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Abstract

We consider the problem of reconstructing an unknown function f on a domain X from samples of

f at n randomly chosen points with respect to a given measure ρX . Given a sequence of linear spaces

(Vm)m>0 with dim(Vm) = m ≤ n, we study the least squares approximations from the spaces Vm. It

is well known that such approximations can be inaccurate when m is too close to n, even when the

samples are noiseless. Our main result provides a criterion on m that describes the needed amount

of regularization to ensure that the least squares method is stable and that its accuracy, measured in

L2(X, ρX), is comparable to the best approximation error of f by elements from Vm. We illustrate

this criterion for various approximation schemes, such as trigonometric polynomials, with ρX being the

uniform measure, and algebraic polynomials, with ρX being either the uniform or Chebyshev measure.

For such examples we also prove similar stability results using deterministic samples that are equispaced

with respect to these measures.

1 Introduction and main results

Let X be a domain of Rd and ρX be a probability measure on X. We consider the problem of estimating

an unknown function f : X → R from samples (yi)i=1,...,n which are either noiseless or noisy observations of

f at the points (xi)i=1,...,n, where the xi are i.i.d. with respect to ρX . We measure the error between f and

its estimator f̃ in the L2(X, ρX) norm

‖v‖ :=
(∫
X

|v(x)|2dρX(x)
)1/2

,

and we denote by 〈·, ·〉 the associated inner product.

Given a fixed sequence of finite dimensional spaces (Vm)m≥1 of L2(X, ρX) such that dim(Vm) = m.

We would like to compute the best approximation of f in Vm. This is given by the L2(X, ρX) orthogonal

projector onto Vm, which we denote by Pm:

Pmf := argmin
v∈Vm

‖f − v‖.

We let

em(f) = ‖f − Pmf‖

denote the best approximation error.
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In general, we may not have access to either ρX or any information about f aside from the observations

at the points (xi)i=1,...,n. In this case we cannot explicitly compute Pmf . A natural approach in this setting

is to consider the solution of the least squares problem

w = argmin
v∈Vm

n∑
i=1

|yi − v(xi)|2.

Typically, we are interested in the case where m ≤ n which is the regime where this problem may admit a

unique solution.

In the noiseless case yi = f(xi), and hence w may be viewed as the application of the least squares

projection operator onto Vm to f , i.e., we can write

w = Pnmf := argmin
v∈Vm

‖f − v‖n

where

‖v‖n :=
( 1

n

n∑
i=1

|v(xi)|2
)1/2

is the L2 norm with respect to the empirical measure and, analogously, 〈·, ·〉n the associated empirical inner

product.

It is well known that least squares approximations may be inaccurate even when the measured samples

are noiseless. For example, if Vm is the space Pm−1 of algebraic polynomials of degree m − 1 over the

interval [−1, 1] and if we choose m = n, this corresponds to Lagrange interpolation, which is known to be

highly unstable, failing to converge towards f when given values at uniformly spaced samples, even when f

is infinitely smooth (the “Runge phenomenon”). Regularization by taking m substantially smaller than n

may therefore be needed even in a noise-free context. The goal of this paper is to provide a mathematical

analysis on the exact needed amount of such regularization.

Stability of the least squares problem. The solution of the least squares problem can be computed by

solving an m×m system: specifically, if (L1, . . . , Lm) is an arbitrary basis for Vm, then we can write

w =

m∑
j=1

ujLj ,

where u = (uj)j=1,...,m is the solution of the m×m system

Gu = f , (1.1)

with G := (〈Lj , Lk〉n)j,k=1,...,m and f = ( 1
n

∑n
i=1 yiLk(xi))k=1,...,m. In the noiseless case yi = f(xi), so that

we can also write f := (〈f, Lk〉n)k=1,...,m. In the event that G is singular, we simply set w = 0.

