
NuChart-II : a Graph-Based Approach for
Analysis and Interpretation of Hi-C Data.

Fabio Tordini1, Maurizio Drocco1, Ivan Merelli3, Luciano Milanesi3,
Pietro Liò2, and Marco Aldinucci1

1 Department of Computer Science, University of Turin,
Corso Svizzera 185, 10149 Torino, Italy

2 Computer Laboratory, University of Cambridge,
Trinity Lane, Cambridge CB2 1TN, UK

3 Institute for Biomedical Technologies - Italian National Research Council,
via F.lli Cervi 93, 20090 Segrate (Mi), Italy

Abstract. Long-range chromosomal associations between genomic re-
gions, and their repositioning in the 3D space of the nucleus, are now
considered to be key contributors to the regulation of gene expressions,
and important links have been highlighted with other genomic features
involved in DNA rearrangements. Recent Chromosome Conformation
Capture (3C) measurements performed with high throughput sequenc-
ing (Hi-C) and molecular dynamics studies show that there is a large
correlation between co-localization and co-regulation of genes, but these
important researches are hampered by the lack of biologists-friendly anal-
ysis and visualisation software. In this work we present NuChart-II, a
software that allows the user to annotate and visualize a list of input
genes with information relying on Hi-C data, integrating knowledge data
about genomic features that are involved in the chromosome spatial or-
ganization. This software works directly with sequenced reads to identify
related Hi-C fragments, with the aim of creating gene-centric neighbour-
hood graphs on which multi-omics features can be mapped. NuChart-II
is a highly optimized implementation of a previous prototype package de-
veloped in R, in which the graph-based representation of Hi-C data was
tested. The prototype showed inevitable problems of scalability while
working genome-wide on large datasets: particular attention has been
paid in optimizing the data structures employed while constructing the
neighbourhood graph, so as to foster an efficient parallel implementation
of the software. The normalization of Hi-C data has been modified and
improved, in order to provide a reliable estimation of proximity likelihood
for the genes.

1 Scientific Background

The representation and interpretation of omics data is complex, also
considering the huge amount of information that are daily produced in
the laboratories all around the world. Sequencing data about expression
profiles, methylation patterns, and chromatin domains are difficult to



describe in a systemic view. The question is: how is it possible to rep-
resent omics data in an effective way? This problem is critical in these
years that see an incredible explosion of the available molecular biol-
ogy information. In particular, the integration and the interpretation of
omics data in a systems biology way is complex, because approaches
such as ontology mapping and enrichment analysis assume as prerequi-
site an independent sampling of features, which is clearly not satisfied
while looking at long-range chromatin interactions.

In this context, recent advances in high throughput molecular biology
techniques and bioinformatics have provided insights into chromatin in-
teractions on a larger scale, which can give a formidable support for the
interpretation of multi-omics data. The three-dimensional conformation
of chromosomes in the nucleus is important for many cellular processes
related to gene expression regulation, including DNA accessibility, epi-
genetics patterns and chromosome translocations [1]. The Chromosome
Conformation Capture (3C) technology [2] and the subsequent genomic
variants (Chromosome Conformation Capture on-Chip [3] and Chromo-
some Conformation Capture Carbon Copy [4]) are revealing the corre-
lations between genome structures and biological processes inside the
cell and permit to study the nuclear organisation at an unprecedented
resolution.

The combination of high-throughput sequencing with the above-mentioned
techniques, (generally called Hi-C), allows the characterisation of long-
range chromosomal interactions genome-wide [5]. Hi-C gives information
about coupled DNA fragments that are cross-linked together due to spa-
tial proximity, providing data about the chromosomal arrangement in
the 3D space of the nucleus. If used in combination with chromatin im-
munoprecipitation, Hi-C can be employed for focusing the analysis on
contacts formed by particular proteins.

