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NOTES ON USE OF GENERALIZED ENTROPIES IN

COUNTING

ALEXEY E. RASTEGIN

Abstract. We address an idea of applying generalized entropies in counting
problems. First, we consider some entropic properties that are essential for
such purposes. Using the α-entropies of Tsallis–Havrda–Charvát type, we
derive several results connected with Shearer’s lemma. In particular, we derive
upper bounds on the maximum possible cardinality of a family of k-subsets,
when no pairwise intersections of these subsets may coincide. Further, we
revisit the Minc conjecture. Our approach leads to a family of one-parameter
extensions of Brégman’s theorem. A utility of the obtained bounds is explicitly
exemplified.

1. Introduction

The concept of entropy is fundamental in both statistical physics and information
theory. It plays a certain role in applying information-theoretic ideas to combina-
torial problems [17]. Many results of such a kind were reviewed by Radhakrishnan
[21] and Galvin [10]. An entropy approach is often used in studies of colorings of
graphs [11, 12]. Applications of the entropy as a combinatorial tool are typically
based on the Shannon entropy and its conditional form. Meantime, other entropic
functions have found to be useful in various questions [2]. The Rényi entropy [25]
and the Tsallis–Havrda–Charvát (THC) entropy [14, 29] are especially important
extensions of the Shannon entropy. In principle, such entropic functions may have
combinatorial or computational applications. For instances, they both have been
used in global thresholding approach to image processing [27].

The main goal of this study is to address entropy-based approach to counting
problems with use of the Tsallis–Havrda–Charvát entropies. The paper is organized
as follows. In Section 2, we recall properties of the THC entropies and prove a useful
statement. In Section 3, we obtain THC-entropy versions of some combinatorial
results related to the so-called Shearer lemma. In particular, we consider an upper
estimate for the maximum possible cardinality of a family of k-subsets of the given
set, when subsets obey certain restrictions. In Section 4, we derive one-parameter
family of upper bounds on permanents of square (0, 1)-matrices. This family is
an extension of the Brégman theorem. We describe an example of utility of the
presented extension.

2. Definitions and properties of the THC α-entropies

In this section, we briefly recall definitions of the Tsallis–Havrda–Charvát en-
tropies and related conditional entropies. Required properties of these entropic
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2 ALEXEY E. RASTEGIN

functionals are discussed as well. Let discrete random variable X take values on
the finite set ΩX . The non-extensive entropy of strictly positive degree α 6= 1 is
defined by [29]

(2.1) Hα(X) :=
1

1− α

(
∑

x∈ΩX

p(x)α − 1

)
.

With the factor
(
21−α − 1

)−1
instead of (1−α)−1, this entropic form was considered

by Havrda and Charvát [14]. In non-extensive statistical mechanics, the entropy
(2.1) is known as the Tsallis entropy. It is instructive to rewrite (2.1) as

(2.2) Hα(X) = −
∑

x∈ΩX

p(x)α lnα p(x) =
∑

x∈ΩX

p(x) lnα

(
1

p(x)

)
.

Assuming ξ > 0, the so-called α-logarithm is defined as

(2.3) lnα(ξ) =

{
ξ1−α−1
1−α , for α > 0 , α 6= 1 ,

ln ξ , for α = 1 .

In the limit α → 1, the entropy (2.1) gives the standard Shannon entropy

(2.4) H1(X) = −
∑

x∈ΩX

p(x) ln p(x) .

For all real q ∈ [0, 1], we write the binary THC entropy

(2.5) hα(q) := − qα lnα(q)− (1− q)α lnα(1 − q) .

For q ∈ (0, 1), this function is concave and obeys hα(q) = hα(1 − q). The THC
entropies succeed some natural properties of the Shannon entropy. The maximal
value of (2.1) is equal to lnα |ΩX | and reached with the uniform distribution. For
α ≥ 1, the joint THC entropy of two random variables obeys [9]

(2.6) Hα(X,Y ) ≤ Hα(X) +Hα(Y ) .

In applications of information-theoretic methods, the notion of conditional en-
tropy is widely used [6]. Let us put the particular functional

H1(X |y) = −
∑

x
p(x|y) ln p(x|y) ,

in which the sum is taken over x ∈ ΩX . The entropy of X conditional on knowing
Y is defined as [6]

(2.7) H1(X |Y ) :=
∑

y
p(y)H1(X |y) = −

∑
x

∑
y
p(x, y) ln p(x|y) ,

where p(x|y) = p(x, y)/p(y). When the range of summation is clear from the
context, we will omit symbols such as ΩX and ΩY .

