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Abstract

Let G be a finite abelian group written additively, and let r be a multiple of
its exponent. The modified Erdős–Ginzburg–Ziv constant s′r(G) is the smallest
integer s such that every zero-sum sequence of length s over G has a zero-sum
subsequence of length r. We find exact values of s′2k(Z

d
2) for d ≤ 2k + 1.
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Let G be a finite abelian group written additively. We denote by exp(G) the
exponent of G that is the least common multiple of the orders of its elements.
Let r be a multiple of exp(G). The generalized Erdős–Ginzburg–Ziv constant

sr(G) is the smallest integer s such that every sequence of length s over G has
a zero-sum subsequence of length r. If r = exp(G), then s(G) = sexp(G)(G)
is the classical Erdős–Ginzburg–Ziv constant. The constants sr(G) have been
studied extensively, see for example [4–10, 12]. The following variation of these
constants was introduced in [1] and further studied in [2, 3, 11]. The modified

Erdős–Ginzburg–Ziv constant s
′

r(G) is the smallest integer s such that every
zero-sum sequence of length s over G has a zero-sum subsequence of length r.

By the definition, s
′

r(G) ≤ sr(G). On the other hand, if g1, g2, . . . , gs is
a sequence over G that does not contain a zero-sum subsequence of size r,
and s is mutually prime with exp(G), then there exists x ∈ G such that g1 +
x, g2 + x, . . . , gs + x is a zero-sum subsequence (see [1, 11]). Thus, s′r(G) ≥
sr(G) − (exp(G) − 1), and if sr(G) − 1 is mutually prime with exp(G), then
s
′

r(G) = sr(G).
In this note, we consider the case exp(G) = 2, so G ∼= Z

d
2. By the above-

mentioned argument,

s
′

r(Z
d

2) = sr(Z
d

2) if sr(Z
d

2) is even, (1)

and
sr(Z

d

2)− 1 ≤ s
′

r(Z
d

2) ≤ sr(Z
d

2). (2)

The exact values of generalized Erdős–Ginzburg–Ziv constants s2k(Z
d
2) have

been found for d ≤ 2k + 1:

Preprint submitted to Elsevier January 24, 2023

http://arxiv.org/abs/2301.08976v1


Theorem 1 ([12]).

s2k(Z
d

2) =



















2k + d for d < 2k;

4k + 1 for d = 2k;

4k + 2 for d = 2k + 1, k is even;

4k + 5 for d = 2k + 1, k is odd.

In the present note, we extend this result to the modified Erdős–Ginzburg–
Ziv constants.

Theorem 2. Let d ≤ 2k+1. Then s
′

2k(Z
d
2) = s2k(Z

d
2)−1 in the following cases:

• d = 2k − 1;

• d = 2k − 3, k is even;

• d ≤ 2k − 5, d is odd.

In all other cases, s′2k(Z
d
2) = s2k(Z

d
2).

Proof. We start with the cases where we claim s
′

2k(Z
d
2) = s2k(Z

d
2). Among

them, cases d < 2k with even d, and d = 2k + 1 with even k follow from
Theorem 1 and (1). The other three cases are d = 2k, d = 2k + 1 with odd k,
and d = 2k− 3 with odd k. Since s′2k(Z

d
2) ≤ s2k(Z

d
2), it is sufficient to construct

a zero-sum sequence of length s2k(Z
d
2) − 1 that does not contain a zero-sum

subsequence of length 2k. For d = 2k, we select a sequence of length 4k which
consists of 2k − 1 copies of the zero vector, the 2k basis vectors e1, e2, . . . , e2k,
and the vector e1 + e2 + . . .+ e2k. For odd k and d = 2k + 1, 2k − 3, we select
a sequence of length 2d+2 which consists of 0, e1, e2, . . . , ed−1, e1 + e2 + . . .+
ed−1, ed, ed + e1, ed + e2, . . . , ed + ed−1, ed + e1 + e2 + . . .+ ed−1.

To solve the three cases where we claim s
′

2k(Z
d
2) = s2k(Z

d
2) − 1, in the light

of (2), it is sufficient to prove that any zero-sum sequence of length s2k(Z
d
2)− 1

over Zd
2 contains a zero-sum subsequence of length 2k. First consider the case

d = 2k − 1. Let x2, x3, . . . , x4k−1 ∈ Z
2k−1
2 where x2 + x3 + . . . + x4k−1 = 0.

Set x1 = x2. As s2k(Z
2k−1
2 ) = 4k − 1, there is A ⊂ {1, 2, . . . , 4k − 1} such

that |A| = 2k and
∑

i∈A
xi = 0. If 1 /∈ A, then we have found a zero-sum

subsequence of length 2k among x2, x3, . . . , x4k−1. Suppose, 1 ∈ A. If 2 /∈ A,
then (A\{1}) ∪ {2} points to a zero-sum subsequence of length 2k. Suppose,
1, 2 ∈ A. Set B := ({1, 2, . . . , 4k − 1}\A) ∪ {2}. Then |B| = 2k and

∑

i∈B

xi = x1 + x2 + . . .+ x4k−1 −
∑

i∈A

xi + x2

= x1 + x2 + (x2 + . . .+ x4k−1)−
∑

i∈A

xi = x1 + x2 = 0.

Finally, let d be odd, and d ≤ 2k − 3 if k is even, or d ≤ 2k − 5 if k is odd.
We are going to show that every zero-sum sequence of length 2k + d − 1 over
Z
d
2 contains a zero-sum subsequence of length 2k. Let x1, x2, . . . , x2k+d−1 ∈ Z

d
2

2



where x1+x2+. . .+x2k+d−1 = 0. By Theorem 1, sd−1(Z
d
2) = 2d if d ≡ 1 mod 4,

and sd−1(Z
d
2) = 2d + 3 if d ≡ 3 mod 4. In both cases, sd−1(Z

d
2) ≤ 2k + d − 1.

Thus, there is A ⊂ {1, 2, . . . , 2k+d− 1} such that |A| = d− 1 and
∑

i∈A
xi = 0.

Set B := {1, 2, . . . , 2k+ d− 1}\A. Then |B| = 2k and
∑

i∈B
xi =

∑2k+d−1
i=1 xi−

∑

i∈A
xi = 0−0 = 0, so B points to a zero-sum subsequence of length 2k within

x1, . . . , x2k+d−1.
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