
DiaSys: On-Chip Trace Analysis for
Multi-Processor System-on-Chip

Philipp Wagner, Thomas Wild, and Andreas Herkersdorf

Lehrstuhl für Integrierte Systeme, Technische Universität München,
Arcisstraße 21, 80333 München, Germany

{philipp.wagner,thomas.wild,herkersdorf}@tum.de

https://www.lis.ei.tum.de

Abstract. To find the cause of a functional or non-functional defect
(bug) in software running on multi-processor System-on-Chip (MPSoC),
developers need insight into the chip. For that, most of today’s SoCs have
hardware tracing support. Unfortunately, insight is restricted by the insuf-
ficient off-chip bandwidth, a problem which is expected to become more
severe in the future as more functionality is integrated on-chip. In this pa-
per, we present a novel tracing system architecture, the diagnosis system
“DiaSys.” It moves the analysis of the trace data from the debugging tool
on a host PC into the chip, avoiding the off-chip bandwidth bottleneck.
To enable on-chip processing, we propose to move away from trace data
streams towards self-contained diagnosis events. These events can then
be transformed on-chip by processing nodes to increase the information
density, and then be transferred off-chip with less bandwidth. We evaluate
the concept with a prototype hardware implementation, which we use to
find a functional software bug. We show that on-chip trace processing can
significantly lower the off-chip bandwidth requirements, while providing
insight into the software execution equal to existing tracing solutions.

Keywords: Debugging, Tracing, MPSoC, SoC Architectures

1 Introduction

To write high-quality program code for a Multi-Processor System-on-Chip (MP-
SoC), software developers must fully understand how their code will be executed
on-chip. Debugging or diagnosis tools can help developers to gain this under-
standing. They are a keyhole through which developers can peek and observe
the software execution. Today, and even more in the future, this keyhole narrows
as MPSoCs integrate more functionalities, at the same time as the amount of
software increases. Furthermore, the interaction between software and hardware
components increases beyond the instruction set architecture (ISA) boundary.
Therefore, more, not less, insight into the system is required to keep up or even
increase developer productivity.

Many of today’s MPSoCs are executing concurrent code on multiple cores,
interact with the physical environment (cyber-physical systems), or need to finish
execution in a bounded amount of time (hard real-time). In these scenarios, non-
intrusive observation of the software execution is required, which tracing provides.

https://www.lis.ei.tum.de

2 Wagner et. al.

generate trace streams

data analysis

generate events

functional unit
e.g. CPU, MEM, BUS

functional unit
e.g. CPU, MEM, BUS

flexible off-chip
boundary

data
analysis

system state
reconstruction

d
e
b
u
g
g
e
r

to
o
l

common system architecture today proposed system architecture

data
analysis

data
analysis

developer automationdeveloper automation

lg
b
it/

s

lg
b
it/

s

Fig. 1. Comparing a traditional SoC tracing system architecture (left) with our proposed
architecture (right). Only the trace data path is shown.

Instead of stopping the system for observation (as it is done in run-control
debugging), the observed data is transferred off-chip for analysis. Unfortunately,
observing a full system execution would generate data streams in the range of
petabits per second [14, p. 16]. As the bandwidth of available I/O interfaces is
limited, only a part of the system can be observed at any given time. In summary,
the lack of sufficient off-chip bandwidth is the most significant drawback of
tracing.

Today’s tracing system architectures, like ARM CoreSight [1] or NEXUS
5001 [2] follow a design pattern as shown on the left in Figure 1. The foremost
design goal is the bandwidth-efficient transmission of data streams from CPUs,
memories and interconnects through an off-chip interface to a host PC. This is
achieved by configurable filtering, (cross-)triggering and compression methods.
On the host PC a debugger tool reconstructs the SoC system state using the
program binary and other static information. It then extracts useful information
out of the data and presents it to a developer or to another tool, e.g. for runtime
verification.

The main idea in this work is to move the trace data analysis (at least
partially) from the host PC into the chip, as shown on the right side of Figure 1.
Bringing the computation closer to the data reduces the off-chip bandwidth
requirements, and ultimately increases insight into the software execution.