In a previous work [6], we developed an R package called NuChart, which
allows the user to annotate and statistically analyse a list of input genes
with information relying on Hi-C data, integrating knowledge about ge-
nomic features that are involved in the chromosome spatial organisation.
NuChart works directly with sequenced reads to identify the related Hi-C
fragments, with the aim of creating gene-centric neighbourhood graphs
on which multi-omics features can be mapped. Gene expression data can
be automatically retrieved and processed from the Gene Expression Om-
nibus and ArrayExpress repositories to highlight the expression profile of
genes in the identified neighbourhood. The Hi-C fragment visualisation
provided by NuChart allows the comparison of cells in different condi-
tions, thus providing the possibility of novel biomarkers identification.
Although this software has been proved to be a valid support for Hi-C
analysis, the implementation relying on the R environment is a limit-
ing factor for the scalability of the algorithm, which can not cover large
genomic regions due to the high computational effort required. More-
over, its overhead in managing large data structures and its weaknesses
in exploiting the full computational power of multi-core platforms make
NuChart unfit to scale up to larger data sets and highly precise data
analysis (which requires many iterations of graph building process).



Normalization. 3C-based techniques employed for the characteriza-
tion of the nuclear organization of genomes and cell types have widespread
among scientific communities, fostering the development of a number of
systems biology methods designed to analyse such data. Particular at-
tention is given to the detection and normalisation of systematic biases:
the raw outputs of many genomic technologies are affected both by tech-
nical biases, arising from sequencing and mapping, and biological factors,
resulting from intrinsic physical properties of distinct chromatin states,
that make difficult to evaluate the outcomes.
Yaffe and Tanay [8] proposed a probabilistic model based on the observa-
tion of the genomic features. This approach can remove the majority of
systematic biases, at the expense of very high computational costs, due
to the observation of paired-end reads spanning all possible fragment
end pairs. Hu et al [7] proposed a parametric model based on a Poisson
regression. This is a simplified, and less computationally intensive nor-
malisation procedure than the one described by Yaffe and Tanay, since
it corrects the systematic biases in Hi-C contact maps at the desired res-
olution level, instead of modelling Hi-C data at the fragment end level.
The drawback here is that the sequence information is blurred within
the contact map. The first NuChart prototype [6] solved this issue by
exploiting Hu et al. solution to estimate a score to each read, identifying
half of the Hi-C contact instead of normalizing the contact map, thus
preserving the sequence information. NuChart-II leverage this solution
proposing an ex-post normalisation, that is used to estimate a probability
of physical proximity between two genes, expressed as a score assigned
to an edge connecting two nodes in the neighbourhood graph.
Among the related works, the majority of applications rely on the cre-
ation of contact maps for the interpretation of Hi-C data, combining
Principal Component Analysis and Hierarchical Clustering with this
representation. The visualization and exploration of Hi-C data assumes
a dramatic importance when analysing Hi-C data. To the best of our
knowledge, no other tool proposes a gene-centric, graph-based visualiza-
tion of the neighbourhood of a gene, as NuChart-II does.

Parallel Computing Tools. Over the years, research on loop par-
allelism has been carried on using different approaches and techniques
that vary from automatic parallelisation to iterations scheduling. In this
paper we elected FastFlow [10] as a viable tool for re-writing NuChart.
We then compared the results we have obtained, against OpenMP and
TBB, which represent to a major extent the most widely used and stud-
ied frameworks for loop parallelisations.
Intel Threading Building Blocks (TBB) [12] is a library that enables sup-
port for scalable parallel programming using standard C++. It provides
high-level abstractions to exploit task-based parallelism, independently
from the underlying platform details and threading mechanisms. The
TBB parallel_for and parallel_foreach methods may be used to
parallelise independent invocation of the function body of a for loop,
whose number of iterations is known in advance.
OpenMP [13] uses a directive based approach, where the source code is
annotated with pragmas (#pragma omp) that instruct the compiler about



the parallelism that has to be used in the program. In OpenMP, two
directives are used to parallelise a loop: the parallel directive declares
a parallel region which will be executed concurrently by a pool of threads;
the for directive is placed within the parallel region to distribute the loop
iterations to the threads executing the parallel region.

FastFlow is a parallel programming environment originally designed to
support efficient streaming on cache-coherent multi-core platforms [10].
It is realised as a pattern-based C++ framework that provides a set of
high-level programming patterns (aka algorithmic skeletons). FastFlow
exposes a ParallelFor pattern [11] to easily deal with loop parallelism.

