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Abstract Noise levels observed in positron emission tomog-
raphy (PET) images complicate their geometric interpretation.
Post-processing techniques aimed at noise reduction may be
employed to overcome this problem. The detailed character-
istics of the noise affecting PET images are, however, often
not well known. Typically, it is assumed that overall the noise
may be characterized as Gaussian. Other PET-imaging-related
studies have been specifically aimed at the reduction of noise
represented by a Poisson or mixed Poisson + Gaussian model.
The effectiveness of any approach to noise reduction
greatly depends on a proper quantification of the charac-
teristics of the noise present. This work examines the
statistical properties of noise in PET images acquired with
a GEMINI PET/CT scanner. Noise measurements have
been performed with a cylindrical phantom injected with
11C and well mixed to provide a uniform activity distri-
bution. Images were acquired using standard clinical pro-
tocols and reconstructed with filtered-backprojection (FBP)
and row-action maximum likelihood algorithm (RAMLA).

Statistical properties of the acquired data were evaluated
and compared to five noise models (Poisson, normal,
negative binomial, log-normal, and gamma). Histograms
of the experimental data were used to calculate cumulative
distribution functions and produce maximum likelihood
estimates for the parameters of the model distributions.
Results obtained confirm the poor representation of both
RAMLA- and FBP-reconstructed PET data by the Poisson
distribution. We demonstrate that the noise in RAMLA-
reconstructed PET images is very well characterized by
gamma distribution followed closely by normal distribu-
tion, while FBP produces comparable conformity with
both normal and gamma statistics.

Keywords Image processing . Positron emission
tomography (PET) . Image denoising . Nuclear medicine

Introduction

Positron emission tomography (PET) plays an ever increas-
ing role in radiotherapy treatment planning. PET provides a
unique tool for the visualization of biologic processes which
can reveal valuable information pertinent to patient diagno-
sis, staging, progression, and treatment outcome. In oncol-
ogy, PET data used in conjunction with CT can significantly
improve cancer diagnostic accuracy and tumor delineation
for radiation treatment planning by providing vital function-
al information not available otherwise [1–5]. PET data has
been shown, for example, to possess greater sensitivity and
specificity in the staging of lung cancer [6–8] than either CT
or MRI alone. The quantitative interpretation of PET images
is, unfortunately, not always straightforward. One of the
confounding factors in the interpretation of PET is image
noise. Clinical PET images typically display increased noise
levels compared to other modalities such as CT and MRI.
Effective image noise reduction is greatly dependent on an
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accurate knowledge of the parameters which characterize this
noise. Unfortunately, detailed properties of the noise affecting
clinical PET images are not often well characterized.

Positron emission itself is well characterized by a Poisson
distribution [9–11]. The scanner’s detection system and other
electronic components then add their own characteristic noise
to this initial Poisson distribution. The resulting noise distri-
bution is further altered by corrections processing and image
reconstruction [12, 13]. Some reconstruction schemes, such as
the expectation maximization (EM)–maximum likelihood
(ML) [14], are explicitly based on an assumption of Poisson
statistics in the acquired sinograms despite the fact that pre-
processing prior to reconstruction may alter statistical proper-
ties of sinograms. Filtered-backprojection (FBP) [15], on the
other hand, is predicated on the analytic inversion of noise-
free projection data. The degree to which the Poisson charac-
teristics of PET noise are preserved is highly dependent on the
manner in which the raw data is processed [16]. Noise prop-
agation is affected by machine type, acquisition mode, scan
time, amount and distribution of tracer, applied corrections,
and reconstruction algorithm [17–19]. For commercial sys-
tems, the details of clinical image production are usually held
proprietary by the vendor. This effective black box nature of
the process necessitates an empirical evaluation in order to
characterize the noise present in images presented to the user.

Post-processing may be employed to reduce the level of
noise present in clinical PET images. The effectiveness of
this post-processing is greatly aided by a proper quantifica-
tion of the characteristics of the noise present. An assump-
tion common to many post-processing approaches is that
overall the noise may be characterized as Gaussian [20, 21].
Alternatively, the noise in clinical PET images has been
described using a Poisson + Gaussian model [22], where
the presence of both, correlated and uncorrelated compo-
nents, is assumed. Other studies [23–26] are aimed specif-
ically at the reduction of Poisson noise contained in medical
(including PET) images, exploiting its statistical properties.
It is not clear if this approach is strictly valid in case of PET
images [27].

