
ar
X

iv
:1

90
3.

02
18

5v
4

 [
cs

.D
S]

 2
5

O
ct

 2
01

9

Stable Noncrossing Matchings

Suthee Ruangwises∗1 and Toshiya Itoh†1

1Department of Mathematical and Computing Science, Tokyo Institute of

Technology, Tokyo, Japan

Abstract

Given a set of n men represented by n points lying on a line, and n women repre-
sented by n points lying on another parallel line, with each person having a list that
ranks some people of opposite gender as his/her acceptable partners in strict order of
preference. In this problem, we want to match people of opposite genders to satisfy
people’s preferences as well as making the edges not crossing one another geometrically.
A noncrossing blocking pair w.r.t. a matching M is a pair (m,w) of a man and a
woman such that they are not matched with each other but prefer each other to their
own partners in M , and the segment (m,w) does not cross any edge in M . A weakly
stable noncrossing matching (WSNM) is a noncrossing matching that does not admit
any noncrossing blocking pair. In this paper, we prove the existence of a WSNM in any
instance by developing an O(n2) algorithm to find one in a given instance.

Keywords: stable matching, stable marriage problem, noncrossing matching, geo-
metric matching

1 Introduction

The stable marriage problem is one of the most classic and well-studied problems in the area
of matching under preferences, with many applications in other fields including economics
[5, 10]. We have a set of n men and a set of n women, with each person having a list that
ranks some people of opposite gender as his/her acceptable partners in order of preference.
A matching is a set of disjoint man-woman pairs. A blocking pair w.r.t. a matching M is
a pair of a man and a women that are not matched with each other in M but prefer each
other to their own partners. The goal is to find a stable matching, a matching that does
not admit any blocking pair.

On the other hand, the noncrossing matching problem is a problem in the area of
geometric matching. We have a set of 2n points lying on two parallel lines, each containing
n points. We also have some edges joining vertices on the opposite lines. The goal is
to select a set of edges that do not cross one another subject to different objectives, e.g.
maximum size, maximum weight, etc.

In this paper, we study a problem in geometric matching under preferences. In partic-
ular, we investigate the problem of having n men and n women represented by points lying

∗ruangwises.s.aa@m.titech.ac.jp
†
titoh@c.titech.ac.jp

1

http://arxiv.org/abs/1903.02185v4

on two parallel lines, with each line containing n people of one gender. Each person has a
list that ranks some people of opposite gender in strict order of preference. A noncrossing
blocking pair w.r.t. a matching M is a blocking pair w.r.t. M that does not cross any edge
in M . Our goal is to find a noncrossing matching that does not admit any noncrossing
blocking pair, called a weakly stable noncrossing matching (WSNM).

Note that the real-world applications of this geometric problem are more likely to
involve immovable objects, e.g. construction of noncrossing bridges between cities on the
two sides of a river, with each city having different preferences. In this paper, however, we
keep the terminologies of men and women used in the original stable marriage problem in
order to understand and relate to the original problem more easily.

1.1 Related Work

The stable marriage problem was first introduced by Gale and Shapley [3]. They proved
that a stable matching always exists in an instance with n men and n women, with each
person’s preference list containing all n people of opposite gender and not containing ties.
They also developed an O(n2) algorithm to find a stable matching in a given instance.
Gusfield and Irving [5] later showed that the algorithm can be adapted to the setting where
each person’s preference list may not contain all people of opposite gender. The algorithm
runs in O(m) time in this setting, where m is the total length of people’s preference lists.
Gale and Sotomayor [4] proved that in this modified setting, a stable matching may have
size less than n, but every stable matching must have equal size. Irving [7] then generalized
the notion of a stable matching to the case where ties are allowed in people’s preference
lists. He introduced three types of stable matchings in this setting: weakly stable, super-
stable, and strongly stable, as well as developing algorithms to determine whether each type
of matching exists in a given instance and find one if it does.

The Stable Roommates problem is a generalization of the stable marriage problem
to a non-bipartite setting where people can be matched regardless of gender. Unlike in
the original problem, a stable matching in this setting does not always exist. Irving [6]
developed an O(n2) algorithm to find a stable matching or report that none exists in a
given instance, where n is the number of people.

