
Explicit guiding auto-encoders for learning meaningful
representation

Yanan Sun1 • Hua Mao1 • Yongsheng Sang1 • Zhang Yi1

Abstract The auto-encoder model plays a crucial role in

the success of deep learning. During the pre-training phase,

auto-encoders learn a representation that helps improve the

performance of the entire neural network during the fine-

tuning phase of deep learning. However, the learned repre-

sentation is not always meaningful and the network does not

necessarily achieve higher performance with such repre-

sentation because auto-encoders are trained in an unsuper-

vised manner without knowing the specific task targeted in

the fine-tuning phase. In this paper, we propose a novel

approach to train auto-encoders by adding an explicit

guiding term to the traditional reconstruction cost function

that encourages the auto-encoder to learn meaningful fea-

tures. Particularly, the guiding term is the classification error

with respect to the representation learned by the auto-en-

coder, and ameaningful representationmeans that a network

using the representation as input has a low classification

error in a classification task. In our experiments, we show

that the additional explicit guiding term helps the auto-en-

coder understand the prospective target in advance. During

learning, it can drive the learning toward a minimum with

better generalization with respect to the particular super-

vised task on the dataset. Over a range of image classifica-

tion benchmarks, we achieve equal or superior results to

baseline auto-encoders with the same configuration.

Keywords Auto-encoders � Deep learning �
Representation learning � Neural network

1 Introduction

It is well understood that the performance of machine

learning algorithms is highly dependent on the choice of

data representation (or features). The representation

learning field is developing rapidly to better address

questions on how to learn meaningful representations of

given data [1]. Deep learning (DL) algorithms, which

facilitate learning of hierarchical representations, have

contributed to numerous research areas such as computer

vision, speech recognition, and natural language pro-

cessing [2–8]. However, for several well-known reasons,

training using these algorithms is difficult. For one, the

objective function is an extremely non-convex function,

which leads to many distinct local minima in the

parameter space [9]. An effective training method for

deep architectures was introduced in 2006 with the

algorithms for training deep belief networks using

stacked auto-encoders [2, 10]. The basic idea used in this

method is greedy layer-wise unsupervised pre-training

followed by supervised fine-tuning.

Auto-encoders, which are the building blocks of

stacked auto-encoders, learn the representation of the

input pattern during the pre-training phase. This phase

helps the entire network obtain a better solution in the

fine-tuning phase. However, auto-encoders cannot learn

meaningful representations without some implicit or

explicit guidance in the pre-training phase. Several auto-

encoder variants have been proposed to tackle this

problem implicitly, including the sparse auto-encoder

[11, 12], the denoising auto-encoder (DAE) [13], and the

contractive auto-encoder (CAE) [14]. In sparse auto-en-

coders, a sparsity-constrained term, which penalizes

extreme activation of the neurons, is added to the cost

function of regular auto-encoders to encourage sparsity

& Hua Mao

huamao@scu.edu.cn

1 Machine Intelligence Laboratory, College of Computer

Science, Sichuan University, Chengdu 610065,

People’s Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-015-2082-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-015-2082-x&domain=pdf

in the representation [12]. DAEs randomly corrupt input

data to reconstruct the original data by assuming that the

high-dimensional input data exist in a low-dimensional

underlying manifold. The representation is learned from

the corrupted data to the manifold [13]. CAEs use an

additional penalty term, which is the Frobenius norm of

its Jacobian matrix, to decrease the sensitivity of the

representation to small permutations of the input data

[14].

More precisely, the sparsity-constrained term is per-

ceived as prior knowledge of the input data. Practically, we

must test many values of the hyper-parameters to select the

proper degree of sparsity. This is inefficient as we cannot

test every possible value to ascertain the intrinsic sparsity

of the input data. When training with DAEs, the same

question arises about how to determine the level and type

of corruption. Although the representation learned by

CAEs is robust, this representation is not always mean-

ingful for specified tasks. In attempting to learn a good

representation, the auto-encoders mentioned above follow

the principle of minimizing the reconstruction error and

maximizing robustness of the representation. However, by

using these implicit methods to learn the representation in

the unsupervised pre-training phase means that the auto-

encoders do not have any knowledge of the particular

supervised task in the fine-tuning phase. In other words,

auto-encoders do not know what a meaningful represen-

tation would be in the fine-tuning phase. At one extreme,

the common representation among all categories of training

data could be learned, while at the other, every sample in

each category must be considered. For example, in the

Mixed National Institute of Standards and Technology

(MNIST) handwritten digit recognition problem [15], the

representation learned from the dataset with ten categories

would be the common representation, which is not dis-

criminative with respect to each category for a multiclass

classification task.