In this work, the statistical properties of PET images ac-
quired according to clinical protocol and reconstructed with
filtered-backprojection [15] and row-action maximum likeli-
hood algorithm (RAMLA) [28] are examined. Filtered-
backprojection has significant limitations compared to more
general, maximum-likelihood-based iterative reconstruction
methods. FBP does not take into account counting statistics,
assumes shift invariance, treats lines of response (LORs) as
close approximations to line integrals, and is often limited to
approximate empirical scattering corrections. Iterative recon-
struction methods, in contrast, do not rely on assumptions of
well-behaved LORs and shift invariance, and uniform sam-
pling is not necessary. Factors like detector resolution, scat-
tering, attenuation, positron range, and photon noncollinearity

can be explicitly incorporated into the probabilistic calculation
of positron annihilation detection along a particular LOR [29].
Several groups [30–32] have performed theoretical analyses
of the noise properties of images reconstructed with both
methods. FBP tends to spread noise variance from high-
count regions to low-count regions, producing increased noise
correlation with decreasing FBP filter cutoff frequency. This
results in a more uniform noise variance [19]. RAMLA, which
was proposed as a faster alternative to the EM algorithm [33]
and can be considered as a special case of ordered subsets
expectation maximization algorithm [32, 34], yields signifi-
cantly decreased noise variance in low-count regions com-
pared to FBP.

To the best of our knowledge, experimental evaluations
describing the statistical characteristics of noise in recon-
structed PET images have yet to appear in the literature.

Methods and Materials

Statistical properties of noise were evaluated for PET
images acquired with Philips Gemini GS PET/CT scanner
(produced in 2003). It is an integrated system that consists
of a Mx8000 Dual-Exp CT system for CT imaging and an
Allegro PET system for PET imaging. In addition to CT-
based attenuation correction capability, this first generation
of Gemini system inherits the transmission scan mechanism
of the Philips Allegro system that uses a singles transmis-
sion source (Cs-137). The PET scanner is comprised of 28
flat modules of 22×29 (tangential and axial directions) array
of GSO crystals, which form 29 rings with 616 crystals per
ring. The dimensions of the crystals are 4×6×20 mm3 in the
tangential, axial, and radial directions, respectively. The data
acquisition was performed in list mode. The data acquired
from the scanner are binned into a sinogram with 161 angles
and 295 rays for every ring combination (total of 2920841
combinations). Interpolation is performed to rebin these data
into a 256×192 (rays×angles) sinogram and 7 tilts (out-of-
plane angle). The whole-body field of view (FOV) for
Gemini PET is 576 mm transaxially and 183 mm axially.
Table 1 lists the characteristics of Gemini PET scanner. The
noise measurements were performed with a cylindrical
phantom (long axis coincident with the reconstruction cen-
ter and orthogonal to the image plane), which was 20 cm in
diameter and 35 cm in length.

The phantom was injected with 87 MBq of 11C (T1/20
20 min) and well mixed to provide a uniform activity
distribution. The phantom was scanned in a single bed
position. A dynamic sequence of 20 frames was acquired
for 100 min according to the following schedule: 20×300 s.
For each frame the reconstructed image size was 144×144
pixels in 45 slices (144×144×45), with a pixel size of 4×
4 mm2 and slice thickness of 4 mm. Statistical properties of
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noise were evaluated for PET images reconstructed accord-
ing to current clinical settings at Cross Cancer Institute.
Routine clinical image reconstruction is performed with a
fast, fully 3D iterative algorithm (3D-RAMLA) with two
iterations, relaxation parameter of 0.006, and a “blob” radius
of 2.5 pixels. For comparison, statistical properties of noise
were also evaluated for images reconstructed with Fourier
rebinning (FORE) followed by a Hanning filtered-back-
projection algorithm. Default value of 3.00 for Hanning
smoothing parameter, supplied by the scanner manufacturer,
was used in reconstruction. PET scan was normalized to
correct for the variation in detector efficiencies and distor-
tion. Emission data were corrected for randoms, scatter,
attenuation, and decay. The randoms correction was accom-
plished via direct online randoms subtraction from the
prompt sinograms (direct randoms estimation using a
delayed coincidence window technique, no smoothing of
randoms). The decay correction was performed to the start
of the scan. For RAMLA reconstruction, the attenuation
map was obtained from the CT scan and scatter correction
was applied by a single-scatter simulation technique (the
scatter sinogram is subtracted from non-scatter corrected sino-
gram). In the Gemini system, CT-based three-dimensional
attenuation correction (CT-3DAC) is incorporated into the
three-dimensional row-action maximum likelihood algorithm
(3D-RAMLA) for PET image reconstruction. For data recon-
structed with FBP the scatter correction was applied by uni-
form background subtraction (UNI-BGSUB) technique, while
the attenuation correction was performed by reconstruction-
reprojection method based on the reconstruction and forward
projection of a transmission image. 3D-RAMLA and Hanning