For the purposes of our analysis, suppose that the basis (L1, . . . , Lm) is orthonormal in the sense of

L2(X, ρX).1 In this case we have

E(G) = (〈Lj , Lk〉)j,k=1,...,m = I.

1While such a basis is generally not accessible when ρX is unknown, we require it only for the analysis. The actual

computation of the estimator can be made using any known basis of Vm, since the solution w is independent of the basis used

in computing it.
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Our analysis requires an understanding of how the random matrix G deviates from its expectation I in

probability. Towards this end, we introduce the quantity

K(m) := sup
x∈X

m∑
j=1

|Lj(x)|2.

Note that the function
∑m
j=1 |Lj(x)|2 is invariant with respect to a rotation applied to (L1, . . . , Lm) and

therefore independent of the choice of the orthonormal basis: it only depends on the space Vm and on the

measure ρX , and hence K(m) also depends only on Vm and ρX . Also note that

K(m) ≥
m∑
j=1

‖Lj‖2 = m.

We also will use the notation

9M9 = max
v 6=0

|Mv|
|v|

,

for the spectral norm of a matrix.

Our first result is a probabilistic estimate of the comparability of the norms ‖ · ‖ and ‖ · ‖n uniformly

over the space Vm. This is equivalent to the proximity of the matrices G and I in spectral norm, since we

have that for all δ ∈ [0, 1],

9G− I9 ≤ δ ⇔
∣∣‖v‖2n − ‖v‖2∣∣ ≤ δ‖v‖2, v ∈ Vm.

Theorem 1 For 0 < δ < 1, one has the estimate

Pr {9G− I9 > δ} = Pr {∃v ∈ Vm :
∣∣‖v‖2n − ‖v‖2∣∣ > δ‖v‖2} ≤ 2m exp

{
− cδn

K(m)

}
, (1.2)

where cδ := (1 + δ) log(1 + δ)− δ > 0.

The proof of Theorem 1 is a simple application of tail bounds for sums of random matrices obtained in

[1]. A consequence of this result is that the norms ‖ · ‖ and ‖ · ‖n are comparable with high probability if

K(m) is smaller than n by a logarithmic factor: for example taking δ = 1
2 , we find that for any r > 0,

Pr

{
9G− I9 >

1

2

}
= Pr

{
∃v ∈ Vm :

∣∣‖v‖2n − ‖v‖2∣∣ > 1

2
‖v‖2

}
≤ 2n−r, (1.3)

if m is such that

K(m) ≤ κ n

log n
, with κ :=

c1/2

1 + r
=

3 log(3/2)− 1

2 + 2r
. (1.4)

The above condition thus ensures that G is well conditioned with high probability. It can also be thought

of as ensuring that the least squares problem is stable with high probability. Indeed the right side of the

least squares system can be written as f = My with

M =
1

n
(Lj(xi))j,i∈{1,...,m}×{1,...,n},

an m× n matrix. Observing that 〈Gv,v〉 = n|MTv|2, we find that

9M9 = 9MT9 =
( 1

n
9 G9

)1/2

.
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Therefore, if 9G− I9 ≤ 1
2 , then we have that for any data vector y the solution w =

∑m
j=1 ujLj satisfies

‖w‖ = |u| ≤ 9G−1 9 · 9 M 9 ·|y| ≤ 1√
n

2

√
3

2
|y|,

which thus gives the stability estimate

‖w‖ ≤ C
( 1

n

n∑
i=1

|yi|2
)1/2

, C =
√

6.

In the noiseless case, this can be written as ‖Pnmf‖ ≤ C‖f‖n, i.e., the least squares projection is stable

between the norms ‖ · ‖n and ‖ · ‖. Note that since K(m) not only depends on Vm but also on the measure

ρX , the range of m such that the condition (1.4) holds is strongly tied to the choice of the measure. This

issue is illustrated further in our numerical experiments.