To realize this idea, in this paper we present a novel tracing system architecture,
the “diagnosis system” which enables on-chip trace data analysis. As part of
this system we introduce a general-purpose programmable on-chip data analysis
element, the “diagnosis processor.” It executes a trace analysis program on-chip
and increases the information density of the off-chip traffic.

DiaSys: On-Chip Trace Analysis for Multi-Processor System-on-Chip 3

The further paper is structured as follows. Based on the related work in the
field of SoC tracing and scriptable and event-based debugging in Section 2, we
present our concept of the diagnosis system in Section 3. The feasibility of the
concept is shown with a hardware implementation presented in Section 4.1, which
is used in Section 4.2 to find a functional bug in a software program.

2 Related Work

Our approach relates to works from two fields of research. First, trace-based
debugging for SoCs, and second, scriptable debugging and trace analysis.

Today’s tracing solutions for SoCs are structured as shown in Figure 1.
First, a trace data stream is obtained from various functional units in the system,
like CPUs, buses and memories. Then, this data is spatially and temporally
reduced through the use of filters and triggers. Finally, the redundancy in the
data is removed by the use of compression algorithms. The resulting trace data
stream is then transferred off-chip (live or delayed through an on-chip memory
buffer). On a host PC, the original trace stream is reconstructed and analyzed
by debuggers or profilers.

All major commercial SoC vendors offer tracing solutions based on this
template. ARM provides its licencees the CoreSight intellectual property (IP)
blocks [1], which are used in SoCs from Texas Instruments, Samsung and STMi-
croelectronics, among others. Vendors such as Freescale/NXP include tracing
solutions based on the IEEE-ISTO 5001 (Nexus) standard [2], while Infineon
integrates the Multi-Core Debug Solution (MCDS) into its automotive microcon-
trollers [9]. The main differentiator between the solutions is the configurability of
the filter and trigger blocks.

Driven by the off-chip bottleneck, a major research focus are lossless trace
compression schemes. Program trace compression available in commercial solu-
tions typically requires 1 to 4 bit per executed instruction [8, 12], while solutions
proposed in academia claim compression ratios down to 0.036 bit per instruc-
tion [13]. Even though data traces contain in general no redundancy, in practice
compression rates of about 4:1 have been achieved [8].

Scriptable or programmable debugging applies the concept of event-
driven programming to debugging. Whenever a defined probe point is hit, an
event is triggered and an event handler executes. Common probe points are
the execution of a specific part of the program (like entering a certain program
function), or the access to a given memory location. The best-known current
implementations of this concept are DTrace, SystemTap and ktap, which run
on, or are part of, BSDs, Linux, and MacOS X (where it is integrated into
the “Apple Instruments” product) [3, 5]. The concept, however, is much older.
Dalek [11] is built on top of the GNU Debugger (GDB) and uses a dataflow
approach to combine events and generate higher-level events out of primitive
events. Marceau et al. extend the dataflow approach and apply it to the debugging
of Java applications [10]. Coca [4], on the other hand, uses a language based
on Prolog to define conditional breakpoints as a sequence of events described
through predicates for debugging C programs.

4 Wagner et. al.

However, all mentioned scriptable debugging solutions are implemented in
software running as part of the debugged system and are therefore intrusive.
The design decisions reflect the environment of desktop to high performance
computers and need to be reconsidered when applying the concept to SoCs.

3 DiaSys: A System for On-Chip Trace Analysis

3.1 Requirements for the Diagnosis System

Before presenting the concept of the diagnosis system, we first formulate a set of
requirements, which guide both the development of the general concept, as well
as the specific hardware implementation.

First and foremost, the diagnosis system must be able to reduce the amount of
trace data as close to the source, i.e. the functional units in the SoC, as possible.
Since the data sources are distributed across the chip, the diagnosis system must
also be distributed in the same way.

