h ≈ 1/20 is adopted.
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Figure 10: 1D shock-density wave interaction: (a) density and (b) zoomed-in view of density profiles from

TENO schemes of different orders. Also included are the comparisons between (c) TENO5 and CWENO5,

and (d) TENO6 and CWENO6 for density profiles. The uniformly distributed triangular mesh with h ≈ 1/20

is adopted.

As reported by Tsoutsanis and Dumbser [53], different d
′
K values can be adopted for

CWENO schemes. In order to comprehensively compare the performance of TENO shcmes

with that of CWENO schemes taking different values of d
′
K , Fig. 11 shows the density
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profiles of the present TENO schemes and the CWENO schemes with d
′
K = 103, 107, and

1015. It can be seen that although the CWENO scheme with larger d
′
K performs better

in resolving the high-wavenumber fluctuations, the robustness is sacrificed, as evidenced by

additional numerical experiments. Especially when handling the problems involving strong

discontinuities, such as the double Mach reflection problem, the simulation typically fails

with too large d
′
K . As a compromise of performance and robustness, we adopt the uniform

optimal d
′
K value, i.e., 104 for CWENO schemes, in the present study if not mentioned

otherwise.
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Figure 11: 1D shock-density wave interaction: zoomed-in views of the density profiles from the CWENO

schemes with different d
′

K values and the TENO schemes. The uniformly distributed triangular mesh with

h ≈ 1/20 is adopted.

5.6. 2D explosion problems

Two 2D explosion problems, referred as EP01 and EP02, are considered. The compu-

tational domain is given by a unit circle of radius R = 1 centered at [1, 1]. The computa-

tional domain is discretized by 18,464 triangular meshes, i.e. with an effective resolution of

h ≈ 1/50. The initial condition for problem EP01 is

(ρ, u, v, p)(r, 0) =

{
(1.0, 0, 0, 1.0), if ‖r‖ 6 0.5,

(0.125, 0, 0, 0.1), otherwise.
(42)

The final simulation time is t = 0.2.

25



As shown in Fig. 12, 13, and 14, for both the density and pressure profiles of EP01, the

present TENO schemes with various orders preserve the monotonicity pretty well as well as

the corresponding WENO5 and CWENO5 schemes.

(a) (b) (c) (d)

Figure 12: EP01: results from the (a) TENO3, (b) TENO4, (c) TENO5 and (d) TENO6 schemes. The

upper row shows the density profiles and the bottom row shows the pressure profiles. A uniform triangular

mesh with edge length h ≈ 1/50 is used.
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(a) (b) (c)

Figure 13: EP01: results from the (a) WENO5, (b) CWENO5 and (c) TENO5 schemes. The upper row

shows the density profiles and the bottom row shows the pressure profiles. A uniform triangular mesh with

edge length h ≈ 1/50 is used.
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Figure 14: EP01: (a) density and (b) pressure profiles from TENO schemes of different orders. (c) density

and (d) pressure profiles from the TENO5, WENO5 and CWENO5 schemes. A uniform triangular mesh

with edge length h ≈ 1/50 is used.

The initial condition for problem EP02 is

(ρ, u, v, p)(r, 0) =

{
(1.0, 0, 0, 2.0), if ‖r‖ 6 0.5,

(1.0, 0, 0, 1.0), otherwise.
(43)

The final simulation time is t = 0.2.

In terms of the EP02 problem, similar performance for resolving the density and pressure

profiles is obtained for the various TENO schemes and the CWENO5 scheme, as shown in
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Fig. 15, 16, and 17. However, the WENO5 scheme generates spurious numerical oscillations

near the discontinuities, which can be observed from Fig. 16(a), Fig. 17(c), and Fig. 17(d).

(a) (b) (c) (d)

Figure 15: EP02: results from the (a) TENO3, (b) TENO4, (c) TENO5 and (d) TENO6 schemes. The

upper row shows the density profiles and the bottom row shows the pressure profiles. A uniform triangular

mesh with edge length h ≈ 1/50 is used.
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(a) (b) (c)

Figure 16: EP02: results from the (a) WENO5, (b) CWENO5 and (c) TENO5 schemes. The upper row

shows the density profiles and the bottom row shows the pressure profiles. A uniform triangular mesh with

edge length h ≈ 1/50 is used.
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Figure 17: EP02: (a) density and (b) pressure profiles from TENO schemes of different orders; (c) density

and (d) pressure profiles from the TENO5, WENO5 and CWENO5 schemes. A uniform triangular mesh

with edge length h ≈ 1/50 is used.