Let us mention that similar probabilistic bounds have been previously obtained, see in particular §5.2 in

[2]. These earlier results allow us to obtain the bound (1.3), however relying on the stronger condition

K(m) <∼
( n

log(n)

)1/2

.

The numerical results for polynomial least squares that we present in §3 hint that the weaker condition

K(m) <∼
n

log(n) is sharp. The quantity K(m) was also used in [3] in order to control the L∞(X) norm and

the L2(ρX) norm.

Accuracy of least squares approximation. As an application, we can derive an estimate for the error

of least squares approximation in expectation. Here, we make the assumption that a uniform bound

|f(x)| ≤ L, (1.5)

holds for almost every x with respect to ρX . For m ≤ n, we consider the truncated least squares estimator

f̃ = TL(w),

where TL(t) = sign(t) max{L, |t|}. Our first result deals with the noiseless case.

Theorem 2 In the noiseless case, for any r > 0, if m is such that the condition (1.4) holds, then

E(‖f − f̃‖2) ≤ (1 + ε(n))em(f)2 + 8L2n−r, (1.6)

where ε(n) := 4κ
log(n) → 0 as n→ +∞, with κ as in (1.4)

At this point a few remarks are due regarding the implications of this result in terms of the convergence

rate of the estimate.

Consider the following general setting of regression on a random design: we observe independent samples

zi = (xi, yi)i=1,...,n (1.7)

of a variable z = (x, y) of law ρ over X × Y and marginal law ρX over X, and we want to estimate from

these samples the regression function defined as the conditional expectation

f(x) := E(y|x). (1.8)
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We assume that the maximal variance

σ2 := sup
x∈X

E( |y − f(x)|2
∣∣x), (1.9)

is bounded. We thus think of the yi as noisy observations of f at xi with additive noise of variance at most

σ2, namely

yi = f(xi) + ηi, (1.10)

where the ηi are independent realizations of the variable η := y − f(x).

Assuming that f satisfies the uniform bound (1.5), one computes the truncated least squares estimator

now with yi in place of f(xi). A typical convergence bound for this estimator, see for example Theorem 11.3

in [6], is

E(‖f − f̃‖2) ≤ C
(
em(f)2 + max{L2, σ2}m log n

n

)
. (1.11)

Convergence rates may be found after balancing the two terms, but they are limited by the optimal learning

rate n−1, and this limitation persists even in the noiseless case σ2 = 0 due to the presence of L2 in the right

side of (1.11). In contrast, Theorem 2 yields fast convergence rates, provided that the approximation error

em has fast decay and that the value of m satisfying (1.4) can be chosen large enough.

One motivation for studying the noiseless case is the numerical treatment of parameter dependent PDEs

of the general form

F(f, x) = 0,

where x is a vector of parameters in some compact set P ∈ Rd. We can consider the solution map x 7→ f(x)

either as giving the exact solution to the PDE for the given value of the parameter vector x or as the exact

result of a numerical solver for this value of x. In the stochastic PDE context, x is random and obeys

a certain law which may be known or unknown. From a random draw (xi)i=1,...,n, we obtain solutions

fi = f(xi) which are noiseless observations of the solution map, and are interested in reconstructing this

map. In instances such as elliptic problems with parameters in the diffusion coefficients, the solution map can

be well-approximated by polynomials in x (see [4]). In this context, an initial study of the needed amount

of regularization was given in [7], however specifically targeted towards polynomial least squares.

For the noisy regression problem described above, our analysis can also be adapted in order to derive the

following result.

Theorem 3 For any r > 0, if m is such that the condition (1.4) holds, then

E(‖f − f̃‖2) ≤ (1 + 2ε(n))em(f)2 + 8L2n−r + 8σ2m

n
, (1.12)

with ε(n) as in Theorem 2 and σ is the maximal variance given by (1.9).