Second, the diagnosis system must be non-intrusive (passive). Non-intrusive
observation preserves the event ordering and temporal relationships in non-
deterministic concurrent executions, a requirement for debugging multi-core, real-
time, or cyber-physical systems [6]. Non-intrusiveness also makes the diagnosis
process repeatable, giving its user the confidence that he or she is searching for
the bug in the functional code, not chasing a problem caused by the observation
(a phenomen often called “Heisenbug” [7]).

Third, the design and implementation of a tracing system involves a trade-off
between the provided level of observability and the system cost. The two main
contributions to the system cost are the off-chip interface and the used chip area.
The diagnosis system concept must be flexible enough to give the chip designer
the freedom to configure the amount of chip resources, the off-chip bandwidth
and the pin count in a way that fits the chips target market. At the same time,
the system must be able to adapt to a wide range of bugs by being tunable at
run-time to observe different locations in the SoC and execute different types of
trace analysis.

3.2 The Concept of the Diagnosis System

The starting point for all observations is a functional unit in the SoC. A functional
unit can be a CPU, a memory, an interconnect resource such as a bus or a NoC
router, or a specialized hardware block, like a DMA controller or a cryptographic
accelerator. Each of these components has a state, which changes during the
execution of software. Capturing and analyzing this state is the goal of any
debugging or diagnosis approach. In the following, we refer to the full state of
a functional unit F at time t as S(F, t), or, in short, S. A subset of this state
is what we call a “partial state of F”, SP (F, t) ⊂ S(F, t). P describes which
elements of the full state S are included in the subset SP .

Our diagnosis system architecture consists of three main components: event
generators, processing nodes, and event sinks. Between these three components,
events are exchanged.

DiaSys: On-Chip Trace Analysis for Multi-Processor System-on-Chip 5

A diagnosis event E = (t, C, SP) is described by the 3-tuple of a trigger
condition C, a partial state snapshot SP (F, t) and the time t when the event
was created. Together, the event answers three questions: when was the event
generated, what caused its generation, and in which state was the functional unit
at this moment in time.

functional
unit F

event generator
configuration M

event output
state

capture

event
packetizer

trigger
generator

C

P

state

S(F, t)

Fig. 2. A block diagram of a generic event generator.

Event generators produce events based on the observation of the state
S(F, t) of the functional unit F they are attached to. A schematic block diagram
of an event generator is shown in Figure 2. The event generators can be configured
with configuration sets M = {M1,M2, ...,Mn} with M = (C,P). The trigger
condition C achieves temporal selection by defining a condition which causes an
event to be generated. P describes which parts of the full state S are included in
the event.

Event generators can be attached to all types of functional units, for example
NoC routers, memories or CPUs. For example a CPU event generator generally
supports trigger conditions based on the program counter (PC) value, which
essentially describes the execution of a line of code. In this case, a specific example
for a trigger condition C is PC == 0x2020 which causes an event to be generated
if the program counter reaches the value 0x2020.

Processing nodes transform events by consuming a set of incoming
events Ei = {Ei,1, Ei,2, ..., Ei,n}, and possibly producing new events Eo =
{Eo,1, Eo,2, ..., Eo,m} as result. The goal of this transformation is to increase the
information density of the data contained in the events. The applied transfor-
mation function f : Ei → Eo depends on the type of the processing node, and
possibly its run-time configuration.

For example, a simple processing node could just compare the SP,i of an
incoming event with an expected value, and only produce a new event Eo if this
value is not found. A more complex processing node could calculate statistical
metrics out of the incoming data streams, such as averages or histograms. All
processing nodes have in common that they provide a platform to apply knowledge
about the system and the software execution to the events.

In this paper, we present a processing node called “diagnosis processor” which
can be programmed by the user to perform a wide range of analysis tasks.

Event sinks consume events. They are the end of the event chain. Their
purpose is to present the data either to a human user in a suitable form (e.g. as

6 Wagner et. al.

a simple log of events, or as visualization), or to format the events in a way that
makes them suitable for consumption by an automated tool, or possibly even for
usage by an on-chip component. An example usage scenario for an automated
off-chip user is runtime validation, in which data collected during the runtime of
the program is used to verify properties of the software.