In the literature, two kinds of the conditional THC entropy have been discussed
[9]. These forms are respectively inspired by the two expressions given in (2.2).
The first form is defined as [9]

(2.8) Hα(X |Y ) :=
∑

y
p(y)αHα(X |y) ,

where

(2.9) Hα(X |y) := 1

1− α

(∑
x
p(x|y)α − 1

)
= −

∑
x
p(x|y)α lnα p(x|y)
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and strictly positive α 6= 1. The conditional entropy (2.8) is, up to a factor, the
quantity originally introduced by Daróczy [7]. For any α > 0, this conditional
entropy obeys the chain rule written as [7]

(2.10) Hα(X,Y ) = Hα(X |Y ) +Hα(Y ) .

Due to nonnegativity of Hα(X |Y ), for all α > 0 we also have

Hα(X,Y ) ≥ Hα(Y ) .

The chain rule (2.10) can be extended to more than two variables. Up to reordering
of random variables, this result is expressed as [9]

(2.11) Hα(X1, X2, . . . , Xn) =
∑n

j=1
Hα(Xj |Xj−1, . . . , X1) ,

where α > 0. In the case α = 1, we obtain the chain rule with the standard
conditional entropy (2.7). This property turns to be very essential in entropic
approach to counting. The second form of conditional THC entropy is introduced
as [9]

(2.12) H̃α(X |Y ) :=
∑

y
p(y)Hα(X |y) .

Although the quantity (2.12) does not share the chain rule, it has found use in
some questions [9, 22]. Its definition is based on the formulation, which seems to
be more appropriate in the context of dynamical systems and generalized entropy

rates [8, 24, 28]. We also have H̃α(X |Y ) ≤ Hα(X |Y ) for α ∈ (0, 1) and H̃α(X |Y ) ≥
Hα(X |Y ) for α ∈ (1,∞). For α = 1, the α-entropies (2.8) and (2.12) both coincide
with (2.7).

Using entropic approach in counting, several properties of the conditional entropy
are required. One of these properties is the chain rule. The standard conditional
entropy also satisfies

(2.13) H1(X |Y1, . . . , Yn−1, Yn) ≤ H1(X |Y1, . . . , Yn−1) .

Thus, conditioning on more can only reduce the conditional entropy. This relation is
sometimes required in counting [21]. Another very useful property of the standard
conditional entropy is formulated as follows. Let Y 7→ f(Y ) be some function,
whose domain covers the support of random variable Y . Then we have [21]

(2.14) H1

(
X
∣∣f(Y )

)
≥ H1(X |Y ) .

We shall now establish analogous properties for the conditional α-entropies.

Proposition 1. Let X and Y1, . . . , Yn be discrete random variables, where n ≥ 1.
For α ≥ 1, the conditional entropy (2.8) satisfies

(2.15) Hα(X |Y1, . . . , Yn−1, Yn) ≤ Hα(X |Y1, . . . , Yn−1) .

For α > 0, the conditional entropy (2.12) satisfies

(2.16) H̃α(X |Y1, . . . , Yn−1, Yn) ≤ H̃α(X |Y1, . . . , Yn−1) .

Let Y 7→ f(Y ) be a function of random variable Y . For α ≥ 1, the conditional
entropy (2.8) satisfies

(2.17) Hα

(
X
∣∣f(Y )

)
≥ Hα(X |Y ) .

For α > 0, the conditional entropy (2.12) satisfies

(2.18) H̃α

(
X
∣∣f(Y )

)
≥ H̃α(X |Y ) .
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Proof. The results (2.15) and (2.16) were proved in [9, 23] and [24], respectively.
Let us proceed to (2.17) and (2.18). Since the standard case is known, we assume
α 6= 1. To each value u of the function, we assign the subset ωu ⊆ ΩY such that

ωu :=
{
y : y ∈ ΩY , f(y) = u

}
.

Then the probabilities are written as

(2.19) p(x, u) =
∑

y∈ωu

p(x, y) , p(u) =
∑

y∈ωu

p(y) .

The left-hand side of (2.17) is represented as

(2.20) Hα

(
X
∣∣f(Y )

)
=

∑

u∈Ωf(Y )

p(u)αHα(X |u) .

Replacing p(u)α with p(u), we obtain the expression for H̃α

(
X
∣∣f(Y )

)
. For strictly

positive α 6= 1 and ξ ≥ 0, we introduce the function

ηα(ξ) =
ξα − ξ

1− α
.

In terms of this function, we now write

p(u)αHα(X |u) =
∑

x∈ΩX

p(u)α ηα
(
p(x|u)

)
.