In the noiseless case, the bound in Theorem 2 suggests that m should be chosen as large as possible under

the constraint that (1.4) holds. In the noisy case, the value of m minimizing the bound in Theorem 3 also

depends on the decay of em, which is generally unknown. In such a situation, a classical way of choosing the

value of m is by a model selection procedure, such as adding a complexity penalty in the least squares or

using an independent validation sample. Such procedures can also be of interest in the noiseless case when

the measure ρX is unknown, since the maximal value of m such that (1.4) holds is then also unknown.

Let us give an example of how the results in Theorems 2 and 3 lead to specific rates of convergence in

terms of the number of samples: assume that X = [−1, 1] is equipped with the uniform measure ρX = dx
2

and that Vm = Pm−1 is the space of algebraic polynomials of degree m− 1. Then, if f belongs to Cr(X) the
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space of r-times differentiable functions, it is well-known that em(f)2 <∼ m−2r. On the one hand the results

in §3 show that condition (1.4) can be ensured with m ∼ (n/ log n)1/2. Therefore, in the noiseless case, we

obtain a bound proportional to n−r for the mean squared error, up the logarithmic factor. In the noisy case,

after balancing the approximation and variance terms, we obtain a bound proportional to σ2r/(r+1)n−r/(r+1).

On the other hand, these rates can be improved with r replaced by 2r if we use the Chebyshev non-uniform

measure that concentrates near the end-points, since in that case the results in §3 show that condition (1.4)

can be ensured with m ∼ n/ log n.

The rest of our paper is organized as follows: we give the proofs of the above results in §2 and we present

in §3 examples of applications to classical approximation schemes such as piecewise constants, trigonometric

polynomials, or algebraic polynomials. For such examples, we study the range of m such that (1.4) holds and

show that this range is in accordance with stability results that can be proved for deterministic sampling.

Numerical illustrations are given for algebraic polynomial approximation.

2 Proofs

Proof of Theorem 1: The matrix G can be written as

G = X1 + · · ·+ Xn,

where the Xi are i.i.d. copies of the random matrix

X =
1

n
(Lj(x)Lk(x))j,k=1,...,m,

where x is distributed according to ρX . We use the following Chernoff bound from [8], originally obtained

by [1]: if X1, . . . ,Xn are independent m×m random self-adjoint and positive matrices satisfying

λmax(Xi) = 9Xi9 ≤ R,

almost surely, then with

µmin := λmin

( n∑
i=1

E(Xi)
)

and µmax := λmax

( n∑
i=1

E(Xi)
)
,

one has

Pr

{
λmin

( n∑
i=1

Xi

)
≤ (1− δ)µmin

}
≤ m

( e−δ

(1− δ)1−δ

)µmin/R

, 0 ≤ δ < 1,

and

Pr

{
λmax

( n∑
i=1

Xi

)
≥ (1 + δ)µmax

}
≤ m

( eδ

(1 + δ)1+δ

)µmax/R

, δ ≥ 0

In our present case, we have
∑n
i=1 E(Xi) = nE(X) = I so that µmin = µmax = 1. It is easily checked that

eδ

(1+δ)1+δ
≥ e−δ

(1−δ)1−δ for 0 < δ < 1, and therefore

Pr {9G− I9 > δ} ≤ 2m
( eδ

(1 + δ)1+δ

)1/R

= 2m exp
(
−cδ
R

)
.

We next use the fact that a rank 1 symmetric matrix abT = (bjak)j,k=1,...,m has its spectral norm equal to

the product of the Euclidean norms of the vectors a and b, and therefore

9X9 ≤ 1

n

m∑
j=1

|Lj(x)|2 =
K(m)

n
,
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almost surely. We may therefore take R = K(m)
n which concludes the proof. 2

Proof of Theorem 2: We denote by dρnX := ⊗ndρX the probability measure of the draw. We also

denote by Ω the set of all possible draws, that we divide into the set Ω+ of all draw such that

9G− I9 ≤ 1

2
,

and the complement set Ω− := Ω \ Ω+. According to (1.3), we have

Pr{Ω−} =

∫
Ω−

dρnX ≤ 2n−r, (2.1)

under the condition (1.4). This leads to

E(‖f − f̃‖2) =

∫
Ω

‖f − f̃‖2dρnX ≤
∫

Ω+

‖f − Pnmf‖2dρnX + 8L2n−r,

where we have used ‖f − f̃‖2 ≤ 2L2, as well as the fact that TL is a contraction that preserves f .