Considering this, we propose a new auto-encoder

variant, called the explicit guiding auto-encoder (EGAE).

EGAEs learn meaningful representations for specified

tasks. In EGAEs, a penalty term is added to the tradi-

tional reconstruction cost function to measure the benefit

of the representation to the supervised task. More pre-

cisely, the penalty term is the classification error with

respect to the representation learned by the auto-encoder

during the pre-training phase of a classification task.

Using benchmark datasets, we show that EGAEs can

learn meaningful representations by driving the learning

toward the basin of the optimization space with better

generalization, thereby improving the performance of the

final task. Additionally, qualitative analyses of the results

show that the representations learned by EGAEs are

interpretable.

2 Variants of auto-encoders

The simplest form of an auto-encoder [16] is a neural

network with three layers, namely the input layer, hidden

layer, and output layer. Moreover, the desired output from

the output layer is a reconstruction of the input data. The

number of units in the output layer is equal to that in the

input layer. The data transformation from the input layer to

the hidden layer is an encoder denoted by F �ð Þ, and the

transformation from the hidden layer to the output layer is a

decoder denoted by G �ð Þ. Given m instances of n-dimen-

sional input data and an auto-encoder with k units in the

hidden layer, these two transformations are formulated as:

Y ¼ FðWeX þ beÞ
~X ¼ GðWdY þ bdÞ;

�
ð1Þ

where X 2 Rn�m denotes the input data, and We 2 Rk�n,

be 2 Rk, Wd 2 Rn�k, and bd 2 Rn denote the weight matrix

for the encoder, bias column vector in the hidden layer,

weight matrix for the decoder, and bias column vector in

the output layer, respectively.

Generally, the cost function of auto-encoders is defined

as:

JAE ¼ L X; ~X
� �

; ð2Þ

where L �ð Þ denotes the reconstruction error of auto-en-

coders. Two particular forms are often considered, namely

the mean square error:

LðX; hÞ ¼ 1

m

Xm
i¼1

Xn
j¼1

X
j
i � ~Xj

i

� �2
; ð3Þ

and the cross-entropy error:

LðX; hÞ ¼ � 1

m

Xm
i¼1

Xn
j¼1

X
j
i logð ~X

j
iÞ þ ð1� X

j
iÞlogð1� ~Xj

iÞ
� �

;

ð4Þ

where h ¼ fWe; be;Wd; bdg and X
j
i denotes the jth element

of the ith component in X.

Auto-encoders were first introduced in [17, 18] to reduce

data dimensionality; however, they are now frequently

employed to extract numerous features [14]. For this pur-

pose, several variants of auto-encoders have been proposed

for learning good representations. In the following sub-

sections, we briefly introduce the auto-encoder variants

compared in this study.

2.1 Sparse auto-encoder

By simply imposing the reconstruction error, it is possible

to learn an identity function by minimizing the Function 2

with k� n [3, 4, 12]. In this case, the representation of the

430

input data is a trivial solution, i.e., a direct copy of the

input. An infinite number of such possible trivial solutions

exist. Among all these representations, many studies on

neuroscience have suggested a sparse solution with the

greatest number of zero components. This property can be

induced by adding a sparsity-constrained term to the cost

function. This constraint yields a group of more invariant

features against small permutations of the input data [3, 4,

19]. The cost function for the sparse auto-encoder is

defined as:

JAEþsparse ¼ L X; ~X
� �

þ kSðYÞ: ð5Þ

Function S(Y) measures the degree of sparsity with respect

to Y and k is used to balance how much S(Y) accounts for in

Function 5.

2.2 Auto-encoder with weight decay

We need to decrease the complexity of the network as

much as possible in the case where the model overfits the

training data or underfits the test data. Thus, the general-

ization ability of the model should be taken into account

[20–22]. The most commonly used method to achieve this

is to target either the number or magnitude of parameters of

the network. Considering the latter, weight decay has been

proposed to penalize those parameters with large values.