Together, event generators, processing nodes and event sinks build a processing
chain which provides powerful trace analysis according to the requirements
outlined in the previous section. In the next section we present a specific type of
a processing node, the diagnosis processor.

3.3 The Diagnosis Processor: A Multi-Purpose Processing Node

The diagnosis processor is a freely programmable general-purpose processing
node. Like any processor design, it sacrifices computational density for flexibility.
Its design is inspired by existing scriptable debugging solutions, like SystemTap
or DTrace, which have shown to provide a very useful tool for software developers
in a growingly complex execution environment. The usage scenario for this
processing node are custom or one-off trace data analysis tasks. This scenario is
very common when searching for a bug in software. First, a hypothesis is formed
by the developer why a problem might have occurred. Then, this hypothesis must
be validated in the running system. For this validation, a custom data analysis
script must be written, which is highly specific to the problem (or the system
state is manually inspected). This process is repeated multiple times, until the
root cause of the problem is found. As this process is approached differently by
every developer (and often also influenced by experience and luck), a very flexible
analysis runtime is required.

We present the hardware design of our diagnosis processor implementation in
Section 4.1.

We envision the programming of the diagnosis processor being done through
scripts similar to the ones used by SystemTap or DTrace. They allow to write
trace analysis tasks on a similar level of abstraction as the analyzed software
itself, leading to good developer productivity.

4 Evaluation

In the following we show how to realize the diagnosis system concept in a
hardware implementation. We then apply this hardware implementation in a use
case showing how to find a functional bug in a software.

4.1 Prototype Implementation

Based on the concept of the diagnosis system as discussed in the previous section,
we designed a diagnosis extension for a 2×2 tiled multi-core system. The functional
system consists of four OpenRISC CPU cores with attached distributed memory
components and a mesh NoC interconnect, as shown in Figure 3 (components

DiaSys: On-Chip Trace Analysis for Multi-Processor System-on-Chip 7

CPU0 CPU1

CPU2

EG EG

EG EG

host PCSoC

USB

comm
lib

command
line tool

diagnosis
processor

CPU3

diagnosis NoC
NoC router

2 × 2 mesh NoC

Fig. 3. Block diagram of the prototype implementation.

with white background). This system is representative of the multi- and many-
core architecture template currently in research and available early products,
such as the Intel SCC or the EZchip (formerly Tilera) Tile processors.

The diagnosis system, depicted in blue, consists of the following components.

– Four event generators attached to the CPUs (marked “EG” in Figure 3).
– A single diagnosis processor.
– A 16 bit wide, unidirectional ring NoC, the “diagnosis NoC,” to connect the

components of the diagnosis system. It carries both the event packets as well
as the configuration and control information for the event generators and
processing nodes.

– A USB 2.0 off-chip interface.
– Software support on the host PC to control the diagnosis system, and display

the results.

All components connected to the diagnosis NoC follow a common template
to increase reusability. Common parts are the NoC interface and a configuration
module, which exposes readable and writable configuration registers over the
NoC. In the following, we explain the implementation of the main components in
detail.

CPU Event Generator The CPU event generator is attached to a single CPU
core. Its main functionality is implemented in two modules, the trigger module
and the system state snapshot unit. The trigger unit of the CPU event generator
fires on two types of conditions: either the value of the program counter (PC),
or the return from a function call (the jump back to the caller). At each point
in time, 12 independent trigger conditions can be monitored. The number of
monitored trigger conditions is proportional to the used hardware resources.
Our dimensioning was determined by statistical analysis of large collections
of SystemTap and DTrace scripts: ≤ 9 concurrent probes are used in 95 %
of SystemTap scripts, and ≤ 12 concurrent probes cover 92 % of the DTrace
scripts. The partial system state snapshot SP (CPU) can contain the CPU register
contents and the function arguments passed to the function. A block diagram of
the CPU event generator is shown in Figure 4.

8 Wagner et. al.

CPU
Core

program counter
monitor

snapshot data
correlation module

trigger

state capture

NoC
interface

CPU event
generator

function return
monitor

GPR collector

stack argument
collector

S
(C

P
U

)

NoC packetizer

P

SP

Fig. 4. Block diagram of the CPU event generator.

