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Abstract. Osteoporotic vertebral fractures have a severe impact on pa-
tients’ overall well-being but are severely under-diagnosed. These frac-
tures present themselves at various levels of severity measured using
the Genant’s grading scale. Insufficient annotated datasets, severe data-
imbalance, and minor difference in appearances between fractured and
healthy vertebrae make naive classification approaches result in poor dis-
criminatory performance. Addressing this, we propose a representation
learning-inspired approach for automated vertebral fracture detection,
aimed at learning latent representations efficient for fracture detection.
Building on state-of-art metric losses, we present a novel Grading Loss for
learning representations that respect Genant’s fracture grading scheme.
On a publicly available spine dataset, the proposed loss function achieves
a fracture detection F1 score of 81.5%, a 10% increase over a naive clas-
sification baseline.
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1 Introduction

Vertebral fractures are severely under-diagnosed. According to a 2013 study, 84%
of incidental vertebral fractures were not reported in CT [2]. This is either due to
the fractures being asymptomatic or to the symptoms wrongly being attributed
to other factors. Osteoporotic vertebral fractures have critical consequences such
as disability or increased mortality. Osteoporotic vertebral fractures cause pain
and kyphosis in the short term, but are associated with an 8-fold higher mor-
tality in the long term [3]. Accentuating this is their high prevalence in older
adult population (40% by the age of 80 years), making a missed diagnosis crit-
ical. Therefore, there is a need for an automated and reproducible detection of
vertebral fractures.
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(a) (b)

Fig. 1: Illustrating fracture grades: (a) TSNE visualisation of latent rep-
resentations learnt by formulating fracture detection as a simple classification
problem, resulting in poor separability. (b) An example selection of the three
classes of vertebrae studied in this work, healthy, grade-2 fracture, and grade-3
fracture.

Vertebral Fracture Detection Automatic detection of vertebral fractures is
relatively unexplored. Valetinitsch et al. [7] propose the extraction of texture-
based features such as histogram of gradients or local binary patterns from the
trabecular of a segmented verebrae and classifying them using a random forest.
From a deep learning perspective, Bar et al. [8] employ a convolutional neural
network for classifying sagittal patches from the vertebral column and aggre-
gating the classification across patches using a recurrent neural network. Along
similar lines, Tomita et al. [9] work on thoraco-lumbar slices processed with a
CNN and aggregated across slices using a long short-term memory (LSTM) net-
work. However, unlike [8], the latter does not need any anatomy to be segmented
to start the processing. Note that these approaches are ad hoc implementations
of CNNs working on large data samples and provide minimal insights into the
workings of the network. Recently, Nicolaes et al. [10] proposed a fully 3D ap-
proach for detecting vertebral fractures based on a voxel-level prediction regime,
also providing a weak localization of the fracture. However, it being patch-based
and predicting per voxel limits its real-time applicability.

We argue that formulating a vertebral fracture detection as a naive classifi-
cation problem is sub-optimal, more so in case of limited and unbalanced data
regimes. Fig. 1a illustrates the TSNE representations of the latent features of
one of the baselines in this work, viz. detecting vertebral fractures using a simple
cross entropy loss using a convolutional neural network. Observe the resulting
poor class-separation between healthy and fractured vertebrae. We attribute this
to the wide variation in vertebral shapes: a healthy lumbar vertebra is ‘more dif-
ferent’ from a healthy upper-thoracic vertebra than a fractured lumbar vertebra.
Moreover, there exists a ‘gradation’ among vertebral fractures, further obfuscat-
ing a clear shape-based separation (cf. Fig. 1b).

Genant’s Vertebral Fracture Grading The Current gold standard in grading
vertebral fractures is a semi-quantitative method developed by Genant et al [1],
according to which fractures are categorized into three grades (Grades 1, 2, and
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3; cf. Fig 1b). This is based on the height-loss a vertebra undergoes compared to
its healthy counterpart. A healthy vertebra is considered to be Grade 0. Grades
2 and 3 have proven clinical consequences, while this is unknown for Grade 1;
as its small height reduction results in a high inter-rater uncertainty, Grade 1
fractures are excluded in this study.

Representation Learning In this work, we aim to incorporate the gradual
shape variations, courtesy of the fracture grades, into the training process of
a classifier by explicitly adjusting the latent space. Deep learning models are
believed to generate useful representations as a byproduct of the task they are
trying to solve. However, this is not the case in low-data regimes as shown in
Fig 1a. Representation learning or metric learning can be used to learn efficient
latent representations in such scenarios. Siamese networks [15] using contrastive
loss and Face-Net [14] with its triplet loss are examples of standard metric learn-
ing frameworks wherein representations of similar entities are clustered together
while those of dissimilar ones are pushed apart.

