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Enrique Fernández-Cara ∗, Mauŕıcio C. Santos †, Diego A. Souza ‡

Abstract

This paper deals with the boundary controllability of inviscid incompressible fluids

for which thermal effects are important. They will be modeled through the so called

Boussinesq approximation. In the zero heat diffusion case, by adapting and extending

some ideas from J.-M. Coron and O. Glass, we establish the simultaneous global

exact controllability of the velocity field and the temperature for 2D and 3D flows.

When the heat diffusion coefficient is positive, we present some additional results

concerning exact controllability for the velocity field and local null controllability of

the temperature.
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1 Introduction

Let Ω ⊂ RN be a nonempty, bounded and connected open set whose boundary Γ := ∂Ω

is of class C∞, with N = 2 or N = 3. Let Γ0 ⊂ Γ be a (small) nonempty open set and let

us assume that T > 0. For simplicity, we assume that Ω is simply connected.

In the sequel, we will denote by C a generic positive constant; spaces of RN -valued

functions, as well as their elements, are represented by boldfaced letters; we will denote

by n = n(x) the outward unit normal to Ω at points x ∈ Γ.
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In this work, we will be concerned with the boundary controllability of the system:

yt + (y · ∇)y = −∇p+ k θ in Ω× (0, T ),

∇ · y = 0 in Ω× (0, T ),

θt + y · ∇θ = κ∆θ in Ω× (0, T ),

y · n = 0 on (Γ\Γ0)× (0, T ),

y(x, 0) = y0(x), θ(x, 0) = θ0(x) in Ω.

(1)

This system models the behavior of an incompressible homogeneous inviscid fluid with

thermal effects. More precisely,

• The field y and the scalar function p stand for the velocity and the pressure of the

fluid in Ω× (0, T ), respectively.

• The function θ provides the temperature distribution of the fluid.

• The right hand side k θ can be viewed as the buoyancy force density (k ∈ RN is a

non-zero vector).

• The nonnegative constant κ ≥ 0 is the heat diffusion coefficient.

This system is relevant for the study and description of atmospheric and oceanographic

turbulence, as well as other fluid problems where rotation and stratification play dominant

roles (see e.g. [18]). In fluid mechanics, (1) is used to deal with buoyancy-driven flow; it

describes the motion of an incompressible inviscid fluid subject to convected heat transfer

under the influence of gravitational forces, see [17].

We will consider the cases κ = 0 and κ > 0. When κ = 0, (1) is called the incompress-

ible inviscid Boussinesq system.

From now on, we assume that α ∈ (0, 1) and we set

Cm,α
0 (Ω;RN ) := {u ∈ Cm,α(Ω;RN ) : ∇ · u = 0 in Ω, u · n = 0 on Γ },

C(m,α,Γ0) := {u ∈ Cm,α(Ω;RN ) : ∇ · u = 0 in Ω, u · n = 0 on Γ\Γ0 },
(2)

whereCm,α(Ω;RN ) denotes the space of RN -valued functions whosem-th order derivatives

are Hölder-continuous in Ω with exponent α. The usual norms in the Banach spaces

C0(Ω;Rℓ) and Cm,α(Ω;Rℓ) will be respectively denoted by ∥ · ∥0 and ∥ · ∥m,α. We will also

need to work with the Banach spaces C0([0, T ];Cm,α(Ω;Rℓ)), where the usual norms are

∥w∥0,m,α := max
[0,T ]

∥w(· , t)∥m,α.

In particular, ∥ · ∥(0) will stand for ∥ · ∥0,0,0.
When κ = 0, it is appropriate to consider the exact boundary controllability problem

for (1). In general terms, it can be stated as follows:
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Given y0, y1, θ0 and θ1 in appropriate spaces with y0 ·n = y1 ·n = 0 on Γ\Γ0,

find (y, p, θ) such that (1) holds and, furthermore,

y(x, T ) = y1(x), θ(x, T ) = θ1(x) in Ω. (3)

If it is always possible to find y, p and θ, it will be said that the incompressible inviscid

Boussinesq system is exactly controllable for (Ω,Γ0) at time T .

Notice that, when κ = 0, in order to determine without ambiguity a unique local

in time regular solution to (1), it is sufficient to prescribe the normal component of the

velocity on the boundary of the flow region and, for instance, the full field y and the

temperature θ on the inflow section, i.e. only where y · n < 0, see for instance [13, 14].

Hence, in this case, we can assume that the controls are given as follows: y · n on Γ0 × (0, T ), with

∫
Γ0

y · n dΓ = 0;

y and θ at any point of Γ0 × (0, T ) satisfying y · n < 0.
(4)

Other choices are possible. In any case, once we find a trajectory satisfying (1) and (3),

there always exists good boundary conditions that furnish controls that drive the state

(y, θ) exactly to the desired target (y1, θ1).

The meaning of the exact controllability property is that, when it holds, we can drive

the fluid from any initial state (y0, θ0) exactly to any final state (y1, θ1), acting only on

an arbitrary small part Γ0 of the boundary during an arbitrary small time interval (0, T ).

When κ > 0, the situation is different. Due to the regularization effect of the temper-

ature equation, we cannot expect exact controllability, at least for the temperature.

In order to present a suitable boundary controllability problem, let us introduce another

nonempty open set γ ⊂ Γ. Then, the problem is the following:

Given y0, y1 and θ0 in appropriate spaces with y0 · n = y1 · n = 0 on Γ\Γ0

and θ0 = 0 on Γ\γ, find (y, p, θ) with θ = 0 on (Γ\γ) × (0, T ) such that (1)

holds and, furthermore,

y(x, T ) = y1(x), θ(x, T ) = 0 in Ω. (5)

If it is always possible to find y, p and θ, it will be said that the incompressible, heat

diffusive, inviscid Boussinesq system (1) is exactly-null controllable for (Ω,Γ0, γ) at time T .

Note that, if κ > 0 and we fix the boundary data in (4) for y and (for example)

Dirichlet data for θ of the form

θ = θ∗1γ on Γ× (0, T ),

there exists at most one solution to (1). Therefore, it can be assumed in this case that

the controls are the following:
y · n on Γ0 × (0, T ), with

∫
Γ0

y · n dΓ = 0;

y at any point of Γ0 × (0, T ) satisfying y · n < 0;

θ at any point of γ × (0, T ).
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Of course, the meaning of the exact-null controllability property is that, when it holds,

we can drive the fluid velocity-temperature pair from any initial state (y0, θ0) exactly to

any final state of the form (y1, 0), acting only on arbitrary small parts Γ0 and γ of the

boundary during an arbitrary small time interval (0, T ).

In the last decades, a lot of researchers have focused their attention on the controlla-

bility of systems governed by (linear and nonlinear) PDEs. Some related results can be

found in [6, 10, 15, 22]. In the context of incompressible ideal fluids, this subject has been

mainly investigated by Coron [4, 5] and Glass [7, 8, 9].

In this paper, our first task will be to adapt the techniques and arguments of [5] and [9]

to the situations modeled by (1). Thus, our first main result is the following:

Theorem 1 If κ = 0, then the incompressible inviscid Boussinesq system (1) is exactly

controllable for (Ω,Γ0) at any time T > 0. More precisely, for any y0,y1 ∈ C(2, α,Γ0)

and any θ0, θ1 ∈ C2,α(Ω), there exist y ∈ C0([0, T ];C(1, α,Γ0)), θ ∈ C0([0, T ];C1,α(Ω))

and p ∈ D ′(Ω× (0, T )) such that one has (1) and (3).

The proof of Theorem 1 mainly relies on the extension and return methods.

These have been applied in several different contexts to establish controllability; see

the seminal works [19] and [3]; see also a long list of applications in [6].

Let us give a sketch of the strategy used in the proof of Theorem 1:

• First, we construct a “good” trajectory connecting (0, 0) to (0, 0) (see Sections 2.1

and 2.2).

