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Abstract In sufficiently large schools, courses are given to classes in sections of
various sizes. Consequently, classes have to be split into various given numbers
of sections. We focus on how to dispatch the students into sections of equal size,
s0 as to minimize the number of edges in the resulting conflict graph. As a main
result, we show that subdividing the students set in a regular way is optimal.
We then discuss our solution uniqueness and feasibility, as well as practical issues
concerning teacher assignments to sections and the case of an additional course
with unequal section sizes requirements.
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1 Introduction

The task of timetabling in its usual form consists in assigning timeslots to courses
such that two courses are not assigned a common timeslot if they have a common
teacher or student. This formulation implicitly needs the assumption that the
courses are already formed, i.e. the set of students associated to each course is
already known. This student to course assignment is indeed not to discuss when
the whole class does not need to be split, or has to be split in some unique, specific
way (boys vs girls, beginner vs advanced level, etc.).

However, there are a number of cases where this association is not known in
advance, and has therefore to be defined. This task is known as student sectioning
and has to be achieved in the two following most frequent situations. First, when
there are optional (elective) courses, and the students have expressed preferences
over the set of proposed courses, but will not be assigned to all chosen courses.
In that case, the goal of student sectioning is usually to maximize overall student
satisfaction, while keeping some balance between different courses and avoiding
conflicts in the timetable. The second case is when the same course is given several
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times in a week due to capacity restrictions. These occurrences of a same course
are called sections. Notice that both the above cases can happen simultaneously:
an optional course may be split into sections.

If student sectioning is needed, it may be achieved before, during or after
timetabling'. In the first case, the goal will be to find a sectioning which will facil-
itate the subsequent timetable creation, typically by avoiding as much as possible
potential conflicts, i.e. pairs of sections with common students. In the two latter
cases, special care should be taken when moving a student into a section, to avoid
conflicts in the timetable of that student. As will be detailed in the next section,
most papers on student sectioning deal with approaches where the timetable is
known when it comes to sectioning.

In this paper, we concentrate on the task of dispatching students into balanced
sections of mandatory courses (i.e. each student must be assigned to exactly one
section of each course), prior to timetabling, the major difficulty being the fact
that the number of sections may vary significantly between different courses. Nu-
merous issues can imply a variety of section numbers. These can for instance be a
limited number of large lecture rooms or computer rooms, pedagogical constraints
restricting the number of students to some course, or simply budget. In this con-
text, given a class with 120 students, one may need to create 2 large sections of
60 students for Economics ex cathedra courses, 3 sections of 40 students for Ap-
plied Mathematics, 4 sections of 30 students for Informatics and 5 sections of 24
students for English. These kind of issues are particularly likely to arise in Uni-
versities of Applied Sciences, where many courses are supposed to be practical
and need to be taught only in groups of small to moderate sizes, while the total
number of students in a class can reach several hundreds. This is the case at the
Geneva School of Business Administration, and the solution we present here is
applied each semester in several departments of the school. Our main contribution
is to show that a natural way of sectioning, which we will call "regular", permits
to obtain an a priori optimal sectioning, in the sense that the number of pairs of
potentially conflicting courses is minimized. We point out that our result solves
the stated problem exactly.

The paper is organized as follows. Section 2 consists of a review of the literature
related to student sectioning. Some terminology and a precise formulation of our
problem are given in Section 3 and its solution and proof are presented in Section 4.
We follow with a discussion in Section 5 and conclude with some recommendations
and open questions.

2 Related literature

We first review contributions that are most related to the present work, with
papers dealing with theoretical properties of student sectioning. The second part
reviews contributions with heuristic approaches. We refer the interested reader to
(Dostert et al., 2016) for a larger list of references on student sectioning.

