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Abstract

The extremal functions ex→(n, F ) and ex�(n, F ) for ordered and convex geometric acyclic

graphs F have been extensively investigated by a number of researchers. Basic questions are to

determine when ex→(n, F ) and ex�(n, F ) are linear in n, the latter posed by Braß-Károlyi-Valtr

in 2003. In this paper, we answer both these questions for every tree F .

We give a forbidden subgraph characterization for a family T of ordered trees with k edges,

and show that ex→(n, T ) = (k − 1)n −
(
k
2

)
for all n ≥ k + 1 when T ∈ T and ex→(n, T ) =

Ω(n log n) for T 6∈ T . We also describe the family T ′ of the convex geometric trees with linear

Turán number and show that for every convex geometric tree F /∈ T ′, ex�(n, F ) = Ω(n log log n).

Dedicated to the memory of B. Grünbaum

1 Introduction

An ordered graph refers to a graph whose vertex set is linearly ordered and a convex geometric or cg

graph refers to a graph whose vertex set is cyclically ordered. Throughout this paper, an n-vertex

ordered or cg graph will be assumed to have vertex set [n] := {1, 2, . . . , n} with the natural ordering

<; in the cg setting we use v < w < x to denote that w lies between v and x in the clockwise

orientation. For n a positive integer and F an ordered (respectively, cg) graph, let the extremal

function ex→(n, F ) (respectively, ex�(n, F )) denote the maximum number of edges in an n-vertex

ordered (respectively, cg) graph that does not contain F . Both ex→(n, F ) and ex�(n, F ) have been

extensively studied in the literature, in particular in the case where F is a forest. To describe the

known results, we require some terminology.

Given subsets A,B of a linearly ordered set, write A < B to denote that a < b for every a ∈ A
and b ∈ B. The interval chromatic number χi(F ) of an ordered graph F is the minimum k such

that the vertex set of F can be partitioned into sets A1 < A2 < · · · < Ak such that no edge has

both endpoints in any Ai. We call these sets intervals or segments. It is straightforward to see that

if χi(F ) > 2, then ex→(n, F ) = Θ(n2), since an ordered complete balanced bipartite graph with

interval chromatic number two does not contain F .
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1.1 Ordered graphs

Standard results in extremal graph theory imply that if ex(n, F ) = n1+o(1), then F is acyclic. This

motivates the following central conjecture in the area, due to Pach and Tardos [8]:

Conjecture 1.1. For every forest F with χi(F ) = 2 we have ex→(n, F ) = n(log n)O(1) as n→∞.

Conjecture 1.1 remains open in general, though it was verified for all F with at most four edges

by Füredi and Hajnal [3]. Based on their work, Tardos [10] determined the order of magnitude of

ex→(n, F ) for every ordered graph F with at most four edges (see Corollary 4.3 in [10]); in particular

this verifies Conjecture 1.1 for acyclic graphs with at most four edges and interval chromatic number

two. Klazar [4] showed that the partial case of the Füredi-Hajnal conjecture that ex→(n, F ) =

O(n) for every matching F , implies the Stanley-Wilf conjecture, which was proved by Marcus

and Tardos [7]. We also point out that extremal problems for ordered forests have applications

to theoretical computer science, to search trees and path-compression based data structures (see

Bienstock and Györi [1], and Pettie [9] for a survey).

A particularly interesting phenomenon, discovered by Füredi and Hajnal [3], is that the order of

magnitude of the extremal function for the ordered forest {13, 35, 24, 46} consisting of two inter-

lacing paths of length two is determined by the extremal theory for Davenport-Schinzel sequences,

and in particular the extremal function has order of magnitude Θ(nα(n)), where α(n) is the in-

verse Ackermann function. Further progress towards the conjecture was made by Korándi, Tardos,

Tomon and Weidert [5], in the equivalent reformulation of the problem in terms of forbidden 0-

1 submatrices of 0-1 matrices, giving a wide class of graphs F for which ex→(n, F ) = n1+o(1)

as n → ∞. The following basic question closely related to Conjecture 1.1 also has information

theoretic applications (see for instance [1]).

Problem 1.2. Determine which ordered forests have linear extremal functions.