It is possible to associate an event with parts of the system state: the contents
of the CPU general purpose registers (GPR), and the arguments passed to the
currently executed function.

The passing of function arguments to functions depends on the calling con-
vention. On OpenRISC, the first six data words passed to a function are available
in CPU registers, all other arguments are pushed to the stack before calling
the function. This is common for RISC architectures; other architectures and
calling conventions might pass almost all arguments on the stack (such as x86).
To record the function arguments as part of the system state we therefore need
to create a copy of the stack memory that can be accessed non-intrusively. We
do this by observing CPU writes to the stack memory location.

W
ish

b
o
n
e

B
u
s RAM

diagnosis processor

18

Diagnosis
NoC Network Adapter

DMA

event queue

configuration

OpenRISC
CPU Core

Fig. 5. Block diagram of the diagnosis processor.

Diagnosis Processor The diagnosis processor design is based on a standard
processor template, which is extended towards the use case of event processing.
The main components are a 32 bit in-order RISC processor core with the or1k
instruction set (mor1kx) and a SRAM block as program and data memory. This

DiaSys: On-Chip Trace Analysis for Multi-Processor System-on-Chip 9

system is extended with components to reduce the runtime overhead of processing
event packets.

First, the network adapter, which connects the CPU to the diagnosis NoC,
directly stores the incoming event packets in the memory through a DMA engine.
All event packets are processed in a run-to-completion fashion. We can therefore
avoid interrupting the CPU and instead store the address of the event to be
processed next in a hardware “run queue”. A “discard queue” signals the hardware
scheduler which events have been processed and can be purged from memory.

Module LUTS REGS RAMS

functional system 40625 29638 80
1 compute tile (system contains 4) ∼ 7232 ∼ 4763 20
2 × 2 mesh NoC 10791 9964 0
support infrastructure (DRAM if, clock/reset mgr) 904 623 0

diagnosis system 19556 19140 147
1 CPU Event Generator 3603 6521 2
1 CPU Event Generator (CoreSight-like functionality) 1365 1594 0
1 Diagnosis Processor 8614 4549 145
diagnosis NoC 2520 2926 0

Table 1. The resource usage of a CPU diagnosis unit.

Resource Usage The prototype of the tiled MPSoC with the diagnosis ex-
tensions was synthesized for a ZTEX 1.15d board with a Xilinx Spartan-6
XC6SLX150 FPGA. The relevant hardware utilization numbers as obtained from
a Synplify Premier FPGA synthesis are given in Table 1.

The functional system, even though it consists of four CPU cores, is relatively
small, as the used mor1kx CPU cores are lightweight (comparable to small ARM
Cortex M cores). The functional system contains no memory, but uses an external
DDR memory.

In this scenario, the full diagnosis system rather large. We have implemented
two types of CPU event generators. A “lite” variant of the event generator can
trigger only on a program counter value, and not on the return from a function
call. This reduced functionality makes the event generator comparable to the
feature set of the ARM CoreSight ETM trace unit, which is said to use ∼ 7,000
NAND gate equivalents [12], making it similarly sized as our event generator. The
possibility to trigger also on the return from a function call significantly increases
the size of the event generator, mostly due to additional memory. The diagnosis
processor is about 20 percent larger than a regular compute tile, as it contains
an additional DMA engine and the packet queues. It also contains 30 kByte of
SRAM as program and data memory, which is not present in a regular compute
tile.

In summary, the resource usage of the diagnosis system is acceptable, especially
if used in larger functional systems with more powerful CPU cores. At the same

10 Wagner et. al.

time, the implementation still contains many opportunities for optimization,
which we plan to explore in the future. Also, a full system optimization to
determine a suitable number of diagnosis processors for a given number of CPU
cores is future work.

4.2 A Usage Example

In the previous section we described an implementation of our diagnosis system
architecture containing a diagnosis processor. As discussed in Section 3.3, this
processing node is especially suited for hypothesis testing in functional bugs. In
the following, we show how to find a functional bug in the C program presented
in Listing 1.1.