With the small weight constraint, the impact of a few

distortions in the input data is limited. The cost function of

an auto-encoder with weight decay is given as:

JAEþWD ¼ L X; ~X
� �

þ k
Xm
i

Xn
j

W2
ij ; ð6Þ

where hyper-parameter k controls the penalty level.

2.3 Denoising auto-encoder

A DAE [13] maps the representation of its artificially

corrupted input data back to the original uncorrupted

samples. It assumes that the underlying low-dimensional

manifold is embedded in the high-dimensional input space.

The mapping learns the manifold from the input data with

additional corrupted data. Moreover, the learning territory

is enlarged by training the corrupted input data, thereby

increasing the learning ability of the DAE. The cost

function has the form:

JDAE ¼ L X
0
; ~X

� �
: ð7Þ

In particular, X
0 ¼ FnoiseðXÞ and function Fnoiseð�Þ denotes

the operation of adding some kind of noise. Three types of

noise have been suggested for the DAE [13].

2.4 Contractive Auto-encoder

In CAEs, the cost function includes an interesting penalty

term that encourages invariants or insensitivity of the

representation against small permutations in the input data,

thereby leading to robust features. This penalty term

involves partial differentiation of representation Y with

respect to input data X. It is obvious that by imposing this

constraint, Y can become robust within a local region of X.

The cost function is given as:

JDAE ¼ L X; ~X
� �

þ k
Xm
j

Xk
i

Xn
p

oY
j
i

oX
j
p

!2

; ð8Þ

where k is the balancing hyper-parameter. During the pre-

training phase of a CAE, tied weight (i.e., Wd equal to the

transpose of We) is often employed to overcome the trivial

optimization problem caused by the contractive term. The

reason behind this is that We must be almost zero to enable

the contractive term to satisfy minimization of the cost

function in the Eq. 8.

3 Explicit guiding auto-encoder

An EGAE is a regular auto-encoder with an extra explicit

guiding term that guides the learning toward obtaining a

meaningful representation of the input data. A meaningful

representation means that a network using the representa-

tion as input has a low classification error in the classifi-

cation task. This explicit guiding term can inform the

representation in the training phase, while ensuring

improved performance in the fine-tuning phase. By mini-

mizing the cost function of an EGAE, a meaningful rep-

resentation can be learned.

In a multiclass classification task with a modern deep

learning framework, we use p auto-encoders for unsuper-

vised feature learning in the pre-training phase and one

softmax layer for supervised learning in the fine-tuning

phase. Let a(k) denote the kth auto-encoder, and X(k), Y(k),

and ~XðkÞ denote the input data, representation of the input

data, and reconstruction in a(k), respectively. We define the

cost function of an EGAE as:

JEDAE ¼
Xp
k¼1

L XðkÞ; ~XðkÞ
� �

þ b
Xm
i¼1

CðWc; YðiÞ;TiÞ þ kRð�Þ:

ð9Þ

Specifically,

CðWc; YðiÞ;TðiÞÞ ¼ � T ið Þlog pred ið Þð Þ þ 1� T ið Þð Þlog 1� pred ið Þð Þ½ �;

ð10Þ

431

and

predðiÞ ¼ softmaxðWc;YðiÞÞ:

In Eq. 9, Rð�Þ denotes the constrained term commonly used

in other auto-encoders, such as the sparsity constraint or

contractive term, m denotes the number of samples in the

training set, T(i) denotes the label of the ith sample, Wc is

the classification matrix (discussed in detail in Sect. 3.2),

and k and b are balancing terms. In most cases, b is set to

one based on the underlying principle of comparably

emphasizing reconstruction ability with a low classification

error. This is also affirmed by the experimental results in

Sect. 4.

The architecture of auto-encoders using the EGAE

algorithm is shown in Fig. 1. This specific example

involves three auto-encoders enclosed by the green

rectangle.

