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Abstract We present a Hermite interpolation based partial differential equation
solver for Hamilton-Jacobi equations. Many Hamilton-Jacobi equations have a
nonlinear dependency on the gradient, which gives rise to discontinuities in the
derivatives of the solution, resulting in kinks. We built our solver with two goals
in mind: 1) high order accuracy in smooth regions and 2) sharp resolution of
kinks. To achieve this, we use Hermite interpolation with a smoothness sensor.
The degrees-of-freedom of Hermite methods are tensor-product Taylor polynomials
of degree m in each coordinate direction. The method uses (m + 1)d degrees of
freedom per node in d-dimensions and achieves an order of accuracy (2m + 1)
when the solution is smooth. To obtain sharp resolution of kinks, we sense the
smoothness of the solution on each cell at each timestep. If the solution is smooth,
we march the interpolant forward in time with no modifications.When our method
encounters a cell over which the solution is not smooth, it introduces artificial
viscosity locally while proceeding normally in smooth regions. We show through
numerical experiments that the solver sharply captures kinks once the solution
losses continuity in the derivative while achieving 2m+1 order accuracy in smooth
regions.
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1 Introduction

We consider the time-dependent Hamilton-Jacobi (HJ) equation

ϕt +H(ϕx1 , ϕx2 , . . . , ϕxd
) = 0, ϕ(x, 0) = ϕ0(x), x ∈ Ω ∈ R

d, (1)

with periodic boundary conditions on ∂Ω. HJ equations appear in many applica-
tions, e.g., optimal control, differential games, image processing and the calculus
of variations. The solution of an HJ equation may develop a discontinuity in the
derivative even when the initial data is smooth. As in conservation laws, the unique
solution can be singled out by the use of viscosity solutions [8,6]. In particular, the
viscosity solution gives requirements on the solution at points of discontinuity that
allow us to find the unique physically relevant solution. Design of methods for HJ
equations that: a) converge to the viscosity solution as the grid is refined even in
the presence of kinks, and b) maintain high-order accuracy in smooth regions and
here we only mention a few. The first methods to try to accomplish this were intro-
duced in [25,7]. Essentially non-oscillatory (ENO) [21] or weighted ENO (WENO)
[16,28] have been developed to solve the HJ equation. These methods have been
shown to work efficiently, but require a large stencil size in order to obtain high-
order accuracy. More recently, there has been work done by using discontinuous
Galerkin methods to solve conservation laws. This idea was introduced in [21],
where the authors exploited the fact that the gradient of the solution satisfies a
conservation law system, and used a standard discontinuous Galerkin method to
advance the solution in time and then recovered the solution from the derivatives.
In reference [4] the authors developed a discontinuous Galerkin method for directly
solving (1), when the Hamiltonian is linear or convex, this eliminates the need to
solve systems in the multidimensional case. This work was later improved upon in
[5]. The improvement extends the method to approximate solutions to (1) when
the Hamiltonian is not convex. Other improvements include avoiding reconstruc-
tion of the solution across elements by utilizing the Roe speed at the cell interfaces
and adding an entropy fix inspired by Harten and Hyman [15].

In [24] Qiu and Shu use WENO methods together with Hermite interpolat-
ing polynomials (HWENO). These methods are derived from the original WENO
methods, but both the function and the first derivative are evolved and used in the
reconstruction of the solution. An important advantage of HWENO over WENO
is that a more compact stencil may be used for the same order of accuracy. There
have been several expansions on this work [23,29,26,27], where in [27] the au-
thors develop a seventh order method, which is the same order of accuracy we
obtain using three derivatives. The success of HWENO methods has inspired us
to build a Hermite method solver for (1). Using Hermite methods, we may achieve
an arbitrary order while keeping a compact stencil.

Hermite methods were first studied in [11], where the authors use Hermite
methods to solve hyperbolic initial-boundary value problems. Stability of the
method and convergence was proved and various numerical examples were pro-
vided. Several adaptations of the original Hermite method have been developed.
In [2] the authors use Hermite interpolants to solve the wave equation using dis-
sipative and conservative formulations. A hybrid Hermite-discontinuous Galerkin
method was used in [3], where the authors approximated the solution of Maxwell’s
equations. In [18] Hermite methods for hyperbolic conservation laws were con-
sidered, where the entropy viscosity by Guermond et al., [12], was adopted to
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the Hermite framework. The current paper presents the first Hermite method for
Hamilton-Jacobi equations.

The challenge in solving Hamilton-Jacobi equations stems from the nonlinear
dependency on the gradient, which gives rise to discontinuities in the derivatives of
the solution, resulting in kinks. To resolve the kinks, we sense the smoothness of the
solution on each cell at each timestep by adopting the sensor introduced by Persson
and Peraire in [22] and later refined by Klockner, Warburton and Hesthaven in
[17]. Following [22,17] we make no modifications if the solution is smooth but when
the solution fails to be smooth we locally introduce artificial viscosity. Through
numerical experiments we demonstrate that the solver has the following properties:
1) high order accuracy in smooth regions and 2) sharp resolution of kinks. Although
(as most high order methods) we cannot expect the order of accuracy to be (2m+1)
when the solution becomes non-smooth we observed in [1] that the constant in from
the the h term in the error expansion can be significantly smaller when the formal
order is high.

The rest of this paper is organized as follows: in Section 2 we introduce the nu-
merical scheme for the one-dimensional and two-dimensional HJ equations. Section
3 explains how we sense the smoothness of each element. Section 4 is devoted to the
discussion of numerical experiments. Code for the numerical examples can be found
in the github repository https://github.com/allenalvarezloya/Hermite_HJ. Con-
clusions and future work are discussed in Section 5.

2 Hermite Methods

A Hermite method of order 2m+1 approximates the solution to a PDE by element-
wise polynomials that interpolate the solution and derivatives up to degree m at
the element interfaces. The time evolution is done locally from the center of the
element. In Hermite methods, the degrees of freedom are the function and the
spatial derivatives, or equivalently the Taylor coefficients. The evolution of the
polynomials depends on the nature of the PDE.

2.1 Hermite Method in One Dimension

We describe a Hermite PDE method in one-dimension for HJ equations. This
method closely follows the Hermite solver for conservation laws described in [14].
Note that we use this method, with no modifications, while the solution is smooth.
Consider the Hamilton-Jacobi equation, with periodic boundary conditions

ut =

{

ϕt +H(ϕx) = 0,

ϕ(x, 0) = ϕ0(x).
(2)

2.1.1 Initialization

We discretize the spatial coordinate into a primal grid and a dual grid

xi = xl + ihx, hx = (xr − xl)/nx, (3)

https://github.com/allenalvarezloya/Hermite_HJ
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where i = 0, . . . , nx for the primal grid and i = 1/2, . . . , nx−1/2 for the dual grid.
The first step initializes the degrees of freedom by setting them to be the scaled
derivatives at each primal grid point. That is,

cl,i =
hl
x

l!

dlu(x, 0)

dxl

∣

∣

∣

∣

x=xi

.

We then interpolate scaled derivative data to obtain the piecewise degree-2m+ 1
polynomial

vi+ 1
2
(x, 0) =

2m+1
∑

l=0

dl,i+ 1
2

(x− xi+ 1
2

hx

)l

, (4)

where the coefficients dl,i are uniquely determined by the interpolation conditions

hl
x

l!

∂l

∂xl
vi+ 1

2
(xi) = cl,i,

hl
x

l!

∂l

∂xl
vi+ 1

2
(xi+1) = cl,i+1, (5)

for l = 0, . . . ,m.