It remains to prove that the first term in the above right side is bounded by (1 + ε(n))em(f)2. With

g := f − Pmf , we observe that

f − Pnmf = f − Pmf + PnmPmf − Pnmf = g − Pnmg.

Since g is orthogonal to Vm, we thus have

‖f − Pnmf‖2 = ‖g‖2 + ‖Pnmg‖2 = ‖g‖2 +

m∑
j=1

|aj |2,

where a = (aj)j=1,...,m is solution of the system

Ga = b,

with b := (〈g, Lk〉n)k=1,...,m. When the draw belongs to Ω+, we have ‖G−1‖2 ≤ 2 and therefore

m∑
j=1

|aj |2 ≤ 4

m∑
k=1

|〈g, Lk〉n|2.

It follows that∫
Ω+

‖f − Pnmf‖2dρnX ≤
∫

Ω+

(
‖g‖2 + 4

m∑
k=1

|〈g, Lk〉n|2
)
dρnX ≤ ‖g‖2 + 4

m∑
k=1

E(|〈g, Lk〉n|2).

We estimate each of the E(|〈g, Lk〉n|2) as follows:

E(|〈g, Lk〉n|2) =
1

n2

n∑
i=1

n∑
j=1

E(g(xi)g(xj)Lk(xi)Lk(xj))

=
1

n2

(
n(n− 1)|E(g(x)Lk(x))|2 + nE(|g(x)Lk(x)|2)

)
=
(

1− 1

n

)
|〈g, Lk〉|2 +

1

n

∫
X

|g(x)|2|Lk(x)|2dρX

=
1

n

∫
X

|g(x)|2|Lk(x)|2dρX ,
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where we have used the fact that g is orthogonal to Vm and thus to Lk. Summing over k, we obtain

m∑
k=1

E(|〈g, Lk〉n|2) ≤ K(m)

n
‖g‖2 ≤ κ

log(n)
‖g‖2,

where we have used (1.4). We have thus proven that∫
Ω+

‖f − Pnmf‖2dρnX ≤ (1 +
4κ

log(n)
)‖g‖2 = (1 + ε(n))em(f)2,

which concludes the proof. 2

Proof of Theorem 3: We define the additive noise in the sample by writing

yi = f(xi) + ηi,

and thus the ηi are i.i.d. copies of the variable

η = y − f(x).

Note that η and x are not assumed to be independent. However we have

E(η|x) = 0,

which implies the decorrelation property

E(ηh(x)) = 0,

for any function h. As in the proof of Theorem 2 we split Ω into Ω+ and Ω− and find that

E(‖f − f̃‖2) ≤
∫

Ω+

‖f − w‖2dρnX + 8M2n−r,

where w now stands for the solution to the least squares problem with noisy data (y1, . . . , yn). With the

same definition of g = f − Pmf , we can write

f − w = g − Pnmg − w̃,

where w̃ stands for the solution to the least squares problem for the noise data (η1, . . . , ηn). Therefore

‖f − Pnmf‖2 = ‖g‖2 + ‖Pnmg + w̃‖2 ≤ ‖g‖2 + 2‖Pnmg‖2 + 2‖w̃‖2 = |g‖2 + 2

m∑
j=1

|aj |2 + 2

m∑
j=1

|dj |2,

where a = (aj)j=1,...,m is as in the proof of Theorem 2 and d = (dj)j=1,...,m is solution of the system

Gd = n,

with n := ( 1
n

∑n
i=1 ηiLk(xi))k=1,...,m = (nk)k=1,...,m. By the same arguments as in the proof of Theorem 2,

we thus obtain

E(‖f − f̃‖2) ≤ (1 + 2ε(n))em(f)2 + 8L2n−r + 8

m∑
k=1

E(|nk|2).
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We are left to show that
∑m
k=1 E(|nk|2) ≤ σ2m

n . For this we simply write that

E(|nk|2) =
1

n2

n∑
i=1

n∑
j=1

E(ηiLk(xi)ηjLk(xj)).