FBP reconstructions were performed using default (scanner
manufacturer supplied) reconstruction tools. The software
used in the analysis of the reconstructed image data was
developed in MATLAB 7.4.0, on a PC.

The noise probability density function may be character-
ized by examining the histogram of a region of interest
(ROI) selected in a uniform image [35]. A circular ROI
covering the inner 79 % (1,542 pixels, where each pixel is
4×4 mm2) of the phantom’s cross-section was selected from
each slice. The outer edge of the ROI was kept inside the
full active extent of the phantom in order to avoid confound-
ing partial volume effects which occur in the immediate
vicinity of the phantom wall and to avoid the air bubble
visible on Fig. 1. In the longitudinal direction, the analysis
spanned the entire 45 slices acquired in a single bed posi-
tion. Histograms generated from these ROI’s were fitted,
using maximum likelihood estimation, to Poisson, normal
(Gaussian), negative binomial, log-normal, and gamma dis-
tributions. Derived in this manner, the parameters specific to
each distribution model are then used to calculate cumula-
tive distribution functions (CDFs), quantiles (inverse of the
CDF), skewness, and kurtosis (excess kurtosis).

Several graphical methods may be used to evaluate the
differences between the probability distribution of a popu-
lation from which a random sample is drawn and that of a
reference distribution. Here, we employ commonly used
quantile–quantile (Q–Q) plots [36] for this purpose. In a
Q–Q plot, the inverse of the cumulative distribution function
(iCDF) of experimental data (experimental quantiles) is
plotted against the iCDF of the distribution fitted to the data
(theoretical quantiles). If the distribution in question is the
same as the reference distribution then the resulting Q–Q
plot will follow a 45° line rising from left to right. Linear

Table 1 Philips Gemini GS PET/CT characteristics (produced in 2003)

Parameter Specifications

Number of blocks 28

Number of detector
rings

29

Maximum ring
difference

28

Number of crystals 17864 GSO

Number of PMTs 420

PMT diameter 39 mm

Crystal dimensions 4 (transaxial)×6 (axial)×20 (radial)mm3

Detector ring diameter 800 mm

Patient portal diameter 565 mm

Axial FOV 183 mm

Number of image
planes

90 or 45 (brain and whole body, respectively)

Plane spacing 2 or 4 mm (brain and whole body, respectively)

Transmission source Rotating 740 MBq 137Cs point source

Reconstruction
algorithms

FORE3D + FBP

RAMLA3D

Fig. 1 4D PET study on a cylindrical phantom (first time frame of
slice 21). ROI was selected on image reconstructed with RAMLA (a)
and FBP (b). The histogram generated from ROI selected on image
reconstructed with RAMLA (c) and FBP (d)
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plots which deviate from the 45° line indicate a difference in
dispersion between the two distributions. Substantial devia-
tions from linearity dictate a rejection of the hypothesis of
sameness. Quantiles of the experimental PET distribution
were compared to quantiles of the Poisson, negative bino-
mial, normal, log-normal, and gamma distributions. The
Shapiro–Wilk, Anderson–Darling, Kolmogorov–Smirnov,
Pearson’s Chi-square, D’Agostino’s K-squared, and a score
of other tests may also be used to evaluate the distribution of
noise. Quantile–quantile plots were chosen for this investi-
gation because, unlike some of the tests mentioned above,
Q–Q plots: (1) can be applied to both continuous and
discrete distributions, (2) do not require sample sizes to be
the same, and (3) allow testing of many distributional
aspects such as shifts in location, shifts in scale, changes
in symmetry, and the presence of outliers simultaneously
[36]. A pseudo-Poisson model has been proposed in the
literature [12] for simulating PET noise. Using this model
to simulate an over-dispersed Poisson distribution and esti-
mate its variance, the mean number of counts is scaled by an
empirically determined parameter. The same can be
achieved by means of negative binomial distribution with-
out introducing scanner-dependent empirical relationships.
The negative binomial distribution was included in this
comparison as it is the simplest way of modeling Poisson
distributions in application to situations in which the variance
is higher than the mean number of counts (over-dispersed
Poisson distribution). This situation can be viewed as a Pois-
son model with gamma heterogeneity, where the gamma noise
has a mean of one. In other words, the negative binomial
distribution can be described as a continuous mixture of
Poisson distributions, while the mixing rate is characterized
by a gamma distribution and accounts for over-dispersed or
correlated Poisson counts [37]. The gamma distribution was
considered because it describes Poisson processes and, with
an appropriate choice of shape and scale parameters, is capa-
ble of modeling an over-dispersed Poisson process. Lastly, it
has been suggested in the literature that the histogram of a ROI
selected in a uniform PET image may be well approximated
by log-normal distribution [38] and thus this distribution was
also investigated.