2 Materials and Methods

Here we present NuChart-II, an improved C++ version of the first R pro-
totype software, which enables the user to annotate and visualize Hi-C
data in a gene-centric fashion, integrating knowledge data about genomic
features that are involved in the chromosome spatial organisation. In the
development of this new version of the software, particular attention has
been paid at optimising the data structures employed for the manage-
ment of the information concerning the neighbourhood graph, in order
to facilitate the parallel implementation of the algorithm. The computa-
tional effort required for the generation of large graphs can now be easily
addressed according to the parallelism the application exhibits, properly
exploiting the computational power offered by modern multi-core archi-
tectures. The re-engineering of the software has been conducted on top
of FastFlow, using the ParallelFor pattern.

The general idea behind this package is to provide a complete suite of
tools for the analysis of Hi-C data. A typical Hi-C analysis will start with
the pre-processing of FASTQ files with HiCUP, which produces paired
reads files in SAM (or BAM) format 4. These SAM files represent the
main input of NuChart-II, along with a list of genes and an interval of
genomic coordinates that should be analysed in terms of Hi-C contacts
for the creation of the neighbourhood graph. Hi-C data are analysed
using a gene-centric approach: if a Hi-C contact between two genes is
present – i.e. there is a paired read that supports their proximity in the
nuclear space – an edge is created between their representative vertices.

The scalability aspect assumes crucial importance in NuChart-II: while
the previous R implementation was not suitable to perform thorough
explorations due to bottlenecks in memory management and limitations
in the exploitation of the available computational resources, the novel
algorithm is fully scalable and can be used for exploring Hi-C contact
genome-wide. This is functional to our objective of creating a snapshot of
the general organisation of the DNA in the nucleus, which is essential, for
example, to exploit chromosome conformation data in cytogenetics anal-
ysis or to create a metrics of the distance between the different fragment
in terms of contacts.

4 see the HiCUP documentation for more details:
http://www.bioinformatics.babraham.ac.uk/projects/hicup/

http://www.bioinformatics.babraham.ac.uk/projects/hicup/


The novel implementation presented here refines the normalisation phase,
which is now conducted a-posteriori, during the edge weighing phase: the
weight assumes the role of a “confidence score” that qualifies the relia-
bility of each contact represented on the neighbourhood graph.

2.1 Neighbourhood Graph Construction

We recall that a graph is a formal mathematical representation of a col-
lection of vertices (V ), connected by edges (E) that model a relationship
among vertices. In this context, vertices represent genes. Two genes are
connected if there exists a paired-end Hi-C data belonging to both of
them. We define this paired-end Hi-C data as a connection, meaning a
spatial relationship between two genes. We can express these concepts
in a more formal fashion:

G = (V,E)

where

V = { g | g ∈ Genes }
and

E = { (g1, g2) | g1 −−⇀↽−− g2 ∧ g1, g2 ∈ V }

The resulting graph G is an undirected, weighted graph with a symmetric
binary relation between the adjacent vertices – i.e., if g1 is a neighbour for
g2, then g2 is a neighbour for g1 – while the weights on the edges provide
a likelihood of physical proximity for the adjacent vertices, as a result
of the normalisation phase. The neighbourhood graph can be defined as
the induced subgraph obtainable starting from a given root vertex v, and
including all vertices adjacent to v and all edges connecting such vertices,
including the root vertex.

Graph Construction. The graph construction starts from one or
more root genes and proceeds until all the nodes of the graph have been
visited, or up to the desired “distance” from the root: a search at level
1 yields all the genes directly adjacent to the root (which is at level
0); a search at level i returns all directly adjacent genes for each gene
discovered up to level i− 1, starting from the root.
The procedure exhibits a typical data-parallel behaviour, in which any
arbitrary subset of Hi-C Reads can be processed independently from each
other. This means it can be parallelised in a seamless way by processing
those parts elected as main computational cores within a ParallelFor

loop pattern, whose semantic amounts to execute in parallel the instruc-
tions inside the loop, provided they are independent from each other.
Taking inspiration from the work of Hong et al. [14], the algorithm pro-
ceeds as a Breadth First Search. At the end of each level iteration, the
parallel execution is synchronized: at this point thread-local next-level
containers are processed and a partial graph is constructed with the
genes discovered at the current BFS level. The definitive graph is built
in batch at the end of the BFS execution.