5.7. 2D Kelvin-Helmholtz instability (KHI)

The Kelvin-Helmholtz instability with single mode perturbation is considered [97][98].

The computational domain is [−0.5, 0.5]× [−0.5, 0.5] and the initial conditions are given as

(ρ, u) =

{
(2,−0.5), |y| ≤ 0.25,

(1, 0.5), otherwise,
(44)
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and

(v, p) = (0.01 sin(2πx), 2.5). (45)

γ = 1.4 and periodic boundary conditions are enforced at the boundaries of the computa-

tional domain. The final simulation time is t = 1.

The density distributions computed by various TENO, WENO and CWENO schemes

are given by Fig. 18, 19, and 20. The third-order TENO3 scheme is much more dissipative

than other TENO schemes of higher order and smears the small-scale vortical structures

significantly. As shown in Fig. 20, the TENO5 and TENO6 schemes perform much better

than the CWENO5 and CWENO6 schemes in terms of preserving the kinetic energy.

(a) (b) (c) (d)

Figure 18: 2D Kelvin-Helmholtz instability: density distributions at t = 1 from the (a) TENO3, (b) TENO4,

(c) TENO5 and (d) TENO6 schemes. The uniformly distributed triangular mesh with an effective resolution

h ≈ 1/500 is adopted.

(a) (b) (c) (d)

TENO5 CWENO5 TENO6 CWENO6

Figure 19: 2D Kelvin-Helmholtz instability: density distributions at t = 1 from the (a) TENO5, (b)

CWENO5, (c) TENO6 and (d) CWENO6 schemes. The uniformly distributed triangular mesh with an

effective resolution h ≈ 1/500 is adopted.
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Figure 20: 2D Kelvin-Helmholtz instability: density profiles from (a) TENO schemes of different orders and

comparisons between (b) TENO5/6 and CWENO5/6. The uniformly distributed triangular mesh with an

effective resolution h ≈ 1/500 is adopted.

5.8. 2D double Mach reflection of a strong shock (DMR)

The initial condition is [99]

(ρ, u, v, p) =

{
(1.4, 0, 0, 1), if y < 1.732(x− 0.1667),

(8, 7.145,−4.125, 116.8333), otherwise .
(46)

The computational domain is [0, 4]× [0, 1] and the simulation end time is t = 0.2. Initially,

a right-moving Mach 10 shock wave is placed at x = 0.1667 with an incident angle of 60◦

to the x-axis. The post-shock condition is imposed from x = 0 to x = 0.1667 whereas a

reflecting wall condition is enforced from x = 0.1667 to x = 4 at the bottom. For the top

boundary condition, the fluid variables are defined to exactly describe the evolution of the

Mach 10 shock wave. The inflow and outflow condition are imposed for the left and right

sides of the computational domain.

The numerical results from TENO schemes of various orders and the corresponding

CWENO and WENO schemes are given in Fig. 21, 22, 23, 24, and 25. As shown in 21

and 22, with the same mesh resolution, the TENO schemes with higher-order resolve the

small-scale features much better with less numerical dissipation. The zoomed-in view of

the density distributions in Fig. 23 shows that no spurious numerical oscillations present

in the vicinity of the discontinuities. As given by Fig. 24 and 25, when compared with

the WENO and CWENO schemes of same orders, the TENO schemes feature the least

numerical dissipation, followed by the WENO schemes and subsequently by the CWENO

schemes. It is worth noting that, while both the TENO and CWENO schemes are robust

for all the considered mesh resolutions, the WENO5 and WENO6 schemes typically fail the
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simulations without an additional limiter [100], which helps preserve the positivity of density

and pressure.