For i 6= j, we have

E(ηiLk(xi)ηjLk(xj)) = (E(ηLk(x)))2 = 0.

For i = j, we have

E(|ηiLk(xi)|2) = E(|ηLk(x)|2)

=

∫
X

E(|ηLk(x)|2|x)dρX

=

∫
X

E(|η|2|x)|Lk(x)|2dρX

≤ σ2

∫
X

|Lk(x)|2dρX = σ2.

It follows that E(|nk|2) ≤ σ2

n , which concludes the proof. 2

3 Examples and numerical illustrations

We now give several examples of approximation schemes for which one can compute the quantity K(m) and

therefore estimate the range of m such that the condition (1.4) holds. For each of these examples, we also

exhibit a deterministic sampling (x1, . . . , xn) for which the stability property

9G− I9 ≤ 1

2
,

or equivalently ∣∣‖v‖2n − ‖v‖2∣∣ ≤ 1

2
‖v‖2, v ∈ Vm,

is ensured for the same range of m (actually slightly better by a logarithmic factor). For the sake of simplic-

ity, we work in the one dimensional setting, with X a bounded interval.

Piecewise constant functions. Here X = [a, b] and Vm is the space of piecewise constant functions over

a partition of X into intervals I1, . . . , Im. In such a case, an orthonormal basis with respect to L2(X, ρX) is

given by the characteristic functions Lk := (ρX(Ik))−1/2χIk , and therefore

K(m) = max
k=1,...,m

(ρX(Ik))−1.

Given a measure ρX , the partition that minimizes K(m), and therefore allows us to fulfill (1.4) for the largest

range of m, is one that evenly distributes the measure ρX . With such partitions, K(m) reaches its minimal

value

K(m) = m,

and (1.4) can be achieved with m ∼ n
logn .

If we now choose n = m deterministic points x1, . . . , xm with xk ∈ Ik, we clearly have

‖v‖2n = ‖v‖2, v ∈ Vm.
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Therefore the stability of the least squares problem can be ensured with m up to the value n using a deter-

ministic sample.

Trigonometric polynomials and uniform measure. Without loss of generality, we take X = [−π, π],

and we consider for odd m = 2p+1 the space Vm of trigonometric polynomials of degree p, which is spanned

by the functions Lk(x) = eikx for k = −p, . . . , p. Assuming that ρX is the uniform measure, this is an

orthonormal basis with respect to L2(X, ρX). In this example, we again obtain the minimal value

K(m) = m.

Therefore (1.4) can be achieved with m ∼ n
logn .

We now consider the deterministic uniform sampling xi := −π+ 2πi
n for i = 1, . . . , n. With such a sampling,

one has the identity
π∫
−π

v(x)dρX =
1

2π

π∫
−π

v(x)dx =
1

n

n∑
i=1

v(xi),

for all trigonometric polynomials v of degree n− 1 (this is easily seen by checking the identity on every basis

element). When v ∈ Vm with m = 2p+ 1, we know that |v|2 is a trigonometric polynomial of degree 2p. We

thus find that

‖v‖2n = ‖v‖2, v ∈ Vm,

provided that 2p ≤ n − 1, or equivalently m ≤ n. Therefore the stability of the least squares problem can

be ensured with m up to the value n using a deterministic sample.