The problem is not even solved for some forests with five edges. And the above example by Füredi

and Hajnal of a 4-edge forest with extremal function involving the inverse Ackermann function

indicates that the problem is likely to be hard. However, it turns out that for trees the situation is

simpler.

In this paper, we resolve Problem 1.2 for ordered trees, and also determine the exact extremal func-

tion for ordered trees when the extremal function is linear. This exact result is perhaps surprising,

since the situation in the unordered case is complicated, as represented by the Erdős-Sós conjecture.

But the ordered situation has the benefit that most trees cannot have linear extremal function. On

the other hand, the log n jump in complexity for trees with nonlinear extremal function is perhaps

also interesting.

The description of the ordered trees with linear extremal functions is based on three forbidden

subtrees which are the ordered paths P,Q and R shown below.
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Figure 1 : Forbidden paths P , Q and R.

We are now ready to state our first main result.

Theorem 1.3. Let T be an ordered tree with k edges and χi(T ) = 2. If T contains at least one of

P,Q,R, then ex→(n, T ) = Ω(n log n) as n→∞, otherwise

ex→(n, T ) = (k − 1)n−
(
k

2

)
for all n ≥ k + 1.

As a corollary to Theorem 1.3, if T is any ordered forest containing a path of length four with two

or more crossing edges, then ex→(n, T ) = Ω(n log n).

1.2 Convex geometric graphs

Problem 1.2 was posed by Braß-Károlyi-Valtr [2] in the context of convex geometric graphs, and

remains open. Using our methods for ordered graphs and some modifications of constructions due

to Tardos, we are able to determine all cg trees with linear extremal function. For convenience, we

assume that the vertex set of any cgg we consider lies on a convex set Ω in the plane. We say that

a cgg G is crossing or has a crossing if some pair of its edges intersect geometrically at a point that

is not on Ω.

Definition 1. Let P = {P 0, P 1, P 2} denote the family of three cg forests each comprising two

copies P = abcd, P ′ = a′b′c′d′ of a three-edge path with the following properties:

• the center edges bc ∈ P and b′c′ ∈ P ′ do not cross each other

• the pair of edges ab and cd cross at p and the pair a′b′ and c′d′ cross at p′

• if {b, c} 6= {b′, c′}, then p and p′ lie outside the region whose boundary contains the segments

bc, b′c′ and Ω while if {b, c} = {b′, c′}, then p and p′ lie on opposite sides of bc = b′c′.

We allow bc and b′c′ to share i endpoints where 0 ≤ i ≤ 2 and we denote the corresponding member

of P by P i; hence |V (P i)| = 8− i. Note that P 1 and P 2 are connected while P 0 is not.
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Figure 2 : The family P.

Given vertices a1, . . . , at in a cyclically ordered set Ω we write a1 < a2 < · · · < at to mean that the

vertices are encountered in the order a1, a2, . . . , at, a1 when traversing Ω in the clockwise direction.

Given subsets A,B of Ω, write A < B to denote that there are no elements a, a′ ∈ A and b, b′ ∈ B
such that a < b < a′ < b′. In other words, the intervals A and B appear as disjoint arcs/intervals

of Ω. The definition extends naturally to more than two intervals.

In analogy with the definition of interval chromatic number for ordered graphs, the cyclic chromatic

number χc(G) of a cg graph G is the minimum k such that the vertex set of G can be partitioned

into (nonoverlapping) intervals A1 < A2 < · · · < Ak and no edge has both endpoints in any Ai.

It is again straightforward to see that if χc(G) > 2, then ex�(n,G) = Θ(n2). Consequently, as we

are aiming for a characterization of those G for which ex�(n,G) = O(n) we may restrict to G with

χc(G) = 2.

Theorem 1.4. Fix k > 2 and let T be a cg tree with k edges and χc(T ) = 2. Then either

ex�(n, T ) = Θ(n) or ex� = Ω(n log logn) where the former holds iff T contains no crossing four-

edge path and no member of P.