Contributions In this work, we attempt to solve vertebral fracture detection
as a two-class, healthy vs. fractured classification problem.

– Towards accurate classification, we pre-train the neural network using fracture-
grade based representation learning. For this, we propose a novel loss func-
tion termed grading loss, which encourages the learnt representations to
respect the gradation in the appearance of fractures.

– Accounting for the dependence of vertebral shapes on vertebral labels, we
also propose a spine-region based pre-conditioning module.

– We validate the proposed fracture detection regime on a publicly available
VerSe dataset obtaining a classification F1 score of 82%, outperforming naive
classification as well as standard representation learning approaches.

2 Methodology

Given a collection of 2D vertebral patches, the objective of our work is to clas-
sify them into two classes, fractured and healthy. As vertebral shape depends
on it label and the amount of variation in this shape due to a fracture de-
pends on the fracture grade, we hypothesize that preceding the classification
stage with fracture-grade and vertebral-label dependant pre-training results in
an improved class separation. Consequently, this results in improved classifica-
tion performance. We model these pre-training stages with inspiration from the
field of representation learning.

2.1 Grading Loss

Metric learning aims to learn better data representations by working on a notion
of ‘distance’ in the latent space. It aims to cluster similar objects closer (by
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Fig. 2: Left: the arrangement of the three grades and the positive anchor during
initialization. Right: g3 is drawn closer to g2 and both are pulled away from g0
under the constraint of g0 being closer to g2 than to g3. The positive anchor gn
works on clustering the similar classes together in the latent space. gn belongs
to the g0 sub-class in this figure.

reducing the distance between them) while pushes dissimilar objects farther. This
is done by optimizing loss functions, such as the contrastive [15] and triplet losses
[14]. Note that these losses work on a notion of data similarity and dissimilarity.
By design, they do not include a ‘ranking’ within this similarity or dissimilarity.
For example, a ‘ranking’ is obvious in vertebral fractures, where a grade-2 and
grade-3 vertebrae are fractured, but the former is more similar to a vertebra from
a healthy class than the latter. Incorporating such ’ranking’ criterion into the
metric learning framework, we propose the grading loss.

Assume a 2D vertebral patch, x ∈ X, is mapped to a representation f(x)
by a neural network f . The Euclidean distance between the representations of
two examples xi and xj is denoted by d(xi, xj) = ||f(xi) − f(xj)||22. We design
the grading loss as a quadruplet loss [11] working with quadruplets denoted by
{xig0, x

j
g2, x

k
g3, x

l
gn}, where xig0 denotes a healthy vertebra sample, xjg2 and xkg3

denote samples of grade two and three, respectively, and n ∈ {0, 2, 3} can be
randomly chosen as a healthy or a fractured example. Observe that the xi, xj ,
and xk form a static triplet, i.e. they are always sampled from fixed sub-classes
of fracture grades. We incorporate a grading in the embedding space as follow: a
grade-3 fracture is farther away from a healthy (grade-0) vertebra than a grade-2
fracture vertebra, and grade-2 is closer to grade-3 and it is to healthy. We can
formulate these requirements as:

d(xg2, xg3) + α < d(xg2, xg0) and (1)

d(xg0, xg2) + β < d(xg0, xg3), (2)

where α and β are distance thresholds. Note that the Eq. 1 uses g2 as a refer-
ence sample and Eq. 2 uses g0. Owing to the triangular inequality of distances,
the restrictions on the distances from g3 to g0 and g2 are already satisfied by
the above conditions. The above conditions can be achieved by optimizing the
following loss terms:
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L1 = max(0, d(xg2, xg3)− d(xg2, xg0) + α) and (3)

L2 = max(0, d(xg0, xg2)− d(xg0, xg3) + β). (4)

Observe that Eqs. 3 and 4 structurally represent the triplet loss. However,
observe that these do not work on similarities. They form separating objectives
between various fracture grades. Finally, a third, clustering objective is incorpo-
rated by virtue of xl in the quadruplet. Recall that xgn could belong to any of the
three sub-classes. Based on the value of n in the sampled triplet, the clustering
objective pulls xgn closer to its match in the static triplet. We demonstrate our
grading loss in Fig.2 with xgn belonging to g0 sub-class and we refer to xgn by
the term positive anchor. The clustering objective can be represented as:

L3 = max(0, γ − d(x{i,j,k}gn , xlgn)) (5)

where n ∈ {0, 2, 3} and xi and xj are a pair of samples from the same
class. Assembling the loss terms together results in the proposed objective of
grading loss, LG = L1 + L2 + L3. In this work, the distance thresholds are
chosen to be α > β > γ. This is to ensure that d(xg2, xg0) is as large as possible
while maintaining d(xg3, xg0) > d(xg2, xg0). That is, a higher separation between
fractured and healthy classes is desirable compared to that between the two
grades.