Algorithm 1.1 Graph Construction (pseudo-code)
1 ParallelNeighboursGraph (root, L MAX, NTH) {
2 Q = Γ = Graph := ∅
3 C[NTH] = V[NTH] = E[NTH] := ∅
4 lv := 0
5

6 push root in Q
7 while (Q not ∅ and lv < L MAX) {
8 pop q from Q
9 // find Hi−C Reads for q

10 ParallelFor (r in Reads, NTH) {
11 if (r.Start in q[Start, Stop] and r.Chr == q.Chr)
12 add r to C[thid]
13 }
14 // find neighbour genes for q
15 ParallelFor (c in C[thid], NTH) {
16 intra := 0
17 for each (g in Genes) {
18 if (g overlaps c.PairedEnd)
19 add g to V[thid]
20 add (q, g) to E[thid]
21 intra := intra + 1
22 }
23 HandleIntergenicCase(Genes,intra)
24 }
25 // level synchronisation
26 Γ := BuildPartialGraph(V[thid],E[thid])
27 for each (v in V[thid]) { // next level vertices
28 if (not v.Visited)
29 push v in Q
30 }
31 lv := lv + 1
32 C[thid] = V[thid] = E[thid] := ∅
33 }
34 Graph := BuildGraph(Γ )
35 }

The Hi-C Reads exploration phase and the genes discovery have been
split, in order to avoid mixing the working sets involved in the two
phases. This helps minimising the cache thrashing and permits to obtain
substantial performance improvements. The pseudo-code of the parallel
graph construction is reported in listing 1.1: this high-level approach re-
quired some adjustment to the BFS procedure, and the introduction of
new thread-local containers needed to handle concurrent write accesses
to shared data structures. Specifically, C [NTH], V [NTH] and E [NTH]
are used to store per-thread data, where NTH is the number of threads
in use and thid identifies thread’s own container, such that 0 ≤ thid <
NTH. Q represents our working queue that contains the genes discovered
throughout the computation. L MAX determines the maximum distance
from the root that has to be reached (−1 means explore all graph). Γ is
used at every level synchronisation to store partial graphs, that will be
merged into a definitive graph at the very end of the graph construction
process.

The algorithm starts searching for those paired Hi-C reads whose first
pair fragment falls within gene’s coordinates. This yields a list of con-
nections containing those chromosome fragments where neighbour genes
may be located (rows 10–13): upon this list of connections the search
for neighbour genes takes place, in parallel on the set of connections
(rows 15–24). Inter-genic cases are optionally handled: when the identi-



fied chromosome fragment is inter-genic (i.e., no intra-genics have been
found), the corresponding genomic position is annotated on the graph
as a singularity point (with a different graphical representation). Singu-
larity points may be expanded to the closest proximal genes (after and
before genes), searched within a predefined range (defined as a constant
±k) from the paired end coordinates: when an after gene and a before
gene are found (or either one of the two), an edge between the singu-
larity point and the proximal genes is created. When all graph’s levels
have been explored, the graph is built in batch, by processing the partial
graphs stored in Γ (row 34).

Edge Weighing. This phase encompasses the normalisation process,
which is needed in order to remove systematic biases arising from se-
quencing and mapping. The weight assumes the role of a “confidence
score” that qualifies the reliability of each contact represented on the
neighbourhood graph. We recall that an edge identifies the existence of
Hi-C fragments belonging to both connected genes; for each edge, a con-
tact map (M) is constructed directly modelling the read count data at
a resolution level of 1 MB. Hi-C data matrix is symmetric, thus we con-
sider only its upper triangular part, where each point of Mi,j denotes
the intensity of the interaction between positions i and j. Using the lo-
cal genomic features that describe the chromosome (fragment length,
GC-content and mappability) we can set up a generalized linear model
(GLM) with Poisson regression, with which we estimate the maximum
likelihood of the model parameters.

