
An analytic system with a computable hyperbolic
sink whose basin of attraction is non-computable

Daniel S. Graça Ning Zhong

Abstract

In many applications one is interested in finding the stability regions (basins
of attraction) of some stationary states (attractors). In this paper we show that one
cannot compute, in general, the basins of attraction of even very regular systems,
namely analytic systems with hyperbolic asymptotically stable equilibrium points.
To prove the main theorems, a new method for embedding a discrete-time system
into a continuous-time system is developed.

Keywords. Computability with real numbers, basins of attractions, asymptotically
stable equilibrium points

1 Summary of the paper

In the study of dynamical systems, asymptotically stable equilibrium points and closed
orbits are important since they represent stationary or repeatable behavior. In fact, to de-
termine stability regions (basins or domains of attraction) of asymptotically stable equilib-
rium points is a fundamental problem in nonlinear systems theory with great importance
in a number of applications such as in the fields of engineering (electric power system,
chemical reactions), ecology, biology, economics, etc. In the late 1960’s there was a surge
of theoretical studies analyzing properties of such domains. In recent years much effort
has been devoted to development of numerical methods for estimation of these domains,
which has resulted in numerous numerical algorithms (see e.g. [14], [21]). In contrast,
relatively little theoretical work on computability of these domains exists.

F1. Graça: CEDMES/FCT, Universidade do Algarve, Portugal & SQIG - Instituto de
Telecomunicações, Portugal; e-mail: dgraca@ualg.pt

F2. Zhong: DMS, University of Cincinnati, U.S.A.; e-mail: zhongn@uc.edu
Mathematics Subject Classification (2010): Primary: 03D78; Secondary: 68Q17

1

ar
X

iv
:1

40
9.

11
63

v1
 [

m
at

h.
L

O
]

 3
 S

ep
 2

01
4

2 Daniel S. Graça, Ning Zhong

It is known that these domains are non-computable in some instances. For example,
by “gluing” different dynamics over different regions of the space, one may obtain Ck-
systems (even C∞-systems) with domains of attraction which encode non-computable
problems and which are thus non-computable [22], [33].

On the other hand, it is also known that for hyperbolic rational functions, there are
(polynomial-time) algorithms for computing basins of attraction and their complements
(Julia sets) with arbitrary precision [3]; in other words, basins of attraction and Julia sets
of hyperbolic rational functions are (polynomial-time) computable.

So the question is, where does the boundary between computability and non-computability
of basins of attraction lie? In particular, the question of computability remains open for
(analytic) non-rational systems. Analyticity imposes a strong degree of regularity, which
is higher than that of C∞ continuity, since the local behavior of an analytic function deter-
mines how it behaves globally; thus no “gluing” of different dynamics in different regions
is allowed. Another common requirement of regularity found in dynamical systems the-
ory is hyperbolicity (see e.g. [25]). In short, hyperbolicity requires that near attractors
(stationary states), the flow must converge to these attractors at a (at least) uniform rate to
avoid pathological behavior due to a convergence which is “too slow”. In particular, if we
consider the simplest type of attractors, i.e. asymptotically stable equilibrium points, hy-
perbolicity implies that near an (hyperbolic) asymptotically stable equilibrium point the
flow must converge to this point at a rate which is equal to or greater than e−λt, for some
contraction rate λ > 0.

In this paper we show that:

Main Theorem. There is an analytic and computable dynamical system with a com-
putable hyperbolic sink s such that the basin of attraction of s is not computable (techni-
cally more precise results are given in Theorem 2.5 and Corollary 2.7 below).

Thus our result implies that no algorithmic characterization exists, in general, for a
given basin of attraction even if an high degree of regularity (analicity + hyperbolicity) is
imposed on the system and even if only the simplest type of attractors (equilibrium points)
is considered.

In the case of discrete-time systems, we prove the result by encoding a well-known
non-decidable problem into the basin of attraction of s. In the case of continuous-time
systems, we prove the result by embedding a discrete-time system with a non-computable
basin of attraction into a continuous-time system. The standard suspension method (see
Smale [29], Arnold and Avez [1]) for embedding a discrete-time system into a continuous-
time system is not sufficient for our case; we instead develop a new method.

The structure of the paper is as follows. In Section 2 we briefly mention related work

Non-computable basins of attraction 3

and then discuss basic notions from dynamical systems and from computability with real
numbers. We also delve into our results in a more precise way (see Theorems 2.5 and
Corollary 2.7). Then in Section 3 we present two formulations of Theorems 2.5: one for
the discrete-time case and another for the continuous-time case. Each case will be proved
separately in Sections 4 and 5. Some proofs become quite technical, so we provide a brief
guide in Section 3.1.

2 Introduction

2.1 Related work

Analytic dynamical systems lie between polynomial and C∞ systems. As noted in the
summary, basins of attraction of dynamical systems generated by hyperbolic polynomi-
als are polynomial-time computable. On the other hand, it is shown in [33] that for C∞

dynamical systems, basins of attraction of hyperbolic sinks can be non-computable. Thus
the case of analytic systems is the cutoff point in terms of computability of basins.

By the main theorem of this paper, there is a dynamical system generated by an an-
alytic function f with a hyperbolic sink s such that the basin of attraction of s is non-
computable, even though for the corresponding systems generated by any initial finite
segment of the Taylor series of f , the basins of s are polynomial-time computable. This
seems a bit surprising since it is well known that, in contrast to the C∞ case, analytic
functions enjoy pervasive computability; for example, the sequence {f (n)} of derivatives
is computable if the computable function f is analytic but may fail to be so if f is only
C∞. On the other hand, the non-computability in the analytic case cannot be proved as for
the C∞ case, because the proof for the C∞ case makes crucial use of the fact that a non-
constant C∞ function can take a constant value on a non-empty open subset; such a func-
tion cannot be analytic. The idea underlying the proof of the C∞ case is that, starting with
a non-computable open set, one constructs two sequences of C∞ functions such that one
contracts on the open set and the other expands on the complement of the set. Then one
glues the two sequences together to produce a C∞ system such that the non-computable
open set gives rise to the desired non-computable basin [33]. This construction will not
work for analytic systems, for the local behavior of an analytic function determines how
it behaves globally. A completely different construction is developed in this paper in or-
der to show that basins of attraction can be non-computable, even in the case of analytic
systems.

An interesting related result can be found in [10], which studies the computability of
Julia sets defined by quadratic maps. The authors show that Julia sets are, in general, not
computable, although hyperbolic Julia sets are computable, in a very efficient manner (in
polynomial time) [8], [27]. This somehow suggests that hyperbolicity makes problems

4 Daniel S. Graça, Ning Zhong

computationally simpler. Since hyperbolicity is not enough to guarantee computability in
our case, it seems that computing basins of attraction may even be more challenging than
computing Julia sets. Note that hyperbolicity also makes the problem of computing basins
of attraction computationally simpler [33] (there are several degrees of non-computability:
it is possible to say that a non-computable problem is “harder” than another problem – cf.
[23], [24]), but not enough so that computability is achieved.

2.2 Dynamical systems and hyperbolicity

We recall that there are two broad classes of dynamical systems: discrete-time and continuous-
time (for a general definition of dynamical systems, encompassing both cases, see [17]). A
discrete-time dynamical system is defined by the iteration of a map f : Rn → Rn, while a
continuous-time system is defined by an ordinary differential equation (ODE) x′ = f(x).
Common to both classes of systems is the notion of trajectory: in the discrete-time case,
a trajectory starting at the point x0 is the sequence

x0, f(x0), f(f(x0)), . . . , f [k](x0), . . .

where f [k] denotes the kth iterate of f, while in the continuous time case it is the solution
to the following initial-value problem{

x′ = f(x)
x(0) = x0

Trajectories x(t) may converge to some attractor. Attractors are invariant sets in the sense
that if a trajectory reaches an attractor, it stays there. Given an attractor A, its basin of
attraction is the set

{x ∈ Rn| the trajectory starting at x converges to A as t→∞}

Attractors come in different varieties: they can be points, periodic orbits, strange attrac-
tors, etc. In this paper we focus on the simplest type of attractors: single points (also called
fixed points). If there is a neighborhood around a fixed point s which is contained in the
basin of attraction of s (i.e. every trajectory starting in this neighborhood will converge to
s), then s is called a sink.

Among smooth dynamical systems, hyperbolic systems play a central role. In the case
of a sink s, hyperbolicity amounts to requiring a uniform rate of convergence at which
every trajectory starting in a neighborhood of s converges to s. More details can be found
in [17].

2.3 Introduction to computability over real numbers

Classical Computability. At the heart of computability theory lies the notion of algo-
rithm. Roughly speaking, a problem is computable if there is an algorithm that solves it.

Non-computable basins of attraction 5

For example, the problem of finding the greatest common divisor of two positive integers
is computable since this problem can be solved using Euclid’s algorithm. On the other
hand, there are many non-computable problems. For example, Hilbert’s 10th problem is
not solvable by any algorithm. But how can we show that no algorithm solves this prob-
lem? To answer such questions, the notion of algorithm has to be formalized. The formal
notion of algorithm makes use of Turing machines (see e.g. [28], [23] for more details),
which were introduced in 1936 by Alan Turing [30]. The very simple behavior of a Turing
machine (TM for short), which mimics human beings executing an algorithm, and a se-
ries of equivalence results between different models of computation led to the following
conclusion (Church-Turing thesis): problems solvable by algorithms (ordinary comput-
ers) are exactly those solvable by Turing machines. Notice that the Church-Turing thesis
cannot be proved – it simply formalizes the notion of algorithm – but it is unanimously
accepted by the scientific community.

Classical computability is carried out over discrete structures. Formal definitions usu-
ally involve strings of symbols (e.g. binary words), but they can be stated equivalently
using natural numbers as follows. Let N, Z, Q, and R denote the set of natural numbers
(including 0), integers, rational numbers, and real numbers, respectively.

Definition 2.1. A function f : Nk → N is computable if there is a Turing machine that
on input (x1, . . . , xk) ∈ Nk outputs the value f(x1, . . . , xk).

In many applications, given an input (x1, . . . , xk) ∈ Nk, we are only interested in a
“yes/no” output. This can be done, without loss of generality, by assuming that f(x1, . . . , xk) =

1 is a “yes” answer and f(x1, . . . , xk) = 0 is a “no” answer.

Computing with real numbers. In order to study computability problems over Rn,
one has to generalize the previous notions. Turing, in his seminal paper [30], already
provided an approach: code each real number as its decimal expansion and then carry out
computations over this symbolic representation. Although simple, this approach does not
work as noted by Turing himself in a later paper [31], since trivial functions like x 7→ 3x

would not be computable in this setting. This is because the decimal representation does
not preserve the topology of the real line: 0.9999 . . . and 1.0000 . . . are far from each other
if considered as strings of symbols, yet they represent the same real number. Details can
be found in [32], [7].

Nevertheless, the previous idea can still be used if we use a representation of real num-
bers that preserves the topology of the real line. Here lies the foundations for computable
analysis, which draws on both computability theory and topology, and allows one to com-
pute over topological spaces in addition to N. In particular, for R, among many different
equivalent possibilities, we use the following formulation: the function φ : N→ Q is an
oracle (also called ρ-name) for a real number x if |x− φ(n)| ≤ 2−n for all n ∈ N. In

6 Daniel S. Graça, Ning Zhong

other words, φ provides rationals which approximate x within any desired precision. We
can then define oracle Turing machines by giving the TM access to an oracle: at any step
of the computation the TM can query the value φ(n) for any n. In this way one introduces
computability with real numbers.

Definition 2.2. A number x ∈ R is computable if there is a TM which computes an oracle
φ for x: on input n, the machine outputs φ(n).

Intuitively, a real number x is computable if there exists a TM which can compute
a rational approximation of x to any desired precision. All familiar real numbers (ratio-
nal numbers, algebraic numbers, e, π, etc.) are computable. Notice that there are only
countably many Turing machines. Thus there are only countably many computable real
numbers.

What about computable functions? From the above considerations, one cannot expect
that a computable function f : R→ R generates only computable real numbers. What we
can expect is that there is an oracle TM such that, given an oracle coding the input, the
TM outputs f(x).

Definition 2.3. A function f : R→ R is computable if there is an oracle TM M such that
if φ is an oracle for x, then Mφ computes an oracle for f(x): on input n, Mφ outputs a
rational q such that |q − f(x)| < 2−n.

Thus a function is computable if, given an oracle for the input, one can compute the
output to any desired precision. Elementary functions from analysis are computable func-
tions. These notions can be extended in an obvious way to Rn.

Finally, because we will study the computability of basins of attraction of hyperbolic
sinks (which are open sets of Rn), we need to define computable open subsets of Rn. This
can be done by encoding the set into an oracle (using the bases which generate the upper
and lower Fell topology) and showing that there exists a TM which computes this oracle
(see [7] for more details). However, for practical reasons, we use instead the following
equivalent definition.

Definition 2.4. An open set O ⊆ Rn is computable if the distance function dRn\O : Rn →
R is computable, where

dRn\O(x) = inf
y∈Rn\O

d(x, y).

Intuitively an open set O is computable if O can be generated by a computer with
arbitrary precision. In this paper we’ll show the following result.

Theorem 2.5 (main result). There exists a dynamical system defined by an analytic and
computable function f , which admits a computable hyperbolic sink s, such that the basin
of attraction of s is not computable.

Non-computable basins of attraction 7

We’ll prove two versions of this result: one for discrete-time systems and the other for
continuous-time systems (Theorems 3.1 and 3.2 of Section 3).

Notice that computability does not need to be restricted to N or R. Given a topological
space X and a suitable coding of elements of X in the form of oracles (which depends on
the topology ofX), one can define computable elements ofX similarly to computable real
numbers. Using the same idea, one can futher define computable functions f : X → Y .
An important result is the following (cf. [7, Corollary 4.19]).

Proposition 2.6. If x ∈ X and f : X → Y are computable, then f(x) is computable.

In particular, if x is computable, but f(x) is not, then f cannot be computable. Thus,
whenX is taken to be a set of real functions, Theorem 2.5 implies the following corollary.

Corollary 2.7. There is no algorithm which on input (f, s), where f is a real analytic
function and s is a hyperbolic sink of the dynamical system defined by f , computes the
basin of attraction of s.

In fact, Theorem 2.5 is stronger than Corollary 2.7. Corollary 2.7 ensures that no sin-
gle algorithm can be used to compute the basin of attraction for any input (f, s). This is
known as uniform computability. A weaker version is non-uniform computability. In the
latter case, we require again an input (f, s), with the difference being that different algo-
rithms can be used for different inputs. But Proposition 2.6 also holds for non-uniform
computability and thus a non-uniform version of Corollary 2.7 also holds.

It should be noted that computational problems about the long-term behavior of dy-
namical systems have been discussed in [4]. Their notion of computability is, however,
quite different from the one used here. They allow the use of infinite precision calculations
but require that exact sets are generated. Under this model simple sets like the epigraph
of the exponential E = {(x, y) ∈ R2|y ≥ ex} are not computable [6]. Thus in this model
results do not correspond to computing practice [9].

3 Main results

The main theorem, Theorem 2.5, has the following two versions:

Theorem 3.1 (discrete-time case). There is an analytic and computable function f :

R3 → R3 which defines a discrete-time dynamical system with the following properties:

1. It has a computable hyperbolic sink s;

2. The basin of attraction of s is not computable.

8 Daniel S. Graça, Ning Zhong

Theorem 3.2 (continuous-time case). There is an analytic and computable function g :

R6 × (−1,+∞) × (−1,+∞) → R8 which defines a continuous-time dynamical system
via an ODE y′ = g(y) with the following properties:

1. It has a computable hyperbolic sink s;

2. The basin of attraction of s is not computable.

We will prove the two theorems constructively in the sense that the functions f and g
are explicitly constructed.