• Then, we apply the extension method of David L. Russell [19]; see also [16, 20]. It

is known that this method turns out to be very useful for a lot of hyperbolic (linear

and nonlinear) PDEs.

• Then, we use a Fixed-Point Theorem and we deduce a local exact controllability

result.

• Finally, we use time scale-invariance and the reversibility in time to obtain the

desired global result.

In fact, Theorem 1 is a consequence of the following local result:

Proposition 1 Let us assume that κ = 0. There exists δ > 0 such that, for any y0 ∈
C(2, α,Γ0) and any θ0 ∈ C2,α(Ω) with

max {∥y0∥2,α, ∥θ0∥2,α} ≤ δ,

there exist y ∈ C0([0, 1];C(1, α,Γ0)), θ ∈ C0([0, 1];C1,α(Ω)) and p ∈ D ′(Ω× (0, 1)) satis-

fying (1) in Ω× (0, 1) and the final conditions

y(x, 1) = 0, θ(x, 1) = 0 in Ω. (6)
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It will be seen later that, in our argument, the C2,α-regularity of the initial and final

data is needed. However, we can only ensure the existence of a controlled solution that is

C1,α in space.

Our second main result is the following:

Theorem 2 Let Ω, Γ0 and γ be given and let us assume that κ > 0. Then (1) is locally

exactly-null controllable. More precisely, for any T > 0 and any y0,y1 ∈ C2,α
0 (Ω;RN ),

there exists η > 0, depending on ∥y0∥2,α, such that, for each θ0 ∈ C2,α(Ω) with

θ0 = 0 on Γ\γ, ∥θ0∥2,α ≤ η,

we can find y ∈ C0([0, T ];C1,α(Ω;RN ), θ ∈ C0([0, T ];C1,α(Ω)) with θ = 0 on (Γ\γ) ×
(0, T ), and p ∈ D ′(Ω× (0, T )) satisfying (1) and (5).

The proof relies on the following strategy.

First, we linearize and control only the temperature θ; this leads the system to a state

of the form (ỹ0, 0) at (say) time T/2. Then, in a second step, we control the velocity field

using in part Theorem 1. It will be seen that, in order to get good estimates and prove

the existence of a fixed point, the initial temperature θ0 must be small.

To our knowledge, it is unknown whether a global exact-null controllability result holds

for (1) when κ > 0. Unfortunately, the cost of controlling θ grows exponentially with the

L∞-norm of the transporting velocity field y and this is a crucial difficulty to establish

estimates independent of the size of the initial data.

The rest of this paper is organized as follows.

In Section 2, we recall the results needed to prove Theorems 1 and 2. In Section 3,

we give the proof of Theorem 1. In Section 4, we prove Proposition 1 in the 2D case. As

mentioned above, the main ingredients of the proof are the construction of a nontrivial

trajectory that starts and ends at (0, 0) and a Fixed-Point Theorem (the key ideas of the

return method). In Section 5, we give the proof of Theorem 1 in the 3D case. Finally,

Section 6 contains the proof of Theorem 2.

2 Preliminary results

In this section, we will recall some results used in the proofs of Theorems 1 and 2. Also,

we will indicate how to construct a trajectory appropriate to apply the return method.

The following result is an immediate consequence of Banach’s Fixed-Point Theorem:

Theorem 3 Let (B1, ∥·∥1) and (B2, ∥·∥2) be Banach spaces with B2 continuously embedded

in B1. Let B be a subset of B2 and let G : B 7→ B be a uniformly continuous mapping

such that, for some n ≥ 1 and some α ∈ [0, 1), one has

∥Gn(u)−Gn(v)∥1 ≤ α∥u− v∥1 ∀u, v ∈ B.



2 PRELIMINARY RESULTS 6

Let us denote by B the closure of B for the norm ∥ · ∥1. Then, G can be uniquely extended

to a continuous mapping G̃ : B 7→ B that possesses a unique fixed-point in B.

Recall that, if E is a Banach space with norm ∥ · ∥E and f : [0, T ] 7→ E is continuously

differentiable, then t 7→ ∥f(t)∥E is right-differentiable, with

d

dt+
∥f(t)∥E ≤ ∥f ′(t)∥E

for all t. Later, the following lemma will be very important to deduce appropriate esti-

mates; this is Lemma 1, p. 6, in [1].

Lemma 1 Let m be a nonnegative integer. Assume that u ∈ C0([0, T ];Cm+1,α(Ω)), g ∈
C0([0, T ];Cm,α(Ω)) and v ∈ C0([0, T ];Cm,α(Ω;RN )) are given, with v ·n = 0 on Γ×(0, T )

and
∂u

∂t
+ v · ∇u = g in Ω× (0, T ).

Then, ut ∈ C0([0, T ];Cm,α(Ω)). If m ≥ 1, one has

d

dt+
∥u(· , t)∥m,α ≤ ∥g(· , t)∥m,α +K∥v(· , t)∥m,α∥u(· , t)∥m,α in (0, T ),

where K is a constant only depending on α and m. On the other hand, if m = 0, the

following holds:

d

dt+
∥u(· , t)∥0,α ≤ ∥g(· , t)∥0,α + α∥∇v(· , t)∥0,α∥u(· , t)∥0,α in (0, T ).

From Lemma 1 and a standard regularization argument, we easily deduce the following:

Lemma 2 Let m be a nonnegative integer. Assume that u ∈ C0([0, T ];Cm,α(Ω)), g ∈
C0([0, T ];Cm,α(Ω)) and v ∈ C0([0, T ];Cm,α(Ω;RN )) are given, with v ·n = 0 on Γ×(0, T )

and
∂u

∂t
+ v · ∇u = g in Ω× (0, T ).

Then

∥u∥0,m,α ≤
(∫ T

0
∥g(· , t)∥m,α dt+ ∥u(· , 0)∥m,α

)
exp

(
K

∫ T

0
∥v(· , t)∥m,α dt

)
,

where K is a constant only depending on α and m.

We will also use he following technical result (see Lemma 3.1, p. 8, in [9]):

Lemma 3 Let us assume that

w0 ∈ C1,α(Ω̄;RN ), ∇ ·w0 = 0 in Ω,

u ∈ C0([0, T ];C1,α(Ω̄;RN )), u · n = 0 on Γ× (0, T ),

g ∈ C0([0, T ];C0,α(Ω̄,RN )), ∇ · g = 0 in Ω× (0, T ).
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Let w be a function in C0([0, T ];C1,α(Ω;RN )) satisfying{
wt + (u · ∇)w = (w · ∇)u− (∇ · u)w + g in Ω× (0, T ),

w(· , 0) = w0 in Ω.

Then, ∇ ·w ≡ 0. Moreover, there exists v ∈ C0([0, T ];C2,α(Ω;RN )) such that

w = ∇× v in Ω× (0, T ).

To end this section, we will recall a well known result dealing with the null controlla-

bility of general parabolic linear systems of the form
ut − κ∆u+w · ∇u = v1ω in D × (0, T ),

u = 0 on ∂D × (0, T ),

u(x, 0) = u0(x) in D,

(7)

where D ⊂ RN is a nonempty bounsded open set, κ > 0, w ∈ L∞(D × (0, T )), ω ⊂ D is

a nonempty open set and 1ω is the characteristic function of ω.

It is well known that, for each u0 ∈ L2(D) and each v ∈ L2(ω × (0, T )), there exists

exactly one solution u to (7), with

u ∈ C0([0, T ];L2(D)) ∩ L2(0, T ;H1
0 (D)).

We also have:

Theorem 4 The linear system (7) is null-controllable at any time T > 0. In other words,

for each u0 ∈ L2(D) there exists v ∈ L2(ω× (0, T )) such that the associated solution to (7)

satisfies

u(x, T ) = 0 in D. (8)

Furthermore, the extremal problem Minimize
1

2

∫∫
ω×(0,T )

|v|2 dx dt

Subject to: v ∈ L2(ω × (0, T )), u satisfies (8)

(9)

possesses exactly one solution v̂ satisfying

∥v̂∥2 ≤ C0∥u0∥2, (10)

where

C0 = exp

(
C1

(
1 +

1

T
+ (1 + T 2)∥w∥2∞

))
and C1 only depends on D, ω and κ.