Skewness (third standardized moment) is a measure of
the asymmetry of a probability distribution and is mathe-
matically defined in terms of the third moment about the
mean and standard deviation as:

Skewness ¼ E
X � μ
σ

� �3
" #

ð1Þ

where X is the random variable, μ is the mean, and σ is the
standard deviation, and E is the expectation operator. Kur-
tosis (fourth standardized moment) is a measure of the
“peakedness” of a probability distribution. The greater the

kurtosis value, the greater the contribution to the variance
from large deviations. Conversely, a variance composed of
modest deviations results in a smaller value of kurtosis.
Thus a high kurtosis value corresponds to a sharply peaked
distribution with long ample tails while a low kurtosis is
descriptive of a more rounded peak with shorter thinner
tails. Mathematically, kurtosis is defined in terms of the
fourth moment about the mean and standard deviation as:

Kurtosis ¼ E
X � E X½ �ð Þ4

σ4

" #
ð2Þ

In this work, skewness and excess kurtosis (kurtosis-3)
are used in conjunction with CDFs and Q–Q plots to exam-
ine the statistical properties of noise in PET data. These
properties are used to evaluate the experimental distribution
in comparison to five distributions (Poisson, normal, nega-
tive binomial, log-normal, and gamma). The performance of
the normal, negative binomial, log-normal, and gamma dis-
tributions is compared by means of root mean square error
(RMSE), calculated for normalized standard deviation
(NSD), skewness, and excess kurtosis. In the 2D case
NSD was defined as standard deviation (STD) scaled to
the mean of the slice, while in 3D case it was defined as
STD of the phantom volume of interest (VOI) scaled to its
mean. Analysis of goodness-of-fit between the experimental
distribution and five distributions explored is performed by
means of Q–Q plots for both 2D and 3D case. Kurtosis and
skewness are utilized to provide an overall feel for the shape
of the experimental data and a further measure of the fit to
these five distributions. The spatial variation of noise within
the phantom was investigated along single pixel width ver-
tical and horizontal diametric profiles. The data obtained
from these profiles is suggestive of certain trends but
plagued by excessive noise. Five circular sub-regions (top,
bottom, left, right, and center) within the area of interest
were also analyzed. These procedures were applied to
images reconstructed from the same raw data set recon-
structed with both filtered-backprojection and row-action
maximum likelihood algorithm.

Results and Discussion

The simple case of a circular ROI in the uniform phantom
was investigated first. Figure 1 shows images from slice 21
(first time frame) located near the center of this uniform
phantom reconstructed using RAMLA and FBP and their
respective ROI histograms. Immediately obvious are the
higher reconstructed counts seen in Fig. 1 produced by
FBP as compared to RAMLA resulting from the same raw
data. This can be attributed to difference in preprocessing
steps (scatter and attenuation correction) and reconstruction
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(full 3D-RAMLA vs. FORE + FBP). Based on the process
of maximum likelihood estimation (MLE), cumulative dis-
tribution functions, quantiles, skewness, and excess kurtosis
were calculated in order to model the experimental data with
Poisson, normal, negative binomial, log-normal, and gamma
distributions. Cumulative distribution functions (CDFs) and
cumulants of these distributions calculated from MLE esti-
mates of the distribution parameters are presented in Fig. 2
and Table 2 along with respective margins of error for 95 %
confidence level for slice 21 (first time frame). Margins of
error are calculated as half width of 95 % confidence inter-
vals for the parameter estimates. Exploring the representa-
tive data of slice 21 (first time frame), it is readily evident
from Fig. 2 and Table 2 that the noise characterizing this
ROI is not Poisson distributed but is instead better modeled
by the negative binomial, normal, log-normal, and gamma
distributions.