3.1 Road map to results

The proofs will at some point become quite involved. For this reason we provide a brief
guide which may help the reader to keep track of results.

In Section 4 we prove Theorem 3.1. The idea underlying the proof is to encode a
non-computable problem into the basin of attraction of s. Thus, if one can compute the
basin of attraction of s, then one can algorithmically solve a non-computable problem, a
contradiction.

The problem which is encoded is the famous Halting problem. We encode an input x0

of the Turing machine into a triple in N3, the Turing machine itself into a map f : R3 →
R3, and the halting configuration into a hyperbolic sink s ∈ N3 (assuming w.l.o.g. that the
halting configuration is unique). Thus the problem of determining whether a trajectory
starting at x0 will converge to s is equivalent to the Halting problem and is therefore not
computable.

Although conceptually simple, this idea is not so easy to implement in practice. There
are several issues to be dealt with. To begin with, the value of f(x) depends upon only
a finite amount of information carried by x. Thus one has to extract this information
first (using the tools of Section 4.2; the exact procedure is explained in the beginning of
Section 4.3.2) and then compute f(x) based on this finite amount of information. Here
techniques of interpolation are employed (Section 4.3.2).

Moreover, for technical reasons, f needs to be a contraction near integers, that is,

f(B(α, ε)) ⊆ B(f(α), ε) (3.1)

for some fixed ε > 0, where α ∈ N3 and B(α, ε) = {x ∈ R3| ‖x− α‖ < ε}. Thus we
need to further study how error propagates through f and fine-tune f whenever necessary
(using functions defined in Section 4.2) so that f satisfies (3.1). The details are given in
Sections 4.3.2 and 4.4.

The continuous-time case is proved differently. The key idea underlying the proof is to
embed the previous discrete-time dynamical system into a continuous-time system such

Non-computable basins of attraction 9

that s is still a hyperbolic sink and its basin of attraction remains unchanged through the
embedding. Thus the basin of attraction of s remains non-computable in the continuous-
time system. The challenge in this approach is to obtain such an embedding (see Sections
5.1, 5.2 and 5.3 for the construction of an appropriate embedding). Assuming the exis-
tence of such an embedding, Theorem 3.2 is proved in Section 5.6. The remainder of this
road map deals with Sections 5.1, 5.2, 5.3, 5.4, and 5.5. The reader may prefer to skip
these sections in a first reading.

There is a standard technique for embedding discrete-time systems into continuous-
time systems, called suspension [1], [29]. This procedure relies on equivalence relations
and is ill suited for our purposes. Indeed, if we pick a discrete-time dynamical system
defined by an analytic and computable function f : Rn → Rn and f admits a hyperbolic
sink s, then using the suspension method would yield a continuous-time system x′ = g(x)

with one or more or all of the following undesirable features:

(i) g may be non-analytic (discontinuities in g(k), the kth order derivative of g, may
occur);

(ii) g may be non-computable (the procedure is not constructive);
(iii) s may be part of an attractor, but this attractor may not be a sink (it may be, for

example, a cycle);
(iv) even if s is a fixed point, there is no guarantee that it is hyperbolic (in the continuous-

time system).

In this paper, we develop a technique for the embedding that is different from the
suspension method. Our idea is based on the techniques developed in [5], [13], [11], [12].
We observe that if a discrete-time system defined by f : Rn → Rn is embedded into a
continuous-time system y′ = g(y), then the trajectory y(t), starting at x0, must arrive at
the states f(x0), f(f(x0)), and so on at times t = 1, 2, . . .; that is, y(0) = x0, y(1) =

f(x0), y(2) = f(f(x0)), This requirement of y(k) = f [k](x0) for all k ∈ N is what
makes the embedding difficult - there are infinitely many conditions, y(k) = f [k](x0), to
be met. The idea used for tackling the problem is to enlist a second companion system
and use, alternatively, one system to guide the trajectory of the other moving forward,
satisfying one requirement at a time. Let us look into the details a bit more. To embed the
discrete-time dynamical system defined by f : Rn → Rn into a continuous-time system,
we design a continuous-time system y′ = g(y) that is defined on R2n. The system has
two components yA and yB, both of dimension n. The components yA and yB both start
at value x0 for t = 0. In the time interval [0, 1/2], yB is unchanged (serving as a memory)
with the constant value x0 and the values of yA are updated so that yA = f(yB) = f(x0)

at t = 1/2. In the next half-unit time interval [1/2, 1], yA serves as a memory taking the
constant value f(x0), while the values of yB are updated so that yB = yA at t = 1, i.e.
yB = f(x0). Thus at t = 1, one has yA(1) = yB(1) = f(x0). The procedure is then

10 Daniel S. Graça, Ning Zhong

0.5 1 1.5 2 2.5

1

2

3

4

5

Figure 1: Simulation of the iteration of the map f(n) = n2 +1 via an ordinary differential
equation, where n is initially 0. The solid line represents the variable yA and the dashed
line represents yB.

repeated in the subsequent time intervals [1, 2], [2, 3], . . ., which leads to the following
desired property:

yA(2) = yB(2) = f(f(x0)), yA(3) = yB(3) = f(f(f(x0))),

The procedure is graphically depicted in Fig. 1.

The subtlety is to always have at each moment a component which acts as a “memory”
of the last value computed (see Section 5.1 for details). Using this technique, one can
embed the discrete-time dynamical system defined by f : R3 → R3 into a continuous-
time system y′ = g(y), where g : R6 → R6. Moreover, if f is computable, so is g. Thus
the problem (ii) above is solved satisfactorily. However, the remaining problems (i), (iii)
and (iv) have yet to be addressed. In particular, because the components of g vary in some
open time intervals but take constant values in others, g cannot be analytic.

In this paper, we refine the previous embedding so that it becomes analytic (if we start
with an analytic function f); the problem (i) is then subsequently solved. We believe that
this cannot be done in general, because the propagation of error due to a slight perturbation
on x0 (thus on f(x0) as well) may alter the behavior of y in the long run, resulting in yA(k)

being far different from f [k](x0) for large k’s. Fortunately, in our case, the function f

satisfies the inclusion (3.1) near all integers, which in turn implies that a sufficiently good
approximation to x0 (f(x0), respectively) can be used to generate a trajectory that is a
good enough approximation to the entire trajectory defined by f and starting at x0. Using
the crucial inclusion (3.1), one can allow yA and yB to be almost constant (but analytic)
instead of requiring them to be constant in some time intervals. Of course, we’ll then have
yA(1) ' yB(1) ' f(x0), but since the propagation of error through the trajectory is well

Non-computable basins of attraction 11

contained due to (3.1), we will obtain

yA(2) ' yB(2) ' f(f(x0)), yA(3) ' yB(3) ' f(f(f(x0))), . . . (3.2)

Moreover the new system y′ = g(y) will still be computable and analytic (the construction
is presented in Section 5.2). At this point, problems (i) and (ii) are taken care of.

It remains to address problems (iii) and (iv). Notice that if x0 belongs to the basin
of attraction of the discrete-time dynamical system, then the previous embedding only
ensures that the (continuous-time) trajectory starting at x0 will wander around s due to
(3.2). It does not guarantee though that s is a sink nor does it guarantee hyperbolicity.
Hyperbolicity of s (assuming that s is indeed a sink) can be shown by demonstrating that
the Jacobian of the system at s admits only eigenvalues with negative real part (Section
5.5), thus solving problem (iv). The last problem, problem (iii), is solved by changing
the dynamics of y′ = g(y) so that all points in B(s, 1/4) will be converging to s and,
during the changing process, problems (i), (ii), and (iv) are kept under control and do not
resurface. This guarantees that s is a hyperbolic sink and therefore we have our desired
embedding. The latter result is proved in Section 5.3. The proof uses various techniques
and spans several pages. The reader may prefer to skip it on a first reading. Finally, Section
5.4 shows that the system which satisfies (i)-(iv) still simulates a Turing machine, which
guarantees non-computability of the basin of attraction for the hyperbolic sink.

4 The discrete-time case

Recall that Turing machines emulate computer programs. One can always stop the exe-
cution of a program and record the value of the variables and the line where the program
halted. This recorded information is called a configuration in the context of TMs and will
be used below. It has all the information we need to continue the computation, if we wish.

Each time we start a new computation, it starts on some special class of configurations
– the initial configurations. The computation goes on until one eventually reaches a halt-
ing configuration where the TM stops its execution (it halts – which may never happen,
i.e. the TM may run forever). Let M be a universal Turing machine (the precise defini-
tion of a universal Turing machine is not important here, but can be found in [28]). The
Halting problem can be stated as follows: “Given some initial configuration x0 of M , will
the computation reach some halting configuration?” This problem is well known to be
non-computable (cf. [28]). Without loss of generality, we may assume that a TM has just
one halting configuration (e.g. just before ending, set all variables to 0 and go to some
special line with a command break; thus the final configuration is unique).

Configurations can be encoded as points of N3 (see Section 4.3.1). Since essentially
what a TM does is to update one configuration to the next configuration and so on, until

12 Daniel S. Graça, Ning Zhong

the TM halts, associated to each TM M there is a transition function fM : N3 → N3

which describes how M behaves. To prove the main theorem in the discrete-time setting,
we need to extend fM to an analytic function f : R3 → R3 which is non-expanding
around the inputs of the transition function fM , i.e., f maps points near a configuration
x ∈ N3 to points near f(x).

The simulation of Turing machines with analytic maps was first studied in [19]. A
different method was used in [15] to simulate Turing machines with analytic maps which
has the advantage of presenting some robustness to perturbations. This robustness prop-
erty can then be used to simulate of Turing machines in continuous time through the use
of an ODE [15]. The results shown there guarantee that points near a configuration x will
be mapped into some bounded vicinity of f(x), which, of course, does not ensure non-
expansiveness. More concretely, it was proven in [15] that for each Turing machine M ,
there exists an analytic map f : R3 → R3 which simulates it (meaning the restriction of
f to N3 is the transition function of M) with the following property:

‖y − x‖ ≤ 1/4 ⇒ ‖f(y)− f(x)‖ ≤ 1/4 (4.1)

where x ∈ N3 codes a configuration. In this paper, the analytic map f needs to be non-
expanding in order to have the halting configuration as a sink; thus f must satisfy the
following stronger property: for every 0 ≤ ε ≤ 1/4, the following holds true:

‖y − x‖ ≤ ε ⇒ ‖f(y)− f(x)‖ ≤ ε.

To achieve this purpose, we adapt the results from [15]. In the remainder of this paper we
take

‖(x1, . . . , xk)‖ = ‖(x1, . . . , xk)‖∞ = max
1≤i≤k

|xi| .

The following result will be proved in Section 4.4.

Theorem 4.1. Let M be a Turing machine, and let fM : N3 → N3 be the transition
function of M . Then fM admits an analytic and computable extension f : R3 → R3 with
the following property: there exists a constant λ ∈ (0, 1) with the property that for any
0 < ε ≤ 1/4, if x ∈ N3 is a configuration of M , then for any y ∈ R3,

‖x− y‖ ≤ ε =⇒ ‖f(x)− f(y)‖ ≤ λ · ε. (4.2)

In the previous proposition we have assumed that if x is a halting configuration, then
fM(x) = x, i.e. x is a fixed point of f .

Lemma 4.2. Let f : Rn → Rn be a map with a fixed point x0, and let B(x0, r) be
a neighborhood of x0 with r > 0. If there is a constant λ ∈ (0, 1) such that for all
x ∈ B(x0, r),

‖f(x)− f(x0)‖ ≤ λ ‖x− x0‖

Non-computable basins of attraction 13

then x0 is a hyperbolic sink of f . In particular, no eigenvalue of Df(x0) has absolute
value larger that λ.

Proof. Since f is analytic, we know (see e.g. [20, XVI, §2]) that around the fixed point
x0,

f(x) = f(x0) +Df(x0)(x− x0) + ‖x− x0‖ o(x− x0) (4.3)

where o(y)→ 0 as y → 0. Let ~v be any vector in Rn, and let α be a positive real number.
Then the last equation yields (taking x− x0 = α~v)

Df(x0)(α~v) = f(x0 + α~v)− f(x0)− ‖α~v‖ o(α~v) ⇒
α ‖Df(x0)~v‖ ≤ ‖f(x0)− f(x0 + α~v)‖+ α ‖~v‖ ‖o(α~v)‖ ⇒

‖Df(x0)~v‖ ≤ λ ‖α~v‖
α

+ ‖~v‖ ‖o(α~v)‖ ⇒

‖Df(x0)~v‖ ≤ (λ+ ‖o(α~v)‖) ‖~v‖

The last inequality must be true for all positive α. Since the left-hand side of the inequality
does not depend on α, when α→ 0 we get

‖Df(x0)~v‖ ≤ λ ‖~v‖ (4.4)

The last inequality implies that no eigenvalue of Df(x0) can have absolute value larger
than λ < 1. In particular, this implies that the point x0 is a hyperbolic sink for the map
f .

Using these two results, we can now prove Theorem 3.1.

of Theorem 3.1. Let M be a universal Turing machine. Suppose, without loss of general-
ity, that M admits only one halting configuration s ∈ N3. Since s ∈ N3, s is a computable
real number. Let fM be the transition function ofM and let f be the map that simulatesM
according to Theorem 4.1. Then s is a fixed point of f and, by Theorem 4.1 and Lemma
4.2, it is a hyperbolic sink. Denote as Wfinal the basin of attraction of s. Let x0 ∈ N3 be
an initial configuration of M . We note that M halts on x0 iff x0 ∈ Wfinal. Moreover, from
Theorem 4.1, any trajectory starting at a point inB(x0, 1/4) = {z ∈ R3| ‖x0 − z‖ < 1/4}
will also converge to s if M halts on the initial configuration x0 and will not converge to
s if M does not halt on x0. In other words, B(x0, 1/4) ⊆ Wfinal if M halts on x0 and
B(x0, 1/4) ⊆ R3 −Wfinal if M does not halt on x0.

We recall that Wfinal is an open subset of R3. Now suppose that Wfinal is a com-
putable set. Then the distance function dR3\Wfinal

is computable. Therefore we can com-
pute dR3\Wfinal

(x0) with a precision of 1/10 yielding some rational q. We observe that
either dR3\Wfinal

(x0) = 0 if x0 /∈ Wfinal, or else dR3\Wfinal
(x0) ≥ 1/4 if x0 ∈ Wfinal.

In the first case, q ≤ 1/10, while in the second case, q ≥ 1/4 − 1/10 = 3/20. Now we

14 Daniel S. Graça, Ning Zhong

have an algorithm that solves the halting problem: on initial configuration x0, compute
dR3\Wfinal

(x0) within a precision of 1/10 yielding some rational q. If q ≤ 1/10, then
M does not halt on x0; if q ≥ 3/20, then M halts on x0. This is of course a contradic-
tion to the fact that the halting problem is non-computable. Therefore Wfinal cannot be
computable.

4.1 Brief overview of the proof

From the previous section, it is clear that what remains to be done is to prove Theorem 4.1.
Since the result in this theorem is similar to the simulation result of TMs with analytic
maps of [15], it is natural that our proof uses techniques similar to those used in that
paper. The main difference is that in each iteration of the map we require that (4.2) holds
for Theorem 4.1, while in [15] only the weaker condition (4.1) is required.