As η′′α(ξ) ≤ 0 for the considered values of α, the function ξ 7→ ηα(ξ) is concave. For
fixed x and u, we put numbers λy = p(y)/p(u) and ξy = p(x, y)/p(y) = p(x|y) such
that ∑

y∈ωu

λy =
p(u)

p(u)
= 1 ,

∑

y∈ωu

λy ξy =
p(x, u)

p(u)
= p(x|u) ,

according to (2.19). By Jensen’s inequality, we then obtain

p(u) ηα
(
p(x|u)

)
≥ p(u)

∑

y∈ωu

λy ηα(ξy) =
∑

y∈ωu

p(y) ηα
(
p(x|y)

)
.(2.21)

p(u)α ηα
(
p(x|u)

)
≥ p(u)α

∑

y∈ωu

λy ηα(ξy) =
∑

y∈ωu

p(u)α−1p(y) ηα
(
p(x|y)

)
.(2.22)

Summing (2.21) with respect to x ∈ ΩX , for all the considered values of α one gets

p(u)Hα(X |u) ≥
∑

y∈ωu

p(y)Hα(X |y) .

The latter leads to (2.18) after summing with respect to u ∈ Ωf(Y ). For all y ∈ ωu

and α > 1, we have p(u) ≥ p(y) and p(u)α−1p(y) ≥ p(y)α. Combining this with
(2.22) and summing with respect to x ∈ ΩX , we obtain

p(u)αHα(X |u) ≥
∑

y∈ωu

p(y)αHα(X |y) .

Summing this with respect to u ∈ Ωf(Y ) completes the proof of (2.17). �

Note that the standard case α = 1 of (2.17) and (2.18) can be proved by repeating
the above reasons with the concave function ξ 7→ −ξ ln ξ. In the mentioned ranges
of the parameter, the conditional THC entropies (2.8) and (2.12) enjoy the property
with respect to conditioning on more. The result (2.15) has allowed to derive the
one-parametric extension of entropic Bell inequalities originally given in [3]. Using
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(2.14), one can deduce a property useful in entropic approach to Bregman’s theorem
[20, 21]. We shall now formulate a similar statement for the α-entropies.

Corollary 2. Let the support ΩY of random variable Y be partitioned into m
mutually disjoint sets ωj as

ΩY =

m⋃

j=1

ωj .

Let ̟j ⊆ ΩX be defined as

̟j :=
{
x : x ∈ ΩX , y ∈ ωj , p(x|y) 6= 0

}
.

If ̟j 6= ̟k for all j 6= k, then

Hα(X |Y ) ≤
m∑

j=1

Pr[Y ∈ ωj]
α lnα |̟j | (1 ≤ α < ∞) ,(2.23)

H̃α(X |Y ) ≤
m∑

j=1

Pr[Y ∈ ωj] lnα |̟j | (0 < α < ∞) .(2.24)

Proof. Let us take the function Y 7→ fω(Y ) such that fω(y) = ̟j for each y ∈ ωj.
It then follows from (2.17) and (2.18) that

Hα(X |Y ) ≤ Hα

(
X
∣∣fω(Y )

)
=

m∑

j=1

Pr[Y ∈ ωj]
αHα(X |̟j) (1 ≤ α < ∞) ,(2.25)

H̃α(X |Y ) ≤ H̃α

(
X
∣∣fω(Y )

)
=

m∑

j=1

Pr[Y ∈ ωj]Hα(X |̟j) (0 < α < ∞) .(2.26)

The quantity Hα(X |̟j) is represented as the sum

(2.27) Hα(X |̟j) =
∑

x∈̟j

ηα
(
p(x|ωj)

)
.

The sum of p(x|ωj) over x ∈ ̟j is equal to 1, whence the term (2.27) does not
exceed lnα |̟j |. Combining this fact with (2.25) and (2.26) completes the proof. �

Using Corollary 2, we will obtain upper bounds on conditional α-entropies in
some combinatorial problems. To do so, we have to estimate not only cardinalities
|̟j|, but also probabilities Pr[Y ∈ ωj ]. From this viewpoint, the inequality (2.24)
seems to be more appropriate.

3. Shearer’s lemma and intersections of k-element sets

In this section, we will examine some questions connected with the Shearer
lemma [5]. The properties of the THC entropies lead to a lot of inequalities with
interesting combinatorial applications. We first note the following.

Proposition 3. Let X = (X1, . . . , Xn) be a random variable taking values in the set
S = S1 × · · · × Sn, where each coordinate Xj is a random variable taking values in
Sj. For all α ≥ 1, we have

(3.1) Hα(X) ≤
n∑

j=1

Hα(Xj) .

Proof. The claim (3.1) immediately follows by induction from (2.6). �
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The result (3.1) is a straightforward extension of proposition 15.7.2 of the book
[1]. Hence, we can obtain several corollaries. The first of them is posed as follows.