2.1.2 Evolution

We treat the coefficients in the Hermite interpolant as functions of time. That is,

vi+ 1
2
(x, t) =

2m+1
∑

l=0

dl,i+ 1
2
(t)

(x− xi+ 1
2

hx

)l

. (6)

For our PDE ϕt = −H(ϕx) we substitute (6):

∂vi+ 1
2
(x, t)

∂t
=

2m+1
∑

l=0

d
′

l,i+ 1
2
(t)

(x− xi+ 1
2

hx

)l

= −H(vx(x, t)). (7)

We can differentiate (7) k times in space and evaluate at x = xi+ 1
2
to obtain

k!

hk
x
d

′

k,i+ 1
2
(t) = −

∂k

∂xk
H(vx(x, t))

∣

∣

∣

∣

x=x
i+1

2

. (8)

When H is nonlinear the differentiation of the RHS can spawn new terms by the
product rule. We avoid this by approximating the RHS by a Taylor polynomial of
degree 2m+ 1

H(vx) ≈

2m+1
∑

l=0

bl,i+ 1
2
(t)

(x− xi+ 1
2

hx

)l

. (9)

for which the differentiation is straight forward. With this approximation we carry
out the differentiation in (8) and obtain the local system of ODEs

d
′

k,i+ 1
2
(t) = bk,i+ 1

2
(t), k = 0, . . . , 2m+ 1. (10)

We can solve this system to evolve our approximate solution using a standard one
step ODE solver as described in [13]. Before we evolve we must find the Taylor co-
efficients bk,i+ 1

2
(t). The computation of the coefficients, bk,i+ 1

2
, is problem specific

and depends on the form of the Hamiltonian, H.
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2.1.3 Polynomial Approximation of Non-linear Hamiltonians

The method described above relies on the computation of the Taylor series coeffi-
cients of functions of polynomials. It is convenient and efficient to compute these
coefficients through recursions that rely on Cauchy products rather than through
the use of the higher order chain rule (the Faà di Bruno’s formula) which have
combinatorial complexity. Our discussion here closely follows [19].

We describe this process for the PDE that is used in example 3 in the numerical
experiments section below

ϕt = cos(ϕx + 1).

A Taylor series expansion for the right hand side of this equation can be ob-
tained by the chain rule. If in general the functions f(x), w(x) and u(x) have Taylor
series expansions

f(x) =
∞
∑

k=0

Fk

(x− xi

h

)k

,

w(x) =

∞
∑

k=0

Wk

(x− xi

h

)k

,

u(x) =

∞
∑

k=0

Uk

(x− xi

h

)k

,

then for non-linearities that satisfy a differential equation f ′(x) = w(x)u′(x) we
can compute Fk, k = 1, 2, . . . using the formula

Fk = W0Uk +
1

k

k−1
∑

j=0

jUjWk−j .

Here we are interested in approximating cos(ϕx + 1) and thus note that the
functions s(x) = sin(u(x)) and c(x) = cos(u(x)) satisfy s′(x) = c(x)u′(x) and
c′(x) = s(x)u′(x) simultaneously. Thus, we use both relationships and the formula
above to obtain cos(ϕx + 1). Precisely, first we compute

(ϕx)k =

{

k+1
h ϕk if k = 0 . . . 2m,

0 if k = 2m+ 1,

followed by

Uk =

{

(ϕx)k + 1 if k = 0,
(ϕx)k if k = 1, . . . , 2m+ 1.

Note that the coefficients, Uk, are simply computed from the Taylor expansion
of ϕ. We then set C0 = cos(U0) and S0 = sin(U0) and update the remaining
coefficients using the recursion

Sk = C0Uk + ddot(C,U, k),

Ck = −S0Uk − ddot(S,U, k),
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where u = [U0, U1, . . . , U2m+1]
T , c = [C0, C1, . . . , C2m+1]

T , s = [S0, S1, . . . , S2m+1]
T

and ddot is the function given by

ddot(A,B, k) =
1

k

k−1
∑

j=0

jAjBk−j .

The Ck are the Taylor coefficients of the polynomial approximating cos(ϕx + 1).

In Table 1 we display the L1, L2 and L∞ norm errors for H(ϕx) = − cos(ϕx +
1) using xl = 0, xr = 2π using nx = 20, 40, 80 and 160 gridpoints. As can be
seen from the estimated rates of convergence the procedure is as accurate as the
Hermite interpolation (h2m+2). To the left in Figure 1 we plot the Taylor series
approximation which can be seen to be accurate.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Numerical Solution
Actual Solution

0 1 2 3 4 5 6 7
-0.2

0

0.2

0.4

0.6

0.8

1

Numerical Solution
Actual Solution

Fig. 1 On the left we plot the numerical approximation to H(ϕx) = − cos(ϕx + 1) as a solid
line and sample the actual function as circles. On the right we plot the numerical approximation
to H(ϕx) = −|ϕx| as a solid line and sample the actual function as circles. In both cases we
used m = 3 derivatives.

Table 1 Errors in approximating H(ϕx) = − cos(ϕx + 1) using Taylor series approximation
recursions in the L1, L2 and L∞ norms at time are displayed along with estimated rates of
convergence. Note that we obtain the expected rate of 2m + 2 where m is the number of
derivatives used in approximation.

n L1 error Convergence L2 error Convergence L∞ error Convergence
m = 2

20 1.18e-05 - 1.95e-05 - 5.05e-05 -
40 1.75e-07 6.08 3.07e-07 5.99 9.89e-07 5.68
80 2.74e-09 5.99 4.86e-09 5.98 1.61e-08 5.94
160 4.44e-11 5.95 7.94e-11 5.94 2.71e-10 5.90

m = 3
20 1.42e-07 - 2.64e-07 - 7.65e-07 -
40 5.69e-10 7.96 1.04e-09 7.99 3.37e-09 7.83
80 2.19e-12 8.02 4.06e-12 8.00 1.32e-11 8.00
160 8.93e-15 7.94 1.59e-14 8.00 5.20e-14 7.99
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In the case of a Hamiltonian with an absolute value function the above pro-
cedure cannot be used. We describe how to handle such cases using the Eikonal
equation

ϕt + |ϕx| = 0,

as an example. Here, we need the expansion of |ϕx|. If ϕx is not sign definite, then
we can not use the method above to obtain a Taylor series expansion and instead
we proceed by computing

(ϕx)k =

{

k+1
h ϕk if k = 0 . . . 2m,

0 if k = 2m+ 1.

At the cell center the value of the function is given by the leading coefficient. That
is, ϕx(xi) = ϕ0. Therefore, as an approximation we take

|(ϕx)k| =

{

(ϕx)k if ϕ0 ≥ 0,
−(ϕx)k if ϕ0 < 0.

In Table 1 we display the L1, L2 and L∞ norm errors for H(ϕx) = |ϕx| using
xl = 0, xr = 2π with nx = 20, 40, 80 and 160 gridpoints. We show the estimated
rates of convergence for each norm. Of course here we cannot expect the full
order of convergence as the nonlinearity is not smooth. To the right in Figure
1 we plot the Taylor series approximation, which can be seen to be an accurate
approximation to the true Hamiltonian. Since the degrees of freedom are used
from a single point to evaluate the solution on the entire cell a change in the sign
of ϕx results in an error of either 2ϕx or -2ϕx over the interval where the sign
change occurs to the end of the cell. This implies that the error is O(h) over the
cells where a change in sign of ϕx occurs.