The problem in obtaining (4.2) from (4.1) is that in the construction used in [15],
the error ‖f(x)− f(y)‖ depends not only on the initial error ‖x− y‖ but also on the
magnitude of x. An involved construction was used in [15] to ensure that, despite this
dependence, the magnitude of the error ‖f(x)− f(y)‖ would not exceed 1/4 (this value
is fixed a priori).

Here we have to improve the previous construction so that ‖f(x)− f(y)‖ is not bounded
by an error given a a priori, but rather by the dynamic quantity ‖x− y‖. This is achieved
by introducing a new function ξ3 (see Section 4.2) which will then be used to modify the
problematic step 5 (this step is at the source of the problem mentionned above) in Section
4.4.

4.2 Some special functions used in the construction

We need to construct a map f that satisfies Theorem 4.1. In particular, f must satisfy
condition (4.2). This can be achieved by requiring the map to “contract” around integer
values with the help of several special functions: σ, l2, ξ2, and ξ3. These functions are
described below and all of them share the common property of being contractions either
around all integers or around some particular integers.

The first special function, σ : R→ R, is defined by (cf. Fig. 2)

σ(x) = x− 0.2 sin(2πx) (4.5)

The function σ is a uniform contraction in a neighborhood of integers as the following
proposition shows.

Proposition 4.3. ([15]) Let ε ∈ [0, 1/4). Then there is some contracting factor λ1/4 ∈
(0, 1) such that for any δ ∈ [−1/4, 1/4], |σ(n+ δ)− n| < λ1/4δ for all n ∈ Z.

Non-computable basins of attraction 15

-2 -1 1 2

-2

-1

1

2

Figure 2: Graphical representation of the function σ.

For instance (see [15]), we can take λ1/4 = 0.4π − 1 ≈ 0.256637. It follows from the
proposition that for any n ∈ Z, every point x ∈ B(n, 1/4) will converge to n at a rate of
λ1/4 under the application of σ:

|σ[k](x)− n| < λk1/4δ

where x = n+δ, |δ| < 1/4, and σ[k](x) is the kth iterate of σ. Note that the contraction rate
is fixed a priori (it depends on ε) and it is the same for all n ∈ Z. In some situations, this
“fixed a priori” is undesirable, for we may need to specify how fast a point of B(n, 1/4)

should converge to n under the application of some special function. This is where the
function l2 enters. However, this comes at a cost: the “dynamic” contraction rate is only
valid around the integers 0 and 1. In comparison, σ allows a static contraction rate around
every integer n ∈ Z.

Let us introduce the second special function l2. The following result was proved in
[15].

Proposition 4.4. Let l2 : R2 → R be given by l2(x, y) = 1
π

arctan(4y(x − 1/2)) + 1
2
.

Suppose also that a ∈ {0, 1}. Then

|a− l2(a, y)| < 1

y

for any a, y ∈ R satisfying |a− a| ≤ 1/4 and y > 0.

Thus, l2 enjoys “dynamic” contraction rates around the integers 0 and 1. However,
it also has an undesirable feature: 0 and 1 are not fixed points of l2. For this reason we
introduce a third special function ξ2, which is built upon l2. The function ξ2 inherits the
same “dynamic” contraction rates around 0 and 1 from l2, but it has both 0 and 1 as its
fixed points, i.e. ξ2(0, y) = 0 and ξ2(1, y) = 1 for y > 0.

16 Daniel S. Graça, Ning Zhong

We now describe the function ξ2. It is easy to see that if n is an integer, then

0 ≤ sin2(π(n+ ε))

4
≤ ε (4.6)

for 0 ≤ ε < 1/2. We define ξ2 : R× R+ → R by the formula:

ξ2(x, y) = l2

(
x,

4y

sin2(πx)

)
(4.7)

where R+ is the set of all positive real numbers. For y > 0 and x ∈ Z, ξ2(x, y) is
defined to be the analytic continuation of the right-hand side of (4.7). It is readily seen
that ξ2(0, y) = 0 and ξ2(1, y) = 1 for all y > 0.

The last special function to be defined is called ξ3, which is built upon ξ2. The new
function ξ3 extends the behavior of ξ2 around 0 and 1 to include the number 2.

Proposition 4.5. Let ξ3 : R× R+ → R be given by

ξ3(x, y) = ξ2((σ(x)− 1)2, 3y) · (2ξ2(x/2, 3y)− 1) + 1

If a = 0, 1, 2 and |a− ā| ≤ ε ≤ 1/4, then for all y ≥ 2,

1. If ā = a, then ξ3(ā, y) = a;

2. If ā 6= a, then
|ξ3(ā, y)− a| ≤ ε

y

Proof. It is easy to verify (1). To prove (2), let us first note 0 < ξ2(x, y) < 1 for all x ∈ R
and y ∈ R+. Consider the case where a = 0 and a ∈ [−1/4; 1/4] (i.e. ε = 1/4). Then
|(σ(a)− 1)2 − 1| < 1/4 by Proposition 4.3, and by Proposition 4.4,

1− 1/y < ξ2((σ(a)− 1)2, y) < 1

Similarly, we conclude

−1 < 2ξ2(a/2, y)− 1 < −1 + 2/y

Since y ≥ 2, this implies

−1 < ξ2((σ(a)− 1)2, y)(2ξ2(a/2, y)− 1) < (1− 1/y)(−1 + 2/y)

or
0 < ξ2((σ(a)− 1)2, y)(2ξ(a/2, y)− 1) + 1 < 3/y

Hence, for a = 0, |a − ξ3(a, y)| < 1/y. The same argument applies to the cases a = 1

and a = 2.

Non-computable basins of attraction 17

4.3 Simulation of Turing machines with maps
4.3.1 Turing machines

To construct the function f defined in Theorem 4.1, we have to encode the behavior of a
given Turing machine as the iteration of f . To do this, we need to know a bit more about
TMs.

This subsection provides a more detailed description of Turing machines. It should
be noted though that, to keep this subsection short, the description given here is relatively
brief and adapted to the contents of this paper. It is not intended to give the intuition behind
the model nor to explain why it naturally relates to algorithms. The reader interested in
such aspects is referred to the excellent introductory textbook [28]. The Definition of TM
used here is not (but is equivalent to) the standard definition in the literature.

A Turing machine works on triples (configurations) from (Σ∪{B})∗× (Σ∪{B})∗×
{1, 2, . . . ,m} where Σ is a finite and non-empty set (set of symbols), B /∈ Σ (B is the
blank symbol), (Σ ∪ {B})∗ denotes the set of all finite sequences of elements from Σ ∪
{B}, andm ≥ 2 is some integer. For example, if Σ = {0, 1}, then (0, 1, 1, 0) ∈ Σ∗, which
is usually written as 0110 ∈ Σ∗. The set {1, 2, . . . ,m} is the set of states. The initial state
is 1 and the halting state is m. An input to a TM is an element w ∈ Σ∗; the corresponding
initial configuration is (w,B, 1). The Turing machine then updates the configuration

(an . . . a0, a−1 . . . a−k, q), ai, a−j ∈ Σ ∪ {B} (4.8)

according to some fixed rule that depends only on a0 (symbol read by the head) and the
state q. Depending only on the value a0 and q, the TM will perform the following tasks:

(i) update the state q to a new state q′ ∈ {1, 2, . . . ,m} (it may be q′ = q);
(ii) change the symbol a0 ∈ Σ ∪ {B} to a new symbol a′0 ∈ Σ ∪ {B} (it may be

a′0 = a0);
(iii) after performing step (ii) it may “move the head to left” (cf. [28]) yielding the new

configuration
(an . . . a1, a

′
0a−1 . . . a−k, q

′)

or it may “move the head to right,” yielding the new configuration

(an . . . a1a
′
0a−1, a−2 . . . a−k, q

′)

or it may “not move the head,” yielding the configuration

(an . . . a1a
′
0, a−1a−2 . . . a−k, q

′)

When performing step (iii), if we obtain a sequence of zero length in one of the first two
components of the configuration, we replace it by the symbol B.

18 Daniel S. Graça, Ning Zhong

Configurations are updated step-by-step with these rules until the state eventually
reaches the halting state m. In this case, the TM halts; we have reached a halting con-
figuration.

One can code configurations of Turing machines as elements of N3. It suffices to have
the number 0 correspond to the symbolB and numbers {1, . . . , l} to elements of Σ, where
l = #Σ (cardinality of Σ). Then the configuration (4.8) can be seen as a triple

(y1, y2, q) ∈ N3 (4.9)

where

y1 = a0 + a1l + ...+ anl
n (4.10)

y2 = a−1 + a−2l + ...+ a−kl
k−1

Thus, to define a Turing machine, it suffices to know how to go from one configuration to
the next one. In other words, a Turing machineM can be defined by its transition function
fM : N3 → N3.

4.3.2 Determining the next action - Interpolation techniques

Let us fix a Turing machine M in the remainder of Section 4. Recall that our ultimate
objective (Theorem 4.1) is to build an analytic and non-expanding map f : R3 → R3 that
simulates the behavior of the Turing machine M , or in other words, the restriction of f on
N3 is the transition function fM of the machine M .

We know that given a configuration (4.8), the computation of the next configuration
only depends on a0 and q. So, when given a configuration in the form of (4.9) as an input
to f , we have to extract the values of a0 and q in order to find what M (and therefore f) is
supposed to do. The value q is readily available as the last component of (4.9). However
a0 must be extracted from the first component y1.

Extracting the symbol a0. Consider an analytic extension ω̄ : R → R of the function
g : N → N defined by g(n) = nmod l (in the case where the tape alphabet of the TM
has l symbols). It follows from the coding (4.10) that ω̄(y1) = a0, i.e., ω̄ extracts a0

from y1. We also require ω̄ to be a periodic function, of period l, such that ω̄(i) = i, for
i = 0, 1, ..., l− 1. The function ω̄ can be constructed by using trigonometric interpolation
(cf. [2, pp. 176-182]), which produces an analytic as well as periodic computable function.
For example, if l = 10, then one can define ω̄ as follows:

ω̄(x) = α0 + α5 cos(πx) +

(
4∑
j=1

αj cos

(
jπx

5

)
+ βj sin

(
jπx

5

))
(4.11)

Non-computable basins of attraction 19

where

α0 = 9/2, α1 = α2 = α3 = α4 = −1, α5 = −1/2

β1 = −
√

5 + 2
√

5, β2 = −

√
1 +

2√
5

, β3 = −
√

5− 2
√

5, β4 = −

√
1− 2√

5

The construction ensures that, over integer arguments, ω̄ gives exact results; but it does
not guarantee that ω̄ is non-expanding around integers, which is needed for condition
(4.2). To meet the non-expanding requirement, we compose ω̄ with the “uniform contrac-
tion”function σ as follows: Let K be some integer such that

K ≥ max
x∈[0,l]

|ω̄′(x)| = max
x∈R
|ω̄′(x)|

where ω̄′ is the derivative of ω̄, and let k ∈ N be such that Kλk1/4 ≤ 1, where λ1/4 is given
in Proposition 4.3 (its exact value is given right after Proposition 4.3). Then define

ω = ω̄ ◦ σ[k] (4.12)

It follows that if y1 is given by (4.10), then ω(y1) = ω̄ ◦ σ[k](y1) = ω̄(y1) = a0 for
σ[k](y1) = y1; thus ω extracts a0 from y1. Moreover, ω has the desired non-expanding
property as shown below: for any y1 given by (4.10) and y ∈ R,

|y − y1| ≤ ε ≤ 1/4 =⇒
∣∣σ[k](y)− y1

∣∣ ≤ ελk1/4 =⇒∣∣ω̄ ◦ σ[k](y)− ω̄(y1)
∣∣ ≤ εKλk1/4 =⇒ |ω(y)− ω(y1)| ≤ ε

Encoding the next action to be performed. After knowing a0 and q, we now need to
encode the next action to be performed by the machine M , i.e. the new symbol to be
written in the configuration, the next move to be performed, and the new state. Using
Lagrange interpolation we can encode each of these performances by an analytic function.

Let Qj, Si : R→ R, 0 ≤ i ≤ l and 1 ≤ j ≤ m, be the functions defined as follows:

Qj(x) =
m∏
k=1
k 6=j

(x− k)

(j − k)
, Si(x) =

l∏
k=0
k 6=i

(x− k)

(i− k)

Note that

Qj(x) =

{
0, if x = 1, ..., j − 1, j + 1, ...,m
1, if x = i

and

Si(x) =

{
0, if x = 0, ..., i− 1, i+ 1, ..., l
1, if x = i

20 Daniel S. Graça, Ning Zhong

Suppose that on symbol i and state j, the state of the next configuration is qi,j. Then
the state that follows symbol a0 and state q is given by

qnext(a0, q) =
l∑

i=0

m∑
j=1

Si(a0)Qj(q)qi,j (4.13)

A similar procedure can be used to determine the next symbol to be written and the next
move. It is easy to see that qnext(a0, q) returns the state of the next configuration if the
machine M is in the state q reading the symbol a0. But again qnext may fail to be non-
expanding. This problem is dealt with similarly as in the previous case. Let K be some
integer such that

K ≥ max
s∈[−1,l+1]
q∈[0,m+1]

‖∇qnext(s, q)‖2

where∇qnext is the gradient of qnext and ‖·‖2 is the Euclidean norm, and let k ∈ N be such
that Kλk1/4 ≤ 1 (again λ1/4 is given by Proposition 4.3). Now we define qnext : R2 → R
as follows: qnext(x1, x2) = qnext(σ

[k](x1), σ[k](x2)) for all x1, x2 ∈ R. The function qnext
satisfies the following two conditions: for all i = 0, . . . , l, j = 1, . . . ,m, qnext(i, j) =

qnext(σ
[k](i), σ[k](j)) = qi,j and it is non-expanding as shown below:

‖(x1, x2)− (i, j)‖ ≤ ε ≤ 1/4 =⇒
∥∥(σ[k](x1), σ[k](x2))− (i, j)

∥∥ ≤ ελk1/4 =⇒∥∥qnext(σ[k](x1), σ[k](x2))− qnext(i, j)
∥∥ ≤ εKλk1/4 =⇒ ‖qnext(x1, x2)− qnext(i, j)‖ ≤ ε

4.4 Proof of Theorem 4.1

We need to construct an analytic and non-expanding map f that simulates the behavior
of the machine M (i.e. f is an extension of the transition function fM of M) and satisfies
the condition (4.2). As a first step, we construct a map f̃ : R3 → R3 that has all the
properties of the function f in Theorem 4.1, except that f̃ satisfies the condition (4.2)
with λ = 1 rather than the desired λ ∈ (0, 1). To remedy this deficiency, we make use of
the “uniform contraction” function σ again and let f(x1, x2, x3) = f̃(σ(x1), σ(x2), σ(x3))

for all x = (x1, x2, x3) ∈ R3. Then f would satisfy the condition (4.2) with λ = λ1/4 =

0.4π − 1. Since f̃ and σ are both analytic, so is f . Moreover, if f̃ simulates the machine
M , then so does f because f(n1, n2, n3) = f̃(σ(n1, σ(n2), σ(n3)) = f̃(n1, n2, n3) for
all (n1, n2, n3) ∈ N3. Thus f satisfies all conditions of Theorem 4.1 and the proof of
Theorem 4.1 is then complete.

The remainder of this subsection is devoted to construction of the function f̃ . We
assume 0 ≤ ε ≤ 1/4 throughout subsection 4.4.

1. Extract the symbol a0. Let a0 be the symbol being actually read by the machine
M . Then ω(y1) = a0, where ω is given by (4.12). Moreover, ω is analytic and
non-expanding around integers, as we have seen.

Non-computable basins of attraction 21

2. Encode the next state. The map qnext returns the next state and is non-expanding
around meaningful integer vectors, where an integer vector (s, q) is called mean-
ingful if s codes a symbol and q codes a state.