2.2 Conditioning representations on vertebral indices

Considering the wide variation in shape from cervical to lumbar vertebrae, we
claim that learning label-specific representations as a pre-training stage also
improves fracture detection. Assuming the availability vertebral labels during
the training process, we construct five categories of vertebra based on their
shape similarity: T1 ∼ T5, T6 ∼ T9, T10 ∼ T12, L1 ∼ L4, and L5. Treating
this as a five-class problem, we can employ any standard metric loss for learning
label-specific representations. Note that our grading loss can also be extended
for this case as there exists a ‘ranking’ among the classes. Another application
could be in brain tumors, where grades are also present (high grade and low
grade gliomas). We leave the application of our loss to such scenarios for future
work.

2.3 Implementation

We perform fracture detection with the following network architecture [13], con-
taining 5× 5 filter kernels wherever applicable:

(conv32-bn-relu) →maxpool →(conv64-bn-relu)→maxpool (conv128-bn-relu)
→maxpool →(conv256-bn-relu) →maxpool →(linear256-bn-lrelu)
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→(linear128-bn-lrelu) →(linear64-bn-lrelu) →linear8

where ‘bn’ and ‘lrelu’ represent batch normalization and leaky Relu layers
respectively. Recall that our network consists of a pre-training stage (for repre-
sentation learning) and a training stage (for fracture detection). Furthermore,
the pre-training stage consists of two sub-stages: vertebral-index-based repre-
sentation learning and fracture-grade-based representation learning. Once pre-
trained, the network is trained by optimizing a binary cross entropy loss over
the fractured and healthy classes. For this, the last linear layer (linear8) is re-
placed with a two node linear layer (linear2) for the two classes. The network is
implemented using the Pytorch library on an Nvidia GTX 1080 gpu. All losses
are optimized using the Adam optimizer with a learning rate of 0.0001. We set
the hyper-parameters α, β and γ to 1.5, 1 and 0.5 respectively.

3 Experiments

In this section, we evaluate the contribution of the two main components pro-
posed as part of our classification routine: first, the proposed grading loss’ ability
in in learning efficient representations, and second, our complete fracture detec-
tion routine.

Dataset Recall that the proposed approach works at a vertebra level and utilizes
vertebral labels. We utilize the publicly available VerSe [4,5,6] dataset and its
centroid annotations. As part of [1], its vertebra are annotated for fractures of
three grades. We work with healthy, grade-2 and grade-3 fracture. We exclude
the cervical vertebrae (C1 ∼ C7) as vertebral fractures are extremely rare in
this region. The dataset consists of 1283 vertebrae extracted from 157 scans,
among which 1133 are healthy, 104 are g2 fractures and 46 are g3 fractures.
The data is split into a training set containing 966 vertebrae and a test set with
312 vertebrae. The healthy:g2:g3 ratio in these sets is 851:79:36 and 282:25:10,
respectively.

Data Preperation Typically, a vertebra’s mid-sagittal slice is a good indicator
of a fractures. However, in cases where the vertebra presents itself in an atypical
orientation, using the mid-sagittal slice is ineffective. Therefore, we utilize the
vertebral centroids to extract 2D reformations of the vertebra along the mid-
vertebral plane perpendicular to the vertebra’s sagittal axis. Specifically, we
construct a spline passing through the centroids and reformat the sagittal plane
along which this spline passes. From this reformation, vertebral patches of size
112× 112 pixels at 1× 1 mm resolution are extracted so that additional context
is provided by the vertebra above and below the vertebra-of-interest (VOI). Our
network consumes these patches. Additionally, a Gaussian around the centroid
is passed as an additional channel for indicating the VOI.
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Setup SN SP F1

Contrastive 54.2±5.3 95.6± 1.5* 57.4±4.2

Triplet 71.7±5.1 90.2± 2.0 57.3 ± 3.3

Grading 67.1±0.2 95.3± 1.6* 65.2 ± 5.1

Table 1: Evaluating learnt representations (representation learn →fracture
train): Performance comparison of various losses for learning fracture-specific
representations. * indicates statistical insignificance (p-value=0.44).

3.1 Experiments and Results

We validate the proposed grading loss in two stages: first, it is deployed as a
stand-alone representation learning loss, where the separability of the learnt rep-
resentations is tested (without any fracture-oriented training), and second, it is
combined with a fracture classification module as a pre-training stage along with
the proposed spine region-based representation learning component. The clas-
sification performances of various setups are compared using sensitivity (SN),
specificity (SP ), and F1 scores. We report the mean scores across fifteen ran-
domly chosen folds of the dataset. Note that the proportion of healthy:g2:g3 is
preserved through all the folds.