In order to differentiate between the performances of
these models, the data presented in Fig. 2 and Table 2 is
further analyzed by means of the absolute error (see Table 3)
between the experimental data and the predictions of each
distribution, with regard to mean, STD, kurtosis (K), and
skewness (S) values. It is apparent from Table 3 that each
distribution has its own strengths and weaknesses. The
normal distribution exhibits the largest discrepancy (abso-
lute error) with regard to the mean, while the Poisson
distribution performs very poorly with regard to standard

deviation. With respect to skewness, for both RAMLA and
FBP, the absolute error is an order of magnitude smaller for
the gamma distribution compared to Poisson, negative bi-
nomial, normal, and log-normal distributions.

With regards to excess kurtosis, for both RAMLA and
FBP reconstructions, the discrepancy values are relatively
small for all distributions except log-normal distribution.
For both RAMLA and FBP no model emerges as clearly
superior, but Poisson is decidedly inferior. The poor repre-
sentation of both RAMLA and FBP reconstructed PET data
by the Poisson distribution is also shown using the Q–Q
plots of Fig. 3. Here, with the exception of minor deviations
at the tails, the data points conform very well to the refer-
ence 45° lines of the negative binomial, normal, log-normal,
and gamma. Significant differences in dispersion (and hence
noise) are observed with regard to the Poisson distribution
for both RAMLA and FBP.

The results presented thus far (Table 3 and Figs. 1
through 3) are representative only of first time frame of slice
21. More general results may be sought by examining the
data from all slice locations. Unfortunately, a full volumetric
analysis is not possible due to the large changes in mean and
standard deviation associated with slices nearest the mini-
mum and maximum longitudinal extents (slices 1, 2, 3, 43,
44, and 45). The data from the full complement of slice
locations combine to produce an asymmetric quasi-bimodal
distribution. Limiting the volumetric analysis somewhat
arbitrarily to the combined results from slices 4 through 42
(first time frame), over which the values of mean and
standard deviation are relatively constant, yields the Q–Q
plots shown in Fig. 4, which reflect the conclusions drawn
for the 2D case of slice 21 above. Moreover, the Q–Q plots
comparing experimental data to negative binomial (Fig. 4b),
log-normal (Fig. 4d), and gamma (Fig. 4e) distributions
reveal points that lie almost exactly along the 45o reference
line for RAMLA data. Deviations observed at the tails are
somewhat more pronounced for the images reconstructed
with FBP (Fig. 4g through j). Poisson statistics provides,
once again, an inferior description of the experimental data.

The spatial distribution of noise within the phantom was
initially investigated along single pixel width vertical and
horizontal diametric profiles. The magnitude and spatial
distribution of noise in PET is significantly affected by the
reconstruction algorithm used, as can be seen in Fig. 5 for
the vertical and horizontal diametric profiles of slice no. 21.
Consider first the data provided by RAMLA reconstruction
(Fig. 5a and b). Noise appears independent of lateral posi-
tion within the active volume. Outside the active volume,
count values fall off rapidly to a nominal zero level. A
degree of ambiguity attends this assessment, however, due
to the significant noise evident in the data. A different
picture emerges from the FBP data of Fig. 5c and d. As
noted previously, count levels within the active volume are

Fig. 2 Graph of the CDFs plotted vs. pixel values. Experimental CDF
is compared to CDFs of Poisson, negative binomial, normal, log-
normal, and gamma distributions. The theoretical CDFs are calculated
using maximum likelihood estimates for the parameters. The histogram
(first time frame of slice 21) for the fits was generated from circular
ROI selected on image reconstructed with RAMLA (a through f) and
FBP (g through l)
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higher than their corresponding values provided by
RAMLA reconstruction. Further, count values appear mod-
erately peaked near the center of reconstruction, falling off
slightly toward the outer regions of the active volume. The
transition from active volume to cold outer regions is more
gradual with FBP in comparison to RAMLA and regions of
unphysical negative counts are observed external to the
active volume.