3. Encode the symbol to be written on the tape. Similarly to the state, we can define
a map snext : R2 → R such that snext(i, j) returns the next symbol to be written
on the tape if the machine M is reading symbol i and is in state j. This map is
non-expanding around meaningful integer vectors (i, j).

4. Encode the direction of the move for the head. Let h denote the direction of the
move of the head, where h = 0 indicates a move to the left, h = 1 a “no move”,
and h = 2 a move to the right. Then, similarly to the state, we can define a map
hnext : R2 → R such that hnext(i, j) returns the next move to be written on the tape
if the machine M is reading symbol i and is in state j. This map is non-expanding
around meaningful integer vectors (i, j).

5. Update the tape contents. In the absence of error, the “next value” of y1, ynext1 , is
given by Lagrange interpolation as a function of y1, y2, and q as follows (to simplify
notation, let us use snext and hnext to represent snext(ω(y1), q) and hnext(ω(y1), q)

respectively):

ynext1 (y1, y2, snext, hnext) = (l · (y1 + snext − ω(y1)) + ω(y2))
(1− hnext)(2− hnext)

2
(4.14)

+(y1 + snext − ω(y1))hnext(2− hnext) +
y1 − ω(y1)

l

hnext(1− hnext)
−2

When the head moves left, doesn’t move, or moves right, the first, second, or third
term on the right-hand side gives the “next value” of y1, respectively. A function
ynext2 giving the “next value” of y2 can be constructed in a similar way.

When y1 and y2 are given by (4.10) and q is a state (such y1, y2, and q are called
meaningful integers), ynext1 (y1, y2, snext, hnext) returns the exact value of y1 in (4.10) for
the next configuration. Unfortunately, there is a problem with this function: ynext1 is not
only expanding, but also in a way harder to deal with than in the case of qnext. Here is
why: let A : R2 → R be the simple product defined by A(x, y) = x · y. Then for any
ε, δ > 0, A(x+ ε, y+ δ)−A(x, y) = εδ+ εy+ δx. Thus, as x and y grow, the difference
A(x + ε, y + δ) − A(x, y) also grows, even when ε and δ are held constant. Since each
term on the right-hand side of (4.14) is a product containing y1, and y1 can grow arbitrarily
large, it follows that the map ynext1 is expanding around positive integers. Moreover, the
rate of expansion is non-uniform because the rate depends on the module of y1. Due to
this non-uniform expansion nature of ynext1 , in comparison with the deduction of qnext

22 Daniel S. Graça, Ning Zhong

from qnext, more work is needed in order to build a non-expanding “next value” function
ynext1 from ynext1 .

So we need to build a map ynext1 satisfying the following two conditions: for any
y1, y2, snext, hnext ∈ N, y1, y2, snext, hnext ∈ R with ‖(y1, y2, snext, hnext)−
(y1, y2, snext, hnext)

∥∥ < ε ≤ 1/4,

ynext1 (y1, y2, snext, hnext) = ynext1 (y1, y2, snext, hnext)

and ∥∥ynext1 (y1, y2, snext, hnext)− ynext1 (y1, y2, snext, hnext)
∥∥ ≤ ε (4.15)

that is, ynext1 gives the “next value”of y1 as ynext1 does and ynext1 is non-expanding. To build
this map, we use the interpolation idea behind (4.14), which of course has to be improved
for the reasons mentioned above.

Let us write ynext1 = Pstay + Pleft + Pright, where Pstay(y1, y2, snext, hnext) is a term
that is non-zero only when h = 1, i.e. when the head does not move, and its value is the
“next value” of y1 in this case. The other terms Pleft, and Pright are defined similarly. If
we can construct the parcels Pleft, Pstay, Pright such that∥∥Pleft(y1, y2, snext, hnext)− Pleft(y1, y2, snext, hnext)

∥∥ ≤ ε/3 (4.16)∥∥Pstay(y1, y2, snext, hnext)− Pstay(y1, y2, snext, hnext)
∥∥ ≤ ε/3∥∥Pright(y1, y2, snext, hnext)− Pright(y1, y2, snext, hnext)
∥∥ ≤ ε/3

then (4.15) is satisfied, i.e., ynext1 is non-expanding. Let us show how to obtain a parcel
Pstay with the above property. The same argument can be applied to the parcels Pleft and
Pright.

The parcel Pstay is constructed by modifying the term

(y1 + snext − ω(y1))hnext(2− hnext)

in (4.14) (we recall that this term gives the “next value”of y1 if the head doesn’t move).
We intend to define Pstay to be the product of two functions C(·, ·) and D(·), where
C(y, z) = σ[2](y) + σ[2](z) − σ[2](ω(y)) and D(x) = x(2 − x). Since 0 < ε < 1/4 and
|(y1 + snext − ω(y1))− (y1 + snext − ω(y1))| ≤ 3ε, the following holds true:

|C(y1, snext)− (y1 + snext − ω(y1))| ≤ 3ελ2
1/4 <

ε

5

In other words, the function C(·, ·) is non-expanding. Thus, to guarantee that the product
C(·, ·)D(·) is non-expanding, it suffices to find the condition that ensures non-expansiveness
of the function D. To this end, we observe that

max
x∈[−1,3]

|D′(x)| = 4

Non-computable basins of attraction 23

and it then follows that |D(w)−D(hnext)| ≤ 4δ provided |w − hnext| ≤ δ ≤ 1/4 (recall
that hnext ∈ {0, 1, 2}). In particular, since |C(y1, snext)| ≤ y1 + l and |D(hnext)| ≤ 1, the
following estimate holds:

|C(y1, snext)D(w)− C(y1, snext)D(hnext)| ≤ (4.17)

|C(y1, snext)(D(w)−D(hnext))|+ |D(hnext)(C(y1, snext)− C(y1, snext))| ≤

(y1 + l)4δ +
ε

5

Therefore, if we can compute some w = θ(hnext, y1) satisfying |w − hnext| ≤ δ with

(y1 + l)4δ ≤ ε

10
, or equivalently, δ ≤ ε

40(y1 + l)
(4.18)

then we can define Pstay as follows:

Pstay(y1, y2, snext, hnext) = C(y1, snext)D(θ(hnext, y1))

From (4.17) and (4.18) it follows that Pstay satisfies the second condition of (4.16); thus
Pstay is non-expanding.

It therefore remains to define a function θ that has the following property:∣∣θ(hnext, y1)− hnext
∣∣ ≤ ε

40(y1 + l)

From Proposition 4.5 and the facts that
∣∣hnext − hnext∣∣ ≤ ε and hnext ∈ {0, 1, 2}, it

becomes clear that we can make use of the special function ξ3 to get the desired function
θ as follows:

θ(hnext, y1) = ξ3(hnext, 40(y1 + l))

With θ defined as above, Pstay is non-extending. Moreover, we observe that

Pstay(y1, y2, snext, hnext) = C(y1, snext)D(θ(hnext, y1)) = ynext1 (y1, y2, snext, hnext)

since σ[2](n) = n for any n ∈ N and ξ3(hnext, 40(y1 + l)) = hnext; thus the first condition
imposed on ynext1 is also satisfied.

We now have all the pieces needed to build the map f̃ : R3→ R3 mentioned at the
beginning of this section. It is defined as follows:

f̃(y1, y2, q) = (ynext1 (y1, y2, snext(ω(y1), q), hnext(ω(y1), q)),

ynext2 (y1, y2, snext(ω(y1), q), hnext(ω(y1), q)),

qnext(ω(y1), q))

It is also easy to see that f̃ and therefore f are both computable (they are defined by
composing standard computable functions and some of their analytic continuations, and
therefore are computable; see [26], [7]).

24 Daniel S. Graça, Ning Zhong

5 The continuous-time case

Now that we have proved Theorem 3.1, we proceed to prove Theorem 3.2. To construct the
system y′ = g(y) of Theorem 3.2, the idea is to embed the discrete-time system defined
in Theorem 3.1 in a continuous-time system, as we noted in Section 3.1. We strongly
suggest that the reader use Section 3.1 as a guide for the next sections. Section 5.1 is
basically material from [5], [13], [11], [12], which is used as a building block for Section
5.2 which is material from [15]. Those sections will provide enough background to prove
the completely new results of Sections 5.3, 5.4, and 5.5.

5.1 Simulations of Turing machines with ODEs - non-analytic case

In this subsection we show how to iterate a map from integers to integers with smooth
(but non-analytic) ODEs. By a smooth ODE we mean an ODE

y′ = g(t, y) (5.1)

where g is of class Ck for 1 ≤ k ≤ ∞. This construction will be refined later (Subsection
5.2) to include the analytic case. For the non-analytic case, we make use of the construc-
tion presented by Branicky in [5], but following the approach of [13], [11], [12], [15],
which allows iteration of a map with a smooth ODE. We say that an ODE y′ = g(t, y)

iterates a map f if |y(k, y0) − f [k](y0)| < γ, k ∈ N, for some γ > 0, where y(t, y0)

is the solution to the initial-value problem y′ = g(t, y) and y(0) = y0. Note that if we
iterate the map given in Theorem 4.1 with a smooth ODE, then this ODE simulates a TM
simultaneously.

The construction that allows one to iterate a map with a smooth ODE is given below
(Construction 5.3). It is preceded by two auxiliary results (Constructions 5.1 and 5.2). For
simplicity, the constructions are presented on R.

The first construction, Construction 5.1, presents an ODE whose trajectories target
a given value at a specified time, whatever the initial states. This is needed later, for
example, to update yA to the targeted value f(yB) at time t = 1/2, as the reader may
recall from Section 3.1.

Construction 5.1. Consider a point b ∈ R (the target), some γ > 0 (the targeting error),
and times t0 ≥ 0 (departure time) and t1 (arrival time), with t1 > t0. Then we obtain an
initial-value problem (IVP) defined with an ODE (5.1), where g : R2 → R, such that the
solution y satisfies

|y(t1)− b| < γ (5.2)

independent of the initial condition y(t0) ∈ R.

Non-computable basins of attraction 25

Let φ : R → R+
0 be some function satisfying

∫ t1
t0
φ(t)dt > 0 and consider the follow-

ing ODE

y′ = c(b− y)3φ(t) (5.3)

where c > 0. We note that R+
0 = [0,∞) is contained in the interval of existence of

any solution to (5.3), regardless of the initial states. There are two cases to consider: (i)
y(t0) = b, (ii) y(t0) 6= b. In the first case, the solution is given by y(t) = b for all t ∈ R
and (5.2) is trivially satisfied. For the second case, note that (5.3) is a separable equation,
which can be explicitly solved as follows:

1

(b− y(t1))2
− 1

(b− y(t0))2
= 2c

∫ t1

t0

φ(t)dt =⇒

1

2c
∫ t1
t0
φ(t)dt

> (b− y(t1))2 (5.4)

Hence, (5.2) is satisfied if c satisfies γ2 ≥ (2c
∫ t1
t0
φ(t)dt)−1 i.e., if

c ≥ 1

2γ2
∫ t1
t0
φ(t)dt

(5.5)

Notice that, in the construction above, there is an approximation error γ when ap-
proaching the target. This error can be removed using the function r defined in the fol-
lowing construction.

Construction 5.2. We obtain an IVP defined with an ODE (5.1), where g : R2 → R,
such that the solution r satisfies the condition below (cf. Fig. 3):

r(x) = j whenever x ∈ [j − 1/4, j + 1/4] for all j ∈ Z (5.6)

This particular function r : R → R is needed for the following reason. Suppose that,
in Construction 5.1, 0 < γ < 1/4 and b ∈ N. Then r(y(t1)) = b, i.e., r corrects the error
present in y(t1) when approaching an integer value b.

Now the construction. First let θk : R → R, k ∈ N − {0, 1}, be the function defined
by

θk(x) = 0 if x ≤ 0, θk(x) = xk if x > 0

For k =∞ define

θk(x) = 0 if x ≤ 0, θk(x) = e−
1
x if x > 0

These functions can be seen [13] as a Ck−1 version of Heaviside’s step function θ(x),

where θ(x) = 1 for x ≥ 0 and θ(x) = 0 for x < 0.

26 Daniel S. Graça, Ning Zhong

-2 -1 1 2

-2

-1

1

2

Figure 3: Graphical representation of the function r.

With the help of θk, we define a “step function” s : R→ R, which matches the identity
function on the integers, as follows:{

s′(x) = λkθk(− sin 2πx)
s(0) = 0

where
λk =

1∫ 1

1/2
θk(− sin 2πx)dx

> 0

For x ∈ [0, 1/2], s(x) = 0 since sin 2πx ≥ 0. On (1/2, 1), s strictly increases and satisfies
s(1) = 1. Using the same argument for x ∈ [j, j + 1], for all integer j, we conclude
that s(x) = j whenever x ∈ [j, j + 1/2]. Then let r : N → N, r(x) = s(x + 1/4).
It is easy to see that r satisfies the condition (5.6). Formally, we should note that, for
each k ∈ N ∪ {∞} − {0, 1}, we get a different function r, but they all have the same
fundamental property (5.6). So we choose to omit the reference to the index k when
defining r (this won’t present any problems in later results).

Now that we can reach a target and remove approximation errors, we can iterate maps
with ODEs.

Construction 5.3. Iterate a map fM : N→ N with a smooth ODE (5.1).

Let f : R→ R be an arbitrary smooth extension of fM , and consider the IVP defined
with the smooth ODE {

z′1 = cj,1(f(r(z2))− z1)3θj(sin 2πt)
z′2 = cj,2(r(z1)− z2)3θj(− sin 2πt)

(5.7)

and the initial conditions {
z1(0) = x0

z2(0) = x0

Non-computable basins of attraction 27

where x0 ∈ N. Roughly speaking, the special feature concerning system (5.7) is that one
component is “active,”while the other is “dormant” and serves as a memory. Succinctly,
in the time interval [0, 1/2], z2(t) is constant and takes the value x0, while the component
z1 is being updated to the value fM(x0). In the interval [1/2, 1], the behaviors of z1 and
z2 are switched: z2 becomes “active”, while z1 is “dormant” (taking value ' fM(x0)).
In this interval, z2 will approach the value of z1, i.e. fM(x0). Therefore, at time t = 1,
z1(t) ' fM(x0) and z2(t) ' fM(x0). Then the procedure is repeated for the interval [1, 2]

resulting in z1(2) ' f
[2]
M (x0) and z2(2) ' f

[2]
M (x0). Repeating the process, one obtains

z1(j) ' f
[j]
M (x0) and z2(j) ' f

[j]
M (x0) for all j ∈ N (cf. Fig. 1, where yA = z1 and

yB = z2).
Let us look at this in more detail. First, we select the parameters used in Construction

5.1 as follows: γ ≤ 1/4, t0 = 0, t1 = 1/2, φ = φ1, where φ1(t) = θj(sin 2πt), and
cj,1 = c given by (5.5). Using these parameters in (5.7), z′2(t) = 0 for t ∈ [0, 1/2]; thus
the first equation of (5.7) becomes

z′1 = c(b− z1)3φ(t)

where b = f(x0) = fM(x0). It follows from Construction 5.1 that |z1(1/2)− fM(x0)| <
γ ≤ 1/4. Next, for t ∈ [1/2, 1], z′1(t) = 0, and Construction 5.2 ensures that r(z1(t)) =

fM(x0) (z1 “remembers” the value of fM(x0) for t ∈ [1/2, 1]). If we make use of Con-
struction 5.1 again with the new set of parameters: t0 = 1/2, t1 = 1, φ(t) = φ2(t) =

θj(− sin 2πt), and cj,2 = c given by (5.5), then the second equation of (5.7) becomes

z′2 = c(b− z2)3φ(t)

where b = fM(x0). Hence, one has |z2(1)− fM(x0)| < γ ≤ 1/4, which implies that
r(z2(1)) = fM(x0). We now continue to the time interval [1, 2]. For t ∈ [1, 3/2], z′2(t) =

0, and Construction 5.2 ensures that f(r(z2(3/2))) = f
[2]
M (x0). Since both sin 2πt and

− sin 2πt are periodic with period one, it follows that the above procedure can be repeated
for time intervals [j, j + 1], j ∈ N (cf. Fig. 1). Moreover, one has, for any given x0 ∈ N,

r(z2(t)) = f
[j]
M (x0) whenever t ∈ [j, j + 1/2]

for all j ∈ N. In this sense, (5.7) simulates the iteration of the function fM : N → N.
Since f is an extension of fM , we have f [j](x0) = f

[j]
M (x0) for any x0 ∈ N. For this reason,

we also say that (5.7) simulates the iteration of f (over N). In the case where fM is the
transition function of a Turing machine M , the ODE system (5.7) is called a simulation
of the machine M .