It is interesting to contrast Theorem 1.4 with Theorem 1.3. As a general rule, determining ex�(n, F )

seems more difficult than determining ex→(n, F ). Our experience suggests that both problems

exhibit similar but different behavior. For example, we were not able to determine ex�(n, T ) exactly

when it is Θ(n) like in the ordered case. One problematic cg tree is the double star D with k edges

and maximum number of crossings. It is easy to observe that ex�(n,D) ≤ ex→(n,D) = O(n) but

an exact result for ex�(n,D) seems harder to achieve. Perhaps this is the main impediment to

obtaining an exact result in Theorem 1.4. Also, it is not true that all k-edge cg trees with linear

extremal function have the same extremal function, and we do not know whether every nonlinear

extremal function for a cg tree grows at least as n log n.

2 Ordered trees

In this section we prove Theorem 1.3. In Section 2.1, we give the constructions which show that

each of the ordered paths P,Q,R has extremal function of order at least n log n. In Section 2.2, we
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describe the structure of the ordered trees of interval chromatic number two which do not contain

P,Q or R. Then in Section 2.3, we determine the extremal function for all those trees.

2.1 Ordered trees with nonlinear extremal function

The paths P,Q and R are displayed in Figure 1. In this section, we present for each of P,Q and

R a construction of an n-vertex ordered graphs with Θ(n log n) edges that does not contain P,Q

and R respectively. These results are not new, and if fact Tardos [10] showed that the extremal

functions for P,Q and R are all actually of order n log n.

Construction avoiding P . We start with the simple construction that does not contain P : form

an ordered graph on [n] with edges ij such that |i− j| = 2h for some h. This graph has Ω(n log n)

edges. It does not contain P , since if V (P ) = {ad, ac, bd} where a < b < c < d, then for some

h, i, j, 2h = |a − d| < |a − c| + |b − d| = 2i + 2j whereas max{i, j} < h implies 2i + 2j ≤ 2h, a

contradiction. Another was to achieve this construction is to take the graph of the k-dimensional

cube, where we construct the graph in the usual recursive manner and n = 2k.

Construction avoiding Q. Bienstock and Györi [1] gave a construction showing ex→(n,Q) =

Ω(n log n/ log logn), and a simple construction giving ex→(n,Q) = Ω(n log n) was given by Füredi

and Hajnal [3]. The construction on 2n vertices consists of edges between two intervals In and Jn of

size n. For n = 1, we take a single edge. Having the construction at stage n, with intervals In and

Jn of size n, take four intervals In, I
′
n and Jn, J

′
n of length n, in that order. We put the preceding

construction between In and Jn and between I ′n and J ′n, and then add a matching M consisting

of an edge from the ith vertex of I ′ to the ith vertex of J for i ∈ [n]. If f(n) is the number

of edges in the old construction, then the new construction has 2f(n) + n edges. We conclude

f(2n) = 2f(n) + n which implies f(n) = 1
2n log2 n + n. It is shown in [3] that this construction

does not contain P , and so ex→(2n,Q) ≥ 1
2n log2 n+ n for all n ≥ 1.

Construction avoiding R. A similar type of construction avoids R. For n = 1 we again take a

single edge, and having created a construction with two intervals In and Jn of length n, we take four

intervals In, I
′
n and Jn, J

′
n of length n in that order. We put the preceding construction between

In and J ′n and between I ′n and Jn, and then add a matching M consisting of an edge from the ith

vertex of I to the ith vertex of J for i ∈ [n]. Then the number of edges in the construction with

2n vertices is f(n) as above, and the construction does not contain R.

2.2 Structure of trees not containing P,Q or R

In this section, we consider trees which do not contain P,Q or R, and describe their structure.

The length of an edge ij with i, j ∈ [n] is |i − j|. Edges ij and i′j′ with i < j and i′ < j′ cross if

i < i′ < j < j′ or i′ < i < j′ < j.

Increasing trees. An increasing tree is an ordered tree of interval chromatic number two, with

parts equal to intervals I, J ⊆ [n], described as follows. A single edge is an increasing tree. Given

an increasing tree, with longest edge ij where i ∈ I and j ∈ J , we create an increasing tree with
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one more edge i′j′ with i′ ∈ I and j′ ∈ J by requiring i′ = i and j′ > j or j′ = j and i′ < i.