1 Although the word "timetabling" usually refers to the whole process of creating a timetable
for each student and each teacher, in this paper we call timetabling the task of assigning
timeslots to sections, as a problem separate from student sectioning, consisting in assigning
students to sections.
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In (Beyrouthy et al., 2008), an experimental study is reported about the im-
pact on space utilization and timetabling feasibility of varying the maximum size
and number of sections. They show that the latter parameter has the most impact
on feasibility and observe that allowing schedule changes while assigning students
has a significant impact on feasibility. A similar issue is handled with a graph
theoretical approach in (Selim, 1988), where the author discusses on how many
vertex splits permit to decrease the chromatic number, i.e. how many additional
sections must be introduced in order to decrease the number of necessary timeslots
to ensure feasibility. A lower bound is given in function of the total number of avail-
able courses and the number of courses to be chosen by each student. In (Dostert
et al., 2016), the authors investigate the complexity statuses of fundamental ver-
sions of student sectioning. They show that the basic decision version of sectioning
on a fixed timetable where each course uses exactly one timeslot is solvable in
polynomial time with a network flow algorithm. On the other hand, they prove
NP-completeness of three generalizations: when students attend only a subset of
courses, when students have individual timeslots restrictions and when courses may
use more than one timeslot. In a similar spirit, the authors of (ten Eikelder and
Willemen, 2001) study both the complexities of basic versions of timetabling and
student sectioning. They first show that the problem of assigning unique timeslots
to sections (which is therefore a pure timetabling problem) with possibly some for-
bidden assignments changes from polynomial to NP-complete when some pairs of
sections possibly require consecutive timeslots. They show then that the problem
of student sectioning over a fixed timetable also becomes NP-complete by adding
maximum section size constraints. The authors of (Cheng et al., 2003) consider
the decision version of student sectioning where the timetable is fixed and part of
the instance (no conflict is allowed). They show its NP-completeness even with a
single student. They further propose a flow formulation, still for the single student
case, which permits them in particular to show that the flow existence problem
is NP-complete if there may be integral flow constraints. They finally discuss on
how to model various aspects by modifying the objective function.

In (Carter, 2001), students have some mandatory courses and some optional
ones, to choose from a list. Prior to timetabling, the author proposes to create
an initial, called homogeneous sectioning by grouping students in clusters accord-
ing to similarities between their optional course selections. The problem is then
decomposed into smaller subproblems and greedy algorithms are run on each of
them to assign timeslots to courses. After timetabling, some assignments are mod-
ified using an alternating tree approach, in order to decrease conflicts in students
schedules. The authors of (Murray et al., 2007) present and discuss several practical
issues in creating the timetable of a large university. The student sectioning part
is managed in two phases: an initial student sectioning is created in the same ho-
mogeneous way as above and once the timetable is settled, the number of conflicts
is lowered via a local search over the student to sections assignments. In (Miiller
and Murray, 2010), the same authors (except one) focus on student sectioning and
propose a deeper approach. Students make choices over optional courses, which
may be proposed in several sections. Sectioning is achieved in three phases. An
initial homogeneous (as above) sectioning is first used only to guide the timetable
construction towards timetables tending to admit satisfactory conflict-free assign-
ments of students to courses. A second phase is run once the timetable is fixed, and
consists of a variable neighborhood search on the set of not necessarily complete
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student to sections assignments. The third phase allows student to remove them-
selves from courses or to subscribe on waiting lists for other courses in an online
manner. If possible, assignments and waiting lists are automatically updated by
possibly re-sectioning enrolled students. In (Hertz, 1991), the author studies the
timetabling and student sectioning problem of a university, where there are some
large courses which have to be repeated in several sections during the week. He
approaches the problem with two subsequent tabu searches. The first one has as
search space the set of timetables. In this algorithm, two sections of a same course
are allowed to be scheduled at the same time, but with a penalty due to possible
conflicts of common students. In the second search, the timetable is fixed and the
search space is the set of student assignments to courses. Only students exchanges
are allowed between different sections of a course, in order to try to diminish the
number of conflicts in the student’s schedules, while keeping the same sections
sizes. In (Amintoosi and Haddadnia, 2005), student sectioning is achieved before
timetabling. Students course selections must be respected, and as soft constraints,
sections should be balanced, section sizes should belong to some range and the
sectioning should be as homogeneous as possible in the sense of Carter (2001).
To this aim, they represent students as vectors indicating their courses choices,
and use a fuzzy data clustering algorithm. In (Alvarez-Valdes et al., 2000), the
course timetable is fixed and revealed to students before they select courses. All
selections must be respected, but there are several sections per course. A section-
ing algorithm is then run, which consists of the two following phases. First, the
sectioning problem for each student is modelled as a maximum independent set
problem where vertices are sections and edges represent two sections the student
cannot be assigned to (either because they belong to the same course, or because
they have a timeslot in common). An enumerative procedure permits to store the
best timetables for each student with respect to secondary criteria including bal-
ance of section enrollments, section maximum capacities and compact timetable.
These timetables are then variables for another problem with the soft constraints
expressed in a Lagrangian. This last problem is solved with a tabu search.