The construction can be easily extended to the more general case h : Nk → Nk for
k ≥ 1. We then obtain an ODE with 2k equations, where each component h1, . . . , hk of
h is simulated by a pair of equations.

28 Daniel S. Graça, Ning Zhong

5.2 Simulations of Turing machines with ODEs - analytic case

The previous section shows how to iterate a map from N to N with smooth (but non-
analytic) ODEs. In particular, we can iterate the transition function of a given TM with
some smooth ODE. However, the ODE built in Construction 5.3 to iterate the function
f is not analytic, even if the function f itself is analytic, for the construction uses the
non-analytic functions θj in a crucial way. Worse still, it is believed that, in general, one
cannot iterate analytic functions with analytic ODEs. However, if an analytic function f
satisfies the conditions set in Theorem 4.1, in particular Condition (4.2), then we show in
this subsection that f can be iterated by an analytic ODE.

The main idea underlying the construction goes as follows. If we want to iterate the
transition function fM : N3 → N3 of a Turing machine M with analytic ODEs by using
a system similar to (5.7), we cannot allow z′1 and z′2 to be 0 in half-unit time intervals.
Instead, we allow them to be very close to zero, which will add some errors to system
(5.7). In general situations, this error may cause the trajectory of the ODE starting at
some x0 ∈ N3 to depart from f

[k]
M (x0) in the long run, and thus disqualify the ODE as

an iterator of fM . However, since f , the extension of fM , satisfies (4.1), it simulates M
robustly in the presence of errors. This allows us to repeat the process arbitrarily many
times and still maintain z1(j) ' f [j](x0) for all j ∈ N. Let us re-analyze the constructions
of Section 5.1 from this new perspective.

Convention. From now on we fix an analytic function f : R3 → R3 that satisfies Theorem
4.1 and simulates a universal Turing machine M (thus the restriction of f on N3 is the
transition function fM of M). We note that the function f also satisfies Theorem 3.1.

Studying the perturbed targeting equation (cf. Construction 5.1). Because the iteration
procedure relies on the basic ODE (5.3), we need to study the following perturbed version
of (5.3)

z′ = c(b(t)− z)3φ(t) (5.8)

where
∣∣b(t)− b∣∣ ≤ ρ. This “perturbed” b(t) accounts for the possibility that z1(t) and

z2(t) may not be fixed in the half-unit time interval where they should be “dormant.”
As in (5.7), we take the departure time to be t0 = 0, the arrival time to be t1 = 1/2,
and φ : R → R+

0 satisfying
∫ 1/2

0
φ(t)dt > 0, where c satisfies (5.5) and γ > 0 is the

targeting error without perturbation, that is, |z(1/2) − b| < γ if z is the solution to the
“unperturbed” equation z′ = c(b − z)3φ(t). Let z be the solution of this new ODE (5.8)
with initial condition z(0) = z0 and let z+, z− be the solutions of z′ = c(b + ρ− z)3φ(t)

and z′ = c(b−ρ−z)3φ(t), respectively, with initial conditions z+(0) = z−(0) = z0. Since
φ(t) is a nonnegative function, it is clear that, for all (t, z) ∈ R2, the following holds:

c(b− ρ− z)3φ(t) ≤ c(b̄(t)− z)3φ(t) ≤ c(b+ ρ− z)3φ(t) (5.9)

Non-computable basins of attraction 29

From (5.9) and a standard differential inequality from the basic theory of ODEs (see
e.g. [18, Appendix T]), it follows that z−(t) ≤ z(t) ≤ z+(t) for all t ∈ R+

0 . So if we have
an upper bound on z+ and a lower bound on z−, we immediately get bounds for z.

With γ being the targeting error, we have the following estimates from Construction
5.1:

|b+ ρ− z+(1/2)| < γ and |b− ρ− z−(1/2)| < γ

which in turn implies that

b− ρ− γ < z−(1/2) ≤ z̄(1/2) ≤ z+(1/2) < b+ ρ+ γ

or equivalently
|z(1/2)− b| < ρ+ γ (5.10)

In other words, the targeting error in the presence of perturbation is at most ρ + γ, if the
target value is perturbed at most up to an amount ρ.

Removing θj from (5.7). We must remove the function θj from the right-hand side of
(5.7) as well as in the function r (see Construction 5.2). Since f is robust to perturbations
in the sense that f satisfies Condition (4.2) of Theorem 4.1, we no longer need the correc-
tions performed by r. (For simplicity we assume that f : R→ R instead of f : R3 → R3.)
On the other hand, we cannot simply drop the functions θj(± sin 2πt) in (5.7). We need
to replace φ(t) = θj(sin 2πt) by an analytic function ζ : R→ R with the following ideal
behavior:

(i) ζ has period 1;
(ii) ζ(t) = 0 for t ∈ [1/2, 1];
(iii) ζ(t) ≥ 0 for t ∈ [0, 1/2] and

∫ 1/2

0
ζ(t)dt > 0.

Of course, Conditions (ii) and (iii) are incompatible for analytic functions (it is well-
known that if a real analytic function is 0 in a non-empty open interval, then it must be
0 everywhere). Instead, we approach ζ using a function ζε, ε > 0. This function should
satisfy the following conditions:

(ii′) |ζε(t)| ≤ ε for t ∈ [1/2, 1];
(iii′) ζε(t) ≥ 0 for t ∈ [0, 1/2] and

∫ 1/2

0
ζε(t)dt > I > 0, where I is independent of ε.

Our idea to define such a function ζε is to make use of the function l2 introduced in
Proposition 4.4: Let

ζε(t) = l2(ϑ(t), 1/ε) (5.11)

where ε > 0 is the precision up to which ζε should approximate 0 in the interval [1/2, 1]

and ϑ : R → R is an analytic periodic function of period 1 satisfying the following
conditions:

(a) |ϑ(t)| ≤ 1/4 for t ∈ [1/2, 1];

30 Daniel S. Graça, Ning Zhong

(b) ϑ(t) ≥ 3/4 for t ∈ (a, b) ⊆ (0, 1/2), a < b.

We note that Proposition 4.4 and Condition (a) ensure that |ζε(t)| < ε for t ∈ [1/2, 1],
and thus ensures (ii′), while Proposition 4.4 and Condition (b) guarantee that |ζε(t)| >
1 − ε for t ∈ (a, b), which in turn implies

∫ 1/2

0
ζε(t) ≥ (1 − ε)(b − a) > 3(b − a)/4 for

ε < 1/4, thus (iii′) is satisfied. We note that, for all (t, x) ∈ R2, l2(t, x) > 0 and thus
ζε(t) ≥ 0 for all t ∈ R. It is not difficult to see that one may select ϑ : R→ R as

ϑ(t) =
1

2
(sin2(2πt) + sin(2πt)) (5.12)

since this function satisfies both Conditions (a) and (b) (e.g. a = 0.16 and b = 0.34).
Now we make the replacement: replace θj(sin 2πt) by the analytic function ζε(t) =

l2(ϑ(t), 1/ε), where ϑ is given by (5.12). Similarly, we replace θj(− sin 2πt) by the ana-
lytic function ζε(−t). For this particular function ϑ defined by (5.12), the constant satis-
fying (5.5) may be selected as

c ≥ 1

2γ2 3(0.34−0.16)
4

which is independent of ε.

Performing Construction 5.3 with analytic functions. We are now ready to perform a
simulation of the Turing machine M (or an iteration of the transition function fM : N3 →
N3 of M) with a system similar to (5.7), but using only analytic functions. For readability,
let us assume for now that fM : N → N and f : R → R (instead of fM : N3 → N3 and
f : R3 → R3). Choose a targeting error γ > 0 and suppose ε > 0 is the error resulting
from perturbation such that

2γ ≤ ε < 1/8, (5.13)

and consider the following system of ODEs{
z′1 = c1(f ◦ σ[k](z2)− z1)3 ζε1(t)
z′2 = c2(σ[n](z1)− z2)3 ζε2(−t)

(5.14)

with initial conditions z1(0) = z2(0) = x0, where |x0 − x0| ≤ ε, x0 ∈ N, and σ is the
error-contracting function defined in (4.5). The four constants c1, c2, k, and n and the two
functions ε1 and ε2 remain to be defined.

We would like for (5.14) to satisfy the following property: on [0, 1/2],

|z′2(t)| ≤ γ (5.15)

This can be achieved by setting ε2(t) = γ/K(t), where K(t) = c
4/3
2 (σ[n](z1)− z2)4 + 1.

We note that |x|3 ≤ x4 + 1 for all x ∈ R and ϑ(−t) < 1
4

for all t ∈ [n, n + 1
2
], n ∈ N.

Thus, from Proposition 4.4,

0 ≤ ζε2(−t) = ζε2(t)(−t) = l2(ϑ(−t), 1/ε2(t)) ≤ ε2(t), t ∈ [n, n+
1

2
], n ∈ N

Non-computable basins of attraction 31

which further implies that, for all n ∈ N and t ∈ [n, n+ 1
2
],

|z′2(t)| = |c2(σ[n](z1)− z2)3ζε2(−t)|
≤ |c2(σ[n](z1)− z2)3| · |ε2(t)|

= |c2(σ[n](z1)− z2)3| γ

c
4/3
2 (σ[n](z1)− z2)4 + 1

< γ

Similarly, if we set ε1(t) = γ/[c
4/3
1 (f ◦ σ[n](z2) − z1)4 + 1], then we have |z′1(t)| < γ

for all t ∈ [n + 1
2
, n + 1], n ∈ N. We still need to define the two constants c1 and c2

which must satisfy (5.5). To do so, we first observe that ε2(t) ≤ γ < 1
16

(see (5.13))
for t ∈ [n, n + 1

2
], n ∈ N. Then it follows from (5.12) and the discussions immediately

preceding and following (5.12) that∫ 1/2

0

ζε2(t)(−t)dt > (1− ε2(t))(0.34− 0.16) > (1− 1

16
)(0.34− 0.16) > 0.16

Thus if we choose c2 such that

c2 ≥
1

2γ2(0.16)

then c2 satisfies (5.5). We choose c1 in a similar way. The two integers k and n are chosen
such that k = n and |σ[k](ε+ γ

2
)| < γ.

Next we proceed to show that system (5.14) iterates the function f . First we note that,
from the given initial condition |z2(0)− x0| < ε with x0 ∈ N, it follows from (5.15) that
for all t ∈ [0, 1/2],

|z2(t)− x0| ≤ |z2(t)− z2(0)|+ |z2(0)− x0| < γt+ ε ≤ γ

2
+ ε

Then from our choice of k, |σ[k](z2(t))−x0| < γ for all t ∈ [0, 1/2], which further implies
that |f ◦ σ[k](z2(t)) − f(x0)| < λγ < γ, t ∈ [0, 1/2] (see Theorem 4.1). Now from the
study of the perturbed targeting equation (5.8), if we let φ(t) = ζε1(t) and the perturbation
error ρ = γ in (5.8), then we reach the conclusion that the solution z1 exists on [0, 1/2]

and
|z1(1/2)− f(x0)| < 2γ ≤ ε (5.16)

Proceeding to the next half-time interval [1/2, 1], the roles of z1 and z2 are switched. On
[1/2, 1], |z′1(t)| ≤ γ. Then it follows from |z′1(t)| ≤ γ and (5.16) that

|z1(t)− f(x0)| ≤ ε+ γ/2 ≤ 1/4 for all t ∈ [1/2, 1]

Thus from the choice of n, |σ[n](z1(t))−f(x0)| < γ for all t ∈ [1/2, 1]. Again, by making
use of the perturbed targeting equation (5.8) with φ(t) = ζε1(t), we obtain

|z2(1)− f(x0)| < 2γ ≤ ε

32 Daniel S. Graça, Ning Zhong

Repeating the above procedure for intervals [1, 2], [2, 3], etc., we conclude that for all
j ∈ N and for all t ∈ [j, j + 1/2],∣∣z1(t)− f [j](x0)

∣∣ ≤ ε+
γ

2
≤ 1/4 (5.17)

Moreover, z1 is defined as the solution of an analytic ODE.
From the construction above, it is easy to see that the following ODE system (5.18)

iterates fM : N3 → N3:

y′1 = c1(f1(σ[k](v1), σ[k](v2), σ[k](v3))− y1)3 ζε1(t)
y′2 = c1(f2(σ[k](v1), σ[k](v2), σ[k](v3))− y2)3 ζε1(t)
y′3 = c1(f3(σ[k](v1), σ[k](v2), σ[k](v3))− y3)3 ζε1(t)
v′1 = c2(σ[n](y1)− v1)3 ζε2(−t)
v′2 = c2(σ[n](y2)− v2)3 ζε2(−t)
v′3 = c2(σ[n](y3)− v3)3 ζε2(−t)

(5.18)

where (y1, y2, y3), (v1, v2, v3) ∈ R3 and f = (f1, f2, f3), fi : R3 → R, 1 ≤ i ≤ 3.
We need to build several new systems similar to (5.18) but with ζε1 and ζε2 replaced

by other functions. For simplicity, we will not present their fully expanded forms as
in (5.18), instead we will use systems similar to (5.14) to represent the correspond-
ing fully expanded systems. When doing so, the expression (f ◦ σ)(x)φ(t) is used for
f(σ(x1)φ(t), σ(x2)φ(t), σ(x3)φ(t)) if f : R3 → R3, σ, φ : R→ R, x ∈ R3, and t ∈ R.

5.3 The halting configuration is a sink

In the previous subsection we have shown how to iterate the map f with an analytic ODE
on R6. Since f simulates the Turing machine M , so does the ODE. Let us continue to
assume that the machine M has a unique halting configuration. To prove Theorem 3.2,
we need to show that this halting configuration of M corresponds to a hyperbolic sink of
the analytic ODE simulating M .

Note that the results of Section 5.2 do not guarantee the existence of such a hyperbolic
sink. What is shown there is that if x0 ∈ N3 encodes an initial configuration of M and
xh ∈ N3 corresponds to the halting configuration of M , then M halts on x0 iff

‖z(0)− (x0, x0)‖ ≤ 1/8 =⇒ ∃k0 ∈ N such that ∀t ≥ k0, ‖z(t)− (xh, xh)‖ ≤ 1/4

where z is the solution of (5.14) with the initial condition z(0) ∈ R6. In other words, we
know that, provided that M halts on x0, a trajectory starting sufficiently close to (x0, x0)

will eventually be in the ball B((xh, xh), 1/4), but it may just wander there and never
converge to (xh, xh). Since we need to make (xh, xh) a sink (hyperbolicity will be dealt
with in the next subsection), we have to modify system (5.14). There are several issues to
be addressed.