1 void write_to_buf(char* string , uint32_t size) {

2 struct {

3 char buf [99];

4 char var;

5 } test;

6 /* ... */

7 strncpy(test.buf , string , size);

8 /* ... */

9 }

10

11 int main(int argc , char** argv) {

12 char teststr [100] = "string_100_chars_long ...";

13 for (int i = 0; i < 10000000; i++) {

14 uint32_t len = (i % 100) + 1; /* len [1;100] */

15 write_to_buf(teststr , len);

16 }

17 return 0;

18 }

Listing 1.1. A buggy C program.

The program repeatedly calls the function write to buf with a string and
the size of the string. The value of the size argument sweeps between 1 and
100. Inside write to buf, the string is copied into the buffer test.buf using the
strncpy C library function.

The code contains a bug. The test.buf variable holds only 99 characters,
while with size == 100 hundred characters are copied into it – a buffer overflow
occurs. This causes the data in the variable test.var to be overwritten. In the
best case this data corruption is annoying, whereas in the worst case this results
in a critical security issue.

The debugging process might start with a bug report describing a data
corruption on the text.var variable. To find the cause of such a defect, a
developer might first rely on automated analysis tools. But since out-of-bounds
errors on the stack (as in this case) are hard to find, neither the GCC compiler
nor Valgrind (with the “exp-sgcheck” tool) issue any warning or error.

Since automated tools did not report anything suspicious, the developer needs
to form a hypothesis what might have caused the defect, and test this hypothesis

DiaSys: On-Chip Trace Analysis for Multi-Processor System-on-Chip 11

by collecting live data during the application run. The hypothesis in this case is
“the value passed as size is greater than 99.”

Using a traditional tracing system like ARM CoreSight ETM or Nexus 5001
Class 3, we would obtain a full program trace, together with a data trace of writes
to the size variable.1 The program trace is compressed to 2 bit/instruction, and
the data trace is not compressed. Scaling to the same execution speed as in our
prototype, which runs at 25 MHz and executes an average of one instruction every
five cycles, this would result in an off-chip bandwidth requirement of 10 Mbit/s.
It must be noted that in a faster system this number scales linearly, quickly
reaching typically available off-chip interface speeds.

Now we turn to our implementation. First, we measured the execution time
of the program by inserting program code to count the number of executed cycles
between line 12 and line 16 in Listing 1.1. The measurement showed an equal
number of executed cycles if the diagnosis system was enabled or disabled, i.e.
that our solution is non-intrusive to the program execution.

Second, the on-chip traffic was analyzed. The event generator creates an event
packet every time the function write to buf is executed. Every event packet
consists of six NoC flits (each 16 bit wide): one header flit (with destination and
packet type), a 32 bit wide time stamp, a 16 bit wide event identifier, and two flits
containing the state snapshot, i.e. the value of the size variable. This leads to a
NoC traffic of 4.3 Mbit/s, or 12 % of the theoretical NoC bandwidth. This shows
two things: first, the NoC link was dimensioned wide enough to connect all four
CPU event generators, and second, the event generators are sufficiently selective
not to overwhelm the NoC with too many events, which are later discarded.

After processing in the diagnosis processor, only every 100th event generates
an off-chip data packet. The off-chip packet is similar to the on-chip packets, but
consists only of four flits: one header, a 32 bit time stamp, and a 16 bit event
identifier. This results in 0.029 Mbit/s of off-chip traffic, which can easily be
handled by cheap interfaces like JTAG. Compared to the compressed full trace,
which required a bandwidth of 10 Mbit/s, the off-chip traffic was reduced by a
factor of 345.