On the other hand, the noncrossing matching problem in a bipartite graph where the
points lie on two parallel lines, each containing n points, was encountered in many real-
world situations such as in VLSI layout design [8]. In the special case where each point
is adjacent to exactly one point on the opposite line, Fredman [2] presented an O(n log n)
algorithm to find a maximum size noncrossing matching by computing the length of the
longest increasing subsequence (LIS). Widmayer andWong [11] developed another algorithm
that runs in O(k+(n−k) log(k+1)) time, where k is the size of the solution. This algorithm
has the same worst-case runtime as Fredman’s, but runs faster in most general cases.

In a more general case where each point may be adjacent to more than one point,
Malucelli et al. [9] developed an algorithm to find a maximum size noncrossing matching.
The algorithm runs in either O(m log log n) or O(m+min (nk,m log k)) time depending on
implementation, where m is the number of edges and k is the size of the solution. In the
case where each edge has a weight, they also showed that the algorithm can be adapted to
find a maximum weight noncrossing matching with O(m log n) runtime.

2

1.2 Our Contribution

In this paper, we constructively prove that a weakly stable noncrossing matching always
exists in any instance by developing an O(n2) algorithm to find one in a given instance.

2 Preliminaries

In this setting, we have a set of n men m1, ...,mn represented by points lying on a vertical
line in this order from top to bottom, and a set of n women w1, ..., wn represented by points
lying on another parallel line in this order from top to bottom. Only people of opposite
genders can be matched with each other, and each person can be matched with at most one
other person. A matching is a set of disjoint man-woman pairs.

For a person a and a matching M , define M(a) to be the person matched with a (for
convenience, let M(a) = null for an unmatched person a). For each person a, let Pa be the
preference list of a containing people of opposite gender to a as his/her acceptable partners
in decreasing order of preference. Note that a preference list does not have to contain all
n people of opposite gender. Throughout this paper, we assume that the preference lists
are strict (containing no tie involving two or more people). Also, let ra(b) be the rank of
a person b in Pa, with the first entry having rank 1, the second entry having rank 2, and
so on (for convenience, let ra(null) = ∞ and treat null as the last entry appended to the
end of Pa, as being matched is always better than being unmatched). A person a is said to
prefer a person b to a person c if ra(b) < ra(c).

A pair of edges cross each other if they intersect in the interior of both segments.
Formally, an edge (mi, wx) crosses an edge (mj, wy) if and only if (i − j)(x − y) < 0. A
matching is called noncrossing if it does not contain any pair of crossing edges.

The following are the formal definitions of a blocking pair given in the original stable
marriage problem, and a noncrossing blocking pair introduced here.

Definition 1. A blocking pair w.r.t. a matching M is a pair (m,w) of a man and a woman
that are not matched with each other, but m prefers w to M(m) and w prefers m to M(w).

Definition 2. A noncrossing blocking pair w.r.t. a matching M is a blocking pair w.r.t.
M that does not cross any edge in M .

We also introduce two types of stable noncrossing matchings, distinguished as weakly
and strongly stable.

Definition 3. A matching M is called a weakly stable noncrossing matching (WSNM) if
M is noncrossing and does not admit any noncrossing blocking pair.

Definition 4. A matching M is called a strongly stable noncrossing matching (SSNM) if
M is noncrossing and does not admit any blocking pair.

Note that an SSNM is a matching that is both noncrossing and stable, while a WSNM
is “stable” in a weaker sense as it may admit a blocking pair, just not a noncrossing one.

An SSNM may not exist in some instances. For example, in an instance of two men and
two women, with Pm1

= (w2, w1), Pm2
= (w1, w2), Pw1

= (m2,m1), and Pw2
= (m1,m2),

the only stable matching is {(m1, w2), (m2, w1)}, and its two edges do cross each other. On
the other hand, the above instance has two WSNMs {(m1, w2)} and {(m2, w1)}. It also

3

turns out that a WSNM always exists in every instance. Throughout this paper, we focus
on the proof of existence of a WSNM by developing an algorithm to find one.

3 Our Algorithm

3.1 Outline

Without loss of generality, for each man m and each woman w, we assume that w is in m’s
preference list if and only if m is also in w’s preference list (otherwise we can simply remove
the entries that are not mutual from the lists). Initially, every person is unmatched.