Corollary 4. Let F be a family of subsets of the set {1, . . . , n}, and let qj denote
the fraction of members of F that contain j. For all α ≥ 1, we have

(3.2) lnα |F| ≤
n∑

j=1

hα(qj) .

Proof. To each set F ∈ F , we assign its characteristic vector v(F ), which is a
binary n-tuple. Let X = (X1, . . . , Xn) be the random variable taking values in
{0, 1}n such that

(3.3) Pr
[
X = v(F )

]
= |F|−1 ∀F ∈ F ,

whence Hα(X) = lnα |F|. The random variable Xj takes values in {0, 1} and is
j-th value in the characteristic vector. By definition of qj , the entropy of Xj is
equal to hα(qj). Combining this with (3.1) completes the proof. �

The result (3.2) provides an upper estimate for the maximum possible cardinality
of a family of subsets. It is an α-entropy version of the basic lemma proved in
[16]. The authors of [16] used tools of information theory for studying a family
of k-subsets, which satisfy some restrictions. We will further apply (3.2) to a
specific family of k-element subsets of the set {1, . . . , n}. Suppose that a family
G = {G1, . . . , Gm} of m subsets of the set {1, . . . , n} obey the implication

(3.4) “{i, j} 6= {s, t}” =⇒ “Gi ∩Gj 6= Gs ∩Gt” .

That is, no pairwise intersections of the k-subsets may coincide. We aim to estimate
cardinality of this family from above. Let us begin with an auxiliary result.

Lemma 5. For α ∈ [1, 3.67], the function λ 7→ hα(λ
2)/λ is concave for λ ∈

[
0, 1/

√
2
]
.

Proof. We left out the case α = 1, for which the concavity was reported in [16]
for all λ ∈ [0, 1]. During the proof, we will use the following generalization of
Bernoulli’s inequality (see, e.g., section 2.4 of the book [19]). For −1 < x 6= 0, one
has

(1 + x)r > 1 + rx (r /∈ [0, 1]) ,(3.5)

(1 + x)r < 1 + rx (0 < r < 1) .(3.6)

For α > 1, we can write the expression

(3.7) (α− 1)
hα(λ

2)

λ
= −λ2α−1 +

1− (1− λ2)α

λ
.

The term −λ2α−1 is concave with respect to λ for all α > 1. We will show concavity
of the second term in the right-hand side of (3.7). Let us use the second derivative
test. For arbitrary function ξ 7→ f(ξ), one has a general expression

(3.8)
d2

dλ2

f(λ2)

λ
=

2

λ3

(
2ξ2f ′′(ξ)− ξf ′(ξ) + f(ξ)

)
,

where ξ = λ2. Substituting fα(ξ) = 1− (1− ξ)α finally gives

(3.9) 2ξ2f ′′
α(ξ)− ξf ′

α(ξ) + fα(ξ) = 1 + (1− ξ)α−2
(
−1 + c1ξ + c2ξ

2
)
.
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The coefficients in (3.9) are calculated as

(3.10) c1 = 2− α , c2 = −1 + 3α− 2α2 =
1

8
− 2

(
α− 3

4

)2

.

We will show that the quantity (3.9) is not positive for α ∈ [1, 3.67] and λ ∈[
0, 1/

√
2
]
. Let us consider separately the cases α ∈ [1, 2] and α ∈ [2, 3.67].

Taking the intervals α ∈ [1, 2] and ξ ∈ [0, 1], we have

(3.11) (1− ξ)2−α ≤ 1− (2− α)ξ = 1− c1ξ (1 ≤ α ≤ 2) .

This formula is based on (3.6) with x = −ξ and r = 2 − α. Due to (3.11), we
rewrite (3.9) in the form

(3.12) (1− ξ)α−2
(
(1− ξ)2−α − 1 + c1ξ + c2ξ

2
)
≤ (1− ξ)α−2c2ξ

2 ≤ 0 ,

where c2 ≤ 0 for α ∈ [1, 2] by (3.10). Here, the concavity takes place for all
λ ∈ [0, 1].

The case α ≥ 2 is more complicated to analysis. Here, we introduce the positive
parameter β = α− 2. The condition of negativity of (3.9) is then rewritten as

(1− ξ)β
(
1 + βξ + γξ2

)
− 1 =: Fβ(ξ) ≥ 0 ,

where γ = −c2 = 3 + 5β + 2β2. This inequality is to be proved for ξ = λ2 ≤ 1/2.
We begin with the case β ∈ [0, 1]. Using the polynomial pβ(ξ) = 1 + βξ + γξ2,

we write the derivative
dFβ

dξ
= (1 − ξ)β−1

(
(1 − ξ)p′β(ξ)− β pβ(ξ)

)
.