For more details, see for instance Theorem 2.2, p. 1416, in [2].
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2.1 Construction of a trajectory when N = 2

We will argue as in [5]. Thus, let Ω1 ⊂ R2 be a bounded, Lipschitz-contractible open set

whose boundary consists of two disjoint closed line segments Γ− and Γ+ and two disjoint

curves Σ′ and Σ′′ of class C∞ such that ∂Σ′ ∪ ∂Σ′′ = ∂Γ− ∪ ∂Γ+.

We assume that Ω ⊂ Ω1. We also impose that there is a neighborhood U− of Γ−

(resp. U+ of Γ+) such that Ω1 ∩ U− (resp. Ω1 ∩ U+) coincides with the intersection of

U− (resp. U+), an open semi-plane limited by the line containing Γ− (resp. Γ+) and the

band limited by the two straight lines orthogonal to Γ− (resp. Γ+) and passing through

∂Γ− (resp. ∂Γ+); see Fig. 1.

W

W 2

G-

G+

S´

S´´

W 3

W 1 W 2 W 3

W

W 1W 1

W 2

W 3

W

W 1

Figure 1: The domains Ω, Ω1, Ω2 and Ω3

Let φ be the solution to 

−∆φ = 0 in Ω1,

φ = 1 on Γ+,

φ = −1 on Γ−,

∂φ

∂n
= 0 on Σ,

(11)

where Σ = Σ′ ∪ Σ′′. Then, we have the following result from J.-M. Coron [4], p. 273:

Lemma 4 One has φ ∈ C∞(Ω1), −1 < φ(x) < 1 for all x ∈ Ω1 and

∇φ(x) ̸= 0 ∀x ∈ Ω1. (12)
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Let γ ∈ C∞([0, 1]) be a non-zero function such that Supp γ ⊂ (0, 1/2) ∪ (1/2, 1) and

the sets (Supp γ) ∩ (0, 1/2) and (Supp γ) ∩ (1/2, 1) are non-empty.

Let M > 0 be a constant to be chosen below and set

y(x, t) :=Mγ(t)∇φ(x), p(x, t) := −Mγt(t)φ(x)−
M2

2
γ(t)2|∇φ(x)|2, θ ≡ 0.

Then (1) is satisfied by (y, p, θ) for T = 1, y0 = 0 and θ0 = 0. The triplet (y, p, θ) is thus

a nontrivial trajectory of (1) that connects the zero state to itself.

Let Ω3 be a bounded open set of class C∞ such that Ω1 ⊂⊂ Ω3. We extend φ to Ω3 as

a C∞ function with compact support in Ω3 and we still denote this extension by φ. Let

us introduce y∗(x, t) :=Mγ(t)∇φ(x) (observe that y is the restriction of y∗ to Ω× [0, 1]).

Also, consider the associated flux function Y∗ : Ω3× [0, 1]× [0, 1] 7→ Ω3, defined as follows:{
Y∗

t (x, t, s) = y∗(Y∗(x, t, s), t)

Y∗(x, s, s) = x.
(13)

Obviously, Y∗ contains all the information on the trajectories of the particles transported

by the velocity field y∗. The flux Y∗ is of class C∞ in Ω3 × [0, 1] × [0, 1]. Furthermore,

Y∗(· , t, s) is a diffeomorphism of Ω3 onto itself and (Y∗(· , t, s))−1 = Y∗(· , s, t) for all

s, t ∈ [0, 1].

Remark 1 From the definition of y∗ and the boundary conditions on Ω1 satisfied by φ,

we observe that the particles cannot cross Σ. Since φ is constant on Γ+, the gradient ∇φ
is parallel to the normal vector on Γ+. Since φ attains a maximum at any point of Γ+,

we have ∇φ · n > 0 on Γ+, whence y∗ · n ≥ 0 on Γ+ × [0, 1]. Similarly, y∗ · n ≤ 0 on

Γ− × [0, 1]. Consequently, the particles having velocity y∗ can leave Ω1 only through Γ+

and can enter Ω1 only through Γ−. 2

The following lemma shows that the particles that travel with velocity y∗ and are

inside Ω1 at time t = 0 (resp. t = 1/2) will be outside Ω1 at time t = 1/2 (resp. t = 1).

Lemma 5 There exist M > 0 (large enough) and a bounded open set Ω2 satisfying Ω1 ⊂⊂
Ω2 ⊂⊂ Ω3 such that

Y∗(x, 1/2, 0) ̸∈ Ω2 and Y∗(x, 1, 1/2) ̸∈ Ω2 ∀x ∈ Ω2. (14)

The proof is given in [5] and relies on the properties of y∗ and, more precisely, on the

fact that t 7→ φ(Y∗(x, t, s)) is nondecreasing.

The next step is to introduce appropriate extension mappings from Ω to Ω3. We have

the following result from [11] (see Corollary 1.3.7, p. 138):

Lemma 6 For ℓ = 1 and ℓ = 2, there exist continuous linear mappings πℓ : C
0(Ω;Rℓ) 7→

C0(Ω3;Rℓ) such that{
πℓ(f) = f in Ω and Suppπℓ(f) ⊂ Ω2 ∀f ∈ C0(Ω;Rℓ),

πℓ maps continuously Cm,λ(Ω;Rℓ) into Cm,λ(Ω3;Rℓ) ∀m ≥ 0, ∀λ ∈ (0, 1).
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The next lemma asserts that (14) holds not only for y∗ but also for any appropriate

extension of any flow z close enough to y:

Lemma 7 For each z ∈ C0(Ω × [0, 1];R2), let us set z∗ = y∗ + π2(z − y). There exists

ν > 0 such that, if ∥z− y∥(0) ≤ ν, then

Z∗(x, 1/2, 0) ̸∈ Ω2 and Z∗(x, 1, 1/2) ̸∈ Ω2 ∀x ∈ Ω2, (15)

where Z∗ is the flux function associated to z∗.

Proof: Let us set

A =
{
Y∗(x, 1/2, 0) : x ∈ Ω2

}
∪
{
Y∗(x, 1, 1/2) : x ∈ Ω2

}
.

Both A and Ω2 are compact subsets of R2 and, in view of Lemma 5, A ∩ Ω2 = ∅.
Consequently, d := dist (A, Ω2) > 0.

Let us introduce W := Y∗ − Z∗. Then, in view of the Mean Value Theorem and the

properties of π2, we have:

|W(x, t, s)| ≤ M

∫ t

s
γ(σ)|∇φ(Y∗(x, σ, s))−∇φ(Z∗(x, σ, s))| dσ

+

∫ t

s
|π2(z− y)(Z∗(x, σ, s), σ)| dσ

≤ M∥∇φ∥0
∫ t

s
γ(σ)|W(x, σ, s)| dσ +

∫ t

s
∥(π2(z− y))(·, σ)∥0 dσ

≤ M∥∇φ∥0
∫ t

s
γ(σ)|W(x, σ, s)| dσ + C

∫ t

s
∥(z− y)(·, σ)∥0 dσ,

where (x, t, s) ∈ Ω3 × [0, 1]× [0, 1]. Therefore, from Gronwall’s Lemma, we find that

|W(x, t, s)| ≤ C

(∫ t

s
∥z− y∥0(σ) dσ

)
exp

(
M∥∇φ∥0

∫ t

s
γ(σ) dσ

)
≤ CeM∥∇φ∥0∥γ∥0∥z− y∥(0)

and, consequently, there exists ν > 0 such that, if ∥z− y∥(0) ≤ ν, one has

|W(x, t, s)| ≤ d

2
∀(x, t, s) ∈ Ω3 × [0, 1]× [0, 1]. (16)

Thanks to Lemma 5 and (16), we necessarily have (15) and the proof is achieved. 2
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2.2 Construction of a trajectory when N = 3

In this Section, we follow [9]. As in the two-dimensional case, y will be of the potential

form “∇φ”, with the property that any particle traveling with velocity y must leave Ω at

an appropriate time. The main difference will be that, in this three-dimensional case, φ

will not be chosen independent of t.