Algebraic polynomials and uniform measure. Without loss of generality, we take X = [−1, 1], and we

consider Vm = Pm−1 the space of algebraic polynomials of degree m− 1. When ρX is the uniform measure,

an orthonormal basis is given by defining Lk as the Legendre polynomial of degree k− 1 with normalization

‖Lk‖L∞([−1,1]) = |Lk(1)| =
√

2k − 1,

and thus

K(m) =

m∑
k=1

(2k − 1) = m2.

Therefore (1.4) can be achieved with m ∼
√

n
logn which is a lower range compared to the previous examples.

We now consider the deterministic sampling obtained by partitioning X into n intervals (I1, . . . , In) of equal

10



length 2
n , and picking one point xi in each Ii. For any v ∈ Vm, we may write∣∣∣∣∣∣

∫
Ii

|v(x)|2dρX −
1

n
|v(xi)|2

∣∣∣∣∣∣ =

∣∣∣∣∣∣12
∫
Ii

|v(x)|2dx− 1

n
|v(xi)|2

∣∣∣∣∣∣
=

∣∣∣∣∣∣12
∫
Ii

(|v(x)|2 − |v(xi)|2)dx

∣∣∣∣∣∣
≤ 1

2

∫
Ii

∣∣|v(x)|2 − |v(xi)|2
∣∣ dx

≤ 1

2
|Ii|
∫
Ii

|(v2)′(x)|dx

=
2

n

∫
Ii

|v′(x)v(x)|dρX .

Summing over i, it follows that

∣∣‖v‖2n − ‖v‖2∣∣ ≤ 2

n

∫
X

|v′(x)v(x)|dρX ≤
2

n
‖v′‖ ‖v‖ ≤ 2(m− 1)2

n
‖v‖2,

where we have used the Cauchy-Schwarz and Markov inequalities. Therefore the stability of the least squares

problem can be ensured with m up to the value
√
n

2 + 1 using a deterministic sample.

Algebraic polynomials and Chebyshev measure. Consider again algebraic polynomials of degree

m− 1 on X = [−1, 1], now equipped with the measure

dρX =
dx

π
√

1− x2
.

Then an orthonormal basis is given by defining Lk as the Chebyshev polynomial of degree k−1, with L1 = 1

and

Lk(x) =
√

2 cos((k − 1) arccosx),

for k > 1, and thus

K(m) = 2m− 1.

Therefore (1.4) can be achieved with m ∼ n
logn , which expresses the fact that least squares approximations

are stable for higher polynomial degrees when working with the Chebyshev measure rather than with the

uniform measure.

We now consider the deterministic sampling obtained by partitioning X into n intervals (I1, . . . , In) of equal

11



Chebyshev measure ρX(Ii) = 1
n , and picking one point xi in each Ii. For any v ∈ Vm, we may write∣∣∣∣∣∣

∫
Ii

|v(x)|2dρX −
1

n
|v(xi)|2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
Ii

(|v(x)|2 − |v(xi)|2)dρX

∣∣∣∣∣∣
≤
∫
Ii

∣∣|v(x)|2 − |v(xi)|2
∣∣ dρX

≤ ρX(Ii)

∫
Ii

|(v2)′(x)|dx

=
1

n

∫
Ii

|v′(x)v(x)|dx.

Summing over i, it follows that∣∣‖v‖2n − ‖v‖2∣∣ ≤ 1

n

∫
X

|v′(x)v(x)|dx ≤ 1

n
‖v‖

(
π

∫
X

|v′(x)|2
√

1− x2dx
)1/2

.

Using the change of variable x = cos t, it is easily seen that the inverse estimate∫
X

|v′(x)|2
√

1− x2dx ≤ (m− 1)2

∫
X

|v(x)|2 1√
1− x2

dx,

holds for any v ∈ Vm. Therefore∣∣‖v‖2n − ‖v‖2∣∣ ≤ 1

n

∫
X

|v′(x)v(x)|dx ≤ π(m− 1)

n
‖v‖2

which shows that the stability of the least squares problem can be ensured with m up to the value n
2π + 1

using a deterministic sample.