Table 2 Errors in approximating H(ϕx) = |ϕx| using Taylor series in the L1, L2 and L∞

norms at time are displayed along with estimated rates of convergence. Note that the function
we are trying to interpolate is nonlinear, thus we do not obtain the expected rate of 2m + 2
where m is the number of derivatives used in approximation.

n L1 error Convergence L2 error Convergence L∞ error Convergence
m = 2

20 6.15e-02 - 1.20e-01 - 3.13e-01 -
40 1.54e-02 2.00 4.26e-02 1.50 1.57e-01 1.00
80 3.85e-03 2.00 1.51e-02 1.50 7.85e-02 1.00
160 9.64e-04 2.00 5.33e-03 1.50 3.93e-02 1.00

m = 3
20 6.15e-02 - 1.20e-01 - 3.13e-01 -
40 1.54e-02 2.00 4.26e-02 1.50 1.57e-01 1.00
80 3.85e-03 2.00 1.51e-02 1.50 7.85e-02 1.00
160 9.64e-04 2.00 5.33e-03 1.50 3.93e-02 1.00
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2.1.4 Polynomial Approximation of Non-linear Hamiltonians Higher-Dimensions

The computation of the multivariate Taylor coefficients of functions of polynomials
is similar to the univariate case. For a compositionH(x) = f(u(x)) where f : R →
R is a standard function we have

∂h

∂xi
(x) = f ′(u(x))

∂u

∂xi
(x)

= w(x)
∂u

∂xi
(x),

which is similar to the relationship f ′(x) = w(x)u′(x) in one-dimension. Using this
relationship one can derive the recursion

Hk = W0Uk + ddot(V, U,k).

Here

ddot(V,U,k) =
1

kp

∑

ep≤j�k

jpU(j)W (k− j),

where the sum is over all multi-indicies with coordinates jp = 1, 2, . . . , kp and all
other ji = 0, 1, . . . , kp except when j = k.

We approximate the functionsH(x, y) = cos(cos(x+y)),H(x, y) = sin(sin(x)+
cos(y)) and H(x, y) = sin(sin(x) cos(y)) using the recursion described above. In
each example we estimate the rate of convergence by refining the grid by a factor
of two starting with n = 10 cells in each coordinate direction and ending with
n = 80. We compute using m = 2 and m = 3 derivatives.

For each example we observe the optimal rate of convergence reported in Table
3, Table 4 and Table 5 for H(x, y) = cos(cos(x+y)),H(x, y) = sin(sin(x)+cos(y))
and H(x, y) = sin(sin(x) cos(y)), respectively. We display the approximations in
Figure 2.

Table 3 Errors in approximating f(x, y) = cos(cos(x+ y)) using Taylor series in the L1, L2

and L∞ norms at time are displayed along with estimated rates of convergence. We obtain the
expected rate of 2m+ 2 where m is the number of derivatives used in approximation.

n L1 error Convergence L2 error Convergence L∞ error Convergence
m = 2

10 4.03e-04 - 1.18e-04 - 4.14e-05 -
20 6.23e-06 6.02 1.83e-06 6.01 8.33e-07 5.63
40 9.69e-08 6.01 2.86e-08 6.00 1.32e-08 5.98
80 1.51e-09 6.00 4.47e-10 6.00 2.06e-10 6.00

m = 3
10 9.86e-06 - 2.89e-06 - 2.11e-06 -
20 3.82e-08 8.01 1.09e-08 8.04 6.98e-09 8.24
40 1.49e-10 8.01 4.27e-11 8.00 3.14e-11 7.80
80 5.81e-13 8.00 1.67e-13 8.00 1.27e-13 7.95
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Table 4 Errors in approximating f(x, y) = sin(sin(x) + cos(y)) using Taylor series in the L1,
L2 and L∞ norms at time are displayed along with estimated rates of convergence. We obtain
the expected rate of 2m+ 2 where m is the number of derivatives used in approximation.

n L1 error Convergence L2 error Convergence L∞ error Convergence
m = 2

10 4.33e-04 - 1.17e-04 - 8.38e-05 -
20 6.69e-06 6.02 1.83e-06 6.00 1.48e-06 5.82
40 1.04e-07 6.01 2.85e-08 6.00 2.31e-08 6.00
80 1.62e-09 6.01 4.46e-10 6.00 3.60e-10 6.01

m = 3
10 8.70e-06 - 2.45e-06 - 1.70e-06 -
20 3.35e-08 8.02 9.53e-09 8.01 7.95e-09 7.74
40 1.30e-10 8.01 3.72e-11 8.00 3.12e-11 7.99
80 5.06e-13 8.00 1.45e-13 8.00 1.22e-13 8.00

Table 5 Errors in approximating f(x, y) = sin(sin(x) cos(y)) using Taylor series in the L1,
L2 and L∞ norms at time are displayed along with estimated rates of convergence. We obtain
the expected rate of 2m+ 2 where m is the number of derivatives used in approximation.

n L1 error Convergence L2 error Convergence L∞ error Convergence
m = 2

10 2.11e-04 - 7.01e-05 - 4.76e-05 -
20 3.22e-06 6.03 1.10e-06 6.00 8.39e-07 5.83
40 5.17e-08 5.96 1.71e-08 6.00 1.34e-08 5.97
80 8.10e-10 6.00 2.67e-10 6.00 2.11e-10 5.99

m = 2
10 3.62e-06 - 1.30e-06 - 9.47e-07 -
20 1.40e-08 8.01 5.12e-09 7.99 3.88e-09 7.93
40 5.49e-11 7.99 1.99e-11 8.00 1.51e-11 8.01
80 2.18e-13 7.98 7.78e-14 8.00 5.97e-14 7.98

Fig. 2 We plot the approximations obtained by the Taylor series recursion examples.
Left: H(x, y) = cos(cos(x + y)). Middle: H(x, y) = sin(sin(x) + cos(y)). Right: H(x, y) =
sin(sin(x) cos(y)). For each example n = 20 cells were used with m = 3 derivatives.

2.1.5 Second Half-step and Boundary Conditions

To complete a full time step we repeat this procedure, starting with the initial data
obtained from evolving (10) a half-step∆t/2 on the dual grid. At the interior nodes
xi, i = 1, . . . , nx−1 the procedure is the same as above, but at the boundary nodes
we must fill in ghost polynomials at xi− 1

2
and xnx+

1
2
, for example by using the
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properties of the PDE or as in the case of periodic boundary conditions considered
here by simply copying data from the opposite boundary.

2.2 Hermite Method in Two-Dimensions

The method in higher dimensions is a direct tensor product extension of the one
dimensional procedure. We now describe the method for the Hamilton-Jacobi equa-
tion in two-dimensions, with periodic boundary conditions

ut =

{

ϕt +H(ϕx, ϕy) = 0,

ϕ(x, y, 0) = ϕ0(x, y),
(11)

and on the rectangular domain D = [xL, xR]× [yB, yT ].

2.2.1 Initialization

We discretize the grid as follows,

(xi, yj) = (xL + ihx, yB + jhy), (12)

where hx = (xR − xL)/Nx and hy = (yT − yB)/Ny where i = 0, . . . , nx, j =
0, . . . , ny for the primal grid and i = 1/2, . . . , nx − 1/2, j = 1/2, . . . , ny − 1/2 for
the dual grid.

The first step initialize the degrees of freedom by setting them to be the scaled
derivatives at each point on the primal grid

clx,ly =
hlx
x

lx!

h
ly
y

ly!

dlxdlyu(x, 0)

dxlxdyly

∣

∣

∣

∣

∣

(x=xi,y=yj)

.