Five circular sub-regions (top, bottom, left, right, and
center) within the area of interest were analyzed. Each of
these sub-regions had an area equal to ≈9 % of the transaxial
cross-section of the phantom. These sub-regions were prop-
agated throughout slices 1 through 45 of the uniform cylin-
drical phantom resulting in the data of Fig. 6. Immediately
obvious are the longitudinal variations in total counts and
noise within each region of interest. Rising rapidly from

artificially low mean count values at the extrema slices (1
and 45), the RAMLA data of Fig. 6a initially overshoots
(slices 3 and 43) prior to assuming more nominal values
characteristic of central slice locations. The unphysical di-
minishment of mean count values is greater at the superior
extrema (slice 1) as compared to the superior most image
location (slice 45). Further, a greater overshoot also occurs
in the superior portion of the scan in contrast to its inferiorly
located counterpart. From slices 9 through 39, an overall

Table 2 Cumulants and respec-
tive margins of error for 95 %
confidence level (in parenthe-
ses), calculated using maximum
likelihood estimates for the
parameters of Poisson, negative
binomial, normal, log-normal,
and gamma distributions

Skewness and excess kurtosis of
normal distribution are always
zero (follows from respective
definitions)

Distribution Mean STD Skewness Kurtosis

RAMLA, 1st time frame of slice 21

Poisson 2,505 (2) 50.05 (0.02) 0.01998 (0.00001) 0.0003992 (0.0000004)

Negative binomial 2,505.0 (0.2) 203 (7) 0.34 (0.02) 0.13 (0.02)

Normal 2,498.5 (0.2) 204.2 (0.1) 0 0

Log-normal 2,505 (11) 204 (8) 0.245 (0.009) 3.107 (0.008)

Gamma 2,505 (355) 204 (22) 0.162 (0.006) 0.040 (0.003)

FBP, 1st time frame of slice 21

Poisson 3,178 (3) 56.38 (0.02) 0.01774 (0.00001) 0.0003146 (0.0000003)

Negative binomial 3,178.3 (0.5) 310 (11) 0.55 (0.04) 0.32 (0.04)

Normal 3,174.1 (0.3) 311.6 (0.2) 0 0

Log-normal 3,178 (17) 312 (13) 0.30 (0.01) 3.16 (0.01)

Gamma 3,178 (450) 310 (33) 0.195 (0.007) 0.057 (0.004)

Table 3 Comparison of discrepancy (absolute error) between experi-
mental and calculated distributions (Poisson, negative binomial, nor-
mal, log-normal and gamma) with respect to mean, standard deviation
(STD), skewness, and kurtosis (excess kurtosis; see data from Table 2
and Fig. 2)

Distribution Mean STD Skewness Kurtosis

RAMLA, 1st time frame of slice 21

Poisson 0 153 0.09 0.2

Negative binomial 0 0.2 0.2 0.03

Normal 6 0.9 0.1 0.2

Log-normal 0.04 1 0.1 3

Gamma 0 0.3 0.05 0.1

FBP, 1st time frame of slice 21

Poisson 0 254 0.2 0.05

Negative binomial 0 0.1 0.4 0.3

Normal 4 1 0.2 0.1

Log-normal 0.07 2 0.1 3

Gamma 0 0.1 0.02 0.01

Fig. 3 Q–Q plots (first time frame of slice 21): circular ROI was
selected on image reconstructed with RAMLA (a through e) and
FBP (f through j)
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upward trend in mean counts is observed in transiting from
superior to inferior longitudinal positions. Noise levels (SD)
with RAMLA reconstruction (Fig. 6b) are lowest at the
superior most position, spike rapidly at slice no. 2 and then
quickly decreases over the next few slice locations. At the

inferior most location noise levels all rise in comparison to
central longitudinal locations. Mean count levels recon-
structed with FBP (Fig. 6c) are also lowest at the extrema
locations. In contrast to the RAMLA data, the lowest FBP
mean count level is found at the inferior most slice location.
A modest inferiorly located overshoot is again observed
while the large superior overage seen with RAMLA recon-
struction is completely absent with the FBP data. A gradual
decrease in mean counts is observed as one progresses
inferiorly from slices 12 to 39, which is opposite to the
trend observed with RAMLA. At all but the last two slice
locations, the greatest mean count level is maintained by the
central sub-region. Noise levels with FBP reconstruction
(Fig. 6d) are lowest at mid-longitudinal locations ranging
from slices 11 to 24 for the top and center sub-regions
respectively. Proceeding outward from these locations, noise
levels climb to reach maximum values at slice nos. 1 and 44.
Noise levels drop precipitously in the transition from slices
44 to 45 at the inferior most extent of the reconstructed data.
These variations observed over the longitudinal extent of the
data for both reconstruction schemes result from the inter-
play of the inherent sensitivity profile of the scanner and the
corrections algorithms which are applied. The proprietary
nature of the finer points of the algorithms employed, and
the manner in which they are implemented, renders moot
further insight into the longitudinal structure of the data
observed.