Note that an increasing tree has no crossing edges, and the edges have a unique ordering by the

increasing order of their lengths. Also, increasing trees do not contain P,Q or R since they have

no crossing edges.

z-trees. A z-tree is an ordered tree Z with interval chromatic number two, say with parts equal

to intervals I and J , consisting of a union of an increasing tree T with longest edge ij where i ∈ I
and j ∈ J , together with a set Sj of edges of the form hj with h ∈ I and h < i and a set Si of

edges of the form ik with k ∈ J and k > j. These sets Si and Sj are allowed to be empty. Note

that any two of the edges hj and ik cross.

An example of a z-tree is below, where the tree increasing tree T is shown in solid edges whereas

Si and Sj are in dashed edges.

Figure 3 : A z-tree.

Note that the partition E(T ) ∪ Si ∪ Sj of the edge-set of a z-tree and the edge ij is not uniquely

determined by the z-tree. To make the partition unique, take a longest path P ∗ in a z-tree Z

whose edges are strictly increasing in length, and let ij be defined to be the second-to-last edge

of the path (see Figure 3). Then Si is the set of edges ik with k > j and Sj is the set of edges

hj with h < i. The edge ij and the sets Si, Sj are uniquely determined by Z, as is the increasing

tree T = Z − Si − Sj . By inspection, a z-tree does not contain P,Q or R, and we now show the

converse:

Theorem 2.1. If an ordered tree of interval chromatic number two does not contain P,Q or R,

then it is a z-tree.

Proof. We begin with the following observation:

If T is an ordered tree with χi(T ) = 2, not containing P,Q or R, then T contains no

path of length four with at least one pair of crossing edges.

The following claim is helpful:

If T is an ordered tree with χi(T ) = 2 containing crossing edges i′j and ij′ where

i′ < i < j < j′ and ij 6∈ E(T ), then T contains P or Q or R.
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We first prove the claim. Since T is a tree, there exists a path in T whose first and last edges

are i′j and ij′. If this path has length four, then we have a path of length four with a crossing, a

contradiction. Therefore the path must have length three. Since χi(T ) = 2, and i′ < i < j < j′,

i′ and i are not adjacent and j and j′ are not adjacent. Therefore the only possibility is that

i′j′ ∈ E(T ), but then the edges i′j′, i′j, ij′ form a copy of P in T , a contradiction. This proves the

claim.

Now we prove the theorem. Let Z be an ordered tree with χi(Z) = 2 not containing P,Q or R,

with intervals I < J . Let xy be an edge of Z such that x ∈ I and y ∈ J and y has degree 1 in Z

(the case x ∈ J and y ∈ I is similar). Then Z ′ = Z − {y} does not contain P,Q or R, so Z ′ is a

z-tree. We may write E(Z ′) = E(T ) ∪ Si ∪ Sj , where T is an increasing tree with longest edge ij

with i ∈ I and j ∈ J , and Si = {ik : k > j} and Sj = {hj : h < i}. The edge ij is the second-to-last

edge of a path longest P ∗ in Z ′ whose edge lengths are increasing. Let ik ∈ Si be the last edge of

the path where k ∈ J and k > j (the case that the last edge is hj with h < i is similar).

Case 1. The edge xy crosses an edge ab 6= ik in P ∗ where a ∈ I and b ∈ J . In this case, either

x < a < b < y or a < x < b < y. By the claim, if x < a < b < y, then ay ∈ E(Z), contradicting

that y has degree 1 in Z. So a < x < b < y, and the claim gives xb ∈ E(Z ′). Now the path

Q∗ ⊂ P ∗ starting with the edges yx, xb and ba and ending with the edge ik has length at least four

in Z and has a crossing, which is a contradiction. This completes Case 1.

Case 2. The edge xy crosses no edge of P ∗ − ik. If x > i then T ∪ {xy} is an increasing tree and

Z is therefore a z-tree. We conclude x ≤ i. If x < i, then there is an edge xj ∈ Sj . But then the

path yxjik is a path of length four in Z with a crossing, a contradiction. We conclude x = i, and

y > j, and now E(Z) = E(T ) ∪ S′i ∪ Sj where S′i = Si ∪ {iy}, so Z is a z-tree. 2

2.3 Ordered trees with linear extremal function

This section is devoted to determining the extremal function for z-trees, thereby completing the

proof of Theorem 1.3. We determine first the extremal function of increasing trees.