We first recall a lemma:

Lemma 8 Let O be a regular bounded open set such that Ω ⊂⊂ O. For each a ∈ Ω, there

exists ϕa ∈ C∞(O× [0, 1]) such that supp(ϕa) ⊂ O× (1/4, 3/4), −∆ϕa = 0 in Ω× (0, 1),

∂ϕa

∂n
= 0 on (Γ \ Γ0)× (0, 1)

(17)

and

Φa(a, 1, 0) ∈ O \ Ω,

where Φa := Φa(x, t, s) is the flux associated to ∇ϕa, that is, the unique RN−valued

function in O× [0, 1]× [0, 1] satisfying{
Φa

t (x, t, s) = ∇ϕa(Φa(x, t, s), t),

Φa(x, s, s) = x.
(18)

The proof is given in [9] (see Lemma 2.1, p. 3).

With the help of these Φa, we can construct a vector field y∗ in O× (0, 1) that makes

the particles go from Ω to the outside and then makes them come back.

Indeed, from the continuity of the functions Φa and the compactness of Ω, we can find

a1,a2, . . . ,ak in Ω, real numbers r1, . . . , rk, smooth functions ϕ1 := ϕa1 , . . . , ϕk := ϕak

satisfying Lemma 8 and a bounded open set O0 with Ω ⊂⊂ O0 ⊂⊂ O, such that

Ω ⊂
k⋃

i=1

Bi ⊂⊂ O0 and Φi(B
i
, 1, 0) ⊂ O \ O0, (19)

where Bi := B(ai; ri) and Φi := Φai for i = 1, . . . , k.

As in [9], the definition of y∗ is as follows: let the time ti be given by

ti =
1

4
+

i

4k
, i = 0, . . . , 2k,

ti+1/2 =
1

4
+

(
i+

1

2

)
1

4k
, i = 0, . . . , 2k − 1

(20)

and let us set

ϕ(x, t) =


0, (x, t) ∈ O× ([0, 1/4] ∪ [3/4, 1]),

8kϕj(x, 8k(t− tj−1)), (x, t) ∈ O×
[
tj−1, tj−1/2

]
,

−8kϕj(x, 8k(tj − t)), (x, t) ∈ O×
[
tj−1/2, tj

] (21)
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for j = 1, . . . , 2k, where ϕk+i := ϕi for i = 1, . . . , k. Then, we set y∗ := ∇ϕ and y :=

y∗|Ω×[0,1] and we denote by Y∗ the flux associated to y∗.

If we set p̄(x, t) := −ϕt(x, t)− 1
2 |∇ϕ(x, t)|

2 and θ ≡ 0, then (1) and (3) are verified by

(y, p, θ) for T = 1, y0 = y1 = 0 and θ0 = θ1 = 0.

Thanks to (19) and (21), one has:

Lemma 9 The following property holds for all i = 1, . . . , k:

Y∗(x, ti−1/2, 0) ∈ O \ O0 and Y∗(x, tk+i−1/2, 1/2) ∈ O \ O0 ∀x ∈ Bi. (22)

For the proof, it suffices to notice that, in O× [1/4, 3/4]× [1/4, 3/4], Y∗(x, t, s) is given

as follows:
Φj(x, 8k(t− tj−1), 8k(s− tl−1)) if (x, t, s) ∈ O× [tj−1, tj−1/2]× [tl−1, tl−1/2],

Φj(x, 8k(t− tj−1), 8k(tl − s)) if (x, t, s) ∈ O× [tj−1, tj−1/2]× [tl−1/2, tl],

Φj(x, 8k(tj − t), 8k(s− tl−1)) if (x, t, s) ∈ O× [tj−1/2, tj ]× [tl−1, tl−1/2],

Φj(x, 8k(tj − t), 8k(tl − s)) if (x, t, s) ∈ O× [tj−1/2, tj ]× [tl−1/2, tl]

for all l, j = 1, . . . , 2k, where Φk+i the flux associated to ∇ϕk+i for i = 1, . . . , k.

Hence, one has the following for all i = 1, . . . , k and for each x ∈ Bi :

Y∗(x, ti−1/2, 0) = Y∗(x, ti−1/2, 1/4) = Y∗(x, ti−1/2, t0) = Φi(x, 1, 0) ∈ O \ O0

and

Y∗(x, tk+i−1/2, 1/2) = Y∗(x, tk+i−1/2, tk) = Φk+i(x, 1, 0) = Φi(x, 1, 0) ∈ O \ O0.

A result similar to Lemma 6 also holds here:

Lemma 10 For ℓ = 1 and ℓ = 3, there exist continuous linear mappings πℓ : C
0(Ω;Rℓ) 7→

C0(O;Rℓ) such that{
πℓ(f) = f in Ω and Suppπℓ(f) ⊂ O0 ∀f ∈ C0(Ω;Rℓ),

πℓ maps continuously Cn,λ(Ω;Rℓ) into Cn,λ(O;Rℓ) ∀n ≥ 0, ∀λ ∈ (0, 1).

Finally, we have that (22) also holds for the flux corresponding to any velocity field

close enough to y:

Lemma 11 For each z ∈ C0(Ω × [0, 1];R3), let us set z∗ = y∗ + π3(z − y). Then there

exists ν > 0 such that, if ∥z− y∥(0) ≤ ν and i = 1, . . . , k, one has:

Z∗(x, ti−1/2, 0) ∈ O \ O0 and Z∗(x, tk+i−1/2, 1/2) ∈ O \ O0 ∀x ∈ Bi,

where Z∗ is the flux associated to z∗.

The proof is very similar to the proof of Lemma 7 and will be omitted.
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3 Proof of Theorem 1

This Section is devoted to prove the exact controllability result in Theorem 1. We will

assume that Proposition 1 is satisfied and we will employ a scaling argument and the fact

that, when κ = 0, (1) is time reversible.

Let T > 0, θ0, θ1 ∈ C2,α(Ω) and y0,y1 ∈ C(2, α,Γ0) be given. Let us see that, if

∥y0∥2,α + ∥y1∥2,α + ∥θ0∥2,α + ∥θ1∥2,α

is small enough, we can construct a triplet (y, p, θ) satisfying (1) and (3).

If ε ∈ (0, T/2) is small enough to have

max{ε∥y0∥2,α, ε2∥θ0∥2,α} ≤ δ (resp. max{ε∥y1∥2,α, ε2∥θ1∥2,α} ≤ δ),

then, thanks to Proposition 1, there exist (y0, θ0) in C0([0, 1];C1,α(Ω;RN+1)) and a pres-

sure p0 (resp. (y1, θ1) and p1) solving (1), with y0(x, 0) ≡ εy0(x) and θ
0(x, 0) ≡ ε2θ0(x)

(resp. y1(x, 0) ≡ −εy1(x) and θ
1(x, 0) = ε2θ1(x)) and satisfying (6).

Let us choose ε of this form and let us introduce y : Ω× [0, T ] 7→ RN , p : Ω× [0, T ] 7→ R
and θ : Ω× [0, T ] 7→ R as follows:

y(x, t) = ε−1y0(x, ε−1t),

p(x, t) = ε−2p0(x, ε−1t),

θ(x, t) = ε−2θ0(x, ε−1t),

for (x, t) ∈ Ω× [0, ε],


y(x, t) = 0,

p(x, t) = 0,

θ(x, t) = 0,

for (x, t) ∈ Ω× (ε, T − ε),


y(x, t) = −ε−1y1(x, ε−1(T − t)),

p(x, t) = ε−2p1(x, ε−1(T − t)),

θ(x, t) = ε−2θ1(x, ε−1(T − t)),

for (x, t) ∈ Ω× [T − ε, T ].