An evaluation of normalized standard deviation (STD/
mean), skewness, and excess kurtosis over slices 4 through
42 (first time frame) is presented in Fig. 7 (RAMLA: a
through c; FBP: d through f). With regard to normalized
standard deviation (Fig. 7a and d), it may be seen that all but
the Poisson distribution demonstrate good conformity to the
experimental data. For FBP the log-normal distribution

Fig. 4 Q–Q plots: cylindrical VOI was selected on images of the first
time frame for slices 4 to 42 reconstructed with RAMLA (a through e)
and FBP (f through j)

Fig. 5 3D PET study on cylindrical phantom (slice no. 21). 1D
horizontal profile through the center of image reconstructed using
RAMLA (upper right) and using FBP (lower right). 1D vertical profile
through the center of image reconstructed using RAMLA (upper left)
and using FBP (lower left)

Fig. 6 3D PET study on cylindrical phantom (slices 1 to 45); circular
ROIs were selected on the phantom (center, top, left, right, and bot-
tom), mean number of counts and standard deviation was determined
for each ROI
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demonstrates slight discrepancy at the extrema slices. When
considering skewness (Fig. 7b and e), the negative binomial
distribution produces the least agreement, especially for the
extrema slices. Analysis with respect to excess kurtosis is
presented in Fig. 7c and f. All distributions, except log-
normal, model the RAMLA data reasonably well. The log-
normal distribution also produces relatively poor agreement
with FBP data except at the extrema slice locations where
the negative binomial distribution yields even worse results.
Figures 8 and 9 show images from all time frames for slice
21 in uniform phantom, reconstructed using RAMLA and
FBP. The dependence of statistical properties on count rate
and counts collected is examined in Fig. 10 by investigating
the time series of acquisitions. Here each data point repre-
sents the spatial integration over slices 4 through 42 in order
to provide improved statistical accuracy. Temporal variabil-
ity in the fit of the different models is clearly evident. This
variability should not be surprising as all models are but
approximations of reality built upon simplifying mathemat-
ical assumptions. Exact agreement between model and ex-
periment is never guaranteed. Figure 10a and d present the
temporal development of normalized standard deviation. As
expected, the decreasing count levels associated with each
subsequent time frame results in a monotonic increase in
NSD (STD/mean). With the exception of Poisson, good
agreement is observed between all statistical models and
the experimental RAMLA data for NSD. For this parameter,
the normal distribution provides good agreement over all
time frames with the FBP data while all other statistical
models diverge slightly from experiment as time increases.
The Poisson distribution once again provides the poorest
overall agreement. Concerning skewness, the RAMLA data

shows an overall increase as the peak in its histogram shifts
toward lower count values as a function of time. Skewness
for both log-normal and gamma distributions follows close-
ly the experimental data. FBP data shows an initial slight
decrease in skewness followed by a rise as time progresses
further. Initially, the smallest discrepancy is seen with the
Poisson and normal distributions, while the experimental
data conforms closest to the gamma distribution for the
latest time frames. FBP data is modeled most poorly in
regards to skewness by the negative binomial distribution.
With regard to excess kurtosis, both RAMLA and FBP data
demonstrate an overall trend of increase as time progresses.
This increase in peakedness is a direct result of the shift in
the histogram peak towards lower count values as indicated
by the skewness results. The ability of the negative binomial
distribution to model experimental excess kurtosis quickly
diminishes after the first couple of frames. Overall, the
gamma distribution demonstrates the closest agreement with
respect to excess kurtosis for both RAMLA and FBP. The
Poisson distribution proved least capable of modeling the
experimental data as it completely fails to predict any tem-
poral development of NSD, skewness, or excess kurtosis.
The same is true for the normal distribution with regard to
skewness and excess kurtosis. The negative binomial