The generalized linear model with Poisson regression has been imple-
mented adopting the Iteratively Weighted Least Squares algorithm (IWLS)
proposed by Nelder and Wedderburn [15] using the GNU Scientific Li-
brary [16]. The listing below reports a pseudo-code of the function:

Algorithm 1.2 Edge Weighing (pseudo-code)
1 ComputeEdgeScore(edge, thrsh) {
2 LenM = GccM = MapM := ∅ // cover matrices
3 B := ∅
4 Conv := true
5

6 // populate cover matrices using genomic features
7 . . .
8

9 X := ToMatrix(LenM, GccM)
10 Y := BuildContactMap(edge.Chr1, edge.Chr2)
11

12 while (Conv) {
13 ApplyLinkFunction(Y)
14 B := ApplyGLM(Y, X)
15 Conv := CheckConvergence(thrsh)
16 }
17

18 edge.Score := f(B)
19 }

Listing 1.2 shows a pseudo-code of the weighing algorithm: the function
ApplyGLM writes the best-fit parameters in vector B, which is the result
of the regression: these coefficients are used to calculate the score (i.e.



the estimation of physical proximity) for the edge connecting the two
genes.

The edges weighing phase is an embarrassingly parallel application: any
arbitrary subset of the edges can be processed independently from each
other by executing its body in a parallel loop pattern. This data-parallelism
can be properly exploited to boost up performances and drastically re-
duce execution time, by just calling the function listed in algorithm 1.2
within Fastflow’s ParallelFor.

3 Results

The novel makings of NuChart-II have been exploited to verify how Hi-C
can be used for citogenetics studies. In particular, we focused on Philadel-
phia translocation, which is a specific chromosomal abnormality that is
associated with chronic myelogenous leukaemia (CML). The presence
of this translocation is a highly sensitive test for CML, since 95% of
people with CML have this abnormality, although sometimes it occurs
also in acute lymphoblastic leukaemia (ALL) and in acute myelogenous
leukaemia (AML). The result of this translocation is that a fusion gene
is created from the juxtaposition of the ABL1 gene on chromosome 9
(region q34) to part of the BCR (”breakpoint cluster region”) gene on
chromosome 22 (region q11). This is a reciprocal translocation, creating
an elongated chromosome 9 (called der 9), and a truncated chromosome
22 (called the Philadelphia chromosome). The Hi-C technique can be
used to study such kind of translocations, and subsequently answer to
questions such as “are this kind of chromosomal translocations occurring
between nearby chromosomes?”,LMO2 just by exploiting NuChart-II.

With NuChart-II we compared the distance of some couples of genes that
are known to create translocation in CML/AML. In particular, our anal-
ysis relies on data from the experiments of Lieberman-Aiden [9], which
consist in 4 lines of karyotypically normal human lymphoblastoid cell
line (GM06990) sequenced with Illumina Genome Analyzer, compared
with 2 lines of K562 cells, an erythroleukemia cell line with an aberrant
karyotype. Starting from well-established data related to the cytogenetic
experiments, we tried to understand if the Hi-C technology can success-
fully be applied in this context, by verifying if translocations that are
normally identified using Fluorescence in situ hybridization (FISH) can
also be studied using 3C data.

We studied 5 well known couples of genes involved in translocations and
we analysed their Hi-C probability contacts in physiological and dis-
eased cells. Considering a p¡0.05 threshold for validating the presence
of an edge in the graph, we see that ABL1 and BCR are distant 2 or
3 contacts in sequencing runs concerning GM06990 with HindIII as di-
gestion enzyme (SRA:SRR027956, SRA:SRR027957, SRA:SRR027958,
SRA:SRR027959), while they are in close contact in sequencing runs
related to K562 with digestion enzyme HindIII (SRA:SRR027962 and
SRA:SRR027963). Therefore, there is a perfect agreement between the
positive and the negative presence of Hi-C contacts and FISH data.



This implies from one side that the DNA conformation in cells is ef-
fectively correlated to the disease state and also that Hi-C can be reli-
able in identifying these cytogenetic patterns. At the same way, AML1
and ETO are in close proximity in leukaemia cells (SRA:SRR027962
and SRA:SRR027963), while they are far 2 or 3 contacts in normal cells
(SRA:SRR027956, SRA:SRR027957, SRA:SRR027958, SRA:SRR027959).
Considering the translocation CBFβ-MYH11, they are distant 2 or 3 con-
tacts in GM06990 (SRA:SRR027956, SRA:SRR027957, SRA:SRR027958,
SRA:SRR027959), while are proximal in K562 (SRA:SRR027962, but
not in SRA:SRR027963). We had no appreciable results for NUP214
and DEK translocation and for PML and RARα translocation, which
however are more rare in this kind of disease.
These results are very important, because with the decreasing of the
next-generation sequencing the Hi-C technique can be an effective diag-
nostic option for cytogenetic analysis, with the possibility of improving
and refining the molecular biological view on the chromosomal architec-
ture and to provide a more generalised description of the nuclear organ-
isation.