Let us observe that in several practical scenarios, the measure ρX of the observations may be unknown

to us, therefore raising the question of the behavior of K(m) for an arbitrary measure.

It is not too difficult to check that when the space Vm is not the trivial space of constant functions (which

is the case as soon as m ≥ 2) the quantity K(m) may become arbitrarily large for certain measures ρX . We

leave the proof of this general fact as an exercise for the reader, and rather provide a simple illustration:

consider the space V2 of polynomials of degree 1 on [−1, 1] and the measure ρX = 1
2ε
χ[−ε,ε](x)dx where

ε > 0 is small. Then an orthonormal basis is provided by the functions L0(x) = 1 and L1(x) =
√

3
ε x, so

that K(m) ∼ ε−2. An interesting problem is to understand if for certain families of space (Vm), the quantity

K(m) can be controlled under fairly general assumptions on the measure ρX . One typical such assumption

is the the strong density assumption, which states that

ρX(E) ∼ |E|, E measurable, (3.1)

where | · | is the Lebesgue measure. In the case of piecewise constant functions on uniform partitions, or for

more general spline functions on uniform grids, it is not difficult to check that this assumption implies the

behavior K(m) ∼ m.
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Figure 3.1: The L2(X, ρX) error as m varies (a) for f1 and (b) for f2.

Numerical illustration. We conclude with a brief numerical illustration of our theoretical results for

the setting of algebraic polynomials. Specifically, we consider the smooth function f1(x) = 1/(1 + 25x2)

originally considered by Runge to illustrate the instability of polynomial interpolation at equispaced points,

and the non-smooth function f2(x) = |x|, both restricted to the interval [−1, 1].

For both functions, we take n i.i.d. samples x1, . . . , xn with respect to a measure ρX on X = [−1, 1] and

compute the noise-free observations yi = f(xi). We consider either the uniform measure ρX := dx
2 or the

Chebyshev measure ρX := dx
π
√

1−x2
. In both cases, we compute the least squares approximating polynomial

of degree m using these points for a range of different values of m ≤ n. We then numerically compute the

error in the L2(X, ρX) norm, with ρX the corresponding measure in which the sample have been drawn,

using the adaptive Simpson’s quadrature rule [5] implemented in Matlab.

Figure 3.1 shows the results of this simulation using n1 = 200 samples for estimating f1 and n2 = 1000

samples for estimating f2. We observe that, in all cases, as m approaches n the solutions become highly

inaccurate due to the inherent instability of the problem. However, we can set m to be much larger before

instability starts to develop when the points are drawn with respect to the Chebyshev measure, as is expected.

Next we consider the effect of n on the best choice of m. Specifically, for any given sample of points

we can compute the value m(n) that corresponds to the polynomial degree for which we obtain the best

approximation to f1 or f2 and examine how this behaves as a function of n. This is shown in Figure 3.2, that

displays as a function of n the average value of m(n) over 50 realizations of the sample, for both measures

and both functions f1 and f2 (the averaging has the effect of reducing oscillation in the curve n 7→ m(n)

making it more readable). We vary the sample size from n = 1 to 1000 for f2, but only from n = 1 to 200

for the smooth function f1, since in that case the L2(X, ρX) error drops below machine precision for larger

values of n with m in the regime where the least squares problem is stable and therefore the minimal value

m(n) cannot be precisely located.

We observe that, in accordance with our theoretical results, m(n) behaves like
√
n when the points are

drawn with respect to the uniform measure, while it behaves almost linear in n when the points are drawn

with respect to the Chebyshev measure.
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Figure 3.2: Optimal values m(n) as n varies (a) for f1 (comparison with 0.7n and 2.5
√
n) and (b) for f2

(comparison with 0.1n and 0.4
√
n).
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