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Abstract

Let ¢%;(n) be the smallest integer such that, for all r-graphs G on n vertices,
the edge set F(G) can be partitioned into at most ¢, (n) parts, of which every
part either is a single edge or forms an r-graph isomorphic to H. The function
qﬁ%{(n) has been well studied in literature, but for the case r > 3, the problem
that determining the value of ¢%;(n) is widely open. Sousa (2010) gave an
asymptotic value of ¢ (n) when H is an r-graph with exactly 2 edges, and
determined the exact value of ¢%;(n) in some special cases. In this paper, we
first give the exact value of ¢}, (n) when H is an r-graph with exactly 2 edges,
which improves Sousa’s result. Second we determine the exact value of ¢ (n)

when H is an r-graph consisting of exactly k independent edges.
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1 Introduction

Given two r-graphs G and H, an H-decomposition of G is a partition of the edge set
of GG such that each part is either a single edge or forms an r-graph isomorphic to
H. The minimum number of parts in an H-decomposition of G is denoted by ¢%,(G).

The H-decomposition number ¢}, (n) is defined as
¢y (n) = max{¢}(G) : G is an r-graph with |V (G)| = n}.

An r-graph G with ¢ (G) = ¢}, (n) is called an extremal graph of H.

For the case r = 2, we omit the index 2 for short in the paper, for example we write
graph for 2-graph, and ¢ (n) for ¢%(n). The function ¢y (n) has been well studied
in literature by many researchers. The first exact value of ¢ (n) when H = K3 was
given by Erdés, Goodman and Pésa [3] in 1966, where K, is the complete graph on
k vertices. Ten years later, Bollobés [2] generalized the result to H = Ky, k > 3.
Much more exact values of ¢y (n) can be found in the survey by Sousa [I1] in 2015.
Recently, Hou, Qiu and Liu determined the exact values of ¢ (n) when H is a graph
consisting of k complete graphs of order at least 3 which intersect in exactly one
common vertex [7] and when H is a graph consisting of k cycles of odd lengths which
intersect in exactly one common vertex [8]. An asymptotic value of the function
¢u(n) was given by Pikhurko and Sousa [9], and lately the value was improved by
Allen, Bottcher, and Person [1].

For the case r > 3, the study of the function ¢} (n) is widely open. Sousa [10]
gave an asymptotic value of ¢%,(n) when H is an r-graph consisting of 2 edges, and
determined the exact value of ¢ (n) in the special cases where the two edges of H
intersect exactly 1, 2 and r—1 vertices. In this paper, we first generalize Sousa’s result
in [10], that is we obtain the exact value of ¢;(n) when H is an r-graph consisting
of exactly 2 edges. Second we focus on the case that H is the r-graph consisting of
exactly k independent edges, and we determine the exact value of ¢’;(n) in this case.

Given positive integer n, r and k with n > r > 2, let K be a complete r-graph
on n vertices and let K] — le be a graph obtained from K, by deleting ¢ edges from
K, where ¢ is an integer so that 0 < ¢ < k — 1 and e(K] — le) = k — 1 (mod k).
Note that £ is determined uniquely by n,r and k. Let K ; be the family of r-graphs

K] — le. The followings are our main results.

Theorem 1. Given integers r,k satisfying 0 < k < r — 1. Let H be an r-graph

consisting of exactly 2 edges which intersect k vertices. If n > 2r — k, then ¢’y (n) =

2



[3(")]. Moreover, graphs G € Ki,, and G = K, if (7) = 0 (mod 2) are extremal

2 \r r

graphs of H.
Theorem [Il improves Sousa’s result in [10].

Theorem 2. Given integers k> 1,r > 2 andng =kr(k+r —2)+2r — 1, let H be

an r-graph on n vertices consisting of exactly k independent edges. If n > ngy then

LM +k =1, if (") =k—1 (mod k);
L (’Z)J+k—2, otherwise.

Furthermore, G is an extremal graph of H if and only if G € K7, or G = K, if
(") =k —2 (mod k).

P (n) = {

1
k
1
k

The proofs of Theorems [l and 2] will be given in Sections 2 and 3, respectively.
Before giving the proofs, we first introduce some definitions and notation. Let H be
an r-graph with vertex set V(H) and E(H). For a vertex v € V(H), the degree of
v, denoted by dg(v), is the number of edges of H containing v, and the minimum
degree of H is denoted by 6(H ). The matching number of H is the maximum number
of independent edges in H. We write e(H) for the number of edges of H, that is
e(f) = |E(H)|

2 Proof of Theorem [

We need some basic facts in algebraic graph theory. A graph G is called vertex-
transitive if its automorphism group acts transitively on V(G). Given nonnegative
integers n,r and k, let J(n,r, k) be the graph with vertex set E(K]), where two
vertices are adjacent if and only if their intersection has size k. For n > r, the graphs
J(n,r,r —1) and J(n,r,0) are known as the Johnson graphs and the Kneser graphs,

respectively.

Fact 1 (See page 9 and page 35 in [5]). (1) J(n,r, k) has (") vertices, and each vertex
has degree (;)("2}).
(2) The graphs J(n,r, k) are vertez-transitive.

(3) Ifn>r>k, Jin,rk) = Jn,n—r,n—2r+k).

Lemma 3 (Theorem 3.5.1 in [B]). If G is a connected vertez-transitive graph, then

G has a matching that misses at most one vertex.



Lemma 4 (Theorem 2.3 in [I0]). Let H be a fized r-graph with 2 edges and G an
r-graph with n vertices. Then ¢%(G) < ¢y (KT).