Performance. NuChart-II has been completely re-engineered, with
the aim to solve the memory issues that burdened the R prototype:
both the graph construction and the edge weighing phases are bounded
to the memory size required to hold the data. Concerning the graph
construction, it has been tuned to properly use the memory hierarchy
and fully exploit cache locality while minimising cache trashing: it can
now build a chart of the whole genome within few minutes, which is a
rather different execution time with respect to the R prototype.
The weighing task performs tight loops doing Floating Point arithmetic
calculations on data that fit the L3 cache and can benefit from compiler
optimization and vectorization. When executed in parallel, each worker
thread gets a bunch of edges to work on, according to the grain size, and
a reference to a static collection of data, containing the genomic features
to be used within the process. During this task, memory consumption
reaches a size that largely exceeds the capacity of the L3 cache in our
target architecture, leading to a heavy memory traffic as the number of
working threads increases. This memory overhead is anyway balanced
by the heavy calculation performed by each worker thread: the imple-
mentation with FastFlow shows a quasi-linear speedup, and when com-
pared against OpenMP and Intel TBB implementations, the recorded
performance is substantially similar. Figure 1 shows some results con-
cerning the sole weighing phase, in terms of speedup and execution time:
the three frameworks reach approximately similar levels of speedup and
scalability, as the number of working threads increases.

Outputs. NuChart-II provides both textual output and graphic visu-
alization: textual and tabular outputs are useful to examine the genomic
regions explored, and comprise a) a list of all the edges resulting from
the graph construction, with the weight calculated for each edge; b) a
list of all discovered genes, with the level (i.e. the distance from the root)



50

100

150
200

300

500

1000

2000

3000

1 4 8 12 16 20 24 28 32
1

4

8

12

16

20

24

28

32

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
) 

- 
lo

g
s
c
a

le

S
p

e
e

d
u

p

N. of worker threads

Gene LMO2 on SRR400264 L2 - 12360 Edges

TBB
FF
OMP
ideal

Fig. 1 – Execution time and speedup for the weighing phase of gene LMO2 according
to Dixon et al. SRA:SRR400264 experiment: 12360 edges processed.

where the gene has been found; c) a more verbose output of the execu-
tion, that reports in detail all the edges of the graph, showing all the
genomic information about the two linked genes.

NuChart-II supports plotting with iGraph and GraphViz : these tools
perform nicely with small-to-medium sized graphs, but cannot provide
useful representation of huge graphs with more than ten thousand edges
(as it happens when the deepness of the graph increases or inter-genic
contacts are expanded). We are working on viable solutions to address
this problem and exploit novel techniques for interactive and dynamic
graph visualisation.

4 Conclusion

The added value of this software is to provide the possibility of analysing
Hi-C data in a multi-omics context, by enabling the capability of map-
ping on the graph vertices expression data, according to a particular
transcriptomics experiment, and on the edges genomic features that are
known to be involved in chromosomal recombination, looping and sta-
bility.

The novel implementation of the NuChart-II allows the software to scale
genome-wide, which is crucial to exploit its full capability for a correct
analysis, interpretation and visualisation of the data produced using the
Hi-C technique. We think that the possibility of having suitable descrip-
tions of how genes are localised in the nucleus, enriched by genomic
features that can characterise the way they are able to interact, can be
extremely useful in the years to come for the interpretation of multi-
omics data.



Fig. 2 – Neighbourhood graph with genes ABL1 and BCR, according to Lieber-
manAiden’s SRA:SRR027956 experiment

Fig. 3 – Neighbourhood graph with genes CBFB and MYH11 according to Lieber-
manAiden’s SRA:SRR027957 experiment



Fig. 4 – Neighbourhood graph with genes AML1 and ETO according to Lieber-
manAiden’s SRA:SRR027963 experiment

Acknowledgments

This work has been supported by the Flagship (PB05) InterOmics, MIUR
HIRMA (RBAP11YS7K), EU MIMOMICS, EU Paraphrase (GA 288570),
EU REPARA (GA 609666) projects.