Note that clx,ly = clx,ly,i,j , but we suppress the spatial indices for notational
convenience. We interpolate onto the dual grid to obtain the tensor-product Taylor
polynomials

vi+ 1
2
,j+ 1

2
(x, y, 0) =

2m+1
∑

lx=0

2m+1
∑

ly=0

dlx,ly

(x− xi+ 1
2

hx

)lx (y − yj+ 1
2

hy

)ly

, (13)

where the polynomial interpolates the function values and the partial derivatives
at the four corners of the cell. Algorithmically, forming of the interpolant is done
by repeated one-dimensional interpolation. For example, we may interpolate in the
y direction, for the function and all the x derivatives at grid points (xi, yj) and
(xi, yj+1) to obtain one interpolant centered at (xi, yj+1/2) and from (xi+1, yj) and
(xi+1, yj+1) to obtain another interpolant centered at (xi+1, yj+1/2). These two
polynomials of degree m in x and degree 2m+ 1 in y are then interpolated in the
x direction using one-dimensional interpolation. The final result is a polynomial
on the form (13).
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2.2.2 Evolution

Similar to the one-dimensional case, we treat the coefficients in the Hermite ex-
pansions as functions of time. That is, we expand

vi+1/2,j+1/2(x, y, t) =

2m+1
∑

lx=0

2m+1
∑

ly=0

dlx,ly(t)

(x− xi+ 1
2

hx

)lx (y − yj+ 1
2

hy

)ly

. (14)

For our PDE ϕt = −H(ϕx, ϕy) we substitute (14):

∂vi+ 1
2
(x, y, t)

∂t
=

2m+1
∑

lx=0

2m+1
∑

ly=0

d
′

lx,ly (t)

(x− xi+ 1
2

hx

)lx (y − yj+ 1
2

hy

)ly

= −H(ϕx, ϕy). (15)

We differentiate in (15) k times in the x-coordinate and l times in the y-coordinate
and evaluate at (x, y) = (xi+ 1

2
, yj+ 1

2
) to obtain

k!

hk
x

l!

hl
y
d

′

k,l(t) = −
∂k

∂xk

∂l

∂xl
H(vx, vy)

∣

∣

∣

∣

(x,y)=

(

x
i+1

2
,y

j+ 1
2

) . (16)

Similar to the one-dimensional case, the differentiation of a non-linearH can spawn
new terms by the product rule. We avoid this by approximating the Hamiltonian
by a Taylor polynomial of degree (2m+ 1)× (2m+ 1)

H(vx, vy) ≈

2m+1
∑

lx=0

2m+1
∑

ly=0

blx,ly (t)

(x− xi+ 1
2

hx

)lx (y − yj+ 1
2

hy

)ly

. (17)

From (15) and (17) we obtain the local system of ODEs

d
′

lx,ly (t) = blx,ly(t), lx = 0, . . . , 2m+ 1, ly = 0, . . . , 2m+ 1. (18)

We can evolve the solution of this system using, e.g., a Runge-Kutta method.

2.2.3 Boundary Conditions for the Second Half-step

To complete a full time step we repeat this procedure, starting with the initial
data obtained from evolving (18) a half-step on the dual grid. At the interior
nodes (xi, yj), i = 1, . . . , nx − 1, j = 1, . . . , ny − 1 the procedure is the same as
above, but at the boundary nodes we must fill in ghost polynomials. In our case
we use the periodic boundary conditions to fill in the ghost polynomials.
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3 Adopting the Persson-Peraire, Klockner-Warburton-Hesthaven

Sensor to Hermite Methods

3.1 Estimating Smoothness

The smoothness detector used to modify our Hermite method is an adaptation of

the sensor in [22]. The sensor uses orthogonal polynomials, {φn}
Np−1
n=0 , on each cell

to estimate the smoothness of the solution, whereNp is the order of approximation.
The method developed here also utilizes the improvements to the Persson-Peraire
sensor proposed by Klockner, Warburton and Hesthaven in [17].

On each element Dk, the Persson-Peraire sensor computes a smoothness indi-
cator

Sk =
(qN , φNp−1

)2L2
(Dk)

||qN ||2
L2

(Dk)

, (19)

where N is the degree of the interpolating polynomials. While this sensor is easy
to use and implement we have found that the improved approach in [17] is more
robust. We now explain how we use the approach of [17] in the context of Hermite
methods.

The smoothness estimator we use relies on a projected version of the the so-
lution. Precisely in one-dimension we project onto the orthogonal basis spanned
by Legendre polynomials in a cell and in two dimensions we project onto a tensor
product basis of one-dimensional Legendre polynomials. We take N = 2m+1 and
Np = 2m+ 3.

For example, (in one dimension), let qN =
Np−1
∑

n=0
q̂nφn be the projection, then

its modes (coefficients) decay according to

|q̂n| ∼ cn−s. (20)

Taking the logarithm of (20) we have

log |q̂n| ≈ log(c)− s log(n), (21)

we may find the c and s via minimizing the least squares function

Np−1
∑

n=1

| log |q̂n| − (log(c)− s log(n))|2. (22)

Note that the sum begins at n = 1 (since log(0) = −∞ we minimize without
n = 0), thus the constant coefficient data is not taken into account when estimating
smoothness.

The removal of the constant-mode information from the estimation process can
cause problems. Consider a constant function perturbed by white noise. Since the
constant-mode information is removed the smoothness detector only sees the white
noise, which could lead to an erroneous smoothness estimate. A fix to this problem,
a technique called baseline modal decay, was introduced in [17]. Heuristically, the
idea is to re-add the sense of scale by distributing the energy according to a perfect
modal decay

|b̂n| ∼ C
1

nN
, (23)
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for N the polynomial degree of the method, the normalizing factor C is chosen to
enforce

Np−1
∑

n=1

|b̂n|
2 = 1.

We input the coefficients

|q̃n|
2 := |q̂n|

2 + ||qN ||L2
Dk

|bk|
2 for n ∈ {1, . . . , Np − 1}, (24)

into skyline pessimization (described below), instead of the raw coefficients |q̂n|.

There are certain situations where the estimator can be fooled. For example,
when interpolating the function xΘ(x), where Θ(x) is the Heavyside function, [17]
shows that there is an odd - even effect for which odd modes greater than three
are numerically zero. A correction of this problem was given by introducing a
technique named skyline pessimization. The idea is as follows: if you have a mode
n with a small coefficient |q̂n| such that there exists another coefficient with m > n
and |q̂m| ≫ |q̂n|, then the coefficient |q̂n| is most likely spurious and should not
be taken into account when estimating s. Therefore, the idea is to generate a new
set of modal coefficients by

q̄n := max
i∈{min(n,Np−2),...,Np−1}

|q̂i| for n ∈ {1, 2, . . . , Np − 1}. (25)

This forces each modal coefficient to be raised up to the largest higher-numbered
modal coefficient, eliminating non-monotone decay.

3.2 Computing the Viscosity from the Smoothness Sensor

3.2.1 Implementation in One-Dimension

At each time step, tk, we approximate the smoothness of the function inside each
cell. In order to determine the modal coefficients, {q̂n}, we take 2m+1 Legendre-
Gauss-Lobatto nodes (see Figure 3) zi and map the nodes in [-1,0] to [xk, xk+1/2]
and the nodes in [0, 1] to [xk+1/2, xk+1], then we evaluate the Hermite interpolants
pk(x) in [xk, xk+1/2] and pk+1(x) in [xk+1/2, xk+1] on the nodes to obtain the func-
tion values required for projection. Once the projection is completed, we compute
{q̂n} and approximate s using (21). Note that the representation of the solution
on each cell is a polynomial. This means that if we compute the modal coefficients
using one cell, then the sensor will determine the solution is smooth (since it is
sensing the smoothness of a polynomial). By taking the left and right half of each
cells we are able to estimate the smoothness of the actual solution.

If the solution is no longer C1, then we introduce numerical viscosity by taking
1− κw(s) where s is the smoothness estimate and κw(s) is given by [22] as

κw(s) = ν0















0 sw < s0 − w,
1
2

(

1 + sin π(sw−s0)
2w

)

s0 − w ≤ sw ≤ s0 + w,

1 s0 + w < sw,

(26)
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Fig. 3 Left LGL nodes in one-dimension; Right LGL nodes in two-dimensions.

where we choose s0 = 2 and sw = 3. These choices activate the viscosity as soon
as the solution fails to be C1, s = 3, and gives maximum viscosity, ν0, when the
solution is C0.

We set the maximum viscosity, ν0, to be

ν0 = λ
h

N
, (27)

where λ is the maximum local characteristic velocity. We estimate λ by taking the
derivative of the Hamiltonian with respect to ϕx at each cell center and taking
the maximum of the absolute value:

λ = max
i∈{0,...,nx}

|Hvx
(vx(xi+ 1

2
))|. (28)

Here λ is estimated using every gridpoint. Note that this value is directly accessible,
as vx is part of the degrees of freedom.