3 Terminology and problem formulation

We define here first precisely the terms we are going to use frequently in this
paper. We follow the terminology used in Carter (2001). A class is a set of students
needing all to follow the same set of courses. In our context, it is the set of all
students. A course is a subject to be taught to all students, like Economics. Each
course has to be taught a given number of times, called sections. A section may also
refer to the set of students composing it and each student belongs to exactly one
section of a given course. There are as many sections as the sum over all courses
of the number of times it is taught. Students that belong to the same section of
a given course do not necessarily for another course. We call a division a set of
students, maximal under inclusion, belonging to the same section for each course.
Each student belongs to exactly one division, and each section can be obtained by
merging some divisions. We are concerned by the way of forming the sections, i.e.
dispatching the students into sections, for each course.

Consider a class with k£ mandatory courses to follow. Each course 4, with 1 <
i < k, is taught to n; sections of equal sizes. Consequently, for each i, our class
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has to be split into n; sections, each containing the fraction ni of the class. Notice
that since we are working with fractions of classes, we are not concerned anymore
with rounding issues. We thus now require sizes of sections to be exactly equal
(not to within 1). This is a reasonable simplification that does not really impact
the applicability of our result.

Section j of course ¢ will be denoted by s; j, 1 <i < k,1 < j < n;. Duration of
each course will be denoted d; and may differ from one course to the other. Each
section s;; has to be assigned a fraction n% of the class and a set of d; timeslots.

We define for each course ¢ € {1,...,k} a function

si 10,1 = {1,...,n;}

Each function s; represents the students assignment to one of the n; sections of
course ¢ and will be called the sectioning i. For instance, if s3(x) = 4 V = €
[0.4,0.45], it means that according to sectioning ss, each student ranked (for in-
stance according to alphabetical order) between 40% and 45% belongs to the 4th
section of the 34 course. Using this notation, the 4t? section of the 3' course is
given by s§1(4). The set of sectionings together will be simply called a sectioning
set. Figure 1 is a schematic view of the following sectioning set S = {s1, s2, 53}
with k = 3 courses, n1 = 2, ng = 3 and n3z = 5.

()= [1 if2€10,03[U[06,03]
S =2 if 2 €(0.3,0.6[U [0.8, 1]

1 if z €[0,0.2[ U [0.867, 1]

s2(z) = 2 if z € 0.2,0.533]
3 if z € [0.533,0.867]
1 if z € [0,0.1[ U [0.45, 0.55[
2 if z € [0.1,0.2[ U [0.9, 1]
s3(z) =4 3 if z €1]0.2,04]
4 if z € [0.4,0.45] U [0.55,0.7]
5 if z € 0.7,0.9]
5 | ! | : [+ [ = |
T T ]
s 211 = Jef ] o [ = [z]

Divisions I I I I I I H I I I I I I

Fig. 1 Sectioning set example with k = 3 courses, n1 = 2, np = 3 and n3 = 5.

For the timeslots assignment, we define the following function which we will
call a timetable :

T:A— P(P)
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such that |T'(s;,j)| = di, Vi, where A is the set of sections and P is the set of
time periods or timeslots. For instance, if T'(s3,4) = {5, 8, 9}, the fourth section of
course 3 is scheduled on timeslots 5, 8 and 9.

In a feasible timetable, two sections sharing a timeslot should not share a
student. We consequently define potential conflict graphs of the two following
kinds on the set of sections. Given a sectioning set S = {s1,..., sk}, two vertices
sq,; and sy ;o are adjacent in the students conflict graph Gs = (A, Es), if and
only if s;'(j) Ns;; ' (j/) # 0. Notice that for each course i, the vertex set A; :=
{si; : j = 1,...,n;} is a stable set in Gg. Minimizing the number of pairs of
conflicting sections is then equivalent to minimizing the number of edges in the
student conflict graph. Given a timetable T, two vertices s; ; and s/, ;7 are adjacent
in the timeslots conflict graph Gr = (A, Er), if and only if T'(s; ;) N T (s /) # 0.