Then, (y, θ) ∈ C0([0, T ];C1,α(Ω;RN+1) and the triplet (y, p, θ) satisfies (1) and (3).

4 Proof of Proposition 1. The 2D case

Let µ ∈ C∞([0, 1]) be a function such that µ ≡ 1 in [0, 1/4], µ ≡ 0 in [1/2, 1] and 0 < µ < 1.

Proposition 1 is a consequence of the following result:
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Proposition 2 There exists δ > 0 such that, if max {∥y0∥2,α, ∥θ0∥2,α} ≤ δ, then the

coupled system 

ζt + y · ∇ζ = −k×∇θ in Ω× (0, 1),

θt + y · ∇θ = 0 in Ω× (0, 1),

∇ · y = 0, ∇× y = ζ in Ω× (0, 1),

y · n = (y + µy0) · n on Γ× (0, 1),

ζ(0) = ∇× y0, θ(0) = θ0 in Ω,

(23)

possesses at least one solution (ζ, θ,y), with

(ζ, θ,y) ∈ C0([0, 1];C0,α(Ω))× C0([0, 1];C1,α(Ω))× C0([0, 1];C1,α(Ω;R2)), (24)

such that

θ(x, t) = 0 in Ω× (1/2, 1) and ζ(x, 1) = 0 in Ω. (25)

The reminder of this section is devoted to prove Proposition 2. We are going to adapt

some ideas from Bardos and Frisch [1] and Kato [12], already used in [5] and [7]. Let us

give a sketch.

We will start from an arbitrary field z = z(x, t) in a suitable class S of continuous

functions. To this z, we will associate a scalar function θ (a temperature) verifying{
θt + z · ∇θ = 0 in Ω× (0, 1),

θ(x, 0) = θ0(x) in Ω.

and

θ(x, t) = 0 in Ω× (1/2, 1).

With the help of θ, we will then construct a function ζ (an associated vorticity) satisfying{
ζt + z · ∇ζ = −k×∇θ in Ω× (0, 1),

ζ(0) = ∇× y0 in Ω.

and

ζ(x, 1) = 0 in Ω.

Then, we will construct a field y = y(x, t) such that ∇× y = ζ and ∇ · y = 0. This way,

we will have defined a mapping F with F (z) = y. We will choose S such that F maps S

into itself and an appropriate extension of F possesses exactly one fixed-point y. Finally,

it will be seen that the triplet (ζ, θ,y), where ζ and θ are respectively the vorticity and

temperature associated to y, solves (23) and satisfies (24).

Let us now give the details.

The good definition of S is as follows. First, let us denote by S′ the set of fields

z ∈ C0([0, 1];C2,α(Ω;R2)) such that ∇ · z = 0 in Ω × (0, 1) and z · n = (y + µy0) · n on

Γ× (0, 1). Then, for any ν > 0, we set

Sν := { z ∈ S′ : ∥z− y∥0,2,α ≤ ν }.
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Let ν > 0 be the constant furnished by Lemma 7 and let us carry out the previous

process with S := Sν . To guarantee that Sν is nonempty, it suffices to assume that the

initial data y0 is sufficiently small in C2,α(Ω;R2), since, if this is the case, y + µy0 ∈ Sν .

Let z ∈ Sν be given and let us set z∗ = y∗ + π2(z− y). We have the estimates

∥z∗(· , t)∥2,α ≤ ∥y∗(· , t)∥2,α + C∥(z− y)(· , t)∥2,α ∀t ∈ [0, 1] (26)

and the following result holds:

Lemma 12 The flux Z∗ associated to z∗ satisfies Z∗ ∈ C1([0, 1]× [0, 1];C2,α(Ω3;R2)).

Recall that Z∗ = Z∗(↶, t, s) is, by definition, the unique function satisfying{
Z∗
t (x, t, s) = z∗(Z∗(x, t, s), t),

Z∗(x, s, s) = x,
(27)

and

Z∗(x, t, s) ∈ Ω3 ∀(x, t, s) ∈ Ω3 × [0, 1]× [0, 1].

For the proof of Lemma 12, it suffices to apply directly the classical existence, unique-

ness and regularity theory of ODEs.

Since Z∗ ∈ C1([0, 1] × [0, 1];C2,α(Ω3;R2)), θ0 ∈ C2,α(Ω) and π1 maps continuously

C2,α(Ω) into C2,α(Ω3), there exists a unique solution θ∗ ∈ C0([0, 1/2];C2,α(Ω3)) to the

problem {
θ∗t + z∗ · ∇θ∗ = 0 in Ω3 × (0, 1/2),

θ∗(x, 0) = π1(θ0)(x) in Ω3.
(28)

Note that, in (28), no boundary condition on θ∗ is needed. Obviously, this is be-

cause Supp z∗ ⊂ Ω3.

The solution to (28) verifies Supp θ∗(· , t) ⊂ Z∗(Ω2, t, 0) for all t ∈ [0, 1/2]. In particular,

in view of the choice of ν, we get:

Supp θ∗(· , 1/2) ⊂ Z∗(Ω2, 1/2, 0) ⊂ Ω3 \ Ω2,

whence θ∗(x, 1/2) = 0 in Ω2.

Let θ be the following function:

θ(x, t) =

{
θ∗(x, t), (x, t) ∈ Ω× [0, 1/2),

0, (x, t) ∈ Ω× [1/2, 1].

Then θ ∈ C0([0, 1];C2,α(Ω)) and one has{
θt + z · ∇θ = 0 in Ω× (0, 1),

θ(x, 0) = θ0(x) in Ω.
(29)
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For the construction of ζ, the argument is the following. First, let us introduce ζ∗0 :=

∇× (π2(y0)) and let ζ∗ ∈ C0([0, 1/2];C1,α(Ω3)) be the unique solution to the problem{
ζ∗t + z∗ · ∇ζ∗ = −k×∇θ∗ in Ω3 × (0, 1/2),

ζ∗(x, 0) = ζ∗0 (x) in Ω3.

With this ζ∗, we define ζ1/2 ∈ C1,α(Ω) with

ζ1/2(x) := ζ∗(x, 1/2) forall x ∈ Ω.

Then, let ζ∗∗ ∈ C0([1/2, 1];C1,α(Ω3)) be the unique solution to the problem{
ζ∗∗t + z∗ · ∇ζ∗∗ = 0 in Ω3 × (1/2, 1),

ζ∗∗(x, 1/2) = π1(ζ1/2)(x) in Ω3.

We have ζ∗∗(Z∗(x, t, 1/2), t) = π1(ζ1/2)(x) for all (x, t) ∈ Ω3× [1/2, 1] and, again from the

choice of ν,

Supp ζ∗∗(· , 1) ⊂ Z∗(Ω2, 1, 1/2) ⊂ Ω3 \ Ω2

and ζ∗∗(x, 1) ≡ 0 in Ω2. Finally, we can define ζ ∈ C0([0, 1];C1,α(Ω)), with

ζ(x, t) =

{
ζ∗(x, t), (x, t) ∈ Ω× (0, 1/2),

ζ∗∗(x, t), (x, t) ∈ Ω× [1/2, 1).

Obviously, ζ is a solution to the initial-value problem{
ζt + z · ∇ζ = −k×∇θ in Ω× (0, 1),

ζ(x, 0) = (∇× y0)(x) in Ω.
(30)

With this ζ, we can now get a unique y ∈ C0([0, 1];C2,α(Ω;R2)) such that ∇× y = ζ

in Ω × (0, 1), ∇ · y = 0 in Ω × (0, 1) and y · n = (y + µy0) · n on Γ × [0, 1]. Indeed, let

ψ ∈ C0([0, 1];C3,α(Ω)) be the unique solution to the following family of elliptic equations:{
−∆ψ = ζ − µ∇× y0 in Ω× (0, 1),

ψ = 0 on Γ× (0, 1).
(31)

Then, let us set y := ∇×ψ+y+µy0. We have that y ∈ C0([0, 1];C2,α(Ω;R2)) and satisfies

the required properties. Since y is determined by z, we write y = F (z). Accordingly,

F : Sν 7→ S′ is well defined.