Before modifying the PDE we average the viscosity in the spatial domain by
setting

κ̄i =
1

4
(κi−1 + 2κi + κi+1).

We introduce the numerical viscosity at each timestep when evolving our PDE
after interpolation. That is, after the interpolation step we modify the PDE by
adding κ̄iuxx making the equation

vt +H(vx) = κ̄ivxx, (29)

on the ith cell.

3.2.2 Implementation in Two-Dimensions

As our orthogonal basis we choose the tensor-product of Legendre polynomials.
To check the smoothness of a cell we use the nearest interpolants on the other grid
located on the four corners of the cell. That is, if the smoothness information for the
cell centered at (xk+1/2, yl+1/2) then we use the Hermite interpolants at (xk, yl),
(xk+1, yl), (xk, yl+1), and (xk+1, yl+1). As in one dimension, we partition the cell
into four regions and evaluate the function on each region using the interpolant
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that corresponds to it. For example, for the lower left region we use the information
from the Hermite interpolant centered at (xk, yl).

We analyze the decay of coefficients by grouping them by the total degree i.e.,
the degree of Legendre polynomial in x plus the degree of the Legendre polynomial
in y. The tensor-product Legendre polynomial is of the form

p =

2m+1
∑

k=0

2m+1
∑

l=0

Ck,lφkφl, (30)

where φk and φl are the Legendre polynomials in one-dimension.
There are several ways to order the polynomials in each degree; however, some

orderings will fool the sensor. We take the maximum coefficient in absolute value
for each total degree and use that as our input to the sensor for that degree.
That is, we take ci = max |Ck,l|, where k + l = i. Once we obtain this ordering
we apply baseline modal decay and skyline pessimization in the same way as the
one-dimensional case.

We set the maximum viscosity, ν0, to be

ν0 = λ
h

N
, (31)

where N is the degree of the Hermite interpolating polynomial in one coordinate
direction and h = max{hx, hy}. For estimating λ we adapt the Lax-Friedrichs flux
given in [9,21] by taking the partial derivatives of the Hamiltonian with respect
to ϕx and ϕy evaluating them at the cell centers and taking the maximum of the
absolute value:

λ = max
i,j

{|Hvx
(vx(xi+ 1

2
, yj+ 1

2
), vy(xi+ 1

2
, yj+ 1

2
))|, |Hvy

(vx(xi+ 1
2
, yj+ 1

2
), vy(xi+ 1

2
, yj+ 1

2
))|}.

(32)
Before modifying the PDE we average the viscosity in the spatial domain by setting

κ̄k,l =
1

16
(κk−1,l−1 + κk+1,l−1 + κk−1,l+1 + κk+1,l+1+

2(κk,l−1 + κk−1,l + κk+1,l + κk,l+1) + 4κk,l).

We introduce the numerical viscosity at each timestep when evolving our PDE after
interpolation. That is, after the interpolation step we modify the PDE making the
equation

vt +H(vx, vy) = κ̄k,l(vxx + vyy). (33)

In Figure 4 we test the smoothness sensor on two discontinuous functions, a
radially symmetric step function and an oblique step function. In both cases the
sensor correctly determines the level of smoothness of the underlying function.

4 Numerical Examples

For each of the following examples we expect the convergence rate to be 2m +
1 when the solution is smooth, where m is number of derivatives used in the
interpolation process. When the solution fails to remain smooth we do not expect
to see the optimal convergence rates, instead we seek sharp resolution of kinks.
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Fig. 4 Top: different views of the smoothness sensor when applied to a radial stepfunction
f(x) = 1 if r2 ≤ 1 and zero otherwise. In the smooth region the smoothness is estimated to
be 5 and near the the discontinuity it is estimated to be approximately 1/2. Bottom: different
views of the smoothness sensor for a stepfunction with f(x) = 1 if x+y ≤ 1 and zero otherwise.
The results are similar to the radial case.

For each example we give convergence rates at a time when the solution is still
smooth. For the timestepping we use the classical Runge-Kutta method of order
4 (RK4). To this end we chose the timestep small enough so that the temporal
error is dominated by the spatial error. The derivation of analytical solutions for
examples where convergence rates are estimated can be found in the appendix.

4.1 Examples in One Dimension

4.1.1 Example 1

In this example we solve the one-dimensional Burgers’ equation

ϕt +
1

2
(ϕx)

2 = 0,

with initial condition ϕ(x, 0) = sin(x) and with periodic boundary conditions ϕ(0, t) = ϕ(2π, t).
The solution is smooth until time T = 1.0, at this time a shock will form in ϕx.
Our grid is determined by xl = 0, xr = 2π and the number of grid points, nx. For
this example we start with nx = 20 and refine the grid by a factor of two until
nx = 160 in order to demonstrate convergence to the viscosity solution. Before the
solution develops a kink we demonstrate that our method achieves 2m + 1 order
accuracy at time T = 0.5 as evidenced by the errors measured in the L1, L2 and
L∞ norm along with the estimated rates of convergence reported in Table 6. We
also demonstrate that we converge to the viscosity solution at time T = 1.5 in Fig-
ure 5 along with the errors reported in Table 7. Note that the kink formed closely
resembles an absolute value function. The degree 2m + 1 Hermite interpolant of
the absolute value function, |x|, can be explicitly written down. It is

p(x) =

m
∑

k=0

(

2k

k

)

(−1)k+1(x2 − 1)k

22k(2k − 1)
,

and this in turn corresponds to the first terms of the generalized binomial expan-
sion

(1 + t)
1
2 =

∞
∑

k=0

(

1/2

k

)

tk,

which is a convergent approximation of the absolute value function when replacing
t = x2 − 1 and when |x| < 1. At x = 0 and for a fixed m this approximation is
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positive and there is thus a O(1) error in a single cell of width h. This is the source
of the O(h) in the max norm and O(h2) in the 2 norm.

Table 6 Errors in Example 1 in the L1, L2 and L∞ norms at time T = 1.5 are displayed along
with estimated rates of convergence. Note that these errors occur after a kink has formed.

n L1 error Conv. Rate L2 error Conv. Rate L∞ error Conv. Rate
m = 2

20 2.76e-05 - 2.70e-05 - 5.47e-05 -
40 9.45e-07 4.87 9.53e-07 4.83 2.03e-06 4.75
80 3.05e-08 4.95 3.10e-08 4.94 6.59e-08 4.95
160 9.42e-10 5.02 9.56e-10 5.02 2.01e-09 5.03

m = 3
20 3.56e-07 - 4.55e-07 - 1.26e-06 -
40 2.61e-09 7.09 3.22e-09 7.14 8.49e-09 7.21
80 2.03e-11 7.01 2.50e-11 7.01 6.23e-11 7.09
160 1.82e-13 6.80 1.85e-13 7.08 4.56e-13 7.10

Table 7 Errors in Example 1 in the L1, L2 and L∞ norms at time T = 1.5 are displayed along
with estimated rates of convergence. Note that these errors occur after a kink has formed.

n L1 error Conv. Rate L2 error Conv. Rate L∞ error Conv. Rate
m = 2

20 1.16e-02 - 1.71e-02 - 4.00e-02 -
40 2.73e-03 2.09 5.86e-03 1.54 1.97e-02 1.02
80 6.81e-04 2.00 2.08e-03 1.50 9.85e-03 1.00
160 1.70e-04 2.00 7.28e-04 1.51 4.87e-03 1.01

m = 3
20 6.87e-03 - 1.46e-02 - 3.67e-02 -
40 1.66e-03 2.05 4.94e-03 1.57 1.75e-02 1.07
80 4.12e-04 2.01 1.75e-03 1.50 8.75e-03 1.00
160 1.02e-04 2.01 6.18e-04 1.50 4.38e-03 1.00

The convergence rates displayed in the tables show us that we are converging
to the viscosity solution as the grid is being refined. We observe in Figure 5 that
the method is able to capture the kink formed at π

2 . In Figure 6 we see that as we
refine the grid the error is localized where the kink is formed.