Lemma 2.2. Let T be an increasing tree with k edges. Then ex→(n, T ) = (k − 1)n −
(
k
2

)
for

n ≥ k + 1.

Proof. Observe that the longest edge in T has length at least k. Therefore the ordered n-vertex

graph G∗ consisting of all edges ij with i, j ∈ [n] such that 1 ≤ |i− j| < k cannot contain T , and so

ex→(n, T ) ≥ e(G∗) =
k−1∑
i=1

(n− i) = (k − 1)n−
(
k

2

)
.

Now we establish equality. Suppose G is an n-vertex ordered graph that does not contain T . We

prove by induction on k that e(G) ≤ (k − 1)n −
(
k
2

)
for n ≥ k + 1. For k = 1, this is clear since

any single edge is an increasing tree, so G in that case is empty. Suppose T is an increasing tree

with k + 1 edges. Let uv be the longest edge of T , where u < v, and suppose v is a leaf of T . Let

T ′ = T − uv. Assuming V (G) = [n], remove for every i ≤ n− k in V (G) the longest edge ij with
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j > i. Then the total number of edges removed from G is at most n − k. We therefore obtain an

ordered graph G′ with at least e(G′) ≥ e(G)− (n−k) edges. If G′ contains the ordered tree T ′, say

u is mapped to i ∈ [n], then i ≤ n−k, so there exists an edge ij ∈ E(G)\E(G′) such that j is larger

than any vertex in the embedding of T ′ in G. Then adding ij we get an embedding of T ′+ uv = T

in G, a contradiction. We conclude G′ does not contain T ′, so by induction e(G′) ≤ (k− 1)n−
(
k
2

)
.

Therefore

e(G) ≤ (k − 1)n−
(
k

2

)
+ (n− k) = kn−

(
k + 1

2

)
.

This completes the proof. 2

This proof extends to give the extremal function for z-trees in a fairly simple way:

Lemma 2.3. Let Z be a z-tree with k edges. Then for n ≥ k + 1, ex→(n,Z) = (k − 1)n−
(
k
2

)
.

Proof. We may write Z = T ∪ Si ∪ Sj where T is an increasing tree with longest edge ij with

i < j, and Si consists of edges ik with k > j and Sj consists of edges hj with h < i. Suppose

|E(T )| = a, |Sj | = b and |Si| = c. We construct an n-vertex ordered graph G∗ with no copy of Z

as follows: the vertex set of G∗ is [n], whereas the edge set consists of Ea = {xy : 1 ≤ y − x < a},
Eb = {xy : x ≤ b} and Ec = {xy : y > n− c}. Let f(a, b, c) = |Ea ∪ Eb ∪ Ec|. A calculation shows

f(a, b, c) = (k − 1)n −
(
k
2

)
. Furthermore, Ea ∪ Eb ∪ Ec does not contain a copy of Z: since T has

a edges, ij has length at least a, so ij 6∈ Ea. If ij ∈ Eb, then i ≤ b. However, Z has b vertices

preceding i, namely the vertices in Sj , so this is not possible. Similarly, if ij ∈ Ec, then j > n− c,
but since Z has the c vertices in Si after j, this too is impossible. Therefore G∗ does not contain

Z, and we have ex→(n,Z) ≥ (k − 1)n−
(
k
2

)
.