3.1 Relationship with other auto-encoders

Two principles have been suggested for training auto-en-

coders: first, the representation should, as much as possible,

retain the original information; and second, the represen-

tation should be robust against small variations in the input

data [14]. The representations used by the auto-encoder

variants mentioned in Sect. 2 improve the performance of

the supervised tasks with their extra terms or by artificially

corrupting the input. More specially, sparse auto-encoders

work with sparsity-constrained term, weight decay auto-

encoders take effect by penalizing connection weights with

large magnitude, DAEs adopt different train criteria from

other auto-encoders variants, and CAEs function by

encouraging small values of the partial differentiation.

However, their meaningfulness is implicit with the help of

the specially designed term. Conversely, meaningfulness of

the EGAE takes effect by its explicit guiding term that

reflects to what degree the representation improves the

performance of training the auto-encoder. Evaluation of the

performance of the supervised task performance takes

place in the feature learning phase. Thus, it is not surprising

that we can achieve better performance using a combina-

tion of implicit and explicit terms, as shown empirically in

Sect. 4.

3.2 Training with EGAE

Traditional deep learning algorithms have a pre-training

and a fine-tuning phase. Training with EGAE follows this

process with an additional procedure to obtain the classi-

fication matrix Wc by training a multiple layer perception

(MLP) included in the pre-training phase. The algorithm

for Wc is described in Algorithm 1.

T

C

L

pred

L

L

X

X

X

X

X

X

Fig. 1 Illustration of the

architecture for explicit guiding

auto-encoder

432

In the pre-training phase of the EGAE, we stack all the

auto-encoders to carry out joint training as illustrated in

Fig. 1 using the cost function given in Eq. 9 and classifi-

cation matrix Wc. After the pre-training phase, we discard

the decoder and extract an MLP using Algorithm 1 with

corresponding weights. The MLP is then fine-tuned in the

supervised task.

4 Experiments

In this section, we present our experiments using the EGAE

algorithm and auto-encoder variants discussed in Sect. 2.

The following benchmark datasets are considered:

– MNIST: The well handwritten digital recognition

problem [15] comprises 50,000 training samples and

10,000 test samples.

– Canadian Institute for Advanced Research (CIFAR)-

bw: the grayscale version of the CIFAR-10 dataset [23]

consists of ten categories for image classification.

There are 50,000 training images and 10,000 test

images.

– Variation on MNIST: A variation of the MNIST dataset

comprises five subsets: (1) MNIST basic, (2) MNIST

with background images, (3) MNIST with random

background, (4) rotated MNIST digits, and (5) rotated

MNIST digits with background images [5]. Each subset

has a training dataset, validation dataset, and testing

dataset with 10,000, 2,000, and 50,000 samples,

respectively.

In the MNIST and CIFAR-bw datasets, 10,000 sam-

ples were randomly selected from the training datasets as

the corresponding validation datasets. First, we evaluated

networks of varying depths with and without the explicit

guiding term. Second, qualitative analysis was carried

out by visualizing the features learned by the EGAE

with three hidden layers. Third, the learning trajectories

of the model with and without the explicit guiding term

were also compared to obtain a more intuitive under-

standing of their differences while learning the repre-

sentation. Finally, quantitative experiments were carried

out using the EGAEs as well as other auto-encoder

variants.

4.1 Experiments setup

Tied weights were used in our experiments; for all the auto-

encoders, We ¼ WT
d . We used the sigmoid activation

function for both the encoder and decoder. The mean

squared error cost function was used as the reconstruction

error, while a cross-entropy error was used to evaluate the

performance of the classification task. The neural networks

were trained by stochastic gradient descent with the Ada-

Delta technique to select the learning rate adaptively [24].

We adopted the widely used decay rate q ¼ 0:95 and

constant � ¼ 10�6. Mini-batches were used with batch size

200. Moreover, training terminated when the performance

stopped decreasing with a validation frequency of 50 or

reached the maximum epoch of 1000. Regarding the other

hyper-parameters in each model, we chose values that

yielded the best performance in our experiments on the

corresponding validation dataset. The hyper-parameters in

the auto-encoders were selected according to the perfor-

mance of the supervised task after the feature learning

phase. Grid search of hyper-parameters was performed.