Our algorithm uses proposals from men to women similarly to the Gale Shapley al-
gorithm in [3], but in a more constrained way. With M being the current noncrossing
matching, when a woman w receives a proposal from a man m, if she prefers her current
partner M(w) to m, she rejects m; if she is currently unmatched or prefers m to M(w), she
dumps M(w) and accepts m.

Consider a man m and a woman w not matched with each other. An entry w in Pm

has the following possible states:

1. accessible (to m), if (m,w) does not cross any edge in M ;

1.1. available (to m), if w is accessible to m, and is currently unmatched or matched
with a man she likes less than m, i.e. m is going to be accepted if he proposes to
her (for convenience, if w is currently matched with m, we also call w accessible
and available to m).

1.2. unavailable (to m), if w is accessible to m, but is currently matched with a
man she likes more than m, i.e. m is going to be rejected if he proposes to her;

2. inaccessible (to m), if w is not accessible to m;

For a man m, if every entry in Pm before M(m) is either inaccessible or unavailable,
then we say that m is stable; otherwise (there is at least one available entry before M(m))
we say that m is unstable.

The main idea of our algorithm is that, at any point, if there is at least one unstable
man, we pick the topmost unstable man mi (the unstable man mi with least index i) and
perform the following operations.

1. Let mi dump his current partner M(mi) (if any), i.e. remove (mi,M(mi)) from M ,
and let him propose to the available woman wj that he prefers most.

2. Let wj dump her current partner M(wi) (if any), i.e. remove (M(wj), wj) from M ,
and let her accept mi’s proposal.

3. Add the new pair (mi, wj) to M .

We repeatedly perform such operations until every man becomes stable. Note that through-
out the algorithm, every proposal will result in acceptance andM will always be noncrossing
since men propose only to women available to them.

4

3.2 Proof of Correctness

First, we will show that if our algorithm stops, then the matching M given by the algorithm
must be a WSNM.

Assume, for the sake of contradiction, that M admits a noncrossing blocking pair
(mi, wj). That means mi prefers wj to his current partner M(mi), wj prefers mi to her
current partner M(wj), and (mi, wj) does not cross an edge in M , thus the entry wj in Pmi

is available and is located before M(mi). However, by the description of our algorithm, the
process stops when every man becomes stable, which means there cannot be an available
entry before M(mi) in Pmi

, a contradiction. Therefore, we can conclude that our algorithm
gives a WSNM as a result whenever it stops.

However, it is not trivial that our algorithm will eventually stop. In contrast to the
GaleShapley algorithm in the original stable marriage problem, in this problem a woman
is not guaranteed to get increasingly better partners throughout the process because a
man can dump a woman too if he later finds a better available woman previously in-
accessible to him (due to having an edge obstructing them). In fact, it is actually the
case where the process may not stop if at each step we pick an arbitrary unstable man
instead of the topmost one. For example, in an instance of two men and two women
with Pm1

= (w2, w1), Pm2
= (w1, w2), Pw1

= (m1,m2), Pw2
= (m2,m1), the order of pick-

ing m1,m2,m2,m1,m1,m2,m2,m1, ... results in the process continuing forever, with the
matching M looping between {(m1, w2)}, {(m2, w2)}, {(m2, w1)}, and {(m1, w1)} at each
step.

We will prove that our algorithm must eventually stop and evaluate its worst-case run-
time after we introduce the explicit implementation of the algorithm in the next subsection.

3.3 Implementation

To implement the above algorithm, we have to consider how to efficiently find the topmost
unstable man at each step in order to perform the operations on him. Of course, a straight-
forward way to do this is to update the state of every entry in every man’s preference list
after each step, but that method will be very inefficient. Instead, we introduce the following
scanning method.

Throughout the algorithm, we do not know exactly the set of all unstable men, but
we instead keep a set S of men that are “possibly unstable.” Initially, the set S contains
all men, i.e. S = {m1,m2, ...,mn}, and at each step we maintain the set S of the form
{mi,mi+1, ..., ,mn} for some i ∈ [n] (that means m1,m2, ...,mi−1 are guaranteed to be
stable at that time). Note that in the actual implementation, we can store only the index
of the topmost man in S instead of the whole set. At each step, we scan the topmost man
mi in S and check whether mi is stable. If mi is already stable, then we simply skip him
by removing mi from S and moving to scan the next man in S. If mi is unstable, then mi

is indeed the topmost unstable man we want, so we perform the operations on mi. Note
that the operations may cause some men to become unstable, so after that we have to add
all men that are possibly affected by the operations back to S. The details of the scanning
and updating processes are as follows.