Non-computable basins of attraction 33

• In general, an ODE (5.1) describes a dynamical system if it is autonomous, i.e. if g
in (5.1) does not depend on t (see e.g. [17]), which is not the case for system (5.14). It is
true that (5.1) can be converted into an autonomous system by writing{

y′ = g(z, y)
z′ = 1

But in a system like this, if it has a hyperbolic sink α, the “time” variable z must be finite at
α. Such a system cannot simulate a universal Turing machine, for the set of halting times
of a universal Turing machine is not bounded. To deal with this problem, an intuitive fix
is to introduce a new variable u = e−t. Then u′ = −u has an equilibrium point at u = 0

and u converges exponentially fast to 0 as t → ∞. The analytic ODE (5.14) can then be
rewritten as follows: 

z′1 = c1(f ◦ σ[k](z2)− z1)3ζε1(− lnu)
z′2 = c2(σ[n](z1)− z2)3 ζε2(lnu)
u′ = −u

(5.19)

It is clear that the new system (5.19) still simulates the machine M as system (5.14)
does. However, a new problem occurs with the introduction of u: system (5.19) has no
fixed point, let alone a sink. The problem is obvious: the system is not defined at the only
possible equilibrium point (xh, xh, 0) since ζε1(− lnu) and ζε2(lnu) are not defined at u =

0. Moreover, the problem cannot be easily solved by extending ζε1(− lnu) and ζε2(lnu) as
u→ 0+, for both ζε1 and ζε2 are periodic functions. The strategy we use to fix this problem
is to replace ζε1(− lnu) and ζε2(lnu) by other functions such that the resulting system not
only still simulates the machine M but is also analytic; in particular, it is analytic at
(xh, xh, 0). More precisely, our idea is to substitute ζε1(− lnu) (ζε2(lnu) as well) by a
function χ(u) that acts distinctively depending upon whether or not the machine M has
halted: as long asM has not yet halted, χ(u) behaves roughly like ζε1(− lnu) (this ensures
that the modified system with χ(u) replacing ζε1(− lnu) still simulates the machine M);
once M has halted, the behavior of χ(u) is switched so that χ(u) is defined as well as
analytic at u = 0 and the modified system converges to (xh, xh, 0) hyperbolically. The
switch of behavior of χ(u) is controlled by a variable in (5.19) that codes the current state
of M in the simulation. For example, one can use the third component v3 of z2 ∈ R3,
which codes the state of the machine M . If the states are given by the values 1, . . . ,m,
withm corresponding to the halting state, then the condition v3(t) ≤ m−3/4 implies that
the machineM hasn’t yet halted, while the condition v3(t) ≥ m−1/4 implies thatM has
halted (the error of 1/4 here is due to the perturbation error allowed in the simulation). We
note that if M never halts on an input (x0, x0), then system (5.19) with the initial value
(x0, x0, 1) will not converge to (xh, xh, 0). In this case, it does not matter whether or not
the system is defined at u = 0 (i.e. t =∞).

34 Daniel S. Graça, Ning Zhong

• So we want a function χ(u) to replace ζε1(− lnu) that has two distinct behaviors
depending upon the value of the variable v3. For this purpose, we add a new equation
with a new variable τ to system (5.19) which is defined by

τ ′ =
dτ

dt
= −αuα+1 (5.20)

where ideally α = −1 before the machine M halts, and α = 1 after M halts. Our aim
is to make the point (xh, xh, 0, 0) a hyperbolic sink of system (5.19) augmented with
equation (5.20), where xh is the halting configuration of M . We observe that before M
halts, τ ′ = 1, and so τ(t) = t+τ(0) (thus τ(u) = − lnu+τ(0)). AfterM halts, τ ′ = −u2;
thus τ is defined and analytic at u = 0. Thus if we define χ(u) as follows:

χ(u) = ζε1(τ(u))

then this χ(u) will meet our requirement of changing behavior according to whether or
not the machine M has halted. Unfortunately, there is a shortfall: defined in such a way,
χ(u) is not analytic due to the jump in α. For this reason, we modify the definition of α
such that α ' −1 before the machine M halts, α ' 1 after M halts, and α is analytic in
v3. Precisely, we define

α =
5

2
ξ2(v3 − (m− 1), 10)− 5

4

(the 10 is rather arbitrary) where v3 is the third component of z2 ∈ R3 that codes the state
of the machine M . Since ξ2(·, 10) is analytic, so is α. It is not difficult to show (see [15])
that for any x < 1

4
and y > 0, if |l2(x, y)| < 1

y
, then |ξ2(x, y)| < 1

y
. But, as a consequence

of Proposition 4.4, one can easily derive that |l2(x, y)| < 1
y

for any x < 1
4

and y > 0,
which in turn implies that

|ξ2(x, y)| < 1
y

for any x < 1
4

and y > 0 (5.21)

Since we assume that states are coded by integers 1, . . . ,m with m the halting state, it
follows that, until M halts (which may never happen), 0 < ξ2(v3 − (m− 1), 10) ≤ 1/10.
One cycle afterM has halted (this ensures v3 has enough time to update its value to' m),
one has 9/10 < ξ2(v3 − (m− 1), 10) ≤ 1. Thus

α ∈
{ (
−5

4
,−1

]
if M hasn’t halted[

1, 5
4

)
one cycle after M has halted (5.22)

• If we simply define τ by (5.20) with analytic α, we will not be able to show that
system (5.19) augmented with Equation (5.20) has (xh, xh, 0, 0) as a hyperbolic sink. This
is because we need to compute the Jacobian of the augmented system at (xh, xh, 0, 0),
which includes the derivative of uα+1 with respect to v3, since this variable appears in the

Non-computable basins of attraction 35

expression for α. But ∂uα+1/∂v3 = uα+1 lnu ∂α
∂v3

, which is not defined at u = 0. For this
reason, we have to modify the definition of τ yet again, using the following equation

τ ′ = 2(u+ξ2(v3−(m−1), τ+1))α+1ξ2(m−v3, 10)−ξ2(v3−(m−1), 10+10τ 2)τ (5.23)

We note that the right-hand side of (5.23) is a function of u and τ . Since the derivative of
this function with respect to v3 containing ln(u + 1) (see the calculation below) and the
function ξ2(x, y) is only defined for y > 0, the function in the right-hand side of (5.23) is
defined only for u > −1 and τ > −1.

The behavior of τ , defined by (5.23), is remarkably similar to its previous form defined
in (5.20) as we shall see below. The parcel (u+ ξ2(v3− (m−1), τ +1))α+1 in the product
of the right-hand side of (5.23) ensures that, in the halting configuration, the derivative
of (u + ξ2(v3 − (m − 1), τ + 1))α with respect to v3 is well defined, and thus fixes the
problem raised above (1 is added to τ for the reason that ξ2(x, y) is defined only for y > 0

but τ = 0 at (xh, xh, 0, 0)). We recall that ξ2 is an analytic function on R × R+, thus ∂ξ2
∂v3

and ∂α
∂v3

are well-defined, in particular at the halting configuration (where v3 = m). For
the parcel (u+ ξ2(v3 − (m− 1), τ + 1))α, we have

∂

∂v3

[(u+ ξ2(v3 − (m− 1), τ + 1))α]

= (u+ ξ2(v3 − (m− 1), τ + 1))α ln(u+ ξ2(v3 − (m− 1), τ + 1)) · ∂α
∂v3

+ α(u+ ξ2(v3 − (m− 1), τ + 1))α−1 ∂

∂v3

(u+ ξ2(v3 − (m− 1), τ + 1))

which is also well-defined at the halting configuration, where u+ξ2(v3−(m−1), τ+1) =

u + ξ2(m − (m − 1), τ + 1) = u + ξ2(1, τ + 1) = u + 1 and thus ln(u + ξ2(v3 − (m −
1), τ + 1)) = ln(u + 1) is well-defined at u = 0. The other term ensures the “switching
of behavior” according to whether or not M has halted.
•We now have the following modified system
z′1 = c1(f ◦ σ[k](z2)− z1)3ζε1(τ)
z′2 = c2(σ[n](z1)− z2)3 ζε2(−τ)
u′ = −u
τ ′ = 2(u+ ξ2(v3 − (m− 1), τ + 1))α+1ξ2(m− v3, 10)− ξ2(v3 − (m− 1), 10 + 10τ 2)τ

(5.24)
We note that the modified system is defined on R6 × (−1,+∞)× (−1,+∞).

In the remainder of this subsection we prove that (I) zequilibrium = (zf , zf , 0, 0) is an
equilibrium point of this new system, where

zf = (0, 0,m)

is the halting configuration of the machine M (i.e. zf = xh); (II) For any trajectory
(z1(t), z2(t), u(t), τ(t)) of (5.24), if there exists a t0 > 0 such that (z1(t0), z2(t0), u(t0), τ(t0)) ∈

36 Daniel S. Graça, Ning Zhong

Uf , where
Uf = B(zf , 1/8)×B(zf , 1/8)× (−1, 2)× (−1, 5)

is an open neighborhood of the equilibrium point (zf , zf , 0, 0), then (z1(t), z2(t), u(t), τ(t)) ∈
Uf for all t ≥ t0 and (z1(t), z2(t), u(t), τ(t)) → (zf , zf , 0, 0) as t → ∞. Combining (I)
and (II) we conclude that (zf , zf , 0, 0) is a sink of system (5.24).

To show that (I) holds, that is, (zf , zf , 0, 0) is an equilibrium point of system (5.24), it
suffices to observe that f ◦ σ[k](zf) = f(σ[k](0), σ[k](0), σ[k](m)) = zf (according to our
convention stated right before subsection 5.3) and ξ2(m− v3, 10) = ξ2(0, 10) = 0 at zf =

(0, 0,m). The first equality follows from (4.5) and the fact that f(zf) = fM(zf) = zf

(since f extends fM , fM is the transition function of M , and zf = (0, 0,m) is the halting
configuration of M). The second equality is derived from (4.7). Thus (I) holds.

We now consider (II). We need to show that if (z1(t0), z2(t0), u(t0), τ(t0)) ∈ Uf for
some t0 > 0, then (z1(t), z2(t), u(t), τ(t)) ∈ Uf for all t ≥ t0 and (z1(t), z2(t), u(t), τ(t))→
(zf , zf , 0, 0) as t→∞. Since u′ = −u, u(t) = u(0)e−t. It is clear that |u(t)| ≤ |u(0)| for
any t ≥ 0 and u(t)→ 0 as t→∞ for any u(0) ∈ (−1, 2) (thus any t > 0 can be used as
t0). However, to prove the rest of (II), the functions ζε1 and ζε2 in (5.24) must be nonzero
if |v3 −m| < 1/4 for technical reasons. Thus we need to refine the two functions ζε1 and
ζε2 yet again. Recall that ζε(t) = l2(ϑ(t), 1

ε
), where ϑ(t) = 1

2
(sin2(2πt) + sin(2πt)) (see

(5.11) and (5.12)). We redefine ζε1 and ζε2 by choosing a different function for ϑ(t); the
new ϑ(t) is defined as follows:

ϑ(t) =
1

2
(sin2(2πt) + sin(2πt)) + l2(v3 − (m− 1), t+ 10)

where, as already mentioned, v3 is the third component of z2 ∈ R3 that codes the state
of the machine M . (Again the number 10 is rather arbitrary.) Recall that the states of
M are coded by integers 1, 2, . . . ,m with m being the halting state. For any v3 satisfying
|v3−m| < 1/4, we have |v3−(m−1)−1| < 1/4, thus it follows that |l2(v3−(m−1), t+

10)− 1| < 1
t+10

(see Proposition 4.4). Therefore, ϑ(t) ≥ −1
8

+ 1− 1
t+10

= 7
8
− 1

t+10
≥ 3

4

(note that the minimum of 1
2
(sin2(2πt)+sin(2πt)) is−1

8
), which implies that 1−ϑ(t) < 1

4
,

and it follows again from Proposition 4.4 that |1− ζε| = |1− l2(ϑ(t), 1
ε
)| ≤ ε.

Thus, assuming that 0 < ε1, ε2 ≤ 1/10 in ζε1 and ζε1 (if this is not the case, for the
“old” precision εi, substitute the improved accuracy εi/(10εi+10), then this new precision
will be less than εi and also less than 1/10), we conclude that ζε1 and ζε2 , defined in (5.11)
but using the new function ϑ (and perhaps a new precision ε1 or ε2), will satisfy

9/10 ≤ ζε1(τ), ζε2(τ) < 1

In particular
9

10
≤ ζε1(τ)|zequilibrium , ζε2(τ)|zequilibrium < 1 (5.25)

Non-computable basins of attraction 37

We are now ready to prove the rest of (II). Let (z1(t), z2(t), u(t), τ(t)) be a trajectory
of (5.24) such that z1(t), z2(t) ∈ B(zf , 1/8) for some t0 > 0. Then from the subsection
Performing Construction 5.3 with Analytic Functions above, it follows that z1(t), z2(t) ∈
B(zf , 1/4) for all t ≥ t0. In the following we show that, for any 0 < δ ≤ 1/4, if z1, z2 ∈
B(zf , δ) for all t ≥ tδ for some tδ > 0, then there exists some tδ/2 > tδ such that
z1, z2 ∈ B(zf ,

δ
2
) for all t ≥ tδ/2. As a consequence, it is readily seen that the part of (II)

concerning z1 and z2 is true.

Let us prove the result for z1. The same argument applies to z2. Assume that z1, z2 ∈
B(zf , δ) for all t ≥ tδ for some tδ > 0. First we recall that, from Proposition 4.3, if
z2 ∈ B(zf , δ), then |σ[k](z2)− zf | < λk1/4δ <

δ
3
, which further implies that

|f(σ[k](z2))− zf | = |f(σ[k](z2))− f(zf)| < λk1/4δ <
δ

3
(5.26)

(see Theorem 4.1). Let us denote z1 = (y1, y2, y3), z2 = (v1, v2, v3), and f = (f1, f2, f3),
where yi, vi ∈ R and fi : R3 → R, i = 1, 2, 3. Without loss of generality we prove the
result component-wise for the first component, that is, we show that there is a tδ/2 > tδ

such that |y1(t)| < δ
2

for all t > tδ/2 (recall that zf = (0, 0,m) and thus |f1(σ[k](z2))| < δ
3

for all t > tδ by (5.26) and the assumption). There are two cases to be considered. Case 1:
If there exists a time t̃ > tδ such that y1(t̃) ∈ B(0, δ/2), then we only need to show that
y1(t) ∈ B(0, δ/2) for all t > t̃. For any t > t̃, if y1 = y1(t) > δ

3
, then f1(σ[k](z2))−y1 < 0

and so y′1 = c1(f1(σ[k](z2)) − y1)3ζε1 < 0 for ζε1 > 9
10

. Thus y1 will be decreasing
until it reaches the value f1(σ[k](z2)). In other words, for any t > t̃, y1 cannot surpass
δ
2
. Similarly, if y1 = y1(t) < − δ

3
, then f1(σ[k](z2)) − y1 > 0, which further implies

that y′1 = c1(f1(σ[k](z2)) − y1)3ζε1 > 0. Therefore y1 will be increasing until it reaches
f1(σ[k](z2)), which implies that y1 cannot decrease below − δ

2
. We have now proved that

y1(t) ∈ B(0, δ
2
) for all t > tδ/2 with tδ/2 = t̃. Case 2: If for all t > tδ, y1 6∈ B(0, δ

2
).

Without loss of generality, let us assume that there is some t > tδ such that y1(t) > δ
2
.