4 Optimal sectioning

Our main result tells how to choose a sectioning set S so as to minimize the number
of edges of Gg, regardless of the timetable. Indeed, each edge in Gg represents a
potential conflict, which will become real if it is also an edge in Gr. If sectioning
is achieved before timetabling, the best we can do a priori is making |Eg| as small
as possible.

By GCD(a, b) we denote the greatest common divisor of positive integers a and
b and by LCM(a, b) their least common multiple. These are linked by the formula
GCD(a,b)LCM(a,b) = ab. For a graph G = (V, E) and V' C V, we denote by
G[V'] the subgraph of G induced by V', that is to say the graph obtained from G
be removing all vertices in V\V’ and all edges with at least one endpoint in V\V".

Consider courses i and i’. Since the vertex sets A; and A,/ are stable in Gg for

any sectioning set S = {s1,..., sk}, we have
_min |E(Gs)| = min > |E(Gs[Ai U Ai))|
Lotk btk e {1, kY i<
> > min |E(Gs[A; U Ay])|

i,/ €{1,...,k},i<i’
Consequently, if we are able to find a sectioning set S = {s1,..., sk} such that

|E(Gs[A; U Ay])| = min |E(Gs[A;UAy])] V 1<i<i <k

SiyS;t

we are done.

Next Proposition shows that it is actually the case, and the corresponding
sectionings are the ones where all preimages si_l(j) are intervals. Figure 2 displays
the optimal sectioning set corresponding to our example above.

Proposition 1 If s;(x) = [n;x]| Vi € {1,...,k}, then for each i < i’ we have
|E(Gs[A; U Ay])| = min |E(Gs[A; U Ay])|

Si,8;/

n; +ni — GCD(ni, ni’)
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o | : | z |
o S R R R R
o[+ [ =+ [ 5 [ « [ 5 |

Divisions | [ [ [ [ | [ [ |

Fig. 2 Optimal sectioning with k = 3 courses, n; = 2, no = 3 and n3 = 5.

Proof We begin our proof with the following observations on properties we may
assume on optimal sectionings s; and s;/.

Observation 1 There are optimal sectionings s; and s;/, with s;(x) = [n;z].

Indeed, let §; and §; be optimal. Since |3, (5)| = |s; ' ()| = Lovie{l,... n},
there is a bijection o from the [0, 1] interval into itself, such that §;(c(z)) = [niz] =
si(x). Then choosing s;/(x) = 3 (o(x)), si; and s, induce exactly the same conflict
graph as §; and 3;, since € s; ' (j)Ns;, ' (§) if and only if o(z) € 5; ' (j)N5; ' (4')-
In particular, both conflict graphs have the same, minimal number of edges. Since
we restrict here only to two courses 4 and ', the sets s; ' (j)Ns;, ' (j/) are divisions.

From now on, we assume s;(z) = [n;z].

Observation 2 There are optimal sectionings s; and s;; such that the divisions
s; ' (§) Ns; ' (4) are intervals.

For each 1 < j < n;, an argument similar to the above, with o being a bijection
from the interval [jn;l, L [into itself, permits to assume that the divisions