Fig. 7 2D case (first time frame): STD/mean, kurtosis, and skewness
with respect to experimental data. ROI was selected on images (slices 4
to 42) reconstructed with RAMLA (a through c) and FBP (d through f)

Fig. 8 Slice 21 (all time frames, 1 to 20) reconstructed with RAMLA

Fig. 9 Slice 21 (all time frames, 1 to 20) reconstructed with FBP
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distribution demonstrates the most rapid divergence from
experimental data as a function of time for the metrics of
skewness and excess kurtosis. To provide a more quantita-
tive description of the performance, with respect to experi-
mental data, of each of these models, the root mean square
error is calculated for each of the metrics in Fig. 10 and is
presented in Table 4. This table clearly shows the advan-
tages and disadvantages of each statistical approach to mod-
eling the experimentally reconstructed data. For RAMLA,
the gamma distribution clearly yields the closest overall
conformance to the actual time evolution of the experimen-
tal data, followed by normal distribution. It should also be
noted that for temporal development of NSD, all distribu-
tions in question yield very similar values for RMSE when
compared to experimental data. While at the same time for
skewness and excess kurtosis, the RMSE values for nega-
tive binomial and log-normal distributions are an order of
magnitude higher than for normal and gamma distributions.
For FBP, the gamma distribution very well models skewness
and excess kurtosis followed very closely by normal distri-
bution while at the same time demonstrating greater

discrepancy with regard to NSD than the normal distribu-
tion. Both negative binomial and log-normal distributions
fail to model the actual time evolution of the experimental
data with respect to skewness and excess kurtosis, in com-
parison with normal and gamma distributions. NSD (STD/
mean) is modeled equally well by negative binomial, nor-
mal, log-normal, and gamma distributions for RAMLA and
by negative binomial, normal, and gamma distributions for
FBP reconstructions. For FBP reconstruction, the normal
distribution demonstrates the least deviation from time evo-
lution of experimental data with respect to NSD while for
log-normal distribution the value of RMSE is very close to
Poisson distribution and two orders of magnitude higher
compared to normal distribution.

Conclusions

This work presents an investigation of the statistical prop-
erties of noise in PET images reconstructed with filtered-
backprojection and row-action maximum likelihood algo-
rithm, after all clinical correction and image reconstruction
procedures have been applied. This analysis has shown that
the noise in PET images created with RAMLA reconstruc-
tion is very well characterized by gamma distribution fol-
lowed closely by normal distribution, while FBP produces
comparable conformity with both normal and gamma statis-
tics. We have also shown that NSD (STD/mean) is modeled
equally well by negative binomial, normal, log-normal, and
gamma distributions for RAMLA and by negative binomial,
normal, and gamma distributions for FBP reconstructions.
While radioactive decay is well-modeled as a Poisson pro-
cess, the net result after all correction and image reconstruc-
tion techniques have been applied is decidedly non-Poisson.
This has important implications for an accurate evaluation
of quantitative information provided by PET imaging. It is
particularly true for dynamic PET imaging, where the signal
to noise ratio decreases for each subsequent time frame,
which can pose significant challenges for quantitative anal-
ysis. A large number of noise reduction techniques are
predicated on additive noise models and an incorrect treat-
ment of image noise can be detrimental to adequate

Fig. 10 3D case: STD/mean, kurtosis, and skewness with respect to
experimental data. Cylindrical VOI was selected on images (slices 4 to
42) reconstructed with RAMLA (a through c) and FBP (d through f)

Table 4 3D case (all time
frames (1 to 20), VOI: slices 4 to
42), root mean square error
(RMSE) for NSD, kurtosis, and
skewness with respect to experi-
mental data is compared be-
tween different models for data
reconstructed with RAMLA and
FBP

Metric NSD Skewness Excess kurtosis

Reconstruction RAMLA FBP RAMLA FBP RAMLA FBP

Model Poisson 0.2 0.3 0.5 0.5 0.7 2

Negative binomial 0.003 0.03 2 8 12 117

Normal 0.002 0.003 0.5 0.5 0.7 2

Log-normal 0.003 0.1 0.9 1 3 6

Gamma 0.003 0.03 0.1 0.3 0.4 1
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algorithm performance. Noise reduction algorithms specifi-
cally designed for Poisson noise are expected to produce
inferior results when applied to clinical PET images.
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