The following result holds:

Lemma 13 There exists δ > 0 such that, if

max {∥y0∥2,α, ∥θ0∥2,α} ≤ δ, (32)

then F (Sν) ⊂ Sν .
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Proof: Let z ∈ Sν be given. Then F (z)− y = ∇× ψ + µy0 and we have:

∥F (z)(· , t)− y(· , t)∥2,α ≤ C(∥ζ(· , t)∥1,α + ∥y0∥2,α).

Applying Lemma 2 to the equations of θ∗ and ζ∗, we get

∥θ∗(· , t)∥2,α ≤ ∥π1(θ0)∥2,α exp
(
K

∫ t

0
∥z∗(· , τ)∥2,α dτ

)
(33)

and

∥ζ∗(· , t)∥1,α ≤ C(∥π2(y0)∥2,α + ∥π1(θ0)∥2,α) exp
(
K

∫ t

0
∥z∗(· , τ)∥2,α dτ

)
. (34)

With similar arguments, we also obtain

∥ζ∗∗(· , t)∥1,α ≤ C(∥π2(y0)∥2,α + ∥π1(θ0)∥2,α) exp
(
K

∫ t

0
∥z∗(· , τ)∥2,α(τ)dτ

)
(35)

for all t ∈ [1/2, 1]. Thanks to (34) and (35), we get the following for ζ:

∥ζ(· , t)∥1,α ≤ C(∥y0∥2,α + ∥θ0∥2,α) exp
(
K

∫ t

0
∥z∗(·, τ)∥2,αdτ

)
. (36)

Using (36), (26) and the definition of Sν , we see that

∥F (z)(· , t)− y(· , t)∥2,α ≤ C1(∥y0∥2,α + ∥θ0∥2,α) exp
(
C2

∫ t

0
∥z(· , τ)− y(· , τ)∥2,α dτ

)
≤ C1(∥y0∥2,α + ∥θ0∥2,α) exp(C2ν).

Let δ > 0 be such that 2C1δe
C2ν ≤ ν and let us assume that (32) is satisfied. Then

∥F (z)− y∥0,2,α ≤ ν

and, consequently, F maps Sν into itself. 2

Now, we will prove the existence and uniqueness of a fixed-point of the extension of

F in the closure of Sν in C0([0, 1];C1,α(Ω;R3)). For this purpose, we will check that F

satisfies the hypotheses of Theorem 3.

To this end, we will first establish two important lemmas. The first one is the following:

Lemma 14 There exists C̃ > 0, only depending on ∥y0∥2,α, ∥θ0∥2,α and ν, such that, for

any z1, z2 ∈ Sν , one has:

∥(ζ1 − ζ2)(·, t)∥0,α ≤ C̃

∫ t

0
∥(z1 − z2)(·, s)∥1,α ds ∀t ∈ [0, 1], (37)

where ζi is the vorticity associated to zi.
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Proof: First of all, let us introduce w∗ := z∗,1 − z∗,2 and Θ∗ := θ∗,1 − θ∗,2 (where the

notation is self-explaining). Obviously, the estimates (26) and (resp. (33) and (34)) hold

for z∗,1 and z∗,2 (resp. θ∗,1 and θ∗,2 and ζ∗,1 and ζ∗,2). Furthermore, it is clear that

Θ∗
t + z∗,1 · ∇Θ∗ = −w∗ · ∇θ∗,2.

Applying Lemma 1 to this equation, we have

d

dt+
∥Θ∗(·, t)∥1,α ≤ ∥w∗(·, t)∥1,α∥θ∗,2(·, t)∥2,α +K∥z∗,1(·, t)∥1,α∥Θ∗(·, t)∥1,α. (38)

In view of Gronwall’s Lemma, (26) and (33), we see that

∥Θ∗(·, t)∥1,α ≤ C̃0

∫ t

0
∥w∗(·, s)∥1,α ds ∀t ∈ [0, 1/2]. (39)

The equations verified by Υ∗ := ζ∗,1 − ζ∗,2 and Υ∗∗ := ζ∗∗,1 − ζ∗∗,2 are

Υ∗
t + z∗,1 · ∇Υ∗ = −w∗ · ∇ζ∗,2 − k×∇Θ∗

and

Υ∗∗
t + z∗,1 · ∇Υ∗∗ = −w∗ · ∇ζ∗∗,2,

respectively. Consequently, applying Lemma 1 to these equations, we get:

d

dt+
∥Υ∗(·, t)∥0,α ≤ ∥(w∗ · ∇ζ∗,2 + k×∇Θ∗)(·, t)∥0,α +K∥z∗,1(·, t)∥1,α∥Υ∗(·, t)∥0,α (40)

and

d

dt+
∥Υ∗∗(·, t)∥0,α ≤ ∥(w∗ · ∇ζ∗∗,2)(·, t)∥0,α +K∥z∗,1(·, t)∥1,α∥Υ∗∗(·, t)∥0,α. (41)

Applying Gronwall’s Lemma, we deduce in view of (39) that

∥Υ∗(·, t)∥0,α ≤ C̃1∥ζ∗,2∥0,1,α
∫ t

0
∥w∗(·, s)∥1,α ds ∀t ∈ [0, 1/2]

and

∥Υ∗∗(·, t)∥0,α ≤ C̃2∥ζ∗,2∥0,1,α
∫ t

0
∥w∗(·, s)∥1,α ds ∀t ∈ [1/2, 1].

Finally, we see from these estimates and (36) that (37) holds. 2

Note that y1 − y2 = ∇× (ψ1 − ψ2), whence ∇× (∇× (ψ1 − ψ2)) = ζ1 − ζ2 and ∇×
(ψ1 − ψ2) · n = 0 on Γ× [0, 1].

Let us denote by M the set of fields w ∈ C0([0, 1];C1,α(Ω;R2)) such that ∇ ·w = 0

in Ω × (0, 1) and w · n = 0 on Γ × (0, 1). Note that, for any w ∈ M, the norms ∥w∥1,α
and ∥∇ ×w∥0,α are equivalent; we will set in the sequel |||w|||1,α := ∥∇ ×w∥0,α for any

w ∈ M.
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Lemma 15 Let C̃ be the constant furnished by Lemma 14. For any z1, z2 ∈ Sν , one has

|||(Fm(z1)− Fm(z2))(·, t)|||1,α ≤ (C̃t)m

m!
∥z1 − z2∥0,1,α ∀m ≥ 1. (42)

Proof: The proof is by induction.

For m = 1, this is obvious, in view of Lemma 14.

Let us assume that (42) holds for m = k. Applying Lemma 14 to y1 = F k(z1) and

y2 = F k(z2), we have

|||(F (y1)− F (y2))(·, t)|||1,α ≤ C̃

∫ t

0
∥(y1 − y2)(·, s)∥1,α ds ∀t ∈ [0, 1].

Therefore, using the induction hypothesis, we obtain:

|||(F k+1(z1)− F k+1(z2))(·, t)|||1,α ≤ C̃∥z1 − z2∥0,1,α
∫ t

0

(C̃s)k

k!
ds

=
(C̃t)k+1

(k + 1)!
∥z1 − z2∥0,1,α

This ends the proof. 2

We deduce that, for some Ĉ > 0, any m ≥ 1 and any z1, z2 ∈ Sν , one has

max
t∈[0,1]

∥(Fm(z1)− Fm(z2))(·, t)∥1,α ≤ ĈC̃m

m!

(
max
τ∈[0,1]

∥(z1 − z2)(·, τ)∥1,α
)
.