4.1.2 Example 2

In this example we solve the one-dimensional Eikonal equation

ϕt + |ϕx| = 0,

with initial condition ϕ(x, 0) = sin(x) and with periodic boundary conditions. The
viscosity solution to this equation has a shock forming in ϕx at x = π/2 and a
rarefaction wave at x = 3π/2. The solution is nonsmooth for all T > 0 so we do
not expect order 2m+1 convergence. To analyze the convergence we use the same
grids as in Example 1. We report the L1, L2 and L∞ errors and their estimated
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Fig. 5 Example 1 at time t = 1.5 well after the kink has developed. This computation was
done with m = 3 and N = 80 cells. The solid line is the numerical solution and the dots are
the exact solution.

Fig. 6 Here we display the evolution of the errors with a refinement. On the left we display
the evolution of errors with 50 cells and on the right we display the evolution of errors with
100 cells.

.

rates of convergence in Table 8. In Figure 7 we plot the numerical solution to
demonstrate convergence to the viscosity solution.

The convergence rates displayed in the tables show us that we are converging
to the viscosity solution as the grid is being refined. We observe in Figure 7 that
the method is able to capture the kink formed at π

2 and the rarefaction wave at 3π
2 .

In Figure 8 we see that as we refine the grid the error is localized where the kink
is formed. We briefly note that the discontinuity in the Hamiltonian, H, causes
the piece-wise interpolant to lose smoothness in between cells where the sign of
ϕx changes. We plan to see if we can rectify this by using a flux-conservative
formulation of this method.
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Fig. 7 Example 2 at time t = 1.0 with m = 3 and N = 80 cells the solid line is the numerical
solution and the dots are exact solution.

Table 8 Errors in Example 2 in the L1, L2 and L∞ norms at time T = 1.0 are displayed
along with estimated rates of convergence.

n L1 error Conv. Rate L2 error Conv. Rate L∞ error Conv. Rate
m = 2

20 4.84e-01 - 2.20e-01 - 1.94e-01 -
40 2.35e-01 1.04 1.13e-01 0.96 1.09e-01 0.83
80 1.14e-01 1.04 5.77e-02 0.97 5.79e-02 0.91
160 5.60e-02 1.03 2.93e-02 0.98 2.98e-02 0.96

m = 3
20 3.40e-01 - 1.58e-01 - 1.39e-01 -
40 1.65e-01 1.04 8.11e-02 0.97 7.61e-02 0.87
80 8.05e-02 1.04 4.13e-02 0.97 3.96e-02 0.94
160 3.97e-02 1.02 2.10e-02 0.98 2.03e-02 0.97

4.1.3 Example 3

In this example we solve a one-dimensional equation with a nonconvex Hamiltonian

ϕt − cos(ϕx + 1) = 0,

with initial condition ϕ(x, 0) = − cos(πx) and periodic boundary conditions ϕ(−1, t) =
ϕ(1, t). This example shows that our scheme has high-order accuracy even when
the Hamiltonian is not convex. Our grid is determined by xl = −1, xr = 1 and the
number of grid points, nx. For this example we start with nx = 20 and refine the
grid until nx = 160 in order to demonstrate convergence to the viscosity solution.
Before the solution develops a kink we demonstrate our method achieves 2m+ 1
order accuracy at time T = 0.5

π2 by giving the L1, L2 and L∞ norm along with the
estimated rates of convergence in Table 9. We also demonstrate that we converge
to the viscosity solution at time T = 1.5

π2 in Figure 9.
The convergence rates displayed in the tables show us that we are converging

to the viscosity solution as the grid is being refined. We observe in Figure 9 that
the method is able to capture the kinks formed in this example.
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Fig. 8 Here we display the evolution of the errors with a refinement. On the left display the
evolution of errors with 50 cells and on the right we display the evolution of errors with 100
cells.

Table 9 Errors in Example 3 in the L1, L2 and L∞ norms at time T = 0.5/π2 are displayed
along with estimated rates of convergence.

m = 2
n L1 error Conv. Rate L2 error Conv. Rate L∞ error Conv. Rate
20 1.72e-05 - 3.49e-05 - 1.59e-04 -
40 4.67e-07 5.20 1.05e-06 5.06 6.47e-06 4.62
80 1.48e-08 4.98 2.63e-08 5.32 1.68e-07 5.27
160 6.56e-10 4.50 8.62e-10 4.93 3.79e-09 5.47

m = 3
20 4.96e-06 - 1.18e-05 - 5.77e-05 -
40 4.00e-08 6.95 1.31e-07 6.50 8.79e-07 6.04
80 2.23e-10 7.48 7.28e-10 7.49 4.75e-09 7.53
160 1.94e-12 6.84 4.30e-12 7.40 3.17e-11 7.23

4.1.4 Example 4

In this example we solve a one-dimensional Riemann problem with a nonconvex
Hamiltonian

ϕt +
1

4
(ϕ2

x − 1)(ϕ2
x − 4) = 0,

with initial data ϕ(x, 0) = −2|x|. In this example there are two shocks propagating
to the left and right connected in between by a rarefaction wave. Our grid is
determined by xl = −1, xr = 1 and the number of grid points, nx. For this
example we first start with an odd number of grid points nx = 21 and refine by a
factor of two until nx = 321 in order to demonstrate convergence to the viscosity
solution. We also refine the grid for an even number of grid points starting with
nx = 20 and using nx = 320 on the finest grid. The difference between the two is
when using an even number of gridpoints the discontinuity in the initial data at
x = 0 is located on a gridpoint xn/2. When the discontinuity in the initial data
is located on a gridpoint, x∗, we define the degrees of freedom at x∗ in two ways,
depending on whether the data is being used to interpolate the left or right of x∗.
That is, when interpolating to the dual node located to the left of x∗ we compute
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Fig. 9 Example 3 at time t = 1.5/π2 with m = 3 using N = 80 cells. The solid line is the
numerical solution and the dots are the exact solution

the degrees of freedom at x∗ using the limit of the initial data from the left, lim
x→x−

∗

ϕ,

and when interpolating to the dual node located to the right of x∗ we compute the
degrees of freedom at x∗ using the limit of the initial data from the right, lim

x→x+
∗

ϕ.

Exact solutions are used as the boundary condition. We report the L1, L2 and L∞

norm errors at time T = 1.0 along with estimated rates of convergence in Table
10. We observe first order convergence for both the even and odd refinements. We
note that for this more difficult example the amount of viscosity needed appears to
scale inversely with the square of the CFL number. That is, at large CFL numbers
we need less viscosity to compute the correct solution.
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Fig. 10 Example 4 at time t = 1.0 with m = 3 using N = 321 cells. The solid line is the
numerical solution and the dots are the exact solution.
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Table 10 Errors in Example 4 in the L1, L2 and L∞ norms at time T = 1.0 are displayed
along with estimated rates of convergence.

n L1 error Convergence L2 error Convergence L∞ error Convergence
Odd
m = 2

41 4.03e-02 - 3.83e-02 - 4.35e-02 -
81 1.99e-02 1.02 1.91e-02 1.00 2.15e-02 1.02
161 9.87e-03 1.01 9.54e-03 1.00 1.04e-02 1.05
321 4.76e-03 1.05 4.66e-03 1.03 4.84e-03 1.10

m = 3
41 4.92e-02 - 8.23e-02 - 6.44e-01 -
81 1.97e-02 1.32 1.89e-02 2.12 2.17e-02 4.89
161 9.79e-03 1.01 9.47e-03 1.00 1.10e-02 0.99
321 4.87e-03 1.01 4.73e-03 1.00 5.30e-03 1.05