Proof of Theorem [k Lemma [ implies that ¢}, (n) = ¢ (K"). So, to prove the
result, it is sufficient to show that ¢7,(K7%) = [3(7)]. Clearly, ¢7(K") > [1(")] as
e(H) = 2. To prove ¢} (Kr) < [1(7)], it is sufficient to find an H-decomposition of
K with [$(")] parts.

By the definition of J(n,r, k), K! has an H-decomposition with [% (’:)1 parts is
equivalent to the statement that J(n,r, k) has a matching missing at most one vertex.
By (3) of Fact [I, we may assume n > 2r. If k = 0 and n = 2r, then J(2r,r,0) consists

n
s

of exactly %( ) independent edges, so the statement holds.

Now we assume k > 0 or n > 2r. By (2) of Fact[l J(n,r, k) is vertex-transitive.
Hence, by Lemma [, to show J(n,r, k) has a matching missing at most one vertex,
it is sufficient to show that J(n,r, k) is connected. That is, we need to show that
any pair of vertices e, f of J(n,r, k) are connected. Suppose |e N f| = i. We prove
e and f are connected by induction on i. If ¢ = r, then statement is trivial. If
i=r—1,assume e ={1,2,....r —1L,r}and f ={1,2,...,7 — 1,7+ 1}. Then ehf
with h = {1,2,...,k,r+2,...,2r+1— k} is a walk connecting e and f in J(n,r, k).
So the result is true for the base case. Now suppose ¢ < r — 1 and the statement is
true for any large 7. By symmetry, one could assume that e = {1,2,...,r—1,r} and
f=A{12,...;4,r+1,....2r—i}. Let h={1,...,0,i+1,7+1, ..., 2r—i—1}. Then
leNh|=i+4+1>7¢and |fNh|=r—1>i By induction hypothesis, e and h (resp.
f and h) are connected in J(n,r, k). By the transitivity of connectivity, e and f are

connected in J(n,r k). n

3 Proof of Theorem

We need two known theorems to prove our result. Given graphs G' and H, we say G
has an H-factor if G' contains L‘V(G)‘

V( H)‘J vertex-disjoint copies of H.

Theorem 5 (Hajnal, Szemerédi [6]). Let k be a positive integer. If G is a graph on

n vertices with minimum degree

then G has a Kj-factor.



Theorem 6 (Frankl [4]). If H is an r-graph on n vertices with matching number of
size k and n > (2k + 1)r — k, then

ws()-()

Proof of Theorem [2: Let G be an r-graph on n > ng vertices with ¢ (G) = ¢u(n).
Let pg(G) denote the maximum number of pairwise edge-disjoint copies of H in G.
Then we have

¢u(G) = e(G) = (k = )pu(G). (1)

If we remove the edges of py(G) pairwise edge-disjoint copies of H from G, then we
obtain an H-free graph, that is a graph with matching number at most £ — 1. Hence

by Theorem [6] we have

(n) _ <” —k+ 1) > e(G) — kpu(G). (2)

r r
On the other hand,
1
oulG) = ontr) = 1 (7). 3)

From (1), () and (3), we have

(e[0T

Now we define an auxiliary graph L¢ as follows: let V(Lg) = E(G) and two
vertices ey, ey € V(Lg) is adjacent if and only if e; Ney = () in G. Hence the edge set
of a copy of H in F(G) induces a clique of order k in Lg. Therefore, a collection of

edge-disjoint copies of H in GG corresponds to a collection of vertex-disjoint Ky in L.

Claim 1. Lg has a Kj-factor. In particular, Lir_¢ has a Ky-factor for every £ with
0</i<k-1.

Proof of the claim: By definition of L, we have

w2 () ()]

By Theorem [ it suffices to show that

(7)-10) -]t



that is

wa[(0)-(7)

To show ([B]), by (4) it suffices to show

()=o) (=40 -]

that is, we need to show

k(n;r)Jr(k:—l)(n_erl)2(2k—2)(:). (6)
By the inequality

n—t r
(;“L)Z(Lm) Zl—rit,(thZO)
") n—r+1 n—r+1

and n > ng = kr(k+r —2) + 2r — 1, it can be easily check that () holds. This

completes the proof of the claim.

Now suppose e(G) = i (mod k) and e(G) = tk+ (0 < i < k — 1) for some
t < [£(")]. By Claim [ py(G) = ¢ and hence by (), we have ¢ (G) =t +1i. In
particular,

PR fe) — 1) +k-1, if (") =k—-1 (mod k)
PialHn — fe) = { L% (:)J + k — 2, otherwise '

If (") =k—1 (mod k), then ¢};(n) = ¢ (G) =t+i < |+(")| +k — 1, and the
equality holds if and only if G = K7, € K} ;. Otherwise, ¢} (n) = ¢5(G) =t +i <
L% (’Z)J + k — 2, the equality holds if and only if ¢ = L% (’;)J —landi=k—1or
t=[£(7)] and i = k—2, in the former case G € K7, , and in the latter case it happens

T n

if and only if G = K}, and () =k —2 (mod k).

4 Concluding Remarks

In this paper we determine the exact value of of ¢, (n) when H is an r-graph consisting
of exactly 2 edges or consisting of exactly K INDEPENDENT edges. We believe that
Theorem [ still holds when H consists of exactly k£ edges which intersect the same

set of size i (0 <7 <r —1), we leave this as an open problem.



Question 7. Is the following statement true? Given integers k > 1, r > 2, let

H be an r-graph consisting of exactly k edges which intersect the same set of size i
(0 <i<r—1). If n is sufficiently large, then

[z +E=1 i () =k—1 (mod k);
|2(")| + k=2, otherwise.

P (n) = {
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