Then, since |f1(σ[k](z2))| < δ
3

for all t > tδ, we have y′1 = c1(f1(σ[k](z2))− y1)3ζε1 < 0.
It follows that y1 will be decreasing, passing the value δ

2
, until it reaches f1(σ[k](z2)). In

other words, there will be a time t̃ such that y1(t̃) ∈ B(0, δ
2
). Then it follows from the first

case that for any t > t̃, y1(t) ∈ B(0, δ
2
). This is a contradiction. Therefore, the second

case is invalid.

It remains to show that if there exists some t0 > 0 such that (z1(t0), z2(t0), u(t0), τ(t0)) ∈
Uf , then τ(t) ∈ (−1, 5) for all t > t0 and τ(t) → 0 as t → ∞. We recall that
τ ′ = 2(u+ ξ2(v3 − (m− 1), τ + 1))α+1ξ2(m− v3, 10)− ξ2(v3 − (m− 1), 10 + 10τ 2)τ .
On the other hand, by the assumption and the proof in the previous paragraph, we have
v3 → m as t→∞. Thus, as t→∞, ξ2(m− v3, 10)→ ξ2(0, 10) = 0 and |ξ2(v3 − (m−
1), 10+10τ 2)−1| < 1

10+10τ2
for sufficiently large t satisfying |(v3(t)− (m−1))−1| < 1

4

38 Daniel S. Graça, Ning Zhong

(see Proposition 4.4), or in other words, for sufficiently large t

1− 1

10
≤ 1− 1

10 + 10τ 2
< ξ2(v3 − (m− 1), 10 + 10τ 2) < 1 +

1

10 + 10τ 2
≤ 1 +

1

10

Therefore, for sufficiently large t,

τ ′ ' −aτ for some positive number a

which implies that the part of (II) concerning τ is true. The proof for (II) is then complete.
(We note that the time t0 in the assumption (z1(t0), z2(t0), u(t0), τ(t0)) ∈ Uf may be
different in the previous proofs for the three parts of (II) concerning u, z1 and z2, and τ .
It suffices to pick the maximum t0 among the three.)

We have thus shown that the equilibrium point (zf , zf , 0, 0) is indeed a sink of system
(5.24). In subsection 5.5 we will show that (zf , zf , 0, 0) is a hyperbolic sink.

5.4 The system (5.24) still simulates the Turing machine M

In this subsection we show that system (5.24) with the (fixed) initial conditions u(0) = 1

and τ(0) = 4 will still simulate the machine M before M halts, including the case that
M never halts. We only need to study the system for t ≥ 0.

First we show that if M hasn’t yet halted, then

1 < τ ′(t) ≤ 5e
5
4
t (5.27)

for all t > 0. If M hasn’t yet halted, then it follows from (5.22) that α ∈
(
−5

4
,−1

]
.

Moreover, since M has not halted, m−v3 ≥ 3/4, which leads to 1− (m−v3) ≤ 1/4, and
thus ξ2(m−v3, 10) ∈ [9/10, 1) by Proposition 4.4. Knowing that ξ2(v3−(m−1), τ+1) >

0, 0 < ξ2(x, y) < 1 for all x ∈ R and y > 0 (by definition of ξ2), u(t) = e−t (since
u′ = −u and u(0) = 1) and τ > −1, it follows from (5.23) that

τ ′ ≤ 2(u+ ξ2(v3 − (m− 1), 1 + τ))ξ2(m− v3, 10)

(u+ ξ2(v3 − (m− 1), 1 + τ))−α
+ ξ2(v3 − (m− 1), 10 + 10τ 2)

<
2(1 + 1)

u−α
+ 1 ≤ 2

u
5
4

+ 1 = 4e
5
4
t + 1 ≤ 5e

5
4
t

Next we show that τ ′(t) > 1 for t > 0. It can be verified easily that under the as-
sumption that τ(0) = 4, τ(t) > 0 for all t > 0. Then from (5.21) it follows that
1/τ ≥ 1/(τ+1) ≥ ξ2(v3−(m−1), τ+1) > 0 and 1/τ 2 ≥ ξ2(v3−(m−1), 10+10τ 2) > 0.
Using (5.23) again, we get

τ ′ =
2ξ2(m− v3, 10)

(u+ ξ2(v3 − (m− 1), 1 + τ))−α−1
− ξ2(v3 − (m− 1), 10 + 10τ 2)τ

≥
2 9

10(
u+ 1

τ

)−α−1 −
1

τ 2
τ ≥ 9/5(

u+ 1
τ

)−α−1 −
1

τ
≥ 9/5(

1 + 1
τ

)1/4
− 1

τ
≥ 9/5

1 + 1
τ

− 1

τ

Non-computable basins of attraction 39

We note that the last expression in the above estimate is an increasing function of τ . Since
τ(0) = 4, one has

τ ′(0) >
9/5

1 + 1
4

− 1

4
=

36

25
− 1

4
> 1

We conclude that τ ′(t) > 1 for all t > 0. From (5.27) we know that, before M halts, τ
grows with τ ′(t) > 1, which implies that τ → +∞ as t→ +∞ if M never halts.

The next question is whether the simulation of M is still being faithfully carried out
by the modified system (5.24) until M halts. We recall that the machine M is simulated
by system (5.14) in the sense that |z1(j) − f [j](x0)| ≤ η and |z2(j) − f [j](x0)| ≤ η for
some 0 < η < 1/4 and all j ∈ N (see (5.16) and (5.17)), where x0 ∈ N3 codes the initial
configuration. Thus the time needed to complete a cycle (i.e. from one configuration to
the next) is one unit. Now with τ replacing t as input to the “clocking functions” ζε1 and
ζε2 in the modified system (5.24), we face a new problem: Since τ grows at a faster rate
than t, 1 < τ ′(t) ≤ 5e

5
4
t, the time needed to complete a cycle becomes shorter. So we

need to analyze the effect of this speeded-up phenomenon.

As we have seen in Subsections 5.1 and 5.2, in each iteration “cycle,” [j, j + 1], of
system (5.14), one of the two variables, z1, z2, is “dormant” while the other is active and
is being updated within a 1

4
-vicinity of the target f [j](x0) during the time period [j, j+ 1

2
];

then, during the later half [j + 1
2
, j + 1] of the cycle, the dormant variable becomes active

and is being updated within the 1
4
-vicinity of the same target while the active one stays

put. The only problem that may arise with a dormant variable is when the cycle is too
long and thus the dormant may accumulate too much error. However, since we now have
shorter cycles, this problem won’t occur. The problem here is of another type. With system
(5.24), the iteration cycles no longer have the uniform length (j + 1) − j = 1, j ∈ N, as
in (5.14), but become shorter and shorter as t→∞ (possibly exponentially shorter in the
worst-case scenario) because τ moves faster than t does as (5.27) shows. Thus there may
not be enough time to update the active variable within a 1

4
-vicinity of the target. Let us

look at this in more detail. We note that, in system (5.14), the reason that z1 and z2 can be
updated successively on all intervals [j, j + 1] (until M halts) is because both functions
ζε1 and ζε2 , as functions of t, have period 1; thus it is possible to pick a constant c1 such
that, for all j ∈ N, the target-estimate

1

16
≥ 1

2c1

∫ 1/2

0
ζε1(t)dt

> (f [j](x0)− z1(j + 1/2))2

holds (see (5.4)), which in turn implies that |f [j](x0)−z1(j+1/2)| ≤ 1
4

for all j. (Similarly
one can select a constant c2 satisfying the target-estimate for z2.) Now with the speeded-
up system, the half-cycles [Tj, Tj+1] may decrease without a lower bound, and thus it

40 Daniel S. Graça, Ning Zhong

becomes impossible to pick a constant c such that the left-hand side of the target-estimate

1

16
≥ 1

2c
∫ Tj+1

Tj
ζε1(τ(t))dt

> (f [j](x0)− z1(Tj+1))2 (5.28)

holds for all j. We note that the right-hand side of the above inequality is always true (see
the derivation of (5.4)). Of course, we cannot select a constant cj for each j. Instead, we
solve the problem by multiplying φ(t) by a function χ(t) so that∫ t1

t0

φ(t)χ(t)dt ≥
∫ 1/2

0

φ(t)dt (5.29)

where φ(t) corresponds to ζε1 or ζε2 in system (5.24) and [t0, t1] is an arbitrary half-cycle,
0 < t1 − t0 < 1

2
. The underlying idea here is that, to compensate for the loss in time, we

increase the magnitude of the function φ(t) to φ(t)χ(t) so that the integrals
∫ t1
t0
φ(t)χ(t)dt

are uniformly bounded below by
∫ 1/2

0
φ(t)dt for all cycles; thus the target-estimate (5.28)

would hold for all cycles with the constant c being c1 or c2 as in system (5.14). Or more
intuitively, one may notice that the function φ(t) is a function with periodic pulses which
switch between ' 0 and ' 1. The value of

∫ j+1/2

j
φ(t)dt, j ∈ N, is the area under the

jth active pulse of φ(t). The problem with φ(τ(t)) is that the durations of the pulses get
shorter as t increases. But we would like to continue to use

∫ 1/2

0
φ(t) as a lower bound

for the area under each active pulse in the speeded-up system. In order to achieve this,
we simply use the pulses with increasing heights; that is, if the duration of each pulse
decreases by at most a factor of χ(t), then we increase the height of that pulse accordingly
and thus maintain the area under each pulse at the level of at least

∫ 1/2

0
φ(t)dt.

Now the details. To obtain χ(t), we need to know how small t1 − t0 can be. Recall
from (5.27) that τ ′(t) ≤ 5e

5
4
t. Since τ(t1) − τ(t0) = 1/2 (ζε2 switches from ' 1 to ' 0

and vice-versa when its argument increments by 1/2), one has

1

2
= τ(t1)− τ(t0) =

∫ t1

t0

τ ′(t) ≤ 5

∫ t1

t0

e
5
4
tdt = 4

(
e

5
4
t1 − e

5
4
t0
)
⇒

4e
5
4
t0
(
e

5
4

∆t − 1
)
≥ 1

2
⇒ ∆t ≥ 4

5
ln

(
1 +

1

8
e−

5
4
t0

)
where ∆t = t1 − t0. It can be proved that

a(t) =
4

5
ln

(
1 +

1

8
e−

5
4
t

)
>
e−

5
4
t

15
= b(t)

for t ≥ 0 (by showing that a(0) − b(0) > 0, limt→∞
a(t)
b(t)

= 3
2
> 1, and a(t) − b(t) has a

unique critical point on (0,∞) at t = 4 ln 2
5

, which gives the maximum 4
5

ln 17
16
− 1

30
). We

omit these straightforward calculations. Hence

∆t >
e−

5
4
t

15

Non-computable basins of attraction 41

Therefore it is sufficient to multiply φ (i.e. ζε1 and ζε2) by χ(t) = 15e
5
4
t to obtain (5.29).

However, since we desire an autonomous system and t is replaced by τ in (5.24), we need
to express χ(t) in terms of τ . This can easily be done by replacing t with τ : from (5.27)
and τ(0) = 4 (see the beginning of this section), one easily concludes that one can take

χ(τ) = 15e2τ (5.30)

since χ(τ) ≥ 15e
5
4
t. Because both ζε1 and ζε2 are multiplied by χ, the error present in z′1

and z′2 when these variables are dormant is also multiplied by the same factor. To cancel
this effect, we need to get ζε1 and ζε2 closer to 0 in the same proportion. This is done
by using ζ ε1

χ(τ)
and ζ ε2

χ(τ)
in (5.24) instead of ζε1 and ζε2 . After replacing ζε1 and ζε2 by

χζ ε1
χ(τ)

and χζ ε2
χ(τ)

in system (5.24), it is not difficult to see that the system now simulates
the machine M , using Construction 5.3. We also note that (zf , zf , 0, 0) remains a sink of
system (5.24). For the sake of readability, we will denote ζ ε1

χ(t)
and ζ ε2

χ(t)
simply as ζε1 and

ζε2 , respectively.

5.5 The sink is hyperbolic

Now that we have shown that zequilibrium is a sink of system (5.24), it remains to prove
that zequilibrium is hyperbolic. It suffices to show that the Jacobian of (5.24) at zequilibrium
only admits eigenvalues with negative real parts.

However there is yet another problem with our system (5.24). We note that the first
two equations in system (5.24) rely on a certain type of targeting equations (see (5.3)),
which in essence can be reduced to

z′ = −z3 (5.31)

and for which the equilibrium point 0 is not hyperbolic. Therefore, instead of choosing an
equation of type (5.3) or, more generally, of type (5.8), we choose an equation with the
format

z′ =
(
c(b(t)− z)3 + (b(t)− z)

)
φ(t)

Since b(t) − z always has the same sign as c(b(t) − z)3, it is not difficult to see that
adding the term (b(t) − z) will not alter the constructions of the previous sections. Thus
the following (final) system

z′1 = (c1(f ◦ σ[k](z2)− z1)3 + (f ◦ σ[k](z2)− z1))χ(τ)ζε1(τ)
z′2 = (c2(σ[n](z1)− z2)3 + (σ[n](z1)− z2))χ(τ)ζε2(−τ)
u′ = −u
τ ′ = 2(u+ ξ2(v3 − (m− 1), τ + 1))αξ2(m− v3, 10)− ξ2(v3 − (m− 1), 10 + 10τ 2)τ

(5.32)
will still simulate our universal Turing machine M and have zequilibrium as a sink as the
previous system (5.24) does.

