El próximo martes 16 de septiembre se realizarán tareas de mantenimiento entre las 13-15h. que afectarán al funcionamiento del repositorio. Lamentamos las molestias que esto les pueda causar.
Anchor model fusion for emotion recognition in speech
Entity
UAM. Departamento de Ingeniería InformáticaPublisher
Springer Berlin HeidelbergDate
2009Citation
10.1007/978-3-642-04391-8_7
Biometric ID Management and Multimodal Communication: Joint COST 2101 and 2102 International Conference, BioID_MultiComm 2009, Madrid, Spain, September 16-18, 2009. Proceedings. Lecture Notes in Computer Science, Volumen 5707. Springer, 2009. 49-56
ISSN
0302-9743 (print); 1611-3349 (online)ISBN
978-3-642-04390-1 (print); 978-3-642-04391-8 (online)DOI
10.1007/978-3-642-04391-8_7Funded by
This work has been financed under project TEC2006-13170-C02-01.Editor's Version
http://dx.doi.org/10.1007/978-3-642-04391-8_7Subjects
Anchor models; Emotion recognition; GMM supervectors; Prosodic features; SVM; InformáticaNote
Proceedings of Joint COST 2101 and 2102 International Conference, BioID_MultiComm 2009, Madrid (Spain)The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-04391-8_7
Rights
© Springer-Verlag Berlin Heidelberg 2009Abstract
In this work, a novel method for system fusion in emotion recognition for speech is presented. The proposed approach, namely Anchor Model Fusion (AMF), exploits the characteristic behaviour of the scores of a speech utterance among different emotion models, by a mapping to a back-end anchor-model feature space followed by a SVM classifier. Experiments are presented in three different databases: Ahumada III, with speech obtained from real forensic cases; and SUSAS Actual and SUSAS Simulated. Results comparing AMF with a simple sum-fusion scheme after normalization show a significant performance improvement of the proposed technique for two of the three experimental set-ups, without degrading performance in the third one.
Files in this item
Google Scholar:Ortego Resa, Carlos
-
López Moreno, Ignacio
-
Ramos Castro, Daniel
-
González Rodríguez, Joaquín
This item appears in the following Collection(s)
- Producción científica de la UAM [26622]
Related items
Showing items related by title, author, creator and subject.