We now prove ex→(n,Z) = f(a, b, c) by induction on |Si| = c. If c = 0, then Lemma 2.2 proves

the required equality. If c ≥ 1, then we observe f(a, b, c) − f(a, b, c − 1) = n − k + 1. Let

G be an n-vertex ordered graph not containing Z. Following the notation above, with ij the

longest edge of T ⊂ Z, for each vertex g : b < g ≤ n − a − c + 1, delete the longest edge

gh ∈ E(G) with h > g. The number of edges deleted is n− a− b− c+ 1 = n− k + 1. If this new

graph G′ contains Z ′ = Z − ij′ where j′ is the last vertex of Z, then G contains Z: we observe

b < i ≤ n − a − c + 1, and so there is a longest edge ij′ ∈ E(G)\E(G′) which can be added to Z ′

to get Z. Therefore G′ does not contain Z ′, and by induction, e(G′) ≤ f(a, b, c− 1) which implies

e(G) ≤ e(G′) + n− k + 1 ≤ f(a, b, c− 1) + n− k + 1 = f(a, b, c). This completes the proof. 2

3 Convex geometric trees

In this section we prove Theorem 1.4. We denote a crossing four-edge path by the shorter notation

crossing P4. In Section 3.1, we give the constructions which show that each P i and each crossing

P4 has extremal function of order at least n log n log n. In Section 3.2, we describe the structure of

the cg trees T with χc(T ) = 2 which contain neither a crossing P4 nor any P i. Then in Section 3.3,

we show that these trees have linear extremal function.
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3.1 Convex geometric trees with nonlinear extremal function

We begin by noting that Braß-Károlyi-Valtr [2] proved that ex�(n, P i) = Θ(n log n). Actually, they

proved this only for P 0 but exactly the same proof (both upper and lower bounds) works for P 1

and P 2 as well.

In order to present our constructions that avoid crossing P4s, we need a theorem of Tardos [11].

The setup of his theorem is as follows. We are given a bipartite graph G = (A,B,E) with a proper

edge coloring c with d colors in which the colors are linearly ordered.

A walk e1e2e3e4 is called fast if c(e2) < c(e3) < c(e4) ≤ c(e1). A walk e1e2e3e4 is called slow if it

starts in B, c(e2) < c(e3) < c(e4) and c(e2) < c(e1) ≤ c(e4).

Theorem 3.1 (Tardos [11] p. 549). Let G = (A,B,E) be a bipartite graph with a proper edge

coloring with d colors. There exists a subgraph G′ = (A,B,E′) of G without slow walks and with

|E′| > log d
480d |E|. Similarly, there exists a subgraph G′′ = (A,B,E′′) of G without fast walks and with

|E′′| > log d
480d |E|.

We are now ready to present our constructions for Theorem 1.4

Construction. Let v1, . . . , vn be in clockwise order on Ω and form the vertex set V of our con-

struction Fn, where n = 2k. The edge set of Fn consists of k − 1 matchings M1, . . . ,Mk−1, each of

size n/4. For each 1 ≤ j ≤ k − 1,

Mj = {v2i−1v2i−2+2j : i ∈ [n/4]}.

Let V1 = {v1, v3, . . . , vn−1} and V2 = {v2, v4, . . . , vn}. For every edge e = vivj in Fn, if j < i, then

j is the left end if j < i and right end otherwise. Note that

(i) |E(Fn)| = (k − 1)n/4 = (log2 n− 1)n/4;

(ii) the left ends of all edges are in V1 and all right ends are in V2;

(iii) Fn does not contain a path vi1vi2vi3vi4 such that i2 < i4 < i1 < i3.

Case (iii) is referred to by Tardos [11] as a heavy path. We consider M1, . . . ,Mk−1 as color classes

of an edge coloring c of Fn in which the colors are ordered according to their indices.

By Theorem 3.1, Fn contains subgraphs Fn,1, Fn,2 and Fn,3 such that

(P1) |Fn,j | ≥ log(k−1)
480(k−1) |E(Fn)| ≥ log(k−1)

1920 n for each 1 ≤ j ≤ 3;

(P2) Fn,1 does not contain fast walks;

(P3) Fn,2 does not contain slow walks starting in V1;

(P4) Fn,3 does not contain slow walks starting in V2.

We also will use the cg graph Fn,0 with the same vertex set V and E(Fn,0) = {vivj : 1 ≤ i ≤
n/2, n/2 + 1 ≤ j ≤ n}. 2

Definition 2. We denote by L the cg three-edge path with interval chromatic number greater than

two. In other words, L is the 3-edge cg path xyzu such that x < y < z < u (in the cyclic ordering).
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Remark. The cg graph Fn,0 does not contain L.