During the scan of mi, let mprev be the matched man closest to mi that lies above him,
and let wfirst = M(mprev) (we let wfirst = w1 if there is no mprev). Also, let mnext be the
matched man closest to mi that lies below him, and let wlast = M(mnext) (we let wlast = wn

5

mprev

mi

mnext

.

.

.

.

.

.

wfirst

wlast

.

.

.

.

.

.

available to mi iff
wfirst prefers mi to
mprev

available to mi iff wlast

prefers mi to mnext

accessible to mi
available
to mi

Figure 1: Accessible and available women to mi

if there is no mnext). Observe that matching mi with anyone lying above wfirst will cross
the edge (mprev, wfirst), and matching mi with anyone lying below wlast will cross the edge
(mnext, wlast). Therefore, the range of all women accessible to mi ranges exactly from wfirst

to wlast, hence the range of all women available to mi ranges from either wfirst or wfirst+1

(depending on whether wfirst prefers mi to mprev) to either wlast or wlast−1 (depending on
whether wlast prefers mi to mnext). See Fig. 1.

Then in the available range, mi selects the woman wj that he prefers most.
Case 1: wj does not exist or mi is currently matched with wj .
That means mi is currently stable, so we can skip him. We remove mi from S and

proceed to scan mi+1 in the next step (called a downward jump).
Case 2: wj exists and mi is not currently matched with wj

That means mi is indeed the topmost unstable man we want, so we perform the oper-
ations on him by letting mi propose to wj and dump his current partner (if any).

Case 2.1: mprev exists and wj = wfirst.
That means wfirst dumpsmprev to get matched withmi, which leaves mprev unmatched

and he may possibly become unstable. Furthermore, mprev+1, mprev+2, ...,mi−1 as well
as mi himself may also possibly become unstable since they now gain access to women
lying above wfirst previously inaccessible to them (if wfirst 6= w1). On the other hand,
m1,m2, ...,mprev−1 clearly remain stable, hence we add mprev,mprev+1, ...,mi−1 to S and
proceed to scan mprev in the next step (called an upward jump).

Case 2.2: mprev does not exist or wj 6= wfirst.
Case 2.2.1: mi is currently matched and wj lies geometrically below M(mi).
Then, mprev,mprev+1, ...,mi−1 (or m1,m2, ...mi−1 if mprev does not exist) may possibly

becomes unstable since they now gain access to women between M(mi) and wj previously
inaccessible to them. Therefore, we perform the upward jump to mprev (or to m1 if mprev

6

does not exist), adding mprev,mprev+1, ..., mi−1 (or m1,m2, ...mi−1) to S and proceed to
scan mprev (or m1) in the next step, except when mi = m1 that we perform the downward
jump to m2.

It turns out that this case is impossible, which we will prove in the next subsection.
Case 2.2.2: mi is currently unmatched or wj lies geometrically above M(mi).
Then all men lying above mi clearly remain stable (because the sets of available women

to m1, ...,mi−1 either remain the same or become smaller). Also, mi now becomes stable
as well (because mi selects a woman he prefers most in the available range), except in the
case where wj = wlast (because the edge (mnext, wlast) is removed and mi now has access
to women lying below wlast previously inaccessible to him). Therefore, we perform the
downward jump, removing mi from S and moving to scan mi+1 in the next step, except
when wj = wlast that we have to scan mi again in the next step (this exception, however,
turns out to be impossible, which we will prove in the next subsection).

We scan the men in this way until S becomes empty (see Example 1). By the way we
add all men that may possibly become unstable after each step back to S, at any step S is
guaranteed to contain the topmost unstable man.

Example 1. Consider an instance of three men and three women with the following pref-
erence lists.

m1 : w3, w1, w2

m2 : w2, w3, w1

m3 : w2, w1, w3

w1 : m3,m2,m1

w2 : m3,m2,m1

w3 : m3,m2,m1

Our algorithm will scan the men in the following order and output a matching M =
{(m2, w1), (m3, w2)}, which is a WSNM.