Even
m = 2

40 3.98e-02 - 3.80e-02 - 4.32e-02 -
80 1.95e-02 1.03 1.87e-02 1.02 2.15e-02 1.01
160 9.59e-03 1.02 9.29e-03 1.01 1.02e-02 1.07
320 4.62e-03 1.05 4.52e-03 1.04 4.71e-03 1.12

m = 3
40 3.95e-02 - 3.77e-02 - 4.43e-02 -
80 1.93e-02 1.04 1.86e-02 1.02 2.21e-02 1.01
160 9.50e-03 1.02 9.21e-03 1.01 1.07e-02 1.04
320 4.73e-03 1.01 4.59e-03 1.01 5.77e-03 0.89

4.2 Examples in Two Dimensions

4.2.1 Example 5

In this example we solve the two-dimensional Burgers’ equation

ϕt +
1

2
(ϕx + ϕy)

2 = 0,

with initial condition ϕ(x, y, 0) = − cos(x+ y) and periodic boundary conditions
on [0, 2π]2. This equation can be reduced to a one-dimensional equation via the
change of variables z = x+y

2 . That is,

∂u

∂z
=

∂u

∂z

∂z

∂x
+

∂u

∂z

∂z

∂y

=
1

2

∂u

∂z
+

1

2

∂u

∂z

=
∂u

∂z
.

Thus, our equation becomes

ϕt +
1

2
ϕ2
z = 0,

with initial condition ϕ(z, 0) = − cos(2z) and periodic boundary conditions on
[0, 2π].
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We use the grid with xL, yB = 0 and xR, yT = 2π with nx, ny = 10 cells
and refine the grid by a factor of two until we have nx, ny = 80 cells in order to
demonstrate convergence to the viscosity solution. Before the solution develops a
kink we demonstrate our method achieves 2m+ 1 order accuracy at time T = 0.1
by giving the L1, L2 and L∞ norm along with the estimated rates of convergence
in Table 11. We also demonstrate the development of singular features in Figure
11.

Fig. 11 Example 5 on the left is the numerical solution at time t = 0.1 approximated using
m = 3 derivatives on N = 40 cells and on the right is the numerical solution at time t = 0.5
using the same number of derivatives and cells.

We see from the table that we obtain the full order of the method while the
solution is smooth. The figure shows us how the method is able to capture the
singular features of the solution.

Table 11 Errors in Example 5 in the L1, L2 and L∞ norms at time T = 0.1 are displayed
along with estimated rates of convergence.

n L1 error Conv. Rate L2 error Conv. Rate L∞ error Conv. Rate
m = 2

10 4.77e-03 - 3.78e-04 - 8.76e-04 -
20 1.77e-04 4.75 1.43e-05 4.72 3.91e-05 4.49
40 5.72e-06 4.95 5.77e-07 4.63 1.33e-06 4.88
80 1.81e-07 4.98 2.46e-08 4.55 4.23e-08 4.98

m = 3
10 1.28e-04 - 1.41e-05 - 4.29e-05 -
20 9.70e-07 7.05 4.90e-08 8.17 3.62e-07 6.89
40 7.45e-09 7.02 2.67e-10 7.52 2.50e-09 7.18
80 5.66e-11 7.04 2.15e-12 6.96 1.88e-11 7.06

4.2.2 Example 6

In this example we solve a two-dimensional nonlinear equation

ϕt + ϕxϕy = 0,



24 Allen Alvarez Loya, Daniel Appelö

with initial condition ϕ(x, y, 0) = sin(x) + cos(y) and periodic boundary condi-
tions on the domain [−π, π]2.

This is a genuinely nonlinear problem with a nonconvex Hamiltonian. The vis-
cosity solution is smooth at time T = 0.5; we demonstrate 2m+ 1 convergence at
this time. By T = 1.5 the viscosity solution develops singular features. We use the
grid with xL, yB = −π and xR, yT = π with nx, ny = 10 cells and refine the grid
by a factor of two until we have nx, ny = 80 cells in order to demonstrate con-
vergence to the viscosity solution. Before the solution develops singular features
we demonstrate our method achieves 2m + 1 order accuracy at time T = 0.5 by
giving the L1, L2 and L∞ norm along with the estimated rates of convergence in
Table 12. We also demonstrate the singular features that the solution develops in
Figure 12

Table 12 Errors in Example 6 in the L1, L2 and L∞ norms at time T = 0.5 are displayed
along with estimated rates of convergence.

n L1 error Convergence L2 error Convergence L∞ error Convergence
m = 2

10 3.50e-04 - 6.78e-05 - 2.18e-05 -
20 1.08e-05 5.02 2.11e-06 5.00 6.89e-07 4.98
40 3.35e-07 5.01 6.58e-08 5.00 2.14e-08 5.01
80 1.04e-08 5.01 2.05e-09 5.00 6.64e-10 5.01

m = 3
10 2.62e-07 - 5.15e-08 - 1.76e-08 -
20 1.95e-09 7.07 3.86e-10 7.06 1.33e-10 7.05
40 1.48e-11 7.04 2.96e-12 7.03 1.00e-12 7.05
80 1.17e-13 6.98 2.52e-14 6.87 1.51e-14 6.05

This example is truly a two-dimensional nonlinear problem and we still see
that we obtain the full order of the method while the solution is smooth and our
method is able to capture the singular features of the solution.

Fig. 12 Example 6 on the left is the numerical solution at time t = 0.5 approximated using
m = 3 derivatives on N = 40 cells on the right is the numerical solution at time t = 1.5 using
the same number of derivatives and cells.
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4.2.3 Example 7

In this example we solve a two-dimensional Riemann problem with a nonconvex
Hamiltonian

ϕt + sin(ϕx + ϕy) = 0,

with initial data ϕ(x, y, 0) = π(|y| − |x|) on the domain Ω = [−1, 1]× [−1, 1]. All
of the waves propagate out of the domain and no physical boundary conditions
are needed. As a naive implementation of outflow boundary conditions we simply
extend sufficiently so that the influence of periodic boundary conditions does not
affect the solution during the simulation time. The results of a simulation using
m = 2 are displayed in Figure 13.

Fig. 13 Example 7. Plotted is the numerical solution at time t = 1.0 approximated using m =
2 derivatives. The computation use N = 20 cells in the physical domain Ω = [−1, 1]× [−1, 1].

4.2.4 Example 8

In this example we solve a problem related to optimal cost determination

ϕt + sin(y)ϕx + (sin(x) + sign(ϕy))ϕy −
1

2
sin2(y) + cos(x)− 1 = 0,

with initial data ϕ(x, y, 0) = 0 and periodic boundary conditions on Ω = [−π, π]×
[−π, π].

The Hamiltonian is not smooth for this example. We are able to capture the
viscosity solution well. In Figure 14 we display the numerical solution on the left
and the optimal control term sign(ϕy) on the right.
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Fig. 14 Example 8 on the left is the numerical solution at time t = 1.0 approximated using
m = 2 derivatives with N = 40 cells. On the right is the optimal control term sign(ϕy).

5 Conclusions and Future Work

Through the coupling of Hermite methods and a discontinuity sensor, our method
attains 2m + 1 order of convergence in smooth regions while converging to the
viscosity solution when kinks are present. While we were able to achieve the goals
of: 1) high order accuracy in smooth regions and 2) sharp resolution of kinks, we
believe that there are several ways this method can be improved upon. The Eikonal
equation gave us inspiration to develop a flux-conservative Hermite method for HJ
equations in order to keep continuity in the derivatives at the element interfaces
even when the Hamiltonian is discontinuous. Our method, while effective for a
Cartesian grid, can not handle complex geometries. The next step is to deal with
different types of boundary conditions and apply Hermite methods to curvilinear
coordinate systems. We believe that sensing on a curvilinear coordinate system
will be a straightforward generalization since we can map the curvilinear element
onto the reference element on the unit square.
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Appendix

A Solution Methods

A.1 Viscosity Solution for a Convex Hamiltonian

We solve Hamilton-Jacobi problems of the form

ut +H(Du) = 0 in R
n × (0,∞),

u = g on R
n × {t = 0}.