Doing simple calculations, we easily obtain

(3.13) (1− ξ)p′β(ξ)− β pβ(ξ) = ξ
((

2γ − β − β2
)
− γ(2 + β)ξ

)
.

As ξ ≥ 0, the derivative dFβ/dξ is not negative, whenever

(3.14) ξ ≤ 2γ − β − β2

γ(2 + β)
=

6 + 9β + 3β2

(3 + 5β + 2β2)(2 + β)
.

For β ∈ [0, 1], the right-hand side of (3.14) monotonically decreases with β from 1 at
β = 0 up to 0.6 at β = 1. The condition (3.14) is clearly satisfied for all ξ ∈ [0, 1/2].
Here, the function Fβ(ξ) does not decrease. Combining this with Fβ(0) = 0, we
finally get Fβ(ξ) ≥ 0 for all β ∈ [0, 1] and ξ ∈ [0, 1/2].

For β ≥ 1, we apply (1−ξ)β ≥ 1−βξ due to (3.5). Thus, the quantity of interest
obeys

Fβ(ξ) ≥ (1− βξ)
(
1 + βξ + γξ2

)
− 1 ≥

(
γ − β2

)
ξ2 − βγξ3 .

The latter is not negative, whenever γ − β2 ≥ βγξ. Due to ξ ≤ 1/2, we can focus
on the inequality 2

(
γ − β2

)
− βγ ≥ 0, or

(3.15) 6 + 7β − 3β2 − 2β3 ≥ 0 .

Inspecting roots of the polynomial, the condition (3.15) holds for all β ∈ [0, 1.67],
though we use it only for β ∈ [1, 1.67]. The latter completes the proof for α ∈
[3, 3.67]. �

We have shown concavity of the function λ 7→ hα(λ
2)/λ for α ∈ [1, 3.67] and

λ ∈
[
0, 1/

√
2
]
. When α ∈ [1, 2], the concavity actually holds for λ ∈ [0, 1]. We now

formulate the desired estimate as follows.



8 ALEXEY E. RASTEGIN

Proposition 6. Let G = {G1, . . . , Gm} be a family containing m k-subsets of the
set {1, . . . , n}, and let G satisfy the property (3.4). Let λj denote a proportion of
those members of G that contain j. If the precondition

(3.16) λj ≤
1√
2

holds for all j ∈ {1, . . . , n}, then for all α ∈ [1, 3.67],

(3.17) lnα

(
m

2

)
≤ k

hα(λ
2)

λ
, λ :=

n∑

j=1

λj

k
λj .

Proof. Let us consider pairwise intersections of members of G. Each j ∈ {1, . . . , n}
will appear in a proportion

q∗j =

(
m

2

)−1(
λjm

2

)
= λ2

j −
λj(1− λj)

m− 1
.

In the ratio, the denominator gives the number of all pairwise intersections; the
numerator is the number of those pairwise intersections that contain j. The binary
entropy (2.5) is concave for q ∈ (0, 1) and reaches its maximum at the point q = 1/2.
Hence, it does not decrease on (0, 1/2). Then the precondition (3.16) provides

hα(q
∗
j ) ≤ hα(λ

2
j ) .

Combining this with Corollary 4, for α ≥ 1 we obtain

(3.18) lnα

(
m

2

)
≤

n∑

j=1

hα(λ
2
j ) = k

n∑

j=1

λj

k

hα(λ
2
j )

λj
.

We further use
∑n

j=1 λj/k = 1 and concavity of the function λ 7→ hα(λ
2)/λ. Com-

bining (3.18) with the Jensen inequality completes the proof. �

We have obtained an implicit upper bound on m = |G| in terms of k = |Gj |
and the average proportion λ of sets containing a particular element. Our result
is a parametric extension of one of the statements proved in [16]. It also differs
in the following two respects. First, the precondition (3.16) is now imposed. On
the other hand, the formula (3.17) is more explicit in the sense that no unknown

asymptotically small terms appear. For the prescribed value of λ ∈
[
0, 1/

√
2
]
, we

could optimize a bound with respect to the parameter α. The authors of [16] also
consider a family of k-sets, in which the intersection of no two is contained in a
third. Such estimates are connected with one of questions raised by Erdős.

The statement of Proposition 3 allows a certain extension. In the case of Shannon
entropies, extension of such a kind has been proved by Shearer [5]. It is often
referred to as the Shearer lemma [12, 15, 21]. Its generalization in terms of the
THC entropies is posed as follows.