To initialize the networks, weights of the auto-encoders

were initialized by uniform sampling between ½�t; t� [25].

t ¼ 4:0=
ffi
6:0= nin þ noutð Þ

p
; ð11Þ

where nin; nout denote the number of neurons in the input and

output layers, respectively. All the bias and weights for the

softmax layer were initialized to zero. Values of the

coefficients of regularizations, such as sparsity, weight

decay, and contractive, are selected from 10�1; 10�2;
�

10�3; 10�4; 10�5g. Masking noise was considered in training

the model of the DAE, while the corruption level of the DAE

was selected from {10, 20, 30, 40, 50 %}.

All the experiments were implemented with Theano [26,

27] using graphics processing units (GPUs). Two GPU

devices were used in our experiments: NVIDIA GTX750Ti

and GTX780.

4.2 Effect of depth in EDAE

We compared the models for a range of depths {1, 2, 3, 4,

5}. For each setting, the models were trained with and

without the explicit guiding term on the MNIST dataset.

Comparison of the results is shown in Fig. 2.

Algorithm 1 Obtaining classification matrix in explicit guiding auto-encoders
1: Initialize an MLP with input layer lin, output layer lout , and hidden layers lh(1), lh(2), lh(3), · · · , lh(n)

in the auto-encoders
2: Initializing the weight matrixWc ← random()
3: while not converging do
4: Update weights in the MLP with Back-propagation algorithm
5: end while
6: return Wc

433

This experiment verifies that the EGAEs achieve superior

performance for a varying range of depths comparedwith the

model without the explicit guiding term. Moreover, the

performance of the EGAEs improved as the depth increased,

which means that the representation becomes increasingly

meaningful as the multilayer auto-encoders learn the hier-

archical representation with explicit guiding terms.

4.3 Visualization of features learned by EGAE

Visualization of the features learned by the first layer of the

model with the explicit guiding term is shown in Fig. 3.

We also visualized the features on the second and third

layers by maximizing the activation method introduced in

[28] to show that meaningful representations were learned.

We computed the features by applying the gradient descent

optimization method to the activation function at the cor-

responding layer to maximize its output.

On the MNIST dataset, EGAEs learned features

resembling strokes in the first layer. Similar results with

other auto-encoder variants have been reported in many

works. The features in the third layer have been relatively

unexplained until now; they have been described as a kind

of high-level feature as reported in [28]. Normally, the

features learned in the second layer fit between the features

in the first and third layers.

4.4 Learning trajectory

Although visualization of features can help us understand

the qualitative effect of EGAEs, it is not clear how the

explicit guiding term affects the learning procedure. Thus,

we performed experiments to show the learning proce-

dure. The parameters (i.e., weights and bias in the net-

work) indicate the position of learning at each iteration

during the training phase. However, we cannot compare

the parameters directly because different parameters may

lead to the same model. We employed the functional

approximation method [9] to show the learning trajectory.

To be more precise, the output of each sample in the test

dataset was concatenated to form a long vector using the

parameters trained at each iteration of the training phase.

We applied dimensionality reduction in the vector space

using ISOMAP [29], the MATLAB (matrix laboratory)

implementation of which can be downloaded from http://

isomap.stanford.edu/. Dimensionality reduction was

applied to both results of the EGAE and the auto-encoder

without the explicit guiding term for visualization in the

same space.

We compared the learning trajectories of a model with

and without the explicit guiding term based on the optimal

effect of the hyper-parameters on performance over the

validation dataset. The trajectories, shown in Figs. 4

and 5, clearly show that the respective learning of the two

models starts at a slightly different position and moves

apart after the third epoch. Finally, these converge at

completely different minima. In particular, learning with

the explicit guiding term moves directly toward the

minimum along the line after the ninth epoch, whereas the

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
pre−train without explicit guiding term
pre−train with explicit guiding term

Fig. 2 Effect of depth in the models on performance. Models with

and without explicit guiding term are compared

(a) (b) (c)

Fig. 3 Visualization of the features learned by EGAE. a Features in the first layer. b Features in the second layer. c Features in the third layer

434

http://isomap.stanford.edu/
http://isomap.stanford.edu/

model without the explicit guiding term shows oscillation

before convergence. Together with the results reported in

Sect. 4.2, we concluded that the explicit guiding term

drives the learning toward the basin of minima at which

the model has a better ability to generalize. Generalization

ability gives rise to better classification performance

because of the meaningful representation learned by the

algorithm.