Here u : Rn × [0,∞) → R is the unknown and Du = Dxu = (ux1 , . . . , uxn). We are given the
Hamiltonian, H, and the initial function g.

If the Hamiltonian is convex, then we may use the Lax-Hopf formula given by

u(x, t) = min
y∈R

{

tL

(

x− y

t

)

+ g(y)

}

,

where g is the initial data and L is the Lagrangian. The Lagrangian L and Hamiltonian H are
related by the following equations

H(p) = p · v(p)− L(v(p)) (p ∈ R
n),

L(v) = v · p(v) −H(p(v)) (v ∈ R
n),

where p = DL(v) and v = DH(p).

A.2 Viscosity Solution for a nonConvex Hamiltonian

For examples when the Hamiltonian is not convex we can not use the Lax-Hopf formula. We
consider the general Hamilton-Jacobi partial differential equation

ut +H(Du, x) = 0,

where Du = Dxu = (ux1 , . . . , uxn). While the solution is smooth we obtain the solution using
the characteristics given by (Details in section 3.2 of [10])

ṗ(s) = −DxH(p(s), x(s)),

ż(s) = DpH(p(s),x(s)) · p(s)−H(p(s), x(s)),

ẋ(s) = DpH(p(s),x(s)),

for p(·) = (p1(·), . . . , pn(·)), z(·), and x(·) = (x1(·), . . . , xn(·)).

https://github.com/allenalvarezloya/Hermite_HJ
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A.3 Viscosity Solution for Riemann Problems with Special Initial Data

We obtain the solution for Riemann problems with special initial data [20]

ϕt + f(ϕx) + g(ϕy) = 0,

with initial data of the form

ϕ(x, y, 0) = (x sin θ − y cos θ)uL + (x cos θ + y sin θ)uM , if x sin θ − y cos θ ≤ 0,

ϕ(x, y, 0) = (x sin θ − y cos θ)uR + (x cos θ + y sin θ)uM , if x sin θ − y cos θ > 0.

Here uR, uL and θ are fixed constants with 0 ≤ θ < π.
The solution is given by

ϕ(x, y, t) = (x sin θ − y cos θ) + t

(

max
v∈[uL,uR]

ξv − f(v sin θ + uM cos θ)− g(−v cos θ + uM sin θ)

)

, if uL < uR,

ϕ(x, y, t) = (x sin θ − y cos θ) + t

(

min
v∈[uL,uR]

ξv − f(v sin θ + uM cos θ)− g(−v cos θ + uM sin θ)

)

, if uL > uR.

where ξ = x sin θ−y cos θ
t

.

A.4 Examples

A.4.1 Example 1

In this example we solve the one-dimensional Burgers’ equation

ϕt +
1

2
(ϕx)

2 = 0,

with initial condition ϕ(x, 0) = sin(x) and with periodic boundary conditions ϕ(0, t) = ϕ(2π, t).
The Hamiltonian is convex; therefore, we apply the Lax-Hopf formula to obtain the viscosity
solution

u(x, t) = min
y∈R

{

(x− y)2

2t
+ sin(y)

}

.

A.4.2 Example 2

In this example we solve the one-dimensional Eikonal equation

ϕt + |ϕx| = 0,

with initial condition ϕ(x, 0) = sin(x) and with periodic boundary conditions. The Hamiltonian
is convex; therefore, we apply the Lax-Hopf formula to obtain the viscosity solution. First we
compute the Legendre transform of H.

L(v) = sup
v∈R

{vp −H(p)}

= sup
v∈R

{vp − |p|}

=

{

0 |v| ≤ 0,

∞ otherwise.

=: IΩ ,
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where in the last step we define IΩ as the indicator function on [−1, 1]. The viscosity solution
is given by

u(x, t) = min
y∈R

{

tIΩ

(

x− y

t

)

+ sin(y)

}

= min
y∈[x−t,x+t]

sin(y).

A.4.3 Example 3

In this example we solve a one-dimensional equation with a nonconvex Hamiltonian

ϕt − cos(ϕx + 1) = 0,

with initial condition ϕ(x, 0) = − cos(πx) and periodic boundary conditions ϕ(−1, t) = ϕ(1, t).
The Hamiltonian is not convex so we use method of characteristics to solve while the solution
is smooth. The Hamiltonian for this PDE is H(p) = − cos(p + 1). We arrive at the system of
ODEs:

ṗ = 0,

ż = sin(p+ 1)p + cos(p + 1),

ẋ = sin(p+ 1).

Which have solution:

p = p0,

z = t(sin(p + 1)p+ cos(p + 1)) + z0,

x = t sin(p+ 1) + x0.

We obtain the solution by the following

– Fix a point x ∈ Ω and time t. We solve for x0 in the equation x = x(t) = t sin(p+1)+ x0.

– Since p = ux we can relate p to x0 by p = p0 = ux(x0, 0) = π sin(πx0).

– We can solve for x0 by using solving x = t sin(π sin(πx0) + 1) + x0 for a fixed x and t.

– We solve using Newton’s method. Once we compute x0 we can compute p and u(x, t) =
z(s).

A.4.4 Example 4

In this example we solve a one-dimensional Riemann problem with a nonconvex Hamiltonian

ϕt +
1

4
(ϕ2

x − 1)(ϕ2
x − 4) = 0,

with initial data ϕ(x, 0) = −2|x|.

We use the solution for Riemann problems with special initial data to obtain our viscosity
solution. We have f(ϕx) = 1

4
(ϕ2

x − 1)(ϕ2
x − 4), g(ϕy) = 0, uL = 2, uM = 0, uR = −2, θ = π

2
and ξ = x

t
. The viscosity solution is given by

ϕ(x, y, t) = t min
v∈[uL,uR]

{

x

t
v −

1

4
(v2 − 1)(v2 − 4)

}
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A.4.5 Example 5

In this example we solve the two-dimensional Burgers’ equation

ϕt +
1

2
(ϕx + ϕy)

2 = 0,

with initial condition ϕ(x, y, 0) = − cos(x+ y) and periodic boundary conditions on [0, 2π]2.
This equation can be reduced to a one-dimensional equation via the change of variables

z = x+y
2

. That is,

∂u

∂z
=

∂u

∂z

∂z

∂x
+

∂u

∂z

∂z

∂y

=
1

2

∂u

∂z
+

1

2

∂u

∂z

=
∂u

∂z
.

Thus, our equation becomes

ϕt +
1

2
ϕ2
z = 0,

with initial condition ϕ(z, 0) = − cos(2z) and periodic boundary conditions on [0, 2π].
The Hamiltonian is convex; therefore, we use the Lax-Hopf formula to obtain the viscosity

solution

u(z, t) = min
y∈R

{

(z − y)2

2t
− cos(2y)

}

,

We then obtain the solution in x and y by setting x = x and y = 2z − x.

A.4.6 Example 6

In this example we solve a two-dimensional nonlinear equation

ϕt + ϕxϕy = 0,

with initial condition ϕ(x, y, 0) = sin(x) + cos(y) and periodic boundary conditions on the
domain [−π, π]2.

We find the solution using the characteristics while the solution is smooth. The character-
istics for this problem are given by

p′ = 0,

z′ = p1p2,

x′ = (p2, p1).

Which have solution

z = tp1p2 + z0,

x = t(p2, p1) + x0,

p = p0.

We find the solution by the following

– The initial data implies p1 = cos(x0), p2 = − sin(y0).
– We can use this to derive a fixed point problem for x given by x = (−t sin(y0) +

x0, t cos(x0) + y0).
– Once we solve the fixed point problem we may solve for p1 and p2.
– We can now compute the viscosity solution u(x, y, t) = z(s).
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