Proposition 7. Let X = (X1, . . . , Xn) be a random variable taking values in the set
S = S1 × · · · × Sn, where each coordinate Xj is a random variable taking values
in Sj . For a subset I of {1, . . . , n}, let X(I) denote the random variable (Xj)j∈I .
Suppose that G is a family of subsets of {1, . . . , n} and each j ∈ {1, . . . , n} belongs
to at least k members of G. For α ≥ 1, we then have

(3.19) kHα(X) ≤
∑

G∈G

Hα

(
X(G)

)
.
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Proof. Following [21], we will apply the chain rule. Using (2.11), for α ≥ 1 we have

Hα(X) =

n∑

j=1

Hα

(
Xj

∣∣ (Xk : k < j)
)
,

Hα

(
X(G)

)
=
∑

j∈G

Hα

(
Xj

∣∣ (Xk : k ∈ G, k < j)
)

≥
∑

j∈G

Hα

(
Xj

∣∣ (Xk : k < j)
)
.(3.20)

The step (3.20) follows from (2.15), since any string (Xk : k < j) contains more
elements than (Xk : k ∈ G, k < j). Summing (3.20) with respect to all G ∈ G
gives

(3.21)
∑

G∈G

Hα

(
X(G)

)
≥ k

n∑

j=1

Hα

(
Xj

∣∣ (Xk : k < j)
)
,

because each j ∈ {1, . . . , n} belongs to at least k members of G. �

The statement of Proposition 7 is a THC-entropy extension of the Shearer lemma.
A related geometric picture was described in [21]. Interesting geometric applications
are also discussed in [1]. An immediate consequence of (3.19) is posed as follows.

Corollary 8. Let N be a finite set, and let F be a family of subsets of N . Let
G = {G1, . . . , Gm} be a family of subsets of N such that each element of N appears
in at least k members of G. For each 1 ≤ j ≤ m, we define Fj := {F ∩Gj : F ∈ F}.
For α ≥ 1, we then have

(3.22) k lnα |F| ≤
m∑

j=1

lnα |Fj| .

For α = 1, the formula (3.22) is reduced to a result originally proved in [5]. Some
applications of the latter were also described in [5]. Of course, applications of such
a kind can further be considered on the base of (3.22). In some cases, a family of
one-parameter relations may give a stronger bound. An explicit example of this
situation is the case of upper bounds on permanents of square (0, 1)-matrices.

4. Upper bounds on permanents of (0, 1)-matrices

In this section, we will derive a family of one-parameter upper bounds on the per-
manent of a square (0, 1)-matrix. The well-known upper bound on permanents has
been conjectured by Minc [18] and later proved by Brégman [4]. Brégman’s proof
is based on the duality theorem of convex programming and properties of doubly
stochastic matrices. A short elementary proof of this result was given by Schrijver
[26]. Schrijver also mentioned an upper bound for permanents of arbitrary nonneg-
ative matrices. A similar proof with randomization is explained in [1]. Developing
an approach with randomization, Radhakrishnan presented an entropy-based proof
[20]. Our aim is to study the question with use of the THC entropies. First, we
recall preliminary facts. Let A =

[[
a(i, j)

]]
be a nonnegative n× n-matrix, and let

Sn denote the set of all permutations on {1, . . . , n}. The permanent of A is defined
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as

(4.1) per(A) :=
∑

σ∈Sn

n∏

i=1

a
(
i, σ(i)

)
.

We further consider matrices with elements a(i, j) ∈ {0, 1}. By S ⊆ Sn, we mean
the set of permutations σ such that a

(
i, σ(i)

)
= 1 for all i ∈ {1, . . . , n}. It is obvious

that per(A) = |S|. It is assumed that the matrix contain no rows of only zeros,
since otherwise its permanent is certainly zero. We claim the following.

Proposition 9. Let A be a n× n (0, 1)-matrix with per(A) 6= 0, and let ri 6= 0 be a
number of ones in i-th row (i = 1, . . . , n). For all α ≥ 1, the permanent of A obeys
the inequality

(4.2) lnα
(
per(A)

)
≤

n∑

i=1

1

ri

ri∑

j=1

lnα(j) .

Proof. Let σ be a random permutation chosen uniformly from S. We then have
the value Hα(σ) = lnα|S|, which coincides with the left-hand side of (4.2). We will
show that, for α ≥ 1, the entropy Hα(σ) does not exceed the right-hand side of
(4.2). Let us choose a random permutation τ ∈ Sn uniformly. Using the chain rule
(2.11), for each permutation τ we can write

Hα(σ) = Hα

(
σ
(
τ(1)

))
+Hα

(
σ
(
τ(2)

) ∣∣∣ σ
(
τ(1)

))
+ · · ·

· · ·+Hα

(
σ
(
τ(n)

) ∣∣∣ σ
(
τ(1)

)
, . . . , σ

(
τ(n− 1)

))
(4.3)

≤ H̃α

(
σ
(
τ(1)

))
+ H̃α

(
σ
(
τ(2)

) ∣∣∣ σ
(
τ(1)

))
+ · · ·

· · ·+ H̃α

(
σ
(
τ(n)

) ∣∣∣ σ
(
τ(1)

)
, . . . , σ

(
τ(n− 1)

))
.(4.4)

Here, the second inequality holds for α ≥ 1. To the given permutation τ and index
i ∈ {1, . . . , n}, we assign the integer k(τ, i) ∈ {1, . . . , n} such that

k(τ, i) := τ−1(i) , σ
(
τ(k)

)
= σ(i) .