5 Conclusions

In this paper we presented a novel tracing system architecture for MPSoCs.
We base our design on the observation that bringing the computation required
for trace analysis closer to the data source can solve the off-chip bottleneck
problem, which limits system observability in today’s tracing solutions. The
system architecture itself uses diagnosis events as method to transport data in a
processing pipeline. Diagnosis events are transformed in a processing pipeline in
order to increase their information density. The processing pipeline consists of
event sources, which are attached to the SoC’s functional units, processing nodes
which transform the data to increase their information density, and event sinks,
which are usually located on a developer’s PC, but can also be on-chip. We also

1 We assume that a single memory location stores the size variable. In our compilation
this is the case.

12 Wagner et. al.

present a powerful processing node, the diagnosis processor. Based on a prototype
implementation we show how our system architecture increases the insight into
the software execution and makes it possible to find a bug in a program in an
intuitive manner.

In the future, we plan to extend this system with more specialized processing
nodes, which are suited for common analysis tasks. We also investigate how
machine-learning approaches can be used to dynamically adjust the analysis
tasks during runtime.

Acknowledgments. This work was funded by the Bayerisches Staatsminis-
terium für Wirtschaft und Medien, Energie und Technologie (StMWi) as part of
the project “SoC Doctor,” and by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Centre “Invasive Computing”
(SFB/TR 89). The responsibility for the content remains with the authors.

References

1. CoreSight - ARM. http://www.arm.com/products/system-ip/coresight/
2. The Nexus 5001 Forum Standard for a Global Embedded Processor Debug Interface,

Version 2.0. Tech. rep. (Dec 2003)
3. Cantrill, B.M., Shapiro, M.W., Leventhal, A.H.: Dynamic Instrumentation of

Production Systems. In: Proceedings of the General Track: 2004 USENIX Annual
Technical Conference. ATEC ’04, USENIX Association, Berkeley, CA, USA (2004)

4. Ducassé, M.: Coca: An Automated Debugger for C. In: Proceedings of the 21st
International Conference on Software Engineering. pp. 504–513. ICSE ’99, ACM,
New York, NY, USA (1999)

5. Eigler, F.C., Prasad, V., Cohen, W., Nguyen, H., Hunt, M., Keniston, J., Chen, B.:
Architecture of systemtap: a Linux trace/probe tool (2005)

6. Fidge, C.: Fundamentals of distributed system observation. IEEE Software 13(6),
77–83 (Nov 1996)

7. Gray, J.: Why do computers stop and what can be done about it? In: Symposium
on reliability in distributed software and database systems. pp. 3–12. Los Angeles,
CA, USA (1986)

8. Hopkins, A.B.T., McDonald-Maier, K.D.: Debug support strategy for systems-on-
chips with multiple processor cores. IEEE Transactions on Computers 55(2), 174 –
184 (Feb 2006)

9. IPextreme: Infineon Multi-Core Debug Solution: Product Brochure (2008)
10. Marceau, G., Cooper, G., Krishnamurthi, S., Reiss, S.: A dataflow language for

scriptable debugging. In: 19th International Conference on Automated Software
Engineering, 2004. Proceedings. pp. 218–227 (Sep 2004)

11. Olsson, R.A., Crawford, R.H., Ho, W.W.: A Dataflow Approach to Event-based
Debugging. Softw. Pract. Exper. 21(2), 209–229 (Feb 1991)

12. Orme, W.: Debug and Trace for Multicore SoCs (ARM white paper) (Sep 2008)
13. Uzelac, V., Milenković, A., Burtscher, M., Milenković, M.: Real-time unobtrusive

program execution trace compression using branch predictor events. In: Proceedings
of the 2010 International Conference on Compilers, Architectures and Synthesis for
Embedded Systems. pp. 97–106. CASES ’10, ACM, New York, NY, USA (2010)

14. Vermeulen, B., Goossens, K.: Debugging Systems-on-Chip: Communication-centric
and Abstraction-based Techniques. Springer, New York (Aug 2014)

http://www.arm.com/products/system-ip/coresight/

	DiaSys
	Introduction
	Related Work
	DiaSys: A System for On-Chip Trace Analysis
	Requirements for the Diagnosis System
	The Concept of the Diagnosis System
	The Diagnosis Processor: A Multi-Purpose Processing Node

	Evaluation
	Prototype Implementation
	CPU Event Generator
	Diagnosis Processor
	Resource Usage

	A Usage Example

	Conclusions