Grading loss results in better representations In this experiment, we
validate the effectiveness of the proposed grading loss at learning efficient rep-
resentations for fracture detection. We compare our loss with the two standard
metric-learning losses: contrastive and triplet losses. Specifically, the neural net-
work is optimized on the training set using each of the metric losses. Once
trained, it is used to obtained the latent representations of the training samples
on which a support vector machine (SVM) with a linear kernel is learnt. The
more linearly separable the representations are, better the learnt SVM performs
on the test set’s latent representation. Table 1 reports the classification perfor-
mance of this SVM on the test set representations. Observe that the grading
loss readily offer better ‘linear’ separability (∼ 8% increase in F1 score) of the
fracture vs. healthy classes compared to the contrastive and triplet loss. The
TSNE visualsations of these representations (cf. Fig. 3) illustrate this clustering
characteristic of the grading loss.

Proposed fracture detection regime Our complete fracture detection pipeline
consists of three stages: two pre-training stages followed by the main classifica-
tion stage. The first pre-training stage includes optimizing a contrastive loss
over the five regions of spine described in Sec. 2.2. Experiments justifying the
choice of contrastive loss for this stage are presented in the supplement. Fol-
lowing this, the network goes through the second pre-training stage where our
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(a) Contrastive Loss (b) Triplet Loss (c) Grading loss

Fig. 3: TSNE visualisation of the representations learnt by various metric learn-
ing losses, without explicit classification-specific training. Proposed grading loss
obtains more separability between healthy and fractured classes.

Label Pre-train Rep. Learn. Frac. train SN SP F1

8 8 X 71.0±6.4 96.4±1.7 71.2 ± 4.4

X 8 X 72.4 ± 7.7 97.8 ± 1.0 75.9 ± 5.5

8 Contrastive X 73.7 ± 7.7 98.0 ± 1.1 77.6 ± 2.6

8 Triplet X 73.7±6.3 96.4±1.4 73.6± 2.4

8 Grading X 76.0 ± 5.8 97.8 ± 1.1 78.6 ± 4.5

X Contrastive X 74.3 ± 4.7 98.0 ± 0.6 78.2 ± 2.1

X Triplet X 75.7 ± 6.4 97.6 ± 0.8 77.5 ± 2.9

X Grading X 76.9± 5.8 98.5± 0.95 81.5 ± 3.8

Table 2: Validating the proposed fracture detection regime (label pre-
train → representation learn→ fracture train): Comparison of the pro-
posed training routine based on grading loss with naive classification as well as
with other representation-learning-augmented classifications.

grading loss is minimized. Finally, the network is optimized for fracture de-
tection using cross entropy loss. We represent the proposed pipeline as label
pre-train → representation learn→ fracture train). Table 2 reports an
ablative test of the proposed routine. We test the contribution of label-based
pre-training and that of the proposed grading loss-based representation learning
is evaluated. Compared with a baseline network trained end-to-end for frac-
ture detection, pre-training with vertebral labels offers a 5% improvement in F1
score. On a different note, tuning the representations with fracture grades using
grading loss also improves the classification performance, providing about 7%
F1 score improvement over simple classification. These validate the effectiveness
of the two pre-training stages incorporated in our routine. Finally, testing all the
stages of the proposed pipeline, we observe that our combination results in the
highest performance across the three metrics with an overall F1 score of 81%.
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4 Conclusion

We conclude that in case of low-data regimes with severe data imbalance, aug-
menting classification with representation learning-based pre-training helps. Com-
pared to conventional metric losses which work on similarity or dissimilarity of
examples, the proposed grading loss which incorporating a ‘ranking’ within the
classes provides a superior performance. Going a step further, incorporating the
vertebral label information using similar techniques of representation learning
further improves fracture detection. The proposed fracture routine achieves an
F1 score of 81.5%, an improvement of over 10% over naive classification baseline.
In future work, we will extend this study to incorporate grade-1 fractures as well
as a 3D context, thus making our approach more robust to severely deformed
spines.
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Appendix A Supplementary Material: Label pre-train

Setup SN SP F1

Cross-Entropy 72.1±5.4 96.6±1.2 72.4 ± 5.7

Contrastive 72.4±7.7 97.8 ± 1.0 75.9 ± 5.5

Triplet 68.9±6.9 97.0±1.3 71.4±3.9

Table 3: Contrastive loss was used in the label pre-train stage in our work. Val-
idating its need and effectiveness, we compare it against two other pre-training
approaches: (2) Classification-based: pre-training to identify the five spine re-
gion a given vertebra belongs to, followed by training for fracture-classification.
(2) Representation learning-based: pre-training to learn representations towards
identifying the spine region using triplet loss, followed by training for fracture-
classification. Our contrastive-loss based pre-training results in an F1-score of
75.9, better than pre-training using cross-entropy loss or triplet loss.
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