42 Daniel S. Graça, Ning Zhong

Now we show that that zequilibrium is a hyperbolic sink of system (5.32) by computing
the eigenvalues of the Jacobian of (5.32) at zequilibrium. Note that in (5.32) the components
z1 and z2 actually belong to R3. Fully expanding the system (5.32), one obtains

y′1 = (c1(h1(v1, v2, v3)− y1)3 + (h1(v1, v2, v3)− y1))χ(τ)ζε1(τ)
v′1 = (c2(σ[n](y1)− v1) + (σ[n](y1)− v1))χ(τ)ζε2(−τ)
y′2 = (c1(h2(v1, v2, v3)− y2)3 + (h2(v1, v2, v3)− y2))χ(τ)ζε1(τ)
v′2 = (c2(σ[n](y2)− v2)3 + (σ[n](y2)− v2))χ(τ)ζε2(−τ)
y′3 = (c1(h3(v1, v2, v3)− y3)3 + (h3(v1, v2, v3)− y3))χ(τ)ζε1(τ)
v′3 = (c2(σ[n](y3)− v3)3 + (σ[n](y3)− v3))χ(τ)ζε2(−τ)
u′ = −u
τ ′ = 2(u+ ξ2(v3 − (m− 1), τ + 1))αξ2(m− v3, 10)− ξ2(v3 − (m− 1), 10 + 10τ 2)τ

(5.33)
where z1 = (y1, y2, y3), z2 = (v1, v2, v3), and h = (f1 ◦ σ[k], f2 ◦ σ[k], f3 ◦ σ[k]) =

(h1, h2, h3). Since h(zf) = f(σ[k](0), σ[k](0), σ[k](m)) = zf (see the proof of property (I)
in section 5.3), it follows that, in (5.33), at zequilibrium = (zf , zf , 0, 0),

hi(v1, v2, v3) = yi

σ[n](yi) = vi

for i = 1, 2, and 3, which reduces many terms to 0. Moreover, since the map f : R3 → R3

is contracting near zf = (0, 0,m) (see Theorem 4.1), so is h (with a contraction factor
bounded in absolute value by 0 ≤ λ < 1), thus

‖Dh(zf)(z − zf)‖∞ ≤ λ ‖z − zf‖∞ (5.34)

Now pick z − zf = (1/4, 0, 0). Since

Dh(zf)(z − zf) =
1

4

(
∂h1

∂x1

,
∂h2

∂x1

,
∂h3

∂x1

)
using (5.34) and the sup-norm on both sides, we get

λ

4
= λ ‖z − zf‖∞ ≥ ‖Dh(zf)(z − zf)‖∞ ≥

1

4

∣∣∣∣∂hi∂x1

∣∣∣∣
⇒ λ ≥

∣∣∣∣∂hi∂x1

∣∣∣∣
for i = 1, 2, and 3. Picking z − zf = (0, 1/4, 0) and z − zf = (0, 0, 1/4), and proceeding
similarly, we reach the conclusion that all partial derivatives of h are bounded in absolute
value by λ at the point zh. Now we define σi = ∂σ[n](yi)

∂yi
. Notice that for n ≥ 1,

|σi| ≤ λ1/4 = 0.4π − 1 ≈ 0.256637 (5.35)

Non-computable basins of attraction 43

from Proposition 4.3 and the proof of Lemma 4.2. Therefore the Jacobian matrix A of
(5.33) at the point ze = zequilibrium is



− χ(τ)ζε1(τ)|z=ze
∂h1
∂v1
χ(τ)ζε1(τ)

∣∣∣
z=ze

0 ∂h1
∂v2
χ(τ)ζε1(τ)

∣∣∣
z=ze

σ1 χ(τ)ζε2(−τ)|z=ze − χ(τ)ζε2(−τ)|z=ze 0 0

0 ∂h2
∂v1
χ(τ)ζε1(τ)

∣∣∣
z=ze

− χ(τ)ζε1(τ)|z=ze
∂h2
∂v2
χ(τ)ζε1(τ)

∣∣∣
z=ze

0 0 σ2 χ(τ)ζε2(−τ)|z=ze − χ(τ)ζε2(−τ)|z=ze
0 ∂h3

∂v1
χ(τ)ζε1(τ)

∣∣∣
z=ze

0 ∂h3
∂v2
χ(τ)ζε1(τ)

∣∣∣
z=ze

0 0 0 0
0 0 0 0
0 0 0 0

0 ∂h1
∂v3
χ(τ)ζε1(τ)

∣∣∣
z=ze

0 0

0 0 0 0

0 ∂h2
∂v3
χ(τ)ζε1(τ)

∣∣∣
z=ze

0 0

0 0 0 0

− χ(τ)ζε1(τ)|z=ze
∂h3
∂v3
χ(τ)ζε1(τ)

∣∣∣
z=ze

0 0

σ3 χ(τ)ζε2(−τ)|z=ze − χ(τ)ζε2(−τ)|z=ze 0 0
0 0 −1 0
0 β 0 −ξ2 (1, 10)



where β ∈ R is well defined (we do not need the explicit value of this partial deriva-
tive, it suffices to know its existence). To show that zequilibrium is a hyperbolic sink,
we just need to prove that all eigenvalues of the above matrix have negative real part.
Suppose, otherwise, that A admits an eigenvalue µ with nonnegative real part. Let x =

(x1, x2, x3, x4, x5, x6, x7, x8) ∈ C8 be an eigenvector of A associated to µ. Since x is an
eigenvector, x 6= 0. We also note that, from (5.30), χ(τ)|z=ze = χ(0) = 5. Then, from the
equation Ax = µx and (5.25), one gets the following equations

χ(τ)ζε1(τ)|z=ze

(
−x1 +

∂h1

∂v1

∣∣∣∣
z=ze

x2 +
∂h1

∂v2

∣∣∣∣
z=ze

x4 +
∂h1

∂v3

∣∣∣∣
z=ze

x6

)
= µx1 =⇒

1

1 + µ

χ(τ)ζε1 (τ)|
z=ze

(
∂h1

∂v1

∣∣∣∣
z=ze

x2 +
∂h1

∂v2

∣∣∣∣
z=ze

x4 +
∂h1

∂v3

∣∣∣∣
z=ze

x6

)
= x1 =⇒

∣∣∣∣ ∂h1

∂v1

∣∣∣∣
z=ze

x2 +
∂h1

∂v2

∣∣∣∣
z=ze

x4 +
∂h1

∂v3

∣∣∣∣
z=ze

x6

∣∣∣∣ ≥ |x1| =⇒

λ (|x2|+ |x4|+ |x6|) ≥ |x1| (5.36)

44 Daniel S. Graça, Ning Zhong

We also obtain from Ax = µx and (5.35)

χ(τ)ζε2(τ)|z=ze (σ1x1 − x2) = µx2 =⇒

σ1x1 =

(
1 +

µ

χ(τ)ζε2(−τ)|z=ze

)
x2 =⇒

λ1/4 |x1| ≥ |x2| (5.37)

Similarly the following can be derived:{
λ (|x2|+ |x4|+ |x6|) ≥ |x3|
λ (|x2|+ |x4|+ |x6|) ≥ |x5|

and
{
λ1/4 |x3| ≥ |x4|
λ1/4 |x5| ≥ |x6|

(5.38)

Then it follows from (5.36), (5.37), and (5.38) that
λλ1/4(|x1|+ |x3|+ |x5|) ≥ λ (|x2|+ |x4|+ |x6|) ≥ |x1|
λλ1/4(|x1|+ |x3|+ |x5|) ≥ λ (|x2|+ |x4|+ |x6|) ≥ |x3|
λλ1/4(|x1|+ |x3|+ |x5|) ≥ λ (|x2|+ |x4|+ |x6|) ≥ |x5|

Adding the inequalities, we get

3λλ1/4(|x1|+ |x3|+ |x5|) ≥ |x1|+ |x3|+ |x5|

which implies (note that 0 < 3λ1/4 < 1)

λ(|x1|+ |x3|+ |x5|) ≥ |x1|+ |x3|+ |x5|

Since |λ| < 1, the above holds true only if x1 = x2 = x3 = 0. Moreover, from (5.37) and
(5.38) one also concludes x2 = x4 = x6 = 0. Thus the equation Ax = µx is reduced to{

−x7 = µx7

−ξ2 (1, 10)x8 = µx8

Since 0 < ξ2 (1, 10) < 1 and µ has nonnegative real part, the system above is satisfied
only if x7 = x8 = 0. In other words, any eigenvector associated to the eigenvalue µ is a
zero vector, which is clearly a contradiction. Therefore, all eigenvalues ofA have negative
real part, i.e. zequilibrium is a hyperbolic sink for the ODE (5.32).

We note that all functions used in system (5.32) are computable (they are defined
by composing usual functions of analysis with some of their analytic continuations, and
therefore are computable; see [26], [7]).

5.6 Proof of Theorem 3.2

In the previous subsections 5.4 and 5.5, we have shown that the universal Turing machine
M can be simulated by the ODE (5.32) which has a hyperbolic sink at zequilibrium =

(zf , zf , 0, 0) ∈ N8. The lemma below follows from the results in those sections.

Non-computable basins of attraction 45

Lemma 5.4. Suppose that x0 ∈ N3 codes an initial configuration of M simulated by sys-
tem (5.32), and let z0 = (x0, x0, 1, 4). Then for every point z ∈ R8 satisfying ‖z − z0‖ <
1/16, one has:

1. If M halts on x0, then the trajectory starting at z converges to the hyperbolic sink
zequilibrium.

2. If M does not halt on x0, then the trajectory starting at z does not converge to
zequilibrium.

We now proceed to the proof of Theorem 3.2.

of Theorem 3.2. Let g : R6 × (−1,+∞)× (−1,+∞)→ R8 be the function in the right-
hand side of system (5.32) and let s = (zf , zf , 0, 0). Then g is analytic. As proved in
previous subsections, s is a hyperbolic sink of system (5.32), where zf corresponds to
the unique halting configuration of the universal Turing machine M simulated by system
(5.32). Let us denote the basin of attraction of s as Wfinal. It then follows that, for any
z0 = (x0, x0, 1, 4) with x0 ∈ N3 being an initial configuration of M , M halts on x0

iff z0 ∈ Wfinal. Moreover, from Lemma 5.4, any trajectory starting at a point inside
B(z0, 1/16) will either converge to s if M halts on x0 or not converge to s if M does not
halt on x0. In other words, B(z0, 1/16) is either inside Wfinal (if M halts on x0) or inside
R8 −Wfinal (if M does not halt on x0).

Let R denote R6× (−1,+∞)× (−1,+∞). Now suppose that Wfinal is a computable
open subset of R. Then the distance function dR\Wfinal

is computable. Therefore, for
any x0 ∈ N3, we can compute dR\Wfinal

(z0) with a precision of 1/40 which yields some
rational q, where z0 = (x0, x0, 1, 4). We note that either dR\Wfinal

(z0) = 0 (if z0 /∈ Wfinal)
or dR\Wfinal

(z0) ≥ 1/16 (if z0 ∈ Wfinal). In the first case, q ≤ 1/40, while in the second
case, q ≥ 1

16
− 1

40
= 3

80
. The following algorithm then solves the Halting problem, which

is absurd: on initial configuration x0, compute dR8\Wfinal
(z0), z0 = (x0, x0, 1, 4), with a

precision of 1/40 yielding some rational q. If q ≤ 1/40 then M does not halt on x0; if
q ≥ 3/80, then M halts on x0. Therefore Wfinal cannot be computable.

Acknowledgments. D. Graça was partially supported by Fundação para a Ciência e a Tecnologia and EU
FEDER POCTI/POCI via SQIG - Instituto de Telecomunicações through the FCT project PEst-OE/EEI/0008/2013.

References

[1] V. I. Arnold and A. Avez. Ergodic Problems of Classical Mechanics. W.A. Ben-
jamin, 1968.

46 Daniel S. Graça, Ning Zhong

[2] K. E. Atkinson. An Introduction to Numerical Analysis. John Wiley & Sons, 2nd
edition, 1989.

[3] A. F. Beardon. Iteration of Rational Functions. Springer, 1991.

[4] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation.
Springer, 1998.

[5] M. S. Branicky. Universal computation and other capabilities of hybrid and contin-
uous dynamical systems. Theoret. Comput. Sci., 138(1):67–100, 1995.

[6] V. Brattka. The emperor’s new recursiveness: the epigraph of the exponential func-
tion in two models of computability. In M. Ito and T. Imaoka, editors, Words, Lan-
guages & Combinatorics III, Kyoto, Japan, 2000. ICWLC 2000.

[7] V. Brattka, P. Hertling, and K. Weihrauch. A tutorial on computable analysis. In
S. B. Cooper, , B. Löwe, and A. Sorbi, editors, New Computational Paradigms:
Changing Conceptions of What is Computable, pages 425–491. Springer, 2008.

[8] M. Braverman. Computational complexity of euclidean sets: hyperbolic Julia sets
are poly-time computable. In V. Brattka, L. Staiger, and K. Weihrauch, editors, Proc.
6th Workshop on Computability and Complexity in Analysis (CCA 2004), volume
120 of Electron. Notes Theor. Comput. Sci., pages 17–30. Elsevier, 2005.

[9] M. Braverman and S. Cook. Computing over the reals: foundations for scientific
computing. Notices Amer. Math. Soc., 53(3):318–329, 2006.

[10] M. Braverman and M. Yampolsky. Non-computable Julia sets. J. Amer. Math. Soc.,
19(3):551–578, 2006.

[11] M. Campagnolo and C. Moore. Upper and lower bounds on continuous-time com-
putation. In I. Antoniou, C. Calude, and M. Dinneen, editors, 2nd International
Conference on Unconventional Models of Computation - UMC’2K, pages 135–153.
Springer, 2001.

[12] M. L. Campagnolo. Computational Complexity of Real Valued Recursive Functions
and Analog Circuits. PhD thesis, Instituto Superior Técnico/Universidade Técnica
de Lisboa, 2002.

[13] M. L. Campagnolo, C. Moore, and J. F. Costa. Iteration, inequalities, and differen-
tiability in analog computers. J. Complexity, 16(4):642–660, 2000.

[14] G. Chesi. Estimating the domain of attraction for uncertain polynomial systems.
Automatica, 40(11):1981–1986, 2004.

Non-computable basins of attraction 47

[15] D. S. Graça, M. L. Campagnolo, and J. Buescu. Computability with polynomial
differential equations. Adv. Appl. Math., 40(3):330–349, 2008.

[16] D.S. Graça, N. Zhong, and J. Buescu. Computability, noncomputability and unde-
cidability of maximal intervals of IVPs. Trans. Amer. Math. Soc., 361(6):2913–2927,
2009.

[17] M. W. Hirsch and S. Smale. Differential Equations, Dynamical Systems, and Linear
Algebra. Academic Press, 1974.

[18] J. H. Hubbard and B. H. West. Differential Equations: A Dynamical Systems Ap-
proach — Higher-Dimensional Systems. Springer, 1995.

[19] P. Koiran and C. Moore. Closed-form analytic maps in one and two dimensions can
simulate universal Turing machines. Theoret. Comput. Sci., 210(1):217–223, 1999.

[20] S. Lang. Calculus of Several Variables. Springer, 3rd edition, 1987.

[21] L. G. Matallana, A. M. Blanco, and J. a. Bandoni. Estimation of domains of at-
traction: A global optimization approach. Mathematical and Computer Modelling,
52(3-4):574–585, 2010.

[22] C. Moore. Generalized shifts: unpredictability and undecidability in dynamical sys-
tems. Nonlinearity, 4(2):199–230, 1991.

[23] P. Odifreddi. Classical Recursion Theory, volume 1. Elsevier, 1989.

[24] P. Odifreddi. Classical Recursion Theory, volume 2. Elsevier, 1999.

[25] L. Perko. Differential Equations and Dynamical Systems. Springer, 3rd edition,
2001.

[26] M. B. Pour-El and J. I. Richards. Computability in Analysis and Physics. Springer,
1989.

[27] R. Rettinger. A fast algorithm for julia sets of hyperbolic rational functions. In
V. Brattka, L. Staiger, and K. Weihrauch, editors, Proc. 6th Workshop on Com-
putability and Complexity in Analysis (CCA 2004), volume 120 of Electron. Notes
Theor. Comput. Sci., pages 145–157. Elsevier, 2005.

[28] M. Sipser. Introduction to the Theory of Computation. Course Technology, 2nd
edition, 2005.

[29] S. Smale. Differentiable dynamical systems. Bull. Amer. Math. Soc., 73:747–817,
1967.

48 Daniel S. Graça, Ning Zhong

[30] A. M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Soc., (Ser. 2–42):230–265, 1936.

[31] A. M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. a correction. Proc. London Math. Soc., (Ser. 2–43):544–546, 1937.

[32] K. Weihrauch. Computable Analysis: an Introduction. Springer, 2000.

[33] N. Zhong. Computational unsolvability of domain of attractions of nonlinear sys-
tems. Proc. Amer. Math. Soc., 137:2773–2783, 2009.

	1 Summary of the paper
	2 Introduction
	2.1 Related work
	2.2 Dynamical systems and hyperbolicity
	2.3 Introduction to computability over real numbers

	3 Main results
	3.1 Road map to results

	4 The discrete-time case
	4.1 Brief overview of the proof
	4.2 Some special functions used in the construction
	4.3 Simulation of Turing machines with maps
	4.3.1 Turing machines
	4.3.2 Determining the next action - Interpolation techniques

	4.4 Proof of Theorem 4.1

	5 The continuous-time case
	5.1 Simulations of Turing machines with ODEs - non-analytic case
	5.2 Simulations of Turing machines with ODEs - analytic case
	5.3 The halting configuration is a sink
	5.4 The system (5.24) still simulates the Turing machine M
	5.5 The sink is hyperbolic
	5.6 Proof of Theorem 3.2