Definition 3. A path P = x1x2 . . . xs in a cgg is a zigzag if it has no crossing and for every

2 ≤ j ≤ s−2, the sets {x1, . . . , xj−1} and {xj+2, . . . , xs} are on different sides of the chord xjxj+1.

Alternatively, P has no crossing and χc(P ) = 2.

Perles (see [6] p. 292) proved that ex�(n, P ) = O(n) for any zigzag path P . Our main result is

that the construction presented above contains no copy of a crossing P4.

Theorem 3.2. For every four-edge path P in a cgg apart from the zigzag path, ex�(n, P ) =

Ω(n log logn). Moreover, P is not contained in one of Fn,j for 0 ≤ j ≤ 3.

Proof. Since each Fn,j has at least Ω(n log k) = Ω(n log logn) edges, it suffices to show that for

each crossing four-edge path P there is a j for which P 6⊂ Fn,j . Every type of a cgg four-edge path

corresponds to a cyclic permutation of [5]. So we need to consider 4! = 24 types of them. By the

remark above, it is enough to consider the types with cyclic chromatic number 2. Suppose such

a path (i.e. with cyclic chromatic number 2 and distinct from a zigzag path) P = abcdf can be

embedded into Fn,1. Suppose that for x ∈ {a, b, c, d, f}, x is mapped onto vix .

Assume ic is odd (the proof for even ic will be symmetric). By the structure of Fn, ib > ic and

id > ic. So by symmetry we may suppose

ic < id < ib. (1)

Again by the structure of Fn, ib > ia. If id < ia < ib, then the cyclic chromatic number of the path

a, b, c, d is 3, a contradiction. The situation ic < ia < id impossible because the lengths of the edges

are of the form 2j − 1. So, the only possibility is ia < ic < id < ib.

Once again by the structure of Fn, id > if . If ic < if < id, then P is a zigzag path, contradicting our

choice. If if < ia, then id− if ≥ ib− ia, since otherwise 2(id− if ) < ib− ia and 2(ib− ic) < ib− ia,

a contradiction. But in this case, Fn,1 contains the fast walk fdcba contradicting (P2). Thus,

ia < if < ic. This means we need to consider only cyclical structure (1, 5, 3, 4, 2) and (when we

switch from the case of odd ic to the even) (5, 1, 3, 2, 4).

Case 1: (1, 5, 3, 4, 2). We claim that Fn,2 does not contain it. Indeed, suppose it does. If ic is odd,

then repeating the above argument we come to ia < if < ic. But this means Fn,2 contains the slow

walk fdcba contradicting (P3). Thus assume ic is even. Then by the structure of Fn, id < ic and

ib < ic, say id < ib < ic. Then by the cyclic structure of our path, ib < if < ic. This is impossible,

since 2(if − id) < ic − id and 2(ic − ib) < ic − id.

Case 2: (5, 1, 3, 2, 4). We claim that Fn,3 does not contain this path. The proof is symmetric to

Case 1. 2

3.2 Structure of trees avoiding P and a crossing P4

We need the definitions of increasing trees and z-trees in the cg setting.
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Convex geometric increasing trees. A cg increasing tree is a cg tree of cyclic chromatic number

two obtained as follows. Start with an (ordered) increasing tree with vertex set [n] and view the

linear ordering of the vertices as a cyclic ordering n < n−1 < · · · < 2 < 1. Note that a cg increasing

tree has no crossing edges, and the edges have a unique ordering by the increasing order of their

lengths (when viewed in terms of the natural linear order on [n]).

Convex geometric z-trees. A cg z-tree is a cg tree Z with cyclic chromatic number two, obtained

from a z-tree with ordered vertex set [n] and intervals I, J ⊂ [n] by viewing the linear ordering of

the vertices as a cyclic ordering n < n− 1 < · · · < 2 < 1. Note that Z is a union of a cg increasing

tree T with longest edge ij where i ∈ I and j ∈ J , together with a set Sj of edges of the form hj

with h ∈ I and i < h and a set Si of edges of the form ik with k ∈ J and k < j (See Figure 4

viewed as a cyclic ordering). These sets Si and Sj are allowed to be empty. Note that any two of

the edges hj and ik cross (see Figure 3 for an example).