Const@) = [ L

ni = n; se (), 1< <
are connected, and hence are intervals.
We may thus assume that each division s; '(j) N's;'(j’) is an interval. Recalling
that |E(G[A; U Ay])] is equal to the number of sets s; ' (j) N's;, ' (') that are non
empty, | E(G[A; UA;/])| is simply equal to the number of divisions s; ' (5) Ns;, ' (')
We now show that |E(G[A; U Ay])| > ni + nyy — GCD(ny, ny). Assume by
contradiction that the number of divisions s; ' (j) N s, (5) is at most n; + ny —
GCD(n;, niy ) —1. Of course, if there are, say p divisions, there are p—1 separations,
i.e. pairs of adjacent (in [0, 1]) divisions (see Figures 1 and 2). This means that
there are at most n; + n;y — GCD(n;,n;) — 2 such separations. Further, exactly
n; — 1 of them are induced by the sections si_l(j). We call them original. Hence
there are at most n;y — GCD(n;,n;) — 1 separations that are non original and
exclusively induced by the sections s;, ' (j'). Let us call them additional.
Construct an auxiliary graph H = (Vj,, Ey) with Vi, = {h1,..., ha, } = {5, (j)
1 <3’ <ny} and two vertices hj, and hj, being adjacent in H if and only if there
is at least one pair of divisions s; '(j1) N's; ' (41) and s; ' (j1) N s;'(j%) sharing
an additional separation. The number of connected components of H is at least
[Vi|=|Ew| = ni—(niy —GCD(n;, niy)—1) = GCD(n4, nir)+1. Consider the smallest

one, and denote its number of vertices by ¢. Clearly, ¢ < {W%HIJ . Observe
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that for each connected component in Gg, the corresponding union of divisions in
[0,1] is only delimited by original separations. As a consequence, the sum of its
division lengths must be a multiple of ni, say -+, a € N*:

ng’

a
” T4

< an; = qn;

So an;s is a multiple of both n; and n;/, thus an;; > LCM(n;,n;/). On the other
hand,

a 1 ng/ 1
=g < L
n; T GCD(n;,ni) +1] ngy
L S S
GCD(ng,ni) ni " GCD(ng,ny)
_ LCM(ng,ny)
o ning

Hence an;; < LCM(n;, n;), a contradiction.

To show that for s;(z) = [n;z| and s;(z) = [niz] we have |[E(G[A; U Ay])| =
ni + ny — GCD(n;,ni), we only need to observe that the points in [0, 1] that are
both original and additional separations are

aLCM(ni, nis)
MMt

, a€f{l,...,GCD(ns,ny) — 1}

Indeed, separations that s; and s; have in common are the multiples of - = i
ni/
mn;s
n;n;s

and ni = . So the total number of separations is

(ni — 1)+ (nyy — 1) — (GCD(n4,ni) — 1) = n; + ny — GCD(n;,nir) — 1

and the number of edges of the conflict graph, which is equal to the number of
divisions, is n; + ny — GCD(n;, ny/).

In the sequel, we call regular the sectioning set of Proposition 1, i.e. S =
{s1,...sx}, with s;(z) = [nz],i = 1,...,k. Notice that unsurprisingly, regu-
lar sectioning follows the same principle as homogeneous sectioning proposed in
(Carter, 2001), in the sense that if two students are involved in the same sections
for courses 1 to k— 1, it means that they are ranked closely and are therefore likely
to be also involved in the same section for course k.

5 Discussion
5.1 Section numbers

Proposition 1 tells us that the minimum number of edges in the conflict graph is
equal to
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min |E(G5)| = Z ng + ngy — GCD(ni,ni/)

S15+-+3Sk
o i, e{1,....k},i<i’

k
(k — 1)Zm - > GCD(ni,ny)

i €{1,...,k},i<i’

Hence, apart from sectioning regularly, revising section numbers (if possible)
may also permit to diminish the number of potential conflicts. The first part
((k—1) Zle n;) is simply the total number of sections. Of course, by creating
less sections, we will tend to have less potential conflicts, but this is not helping.
The second part tells us we should give preference to section numbers which have
large common divisors, which is intuitively sound. For instance, if n; = 4, choosing
ng = 7 would produce 44+7—GCD(4,7) = 11 —1 = 10 potential conflicts, whereas
choosing na = 6, or ng = 8 (depending on practical constraints) would both
produce 8 potential conflicts.

5.2 Uniqueness

Observe that if there are only two different section numbers n; and ng, other
sectioning sets may also minimize the edges in the conflict graph. For instance,
if n1 = 3 and n2 = 4, the sectioning set S depicted in Figure 3 also produces
n1 +n2 — GCD(n1,n2) edges in Gg. However, this sectioning set is specific to the

Fig. 3 Sectioning set S.

section numbers n; = 3 and n2 = 4 and finding an optimal sectioning for a third
course with a larger number of sections may become tedious, if not impossible.
In contrast, our regular sectioning function s; = [n;z] does not depend on other
values mj;, j # 4, permitting to add any number of sections with guaranteed
optimality as long as regular sectioning is used.