Step Process
M at the end

of step

S at the end

of step

0 Ø {m1,m2,m3}

1 scan m1, add (m1, w3) {(m1, w3)} {m2,m3}

2 scan m2, add (m2, w3), remove (m1, w3) {(m2, w3)} {m1,m2,m3}

3 scan m1, add (m1, w1) {(m1, w1), (m2, w3)} {m2,m3}

4 scan m2, add (m2, w2), remove (m2, w3) {(m1, w1), (m2, w2)} {m3}

5 scan m3, add (m3, w2), remove (m2, w2) {(m1, w1), (m3, w2)} {m2,m3}

6 scan m2, add (m2, w1), remove (m1, w1) {(m2, w1), (m3, w2)} {m1,m2,m3}

7 scan m1 {(m2, w1), (m3, w2)} {m2,m3}

8 scan m2 {(m2, w1), (m3, w2)} {m3}

9 scan m3 {(m2, w1), (m3, w2)} Ø

3.4 Observations

First, we will prove the following lemma about the algorithm described in the previous
subsection.

7

Lemma 1. During the scan of a man mi, if mi is currently matched, then mi does not
propose to any woman lying geometrically below M(mi).

Proof. We call a situation when a man mi proposes to a woman lying geometrically below
M(mi) a downward switch. Assume, for the sake of contradiction, that a downward switch
occurs at least once during the whole algorithm. Suppose that the first downward switch
occurs at step s, when a man mi is matched to wk = M(mi) and proposes to wj with j > k.
We have mi prefers wj to wk.

Consider the step t < s when mi proposed to wk (if mi proposed to wk multiple times,
consider the most recent one). At step t, wj must be inaccessible or unavailable to mi

(otherwise he would choose wj instead of wk), meaning that there must be an edge (mp, wq)
with p > i and k < q < j obstructing them in the inaccessible case, or an edge (mp, wq)
with p > i, q = j, and wj preferring mp to mi in the unavailable case.

We define a dynamic edge e as follows. First, at step t we set e = (mp, wq). Then,
throughout the process we update e by the following method: whenever the endpoints of
e cease to be partners of each other, we update e to be the edge joining the endpoint that
dumps his/her partner with his/her new partner. Formally, suppose that e is currently
(mx, wy). If mx dumps wy to get matched with wy′ , we update e to be (mx, wy′); if wy

dumps mx to get matched with mx′ , we update e to be (mx′ , wy).
By this updating method, the edge e will always exist after step t, but may change over

time. Observe that from step t to step s, we always have x > i because of the existence
of (mi, wk). Moreover, before step s, if mx dumps wy to get matched with wy′ , by the
assumption that a downward switch did not occur before step s, we have y′ < y, which
means the index of the women’s side of e’s endpoints never increases. Consider the edge
e = (mx, wy) at step s, we must have x > i and y ≤ q ≤ j. If y < j, then the edge e

obstructs mi and wj , making wj inaccessible to mi. If y = j, that means wj never got
dumped since step t, so she got only increasingly better partners, thus wj prefers mx to
mi, making wj unavailable to mi. Therefore, in both cases mi could not propose to wj , a
contradiction. Hence, a downward switch cannot occur in our algorithm.

Lemma 1 shows that a woman cannot get her partner stolen by any woman that lies
below her, which is equivalent to the following corollary.

Corollary 1. If a man mi dumps a woman wj to propose to a woman wk, then k < j.

It also implies that Case 2.2.1 in the previous subsection never occurs. Therefore, the
only case where an upward jump occurs is Case 2.1 (mprev exists and mi proposes to wfirst).
We will now prove the following lemma.

Lemma 2. During the scan of a man mi, if mnext exists, then mi does not propose to wlast.

Proof. Assume, for the sake of contradiction, that mi proposes to wlast. Since mnext exists,
this proposal obviously cannot occur in the very first step of the algorithm. Consider a man
mk we scanned in the previous step right before scanning mi.