Consequently, if m is large enough, Fm : Sν 7→ Sν is a contraction, that is, there exists

γ ∈ (0, 1) such that

∥Fm(z1)− Fm(z2)∥0,1,α ≤ γ∥z1 − z2∥0,1,α ∀z1, z2 ∈ Sν . (43)

Thus, we can apply Theorem 3 with

B1 = C0([0, 1];C1,α(Ω;R2)), B2 = C0([0, 1];C2,α(Ω;R2)), B = Sν and G = F

and deduce that F possesses a unique extension F̃ with a unique fixed-point y in the

closure of Sν in C0([0, 1];C1,α(Ω;R2)).

It is easy to check that y is, together with some ζ and θ, a solution to (23) satisfying (24)

and (25).

This ends the proof.

5 Proof of Proposition 1. The 3D case

In this Section we are going to prove Proposition 1 in the three-dimensional case.
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The situation is nor exactly the same considered in the previous section, since the

vorticity (which was fundamental for the fixed-point argument) is now a field and not a

scalar variable.

Let he times ti, the balls Bi and the functions ρi be as in Section 2.2 and let us set

ω0 = ∇× π3(y0). Proposition 1 is a consequence of the following result:

Proposition 3 There exists δ > 0 such that, if max {∥y0∥2,α, ∥θ0∥2,α} ≤ δ, then the

coupled system 

ωt + (y · ∇)ω = (ω · ∇)y − k×∇θ in Ω× (0, 1),

θt + y · ∇θ = 0 in Ω× (0, 1),

∇ · y = 0, ∇× y = ω in Ω× (0, 1),

y · n = (y + µy0) · n on Γ× (0, 1),

ω(0) = ∇× y0, θ(0) = θ0 in Ω

(44)

possesses at least one solution (ω, θ,y), with

(ω, θ,y) ∈ C0([0, 1];C0,α(Ω;R3))× C0([0, 1];C1,α(Ω))× C0([0, 1];C1,α(Ω;R3)), (45)

such that

θ(x, t) = 0 in Ω× (tk−1/2, 1) and ω(x, t) = 0 in Ω× (t2k−1/2, 1). (46)

Let us give the proof of this result. We will repeat the strategy of proof of Proposition 2,

but we will have to incorporate some ideas from Bardos and Frisch [1] and Glass [9]; this

is mainly due to the complexity of the field y∗ in this case. We will use the notation

in Section 2.2.

First, let us denote by R′ the set of fields z ∈ C0([0, 1];C2,α(Ω;R3)) such that ∇·z = 0

in Ω× (0, 1) and z · n = (y + µy0) · n on Γ× (0, 1). Then, for any ν > 0, we set

Rν = { z ∈ R′ : ∥z− y∥0,1,α ≤ ν }.

Let ν > 0 be the constant furnished by Lemma 11. As before, if the initial datum y0

is sufficiently small in C2(Ω;R3), the set Rν is nonempty.

Now, we are going to construct a mapping F : Rν → Rν .

We start from an arbitrary z ∈ Rν and we set z∗ := y∗ + π3(z− y). Then, we denote

by θ∗ the unique solution to{
θ∗t + z∗ · ∇θ∗ = 0 in O× [0, 1/2],

θ∗(x, 0) =
∑k

i=1 ψ
i(x)π1(θ0)(x) in O.

Obviously, θ∗ =
∑k

i=1 θ
i, where θi is the unique solution to{
θit + z∗ · ∇θi = 0 in O× [0, 1/2],

θi(x, 0) = ψi(x)π1(θ0)(x) in O.
(47)
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The identities

θi(Z∗(x, t, 0), t) = ψi(x)π1(θ0)(x) ∀(x, t) ∈ O× [0, 1/2]

imply that

Supp θi(· , t) ⊂ Z∗(Bi, t, 0) ∀t ∈ [0, 1/2].

Hence, in view of Lemma 11, we deduce that

Supp θi(· , ti−1/2) ⊂ Z∗(Bi, ti−1/2, 0) ⊂ O \ O0,

whence

θi(· , ti−1/2) = 0 in Ω. (48)

Now, we set θ̂(x, t) := θ∗(x, t) in O × [0, t0] and we say that, in O × [t0, 1/2], θ̂ is the

unique solution to
θ̂t + z∗ · ∇θ̂ = 0 in O×

(
[t0, 1/2] \

k⋃
i=1

{ti− 1
2
}
)
,

θ̂(x, ti−1/2) =

k∑
l=i

θl(x, ti−1/2)− θi(x, , ti−1/2) in O, 1 ≤ i ≤ k.

(49)

We notice that θ̂(· , tk−1/2) ≡ 0 in O. Hence, θ̂ ≡ 0 in O× [tk−1/2, 1/2]. Moreover,

θ̂(x, t) =
k∑
l=i

θl(x, t)− θi(x, t) in O× (ti−1/2, ti+1/2), 1 ≤ i ≤ k − 1.

Note that the lateral limits of θ̂ at the points {ti−1/2}ki=1 are not necessarily the same in

the whole domain O.

Let θ be the restriction of θ̂ to Ω. Due to (48) and (49), we see that θ is continuous at

the ti−1/2 with i = 1, . . . k, satisfies{
θt + z · ∇θ = 0 in Ω× (0, 1/2),

θ(x, 0) = θ0(x) in Ω
(50)

and belongs to C0([0, 1];C1,α(Ω)).

In a similar way, we can introduce a field ω̂ in O × [0, 1] whose restriction to Ω is a

function ω satisfying the first PDE in (44) with y replaced by z. The definition of ω̂

will be made in three parts, respectively associated to the three time intervals [0, 1/2),

[1/2, tk+1/2) and [tk+1/2, 1].

Let us introduce ω0 := ∇× (π3(y0)) and let ω∗ be the solution to{
ω∗
t + (z∗ · ∇)ω∗ = (ω∗ · ∇)z∗ − (∇ · z∗)ω∗ −

−→
k ×∇π1(θ) in O× (0, 1/2),

ω∗(x, 0) = ω0(x) in O.
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With this ω∗, we set ω∗∗
1/2 ∈ C1,α(Ω) with ω∗∗

1/2(x) := ω∗(x , 1/2) for all x ∈ Ω. Let us

consider the solution ω∗∗ to the problem
ω∗∗
t + (z∗ · ∇)ω∗∗ = (ω∗∗ · ∇)z∗ − (∇ · z∗)ω∗∗ in O× (1/2, 1),

ω∗∗(x, 1/2) =
k∑

i=1
ψi(x)π3(ω

∗∗
1/2)(x) in O.

(51)

As before, we can decompose ω∗∗ as a sum of functions. More precisely, let ω1, . . . ,ωk be

the solutions to the problems{
ωi
t + (z∗ · ∇)ωi = (ωi · ∇)z∗ − (∇ · z∗)ωi in O× (1/2, 1),

ωi(x, 1/2) = ψi(x)π3(ω
∗∗
1/2)(x) in O.

(52)

Then

ω∗∗ =
k∑

i=1

ωi in O× [1/2, 1].

Each ωi satisfies

ωi(Z∗(x, t, 1/2), t)=ωi(x, 1/2)+

∫ t

1/2
[(ωi · ∇)z∗−(∇ · z∗)ωi](Z∗(x, σ, 1/2), σ) dσ.

Consequently,

|ωi(Z∗(x, t, 1/2), t)| ≤ |ωi(x, 1/2)|+ C∥z∗∥0,1,0
∫ t

1/2
|ωi(Z∗(x, σ, 1/2), σ)| dσ.

Notice that, if x ̸∈ Bi we then have

|ωi(Z∗(x, t, 1/2), t)| ≤ C∥z∗∥0,1,0
∫ t

1/2
|ωi(Z∗(x, σ, 1/2), σ)| dσ

and, from Gronwall’s Lemma, we necessarily have

ωi(Z∗(x, t, 1/2), t) = 0 ∀(x, t) ∈ (O \Bi)× [1/2, 1].

A consequence is that Supp ωi(· , t) ⊂ Z∗(Bi, t, 1/2), whence we get

ωi(x, tk+i−1/2) = 0 for all x ∈ Ω.