Our main structural result is the following.

Theorem 3.3. Let T be a cg tree with χc(T ) = 2 that contains no crossing P4 and no member of

P. Then T is a cg z-tree.

Proof. Suppose we have an embedding of T in a circle Ω. We will simultaneously refer to T as well

as to the geometric properties of its embedding. Say that an edge e is heavy if both its endpoints

have a neighbor on the same side of e. Since we have no L (see Definition 2), this means that every

heavy edge e gives rise to a crossing three-edge path with central edge e.

Case 1. There is a heavy edge e = i′j. Suppose j′ is a neighbor of i′ and i is a neighbor of j

such that both i and j′ are on the same side of e, assume by symmetry that j′ and i lie on the arc

(j, i′) of Ω taken clockwise. Then i < i′ < j < j′ otherwise we obtain L. This shows that all such

neighbors of j lie clockwise of all such neighbors of i′ in (j, i′) and we obtain a double star as shown

below. Moreover, each of these neighbors j′, i has degree one otherwise we obtain a crossing P4.

Figure 4.

Hence, to grow T further, we must consider neighbors of i′ or j on the arc (i′, j) of Ω which omits

j′ and i (see Figure 4). We now claim that on the arc (i′, j), the tree T is an increasing tree and

moreover, there is no edge that crosses e = i′j. This will complete the proof in this case. First

observe that i′ and j cannot both have neighbors in (i′, j) otherwise we get L as before or P 2 as

shown below.
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Figure 5.

So we may assume by symmetry that only j has neighbors in (i′, j). If j1, j2, . . . , jr are the neighbors

of j in (i′, j) in increasing clockwise order, then only jr can have degree at least two, otherwise we

get a copy of L or P 1; furthermore, all neighbors of jr are in the segment (jr, j); otherwise we have

L or a crossing P4. We now continue in this way: if jr has neighbors k1, k2, . . . , km, j in increasing

clockwise order in (jr, j), then only k1 can have degree at least two, otherwise we have a copy of

L, or P 0, or a crossing P4. Furthermore, all neighbors of k1 are in the segment (jr, k1) otherwise

we obtain L or a crossing P4. We continue this process till we exhaust all of T .

Case 2. There is no heavy edge. In this case we claim the stronger statement that T is cg increasing

tree. Start by choosing any edge e = i′j and consider the neighbors of i′ or of j in the arc (i′, j)

(traversed clockwise as usual). Since e is not heavy, at most one of i′, j has neighbors in (i′, j), say

j. Then, using the fact that there is no heavy edge, we proceed as in the previous paragraph until

we have exhausted all vertices of T in (i′, j). Then we repeat this argument in the arc (j, i′) to

show that T is a cg increasing tree. 2

3.3 Convex geometric trees with linear extremal function

We are now in a position to complete the proof of Theorem 1.4

Proof of Theorem 1.4. By Theorems 3.2 and 3.3, it suffices to show that every cg z-tree Z with

k ≥ 2 edges satisfies ex�(n,Z) ≤ 2(k − 1)n. We will prove this by induction on k, with the case

k = 2 being trivial. For the induction step, suppose that Z is a cg z-tree with k > 2 edges and G

is an n-vertex cg graph with more than 2(k − 1)n edges.

Let us first do the case when Z is a double star with edge set Si ∪ Sj . In this case, we view Ω as

a linearly ordered set, and use the fact that ex�(n,Z) ≤ ex→(n,Z) ≤ (k − 1)n where the bound

ex→(n,Z) ≤ (k − 1)n follows from Lemma 2.3, with Z viewed as the appropriate ordered double

star.

We now assume that Z has a leaf x incident to some shortest edge outside Si∪Sj and let Z ′ = Z−v
(in Figure 3, this corresponds to deleting the lowest solid edge). Let G′ be the cg graph obtained

from G by deleting, for each vertex v ∈ V (G), the two shortest edges incident to v, one in each

direction. We delete at most 2n edges, so G′ has more than 2(k−2)n edges and hence by induction

G′ contains a copy of Z ′. We then extend this copy of Z ′ to a copy of Z in G using one of the edges

that was deleted in forming G′. 2
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