Moreover, when compared to the newly proposed fifth-order WENO5-AO scheme, the

present TENO5 scheme performs better in capturing the roll-up of the Mach stem with

half resolution in each coordinate direction, see their Fig. 4 of [52]. The result from the

present TENO5 scheme at the resolution of h ≈ 1/200 is comparable to that from the

multi-resolution WENO5 scheme at the the resolution of h ≈ 1/320 in [50].
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Figure 21: 2D double Mach reflection of a strong shock: results from the (a) TENO3, (b) TENO4, (c)

TENO5 and (d) TENO6 schemes. The figures are drawn with 43 density contours between 1.887 and 20.9.

The mesh has 369,794 uniform triangular elements and h ≈ 1/200.
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Figure 22: 2D double Mach reflection of a strong shock: results from the (a) TENO3, (b) TENO4, (c)

TENO5 and (d) TENO6 schemes. The figures are drawn with 43 density contours between 1.887 and 20.9.

The mesh has 752,708 uniform triangular elements and h ≈ 1/280.
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(a) (b)

(c)

Figure 23: 2D double Mach reflection of a strong shock: zoomed-in results from the TENO6 scheme with

(a) 151,850, (b) 369,794 and (c) 752,708 uniform triangular elements. The figures are drawn with 43 density

contours between 1.887 and 20.9. Also plotted are the mesh topologies.
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Figure 24: 2D double Mach reflection of a strong shock: results from the (a) WENO5, (b) WENO6, (c)

CWENO5, (d) CWENO6, (e) TENO5, (f) TENO6 schemes. The figures are drawn with 43 density contours

between 1.887 and 20.9. The mesh has 369,794 uniform triangular elements and h ≈ 1/200. Note that both

the WENO5 and WENO6 schemes fail at this resolution without the additional limiter in [100].
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Figure 25: 2D double Mach reflection of a strong shock: results from the (a) WENO5, (b) WENO6, (c)

CWENO5, (d) CWENO6, (e) TENO5, (f) TENO6 schemes. The figures are drawn with 43 density contours

between 1.887 and 20.9. The mesh has 752,708 uniform triangular elements and h ≈ 1/280. Note that the

WENO6 scheme fails at this resolution without the additional limiter in [100].
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5.9. 3D explosion problem

We consider a 3D explosion problem to validate the robustness of high-order TENO

schemes on unstructured meshes. The initial condition is given as

(ρ, u, v, w, p)(r, 0) =

{
(1.0, 0, 0, 0, 1.0), if ‖r‖ 6 0.5,

(0.125, 0, 0, 0, 0.1), otherwise.
(47)

The final simulation time is t = 0.25. A uniform tetrahedron mesh with edge length h ≈ 1/30

is adopted.

As shown in Fig. 26, no obvious numerical artifacts can be identified from the comparisons

of the density and pressure profiles. Quantitatively, the resolved solutions from all the

considered TENO schemes agree with the analytical solutions well.
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Figure 26: 3D explosion problem: (a) and (b) denote the deployed uniform tetrahedron mesh with edge

length h ≈ 1/30 and the density contour from the TENO4 scheme; (c) and (d) denote the comparisons of

the density and pressure profiles, respectively.

5.10. Efficiency analysis

Table 7 lists the statistics regarding the computing time of different schemes, where Niter

denotes the number of iterations to complete the calculation, ttotal the total computing time

in seconds and trecon the computing time for the high-order reconstruction. Upon further

normalization by Niter and Ne, we obtain tnorm (second/iteration/element) from trecon. Two

cases are considered for the analysis, i.e. the 2D DMR and the 2D KHI. The total number

of mesh elements is 369,794 and 577,416, respectively. For DMR, we measure the total

computing time at t = 2 and for KHI, the total computing time is measured at t = 0.1.
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By increasing the accuracy order of TENO schemes from third- to sixth-order, the nor-

malized cost increases by roughly 65% for the same simulation. Overall speaking, the TENO

and CWENO schemes with the same accuracy order feature a similar computational effi-

ciency for both cases.