Then, we simply set ω̂(x, t) := ω∗(x, t) in O × [0, 1/2] and ω̂(x, t) := ω∗∗(x, t) in

O× [1/2, tk+1/2] and we say that, in O× [tk+1/2, 1], ω̂ is the unique solution to
ω̂t+(z∗ · ∇)ω̂=(ω̂ · ∇)z∗−(∇ · z∗)ω̂ in O×

(
[tk+1/2, 1]\

k⋃
i=1

{tk+i−1/2}
)

ω̂(x, tk+i−1
2
)=

k∑
l=i

ω̂l(x, tk+i−1
2
)−ω̂i(x, tk+i−1

2
) in O, 1 ≤ i ≤ k.

(53)
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We notice that ω̂(x, t2k−1/2) ≡ 0 in O. Therefore, ω̂(x, t) ≡ 0 in O × [t2k−1/2, 1].

Moreover,

ω̂(x, t) =

k∑
l=i

ωl(x, t)− ωi(x, t) in O× (tk+i−1/2, tk+i+1/2), 1 ≤ i ≤ k − 1.

Let ω be the restriction of ω̂ to Ω× [0, 1]. It belongs to C0([0, 1];C1,α(Ω;R3)), satisfies{
ωt + (z · ∇)ω = (ω · ∇)z−

−→
k ×∇θ in Ω× [0, 1],

ω(x, 0) = (∇× y0)(x) in Ω

and, also, ω(x, t) ≡ 0 in Ω× [t2k−1/2, 1].

Thanks to Lemma 3, ω is divergence-free in Ω × (0, 1). Consequently, from classical

results, we know that there exists exactly one y in C0([0, 1];C2,α(Ω;R3)) such that{
∇× y = ω, ∇ · y = 0 in Ω× (0, 1),

y · n = (µy0 + y) · n on Γ× (0, 1).
(54)

Since y is uniquely determined by z, we write F (z) = y. The mapping F : Rν 7→ R′ is

thus well defined.

In view of some estimates similar to those in the two-dimensional case, we see that the

initial data can be chosen small enough to have F (Rν) ⊂ Rν . More precisely, one has:

Lemma 16 There exists δ > 0 such that, if {∥y0∥2,α, ∥θ0∥2,α} ≤ δ, one has F (z) ∈ Rν

for all z ∈ Rν .

The end of the proof of Proposition 3 is very similar to the final part of Section 4.

Essentially, what we have to prove is that, for some m ≥ 1, Fm is a contraction

for the usual norm in C0([0, 1];C1,α(Ω;R3)). Indeed, after this, we can apply Theo-

rem 3 with B1 = C0([0, 1];C1,α(Ω;R3)), B2 = C0([0, 1];C2,α(Ω;R3)), B = Rν and G =

F and deduce the existence of a fixed-point of the extension F̃ in the closure of Rν

in C0([0, 1];C1,α(Ω;R3)).

But this can be done easily, arguing as in the proof of Lemma 15. For brevity, we omit

the details.

6 Proof of Theorem 2

Theorem 2 is an easy consequence of the following result:
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Proposition 4 For any T ∗ > 0 and any y0 ∈ C2,α
0 (Ω;RN ), there exists η > 0 such that,

if θ0 ∈ C2,α(Ω), θ0 = 0 on Γ\γ and ∥θ0∥2,α ≤ η, the system

yt + (y · ∇)y = −∇p+ k θ in Ω× (0, T ∗),

∇ · y = 0 in Ω× (0, T ∗),

θt + y · ∇θ = κ∆θ in Ω× (0, T ∗),

y · n = 0 on Γ× (0, T ∗),

θ = 0 on (Γ\γ)× (0, T ∗),

y(x, 0) = y0(x), θ(x, 0) = θ0(x) in Ω,

(55)

possesses at least one solution y ∈ C0([0, T ∗];C2,α(Ω;RN )), θ ∈ C0([0, T ∗];C2,α(Ω)) and

p ∈ D ′(Ω× (0, T ∗)) that satisfies

θ(x, T ∗) = 0 in Ω. (56)

Indeed, if Proposition 4 holds, we can consider (1) and control first the temperature

θ exactly to zero at a time T ∗ < T . To do this, we need initial data as above, that is,

y0 ∈ C2,α
0 and θ0 ∈ C2,α(Ω) such that θ0 = 0 on Γ\γ and ∥θ0∥2,α ≤ η. Then, in a second

step, we can apply the results in [5] and [9] to the Euler system in Ω× (T ∗, T ), with initial

data y(· , T ∗). In other words, we can find new controls in (T ∗, T ) that drive the velocity

field exactly to any final state y1.

Proof of Proposition 4: For simplicity, we will consider only the case N = 2. We will

apply a fixed-point argument that guarantees the existence of a solution to (55)-(56).

We start from an arbitrary θ ∈ C0([0, T ∗];C1,α(Ω)). To this θ, arguing as in Section 3,

we can associate a field y ∈ C0([0, T ∗];C2,α(Ω;RN )) verifying
yt + (y · ∇)y = −∇p+ k θ in Ω× (0, T ∗),

∇ · y = 0 in Ω× (0, T ∗),

y · n = 0 on Γ× (0, T ∗),

y(x, 0) = y0(x) in Ω

and

∥y∥0,2,α ≤ C(∥y0∥2,α + ∥θ∥0,2,α).

Let Ω̃ ⊂ R2 be a connected open set with boundary Γ̃ = ∂Ω̃ of class C2 such that

Ω ⊂ Ω̃ and Γ̃ ∩ Γ = Γ \ γ (see Fig. 2). Let ω ⊂ Ω̃ \ Ω be a non-empty open subset.

Then, as in Theorem 4, we associate to y a pair (θ̃, ṽ) satisfying
θ̃t + π(y) · ∇θ̃ = κ∆θ̃ + ṽ1ω in Ω̃× (0, T ∗),

θ̃ = 0 on Γ̃× (0, T ∗),

θ̃(x, 0) = π̃(θ0)(x), θ̃(x, T ∗) = 0 in Ω̃,
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Figure 2: The domain Ω̃ and the subdomain ω.

where π and π̃ are extension operators from Ω into Ω̃ that preserve regularity. Let θ be

the restriction of θ̃ to Ω× [0, T ∗]. Then, θ satisfies:
θt + y · ∇θ = κ∆θ in Ω× (0, T ∗),

θ = θ̃1γ on Γ× (0, T ∗),

θ(x, 0) = θ0(x), θ(x, T ∗) = 0 in Ω.

Moreover, from parabolic regularity theory, it is clear that the following inequalities

hold:

∥θt∥0,0,α + ∥θ∥0,2,α ≤ C∥θ0∥22,α eC∥y∥0,2,α ≤ C∥θ0∥2,α eC(∥y0∥2,α+∥θ∥0,2,α).

Now, let us introduce the Banach space

W = { θ ∈ C0([0, T ∗];C2,α(Ω)) : θt ∈ C0([0, T ∗];C0,α(Ω)) }

and let us consider the closed ball

B := { θ ∈ C0([0, T ∗];C1,α(Ω)) : ∥θ∥0,1,α ≤ 1 }

and the mapping Λ, with

Λ(θ) = θ ∀θ ∈ C0([0, T ∗];C1,α(Ω)).

Obviously, Λ is well defined. Furthermore, in view of the previous inequalities, it maps

continuously the whole space C0([0, T ∗];C1,α(Ω)) into W , that is compactly embedded

in C0([0, T ∗];C1,α(Ω)), in view of the classical results of the Aubin-Lions kind, see for

instance [21].
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On the other hand, if η > 0 is sufficiently small (depending on ∥y0∥2,α) and ∥θ0∥2,α ≤ η,

Λ maps B into itself. Consequently, the hypotheses of Schauder’s Theorem are satisfied

and Λ possesses at least one fixed-point in B. 2
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