Summing (4.4) over all τ ∈ Sn, we further obtain

|Sn|Hα(σ) ≤
∑

τ∈Sn

{
H̃α

(
σ
(
τ(1)

))
+ H̃α

(
σ
(
τ(2)

) ∣∣∣ σ
(
τ(1)

))
+ · · ·

· · ·+ H̃α

(
σ
(
τ(n)

) ∣∣∣ σ
(
τ(1)

)
, . . . , σ

(
τ(n− 1)

))}

=
∑

τ∈Sn

n∑

i=1

H̃α

(
σ(i)

∣∣∣ σ
(
τ(1)

)
, . . . , σ

(
τ(k − 1)

))
.(4.5)

At the last step, we gather the contributions of different σ(i) separately. For the
given σ ∈ S, τ ∈ Sn, and i ∈ {1, . . . , n}, we define Ri(σ, τ) to be the set of those
column indices that differ from σ

(
τ(1)

)
, . . . , σ

(
τ(k − 1)

)
and give 1’s in i-th row

[20]. By definition of ri, we have
∣∣Ri(σ, τ)

∣∣ ≤ ri. Using (2.24), we then rewrite
(4.5) as

|Sn|Hα(σ) ≤
n∑

i=1

∑

τ∈Sn

ri∑

j=1

Pr
σ

[∣∣Ri(σ, τ)
∣∣ = j

]
lnα(j) .
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Dividing this relation by |Sn| and taking into account the uniform distribution of
τ ∈ Sn, we immediately obtain

(4.6) Hα(σ) ≤
n∑

i=1

ri∑

j=1

Pr
σ,τ

[∣∣Ri(σ, τ)
∣∣ = j

]
lnα(j) .

We now recall a principal observation of [20] that

Pr
σ,τ

[∣∣Ri(σ, τ)
∣∣ = j

]
=

1

ri
.

Combining this with (4.6) completes the proof. �

The statement of Theorem 9 leads to an one-parameter family of upper bounds
on permanents. In the limit α → 1+, the relation (4.2) leads to the previous result
[1]

(4.7) per(A) ≤
n∏

i=1

(ri!)
1/ri .

It was conjectured in [18] and then proved in several ways [4, 20, 26]. This result can
naturally be reformulated as an upper bound on the number of perfect matchings
in a bipartite graph [10, 21].

We now consider a significance of the one-parameter bound (4.2). It is instructive
to consider a concrete example. Let n × n-matrix A have elements a(1, j) = 1 for
all j = 1, . . . , n and a(i, j) = δ(i, j) for i = 2, . . . , n. That is, our matrix is obtained
from the identity n × n-matrix by filling its first row with ones. We then have
per(A) = 1. On the other hand, one gives r1 = n and r2 = · · · = rn = 1. Let us
compare values of the bounds (4.2) and (4.7). It is easy to apply (4.2) in the case
α = 2, since ln2(ξ) = 1− 1/ξ due to (2.3). For α = 2, the upper bound (4.2) gives

(4.8) 1− 1

per(A)
≤ 1

n

n∑

j=1

(
1− 1

j

)
= 1− Hn

n
.

By Hn, we denote the n-th harmonic number [13]. It is well known that the
asymptotic expansion of this number for large n is written as [13]

Hn = lnn+ γ +O(1/n) ,

where γ is the Euler–Mascheroni constant. From (4.8), we immediately obtain

(4.9) per(A) ≤ n

Hn
=

n

lnn

{
1 +O

(
1

lnn

)}
.

Substituting the same collection of numbers ri into (4.7) gives

(4.10) per(A) ≤ (n!)1/n =
n

e

{
1 +O

(
1

n

)}
.

At the last step, we used the Stirling approximation. For sufficiently large n, the
upper bound (4.9) is significantly stronger than (4.10). On the other hand, both the
bounds are very far from the actual value of permanent. Nevertheless, our example
has shown a relevance of the result (4.2) proved for α ≥ 1.