Table 7: Computing-time statistics for TENO and CWENO schemes

scheme Niter ttotal trecon tnorm
DMR TENO3 16007 9468.00 8079.77 1.36E-06

TENO4 16110 12194.47 9895.88 1.66E-06

TENO5 16081 13990.78 11674.00 1.96E-06

TENO6 16152 16262.73 13358.49 2.24E-06

CWENO5 16045 14126.61 11738.53 1.98E-06

CWENO6 16019 15472.95 13016.93 2.20E-06

KHI TENO3 3580 3298.40 2733.38 1.32E-06

TENO4 3580 4201.04 3425.22 1.66E-06

TENO5 3579 4587.06 3935.91 1.90E-06

TENO6 3579 5399.16 4540.90 2.20E-06

CWENO5 3578 4626.61 3887.51 1.88E-06

CWENO6 3579 5414.79 4491.87 2.17E-06

∗ Regarding the hardware configurations, the CPU used for the tests is Intel Xeon

E5-2690. The Intel Fortran Compiler version 19 and the Intel MPI Library 2019 are

employed for the compiling with the compiler flags -i4 -r8 -ipo -march=core-avx2

-mtune=core-avx2 -O3 -fp-model precise -zero -qopenmp -qopenmp-link=static. For

both the DMR and KHI simulations, 56 parallel threads are employed, i.e., 8 MPI

tasks with 7 OpenMP threads per MPI rank.

6. Conclusions

In this paper, the high-order TENO scheme, originally proposed for structured meshes,

is for the first time extended to unstructured meshes. A set of TENO schemes from third-

to sixth-order accuracy is developed and validated. The concluding remarks are given as

follows.

• The new candidate stencils include one large central-biased stencil and several small

directional stencils. The targeted high-order reconstruction scheme is constructed on

the large stencil while the third-order schemes are constructed on the small stencils.

To achieve the same accuracy order in smooth regions, the present stencil arrangement

leads to narrower full stencil width when compared to those deployed in [79][92][43][44].

• Following a strong scale separation procedure, a novel ENO-like stencil selection strat-

egy is tailored for unstructured meshes. Such a TENO weighting strategy ensures that

the high-order accuracy is restored by adopting the candidate reconstruction from the

large stencil and the sharp shock-capturing capability is retained by selecting the can-

didate reconstruction from the smooth small stencils. As analyzed in previous work

[56][58][84], one dissipation source of WENO family schemes comes from the smooth
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weighting of the contributions from candidate stencils, which leads to the early trig-

gering of the nonlinear adaptations in the low-wavenumber regimes. Similar to those

TENO schemes for Cartesian meshes, the low-dissipation property is inherited in the

proposed schemes due to the sharp stencil selection, which either applies the candi-

date stencil in an optimal way or abandons it completely when crossed by genuine

discontinuities.

• The new framework allows for arbitrarily high-order TENO reconstructions. For con-

ceptual investigations, the TENO schemes from third- to sixth-order accuracy are

constructed and the built-in parameters are explicitly given.

• A set of challenging benchmark simulations has been conducted with the default set

of parameters. Numerical results reveal that the proposed TENO schemes are robust

for highly compressible gas dynamic simulations with low numerical dissipation and

sharp discontinuity-capturing capability.

• Compared to the WENO schemes with equal-size candidate stencils, the overall sten-

cil width of the present TENO schemes is much more compact. Compared to the

CWENO schemes with the same accuracy order, the proposed TENO schemes are

much less dissipative while featuring the sharp shock-capturing capability. Note that,

the present investigation also reveals that the WENO schemes with equal-size candi-

date stencils are less robust when deployed to strong discontinuities (as shown in the

DMR simulations), which denotes another flaw in addition to the complex reconstruc-

tion procedure.

Considering the good performance of the proposed TENO framework and the flexibility

for further extension, the future work will focus on the deployment of the present schemes to

more complicated flows, e.g. the chemical reacting flows, the MHD flows, and the external

aerodynamics with realistic geometries.

Another potential research direction is to develop TENO schemes with lower-order more

compact directional stencils, which may provide additional benefits, e.g., further reducing

the communication overheads for large-scale parallel computations and preserving better

numerical robustness in regions with strong gradient or poor grid quality. The performance

as well as the convergence studies for this type of TENO schemes will be investigated and

reported separately in a forthcoming paper.
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