References

1. Ling JQ, Hoffman AR, “Epigenetics of Long-Range Chromatin In-
teractions,” Pediatric Research, 61:11R-16R, 2007.

2. Dekker J, Rippe K, Dekker M, Kleckner N, “Capturing chromosome
conformation,” Science, 295:1306-1311, 2002.

3. Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R et al.,
“Nuclear organization of active and inactive chromatin domains un-
covered by chromosome conformation capture-on-chip (4C),” Nature
Genetics, 38:1348- 1354, 2006.

4. Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan
TA, Rubio ED, Krumm A, Lamb J, Nusbaum C, et al. “Chromosome
conformation capture carbon copy (5C): A massively parallel solu-
tion for mapping interactions between genomic elements,” Genome
Res, 16:1299-1309, 2006.

5. Duan Z, Andronescu M, Schultz K, Lee C, Shendure J, et al. “A
genome-wide 3C-method for characterizing the three-dimensional ar-
chitectures of genomes,” Methods, 58(3):277-88, 2012.

6. Merelli I, Liò P, Milanesi L, “NuChart: an R package to study gene
spatial neighbourhoods with multi-omics annotations,” PLoS One,
8(9):e75146, 2013.



7. Hu M, Deng K, Selvaraj S, Qin Z, Ren B, Liu JS, “HiCNorm: re-
moving biases in Hi-C data via Poisson regression,” Bioinformatics,
28(23):3131-3133, 2012.

8. Yaffe E, Tanay A, “Probabilistic modeling of Hi-C contact maps
eliminates systematic biases to characterize global chromosomal ar-
chitecture,” Nature genetics, 43:1059-1065, 2011.

9. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M,
Ragoczy T, et al. “Comprehensive mapping of long-range inter-
actions reveals folding principles of the human genome,” Science,
326:289-293, 2009.

10. Aldinucci, M and Danelutto, M and Kilpatrick, P and M. Torquati,
“Fastflow: high-level and efficient streaming on multi-core,” in Pro-
gramming Multi-core and Many-core Computing Systems, ser. Paral-
lel and Distributed Computing, S. Pllana and F. Xhafa, Eds. Wiley,
2014, ch. 13.

11. M. Danelutto and M. Torquati, “Loop parallelism: a new skele-
ton perspective on data parallel patterns,” in Proc. of Intl. Eu-
romicro PDP 2014: Parallel Distributed and network-based Process-
ing, M. Aldinucci, D. D’Agostino, and P. Kilpatrick, Eds. Torino,
Italy: IEEE, 2014. [Online]. Available: http://calvados.di.unipi.
it/storage/paper_files/2014_ff_looppar_pdp.pdf

12. Intel Threading Building Blocks, project site, 2013, http://

threadingbuildingblocks.org.
13. L. Dagum and R. Menon, “OpenMP: An industry-standard api for

shared-memory programming,” IEEE Comput. Sci. Eng., vol. 5,
no. 1, pp. 46–55, Jan. 1998.

14. S. Hong, T. Oguntebi, and K. Olukotun, “Efficient parallel graph
exploration on multi-core cpu and gpu,” in Proceedings of the 2011
International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT ’11. Washington, DC, USA: IEEE Computer
Society, 2011, pp. 78–88. [Online]. Available: http://dx.doi.org/
10.1109/PACT.2011.14

15. J. A. Nelder and R. W. M. Wedderburn, “Generalized linear mod-
els,” Journal of the Royal Statistical Society, Series A, General, vol.
135, pp. 370–384, 1972.

16. M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, M. Booth,
and F. Rossi, Gnu Scientific Library: Reference Manual. Network
Theory Ltd., Feb. 2003. [Online]. Available: http://www.worldcat.
org/isbn/0954161734

http://calvados.di.unipi.it/storage/paper_files/2014_ff_looppar_pdp.pdf
http://calvados.di.unipi.it/storage/paper_files/2014_ff_looppar_pdp.pdf
http://threadingbuildingblocks.org
http://threadingbuildingblocks.org
http://dx.doi.org/10.1109/PACT.2011.14
http://dx.doi.org/10.1109/PACT.2011.14
http://www.worldcat.org/isbn/0954161734
http://www.worldcat.org/isbn/0954161734

	NuChart-II: a Graph-Based Approach for Analysis and Interpretation of Hi-C Data. 