5.3 Timetabling feasibility

Given any sectioning set, it is not clear whether a conflict free timetable exists or
not, since there may be several additional constraints preventing it, like restrictive
teachers availabilities. However, permuting sections (i.e. sets of students) of the
same course may be allowed as long as teacher assignments remain unchanged.
Given a timetable T', we call a sectioning set S feasible with respect to 7T if there
exists a set of section permutations o1, ...,0x, with o; over the set {1,...,n;},
such that the resulting timetable is conflict free, i.e. such that T'(s; ;) NT'(s;,5) = 0
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whenever s; ' (0:(4)) N's; ' (0:(5")) # 0. Obviously, regular sectioning may not be
feasible for any timetable, the simplest example being where all sections get the
same timeslots. A less trivial and more useful question is the following: if there
exists a feasible sectioning set for some timetable T, is the regular sectioning set
also feasible? In the general case the answer is negative, and we illustrate it with
a small example of 12 students, 2 courses of 3 and 4 sections, durations di = 1
and d2 = 2, and the timetable depicted in Table 1. Indeed, Figure 4 displays

Section s; ; | s1,1  s1,2 51,3 52,1 52,2 52,3 52,4
T(si;) iy {2y 8+ {12} {1,3} {23} {45

Table 1 Timetable incompatible with regular sectioning.

the corresponding timeslots conflict graph?. If we apply the regular sectioning

S11 Soa
S1,2

S22
S1,3

S23

Fig. 4 Timeslots conflict graph Gr.

approach, the resulting sectioning conflict graph is, up to section permutations
within the same course, depicted in Figure 5. Clearly, S is feasible with respect to

S11 Sy1
S
12
S22
S
1.3
Sy3
S2.4

Fig. 5 Sectioning conflict graph Gg obtained with regular sectioning.

T if and only if there is a permutation of {s1,1, 81,2, 81,3} (or {s2,1, 52,2, 52,3,82,4})
such that no pair of vertices is an edge in both conflict graphs. It is not the case,
since there are 3 vertices of degree 2 among the so ; vertices in G, whereas there
are only 2 vertices of degree one among them in Gg. Now consider the same
sectioning set S as in Figure 3, and described in Table 2 for our 12 students. The
corresponding sectioning conflict graph is displayed in Figure 6. This graph is the

2 For the sake of simplicity, we do not display edges between vertices of the same course,
since these potential conflicts can never be realized.
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Student 1 2 3 4 5 6 7 8 9 10 11 12
Section for course 1
Section forcourse 2 | 3 3 3 4 2 2 2 4 1 1 1 4

Table 2 Sectioning set S.

—
—_
—
—_
N
[\
N
[\
w
w
w
w

Si11 So1
Si1.2
' S22
S
1.3
S23
S2.4

Fig. 6 Sectioning conflict graph G g obtained with sectioning set S.

bipartite complement of the timeslots conflict graph Gr, thus S is feasible with
respect to 7.

This example shows that if regular sectioning permits to minimize the number
of edges, it may not be the only optimal solution in that sense, and there may
exist timetables that are not feasible for S, but feasible for another sectioning set.
However, in this example, the course s2,2 is assigned timeslots 1 and 3, and we did
not find such an example where all course are assigned only consecutive timeslots,
a situation we may expect in practice. The existence or not of such an example
remains an open question.

5.4 Teacher assignments

In most cases, teachers are indifferent to which sections they are assigned. The
section assignments among teachers within a same course can therefore be freely
permuted. We provide here some hints on how to exploit this flexibility prior to
timetabling. We again base our discussion on the number of potential conflicts,
and consider teachers like students, in the sense that they contribute to edges in
the student conflict graph.

If we restrict attention to only one course, we observe that changing teacher
assignments to sections will not change the conflict subgraph (up to isomorphism)
induced by sections of this course, hence the number of edges.

If a teacher is assigned sections in different courses, it may be preferable to
assign him or her similar sections (with many students in common). Indeed, these
sections are likely to be already adjacent in the student conflict graph, so adding
the teacher to them will create only few new edges, if any. Observe again that this
similarity argument is consistent with homogeneous sectioning (Carter (2001)).