Case 1: mk lies below mi, i.e. k > i.
In order for the upward jump from mk to mi to occur, mi must have been matched with

a woman but got her stolen by mk in the previous step. However, mi+1,mi+2, ...,mnext−1

are all currently unmatched (by the definition of mnext), so the only possibility is that

8

mk = mnext, and thus his partner that got stolen was wlast. Therefore, we can conclude that
wlast prefers mnext to mi, which means wlast is currently unavailable to mi, a contradiction.

Case 2: mk lies above mi, i.e. k < i.
The jump before the current step was a downward jump, but since mnext has been

scanned before, an upward jump over mi must have occurred at some point before the
current step. Consider the most recent upward jump over mi before the current step.
Suppose than it occurred at the end of step t and was a jump from mk′ to mj, with k′ > i

and j < i. In order for this jump to occur, mj must have been matched with a woman
but got her stolen by mk′ at step t. However, mi+1,mi+2, ...,mnext−1 are all currently
unmatched (by the definition of mnext), so the only possibility is that mk′ = mnext, and
thus mj’s partner that got stolen was wlast. We also have mj+1,mj+2, ...,mnext−1 were all
unmatched during step t (otherwise wlast would be inaccessible to mk′), and wlast prefers
mnext to mj.

Now, consider the most recent step before step t in which we scanned mi. Suppose it
occurred at step s. During step s, mj was matched with wlast and wlast was accessible to
mi. However, mi was still left unmatched after step s (otherwise an upward jump over mi

at step t could not occur), meaning that wlast must be unavailable to him back then due to
wlast preferring mj to mi. Therefore, we can conclude that wlast prefers mnext to mi, thus
wlast is currently unavailable to mi, a contradiction.

Lemma 2 shows that a man cannot get his partner stolen by any man lying above him,
or equivalent to the following corollary.

Corollary 2. If a woman wj dumps a man mi to accept a man mk, then k > i.

3.5 Proof of Finiteness

Now, we will show that the position of each woman’s partner can only move downward
throughout the process, which guarantees the finiteness of the number of steps in the entire
process.

Lemma 3. After a woman wj ceases to be a partner of a man mi, she cannot be matched
with any man mi′ with i′ ≤ i afterwards.

Proof. Suppose that wj’s next partner (if any) is ma. It is sufficient to prove that a > i.
First, consider the situation when mi and wj cease to be partners.

Case 1: wj dumps mi.
This means wj dumps mi to get matched with ma right away. By Corollary 2, we have

a > i as required.
Case 2: mi dumps wj.
Suppose that mi dumps wj to get matched with wk. By Corollary 1, we have k < j.
Case 2.1: mi never gets dumped afterwards.
That means mi will only get increasingly better partner, and the position of his partner

can only move upwards (by Corollary 1), which means wj cannot be matched with mi again,
or any man lying above mi afterwards due to having an edge (mi,M(mi)) obstructing.
Therefore, ma must lie below mi, i.e. a > i.

Case 2.2: mi gets dumped afterwards.

9

Suppose that mi first gets dumped by wy at step s. By Corollary 1, we have y ≤ k < j

(because mi only gets increasingly better partners before getting dumped). Also suppose
that wy dumps mi in order to get matched with mx. By Corollary 2, we have x > i.
Similarly to the proof of Lemma 1, consider a dynamic e first set to be (mx, wy) at step
s. We have the index of the men’s side of e’s endpoints never decreases, and that of the
women’s side never increases. Therefore, since step s, there always exists an edge (mx, wy)
with x > i and y < j, obstructing wj’s access to mi and all men lying above him. Therefore,
ma must lie below mi, i.e. a > i.

3.6 Runtime Analysis

Consider any upward jump from mi to mk with i > k that occurs right after mi stole wj

from mk. We call such a jump associated to wj, and it has size i− k.
For any woman wj , let Uj be the sum of the sizes of all upward jumps associated to

wj . From Lemma 3, we know that the position of wj ’s partner can only move upward
throughout the process, so we have Uj ≤ n − 1. Therefore, the sum of the sizes of all
upwards jumps is

∑n
j=1

Uj ≤ n(n − 1) = O(n2). Since the scan starts at m1 and ends at
mn, the total number of downward jumps equals to the sum of the sizes of all upward jumps
plus n− 1, hence the total number of steps in the whole algorithm is O(n2).

For each mi, we keep an array of size n, with the jth entry storing the rank of wj in
Pmi

. Each time we scan mi, we query the