4.5 Quantitative comparisons

We compared the performance of the proposed EGAEs

with that of other auto-encoder variants on variations of the

MNIST dataset and the CIFAR-bw dataset. The best results

of each model tuned by grid search on the validation

datasets are reported in Table 1.

It is clear that the efficiency of the model pre-trained

with the explicit guiding term is superior to that of an MLP.

The performance of the EGAEs substantially surpassed that

of the other auto-encoder variations under the same

configuration.

5 Conclusion

EGAEs are auto-encoders with an extra explicit guiding

term that guides the auto-encoder to learn a meaningful

representation, thereby giving the network better per-

formance. This explicit guiding term in the EGAE can

also be combined with other implicit terms for auto-

encoders. Quantitative and qualitative experiments

demonstrate that the EGAEs learned an inter-

pretable representation similar to other well-known auto-

encoders. However, the EGAEs also learned more

meaningful representation. Additionally, from the com-

parison of the learning trajectories of the models with

−50 0 50 100
−350

−300

−250

−200

−150

−100

−50

0

50

10

20

30

40

50

60

Fig. 4 The learning trajectory of a model with three layers of explicit

guiding auto-encoders

−50 0 50 100
−350

−300

−250

−200

−150

−100

−50

0

50

10

20

30

40

50

60

Fig. 5 The learning trajectory of a model with three layers of auto-

encoders

Table 1 The classification error

rates on the variations on

MNIST and CIFAR-bw datasets

Algorithm Data set

basic rot bg-rand bg-img bg-img-rot cifar-bw

AE?sparse 4.40 13.11 17.05 19.29 50.46 51.76

DAE-b 3.54 12.71 11.11 17.65 47.06 49.75

CAE 3.47 12.79 12.96 17.70 48.95 51.97

MLP 5.11 13.26 17.03 19.14 49.04 53.92

EGAE 2.98 10.92 11.48 16.37 46.55 49.27

The best result on each dataset was highlighted with bold font

435

and without the explicit guiding term, it is obvious that

the EGAEs guide the learning toward a better solution

with better generalization ability.

Acknowledgments This work was supported by the National Sci-

ence Foundation of China (Grant Nos. 61432012 and 61402306).

References

1. Bengio Y, Courville A, Vincent P (2013) Representation learn-

ing: a review and new perspectives. IEEE Trans Pattern Anal

Mach Intell 35(8):1798–1828

2. Bengio Y, Lamblin P, Popovici D, Larochelle H et al (2007)

Greedy layer-wise training of deep networks. Adv Neural Inf

Process Syst 19:153

3. Boureau Y-L, Cun YL, et al (2008) Sparse feature learning for

deep belief networks. In: Platt JC, Koller D, Singer Y, Roweis ST

(eds) Advances in neural information processing systems, Curran

Associates, Inc., NY, USA, pp 1185–1192

4. Poultney C, Chopra S, Cun YL, et al (2006) Efficient learning of

sparse representations with an energy-based model. In: Schölkopf

B, Platt JC, Hoffman T (eds) Advances in neural information

processing systems, MIT Press, Cambridge MA, USA,

pp 1137–1144

5. Larochelle H, Erhan D, Courville A, Bergstra J, Bengio Y (2007)

An empirical evaluation of deep architectures on problems with

many factors of variation. In: Proceedings of the 24th interna-

tional conference on machine learning, ACM, pp 473–480

6. Osindero S, Hinton GE (2008) Modeling image patches with a

directed hierarchy of Markov random fields. In: Platt JC, Koller

D, Singer Y, Roweis ST (eds) Advances in neural information

processing systems, Curran Associates, Inc., NY, USA,

pp 1121–1128

7. Collobert R, Weston J (2008) A unified architecture for natural

language processing: deep neural networks with multitask

learning. In: Proceedings of the 25th international conference on

machine learning, pp 160–167

8. Weston J, Ratle F, Mobahi H, Collobert R (2012) Deep learning

via semi-supervised embedding. In: Montavon G, Orr G, Müller

KR (eds) Neural networks: tricks of the trade, Springer, NY,

USA, pp 639–655

9. Erhan D, Bengio Y, Courville A, Manzagol P-A, Vincent P,

Bengio S (2010) Why does unsupervised pre-training help deep

learning? J Mach Learn Res 11:625–660

10. Hinton GE, Salakhutdinov RR (2006) Reducing the dimension-

ality of data with neural networks. Science 313(5786):504–507

11. Jarrett K, Kavukcuoglu K, Ranzato M, LeCun Y (2009) What is

the best multi-stage architecture for object recognition? In:

Computer vision, 2009 IEEE 12th international conference on,

IEEE, pp 2146–2153

12. Olshausen BA, Field DJ (1997) Sparse coding with an over-

complete basis set: a strategy employed by v1? Vis Res

37(23):3311C3325

13. Vincent P, Larochelle H, Bengio Y, Manzagol P-A (2008)

Extracting and composing robust features with denoising

autoencoders. In: Proceedings of the 25th international confer-

ence on machine learning, ACM, pp 1096–1103

14. Rifai S, Vincent P, Muller X, Glorot X, Bengio Y (2011) Con-

tractive auto-encoders: explicit invariance during feature extrac-

tion. In: Proceedings of the 28th international conference on

machine learning (ICML-11), pp 833–840

15. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based

learning applied to document recognition. Proc IEEE

86(11):2278–2324

16. Bengio Y (2009) Learning deep architectures for AI. Found

Trends Mach Learn 2(1):1–127

17. Rumelhart DE, Hinton GE, Williams RJ (1988) Learning repre-

sentations by back-propagating errors. Cogn Model 5:3

18. Baldi P, Hornik K (1989) Neural networks and principal com-

ponent analysis: learning from examples without local minima.

Neural Netw 2(1):53–58

19. Goodfellow I, Lee H, Le QV, Saxe A, Ng AY (2009) Measuring

invariances in deep networks. In: Bengio Y, Schuurmans D,

Lafferty JD, Williams CKI, Culotta A (eds) Advances in neural

information processing systems, Curran Associates, Inc., NY,

USA, pp 646–654

20. Baum EB, Haussler D (1989) What size net gives valid gener-

alization? Neural Comput 1(1):151–160

21. Schwartz D, Samalam V, Solla SA, Denker J (1990) Exhaustive

learning. Neural Comput 2(3):374–385

22. Tishby N, Levin E, Solla SA (1989) Consistent inference of

probabilities in layered networks: Predictions and generaliza-

tions. In: Neural networks. IJCNN., international joint conference

on, IEEE, pp 403–409

23. Krizhevsky A, Hinton G (2009) Learning multiple layers of

features from tiny images. Computer Science Department,

University of Toronto. Technical report 1(4):7

24. Zeiler MD (2012) Adadelta: an adaptive learning rate method,

arXiv preprint arXiv:1212.5701

25. Glorot X, Bengio Y (2010) Understanding the difficulty of

training deep feedforward neural networks. In: International

conference on artificial intelligence and statistics, pp 249–256

26. Bastien F, Lamblin P, Pascanu R, Bergstra J, Goodfellow I,

Bergeron A, Bouchard N, Warde-Farley D, Bengio Y (2012)

Theano: new features and speed improvements, arXiv preprint

arXiv:1211.5590

27. Bergstra J, Breuleux O, Bastien F, Lamblin P, Pascanu R, Des-

jardins G, Turian J, Warde-Farley D, Bengio Y (2010) Theano: a

cpu and gpu math expression compiler. In: Proceedings of the

Python for scientific computing conference (SciPy), vol 4, Austin,

TX, p 3

28. Erhan D, Bengio Y, Courville A, Vincent P (2009) Visualizing

higher-layer features of a deep network. Department of IRO,

Universit de Montral, Technical report

29. Tenenbaum JB, De Silva V, Langford JC (2000) A global geo-

metric framework for nonlinear dimensionality reduction. Sci-

ence 290(5500):2319–2323

436

http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1211.5590

	Explicit guiding auto-encoders for learning meaningful representation
	Abstract
	Introduction
	Variants of auto-encoders
	Sparse auto-encoder
	Auto-encoder with weight decay
	Denoising auto-encoder
	Contractive Auto-encoder

	Explicit guiding auto-encoder
	Relationship with other auto-encoders
	Training with EGAE

	Experiments
	Experiments setup
	Effect of depth in EDAE
	Visualization of features learned by EGAE
	Learning trajectory
	Quantitative comparisons

	Conclusion
	Acknowledgments
	References