We can further ask for extending bounds with values α ∈ (0, 1). The correspond-
ing result can be obtained by an immediate extension of Schrijver’s proof [26]. We
have the following statement.
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Proposition 10. Let A be a n×n (0, 1)-matrix with per(A) 6= 0, and let ri 6= 0 be a
number of ones in i-th row (i = 1, . . . , n). For α ∈ (0, 1), the permanent of A obeys
the inequality

(4.11) − lnα

(
1

per(A)

)
≤

n∑

i=1

1

ri

ri∑

j=1

lnα(j) .

Proof. For convenience, we introduce the function

gα(ξ) :=
ξα − ξ

α− 1
= −ξ lnα

(
1

ξ

)
,

where ξ > 0 and α ∈ (0, 1). For these values of α, the function ξ 7→ gα(ξ) is convex.
Due to the Jensen inequality, we have

(4.12) gα

(
1

r

r∑

k=1

ξk

)
≤ 1

r

r∑

k=1

gα(ξk) .

We will prove (4.11) by induction on n. For n = 1, the result is trivial. Suppose
that the claim is already proved for (n− 1)× (n− 1)-matrices. The permanent of
a n× n-matrix can be decomposed as

(4.13) per(A) =

n∑

k=1
a(i,k)=1

per
(
A(i, k)

)
.

Here, the submatrix A(i, k) is obtained from A by eliminating the i-th row and the
k-th column. Combining (4.12) with (4.13) gives

(4.14) per(A) (−1) lnα

(
ri

per(A)

)
= ri gα

(
per(A)

ri

)
≤

n∑

k=1
a(i,k)=1

gα

{
per
(
A(i, k)

)}
.

From the definition of the α-logarithm, we have the identity

(4.15) lnα(rξ) = lnα(r) + r1−α lnα(ξ) .

Summing (4.14) with respect to i ∈ {1, . . . , n}, we therefore obtain

per(A)

{
−

n∑

i=1

lnα(ri)− n lnα

(
1

per(A)

)}
≤

n∑

i=1

ri gα

(
per(A)

ri

)
(4.16)

≤
n∑

i=1

n∑

k=1
a(i,k)=1

per
(
A(i, k)

)
(−1) lnα

(
1

per
(
A(i, k)

)
)

(4.17)

=
∑

σ∈S

n∑

i=1

(−1) lnα

(
1

per
{
A
(
i, σ(i)

)}
)
.(4.18)

To prove (4.16), we used (4.15) and the relation n ≤
∑n

i=1 r
1−α
i satisfied for α ∈

(0, 1). To justify (4.18), we note the following fact. In the double sum (4.18), the
number of terms from any pair (i, k) equals the number of those σ ∈ S for which
σ(i) = k. The latter number is per

(
A(i, k)

)
for a(i, k) = 1, and zero otherwise. We
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now apply the induction hypothesis to each per
{
A
(
i, σ(i)

)}
in (4.18). The left-hand

side of (4.16) is no greater than

∑

σ∈S

n∑

i=1






∑

ℓ 6=i
a(ℓ,σ(i))=0

1

rℓ

rℓ∑

j=1

lnα(j) +
∑

ℓ 6=i
a(ℓ,σ(i))=1

1

rℓ − 1

rℓ−1∑

j=1

lnα(j)






=
∑

σ∈S

n∑

ℓ=1






∑

i6=ℓ
a(ℓ,σ(i))=0

1

rℓ

rℓ∑

j=1

lnα(j) +
∑

i6=ℓ
a(ℓ,σ(i))=1

1

rℓ − 1

rℓ−1∑

j=1

lnα(j)





(4.19)

=
∑

σ∈S

n∑

ℓ=1





n− rℓ
rℓ

rℓ∑

j=1

lnα(j) +

rℓ−1∑

j=1

lnα(j)



 .(4.20)

In the step (4.19), we change an order of summation. The step (4.20) is posed as
follows. First, the number of i such that i 6= ℓ and a

(
ℓ, σ(i)

)
= 0 is equal to (n−rℓ).

Second, the number of i such that i 6= ℓ and a
(
ℓ, σ(i)

)
= 1 is equal to (rℓ − 1).

These observations allow to compute the sums with respect to i and get (4.20).
Adding the term per(A)

∑
1≤ℓ≤n lnα(rℓ) to both (4.16) and (4.20), we immediately

obtain

per(A) (−n) lnα

(
1

per(A)

)
≤ per(A)

n∑

ℓ=1

n

rℓ

rℓ∑

j=1

lnα(j) .

The latter completes the proof. �

In the limit α → 1−, the result (4.11) leads to the previous result (4.7). In this
regard, it is a proper extension of (4.2) to the parameter range α ∈ (0, 1). Together,
the bounds (4.2) and (4.11) cover all the values α > 0.
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