Finally, for the case where two teachers are assigned sections in different
courses, a criterion could be based on their availabilities: it may be suitable to as-
sign similar sections to teachers with complementary availabilities. This criterion
suggests a preprocessing consisting in permuting teachers among sections in order
to maximize the probability of existence of a feasible timetable. However, this task
does not promise to be trivial: if two teachers have complementary availabilities
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and are assigned similar sections, what about a third teacher having availabilities
similar to the first one?

5.5 Courses with unbalanced sections sizes

This paper deals with the situation where all courses must have balanced sec-
tions. It happens in practice that some courses have some "subcourses" chosen by
students, making perfect balancing impossible. We don’t have a solution proven
optimal for this more general case, but we give some hints based on experience.
Consider the following example. Assume that a class has mandatory courses
with n1 = 3 and n2 = 4 sections. The resulting regular sectioning is displayed on
Figure 7. Additionally, assume we have a course, say "Foreign Language", which

Divisions | 14 [112 ] 1/6 [ 1/6 [112 ] /4 |

Fig. 7 Regular sectioning with 3 and 4 sections.

is made of one section of German, two sections of Chinese and three sections of
Spanish, whereas 23 students subscribed for German, 40 for Chinese and 57 for
Spanish. Requiring the sections of a same language to be balanced, we would need
to create one section of 23 students (19.2% of the total), two sections of 20 students
(% each) and 3 sections of 19 students (15.8% each).

It is tempting to associate both Chinese sections to divisions 3 and 4 since
they have exactly the right size. Doing this, we observe that there is no way to
associate the remaining students in a connected manner, and the total number of
new conflicts due to "Foreign Language" would be at least 16. Now if we look at
the different connected ways of sectioning this course, we observe that the number
of new conflicts of 16 is reachable too, and that this number depends on how we
order the 6 sections. For instance, placing from left to right the German course,
followed by both Chinese courses and the three Spanish courses, the number of
such conflicts would be 17.

Based on such kind of observations, we also recommend to keep connectedness
while sectioning such a course, but optimality remains on open question as well as
characterizing the best sections order. If for some reason connectedness has to be
dropped, the homogeneity criterion mentioned in Sections 2 and 4 tells us to avoid
merging divisions that are too distant. This has been experienced in practice when
it comes to timetabling: courses involving non adjacent and distant divisions have
many potential conflicts and are therefore more difficult to schedule.

Finally, it is important to notice that in our example, we assume we can ar-
bitrarily decide which language is associated to which division, since it amounts
to permuting the students. However, if there is another such course, this freedom
is partially lost, since it is then only allowed to permute divisions in the same
subcourse.
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6 Conclusion

In this paper, we address the problem of student sectioning on mandatory courses
with various numbers of sections, before knowing the timetable. We prove that
sectioning students in a regular way permits to minimize the total number of
potential conflicts. We then discuss implications of this result, uniqueness of this
optimal solution, the existence of a feasible timetable, some issues about teachers
assignments and the case where a course has to be sectioned in an unbalanced
way.
As an output, we give the following recommendations:

e For all course that are mandatory, section regularly;

e If you can choose or influence the numbers {n1,...,ng} of sections by course,
choose numbers that have a large common divisor;

Assign a teacher to similar sections (having a large intersection);

Assign teachers with complementary availabilities to similar sections;

Section in a connected manner even on courses with unbalanced section sizes;
If connected sectioning is impossible, avoid merging divisions that are too dis-
tant according to the chosen student ordering.

We leave the reader with the following open questions:

e Are there section numbers ni,...n; on k courses, with durations di,...,dg,
a non-regular balanced sectioning S and a timetable T where all courses are
assigned consecutive timeslots, such that S is feasible with respect to T', but
regular sectioning is not?

e Is the problem "BSS + (E)" defined in (Dostert et al., 2016) still NP-complete,
when restricted to the case where courses are assigned only consecutive times-
lots? What about the variation of "BSS + (E)" where sections have to be
balanced?

e In the case of an additional course with some imposed unbalanced section sizes,
is there still a connected sectioning which is optimal? If yes, how to order the
sections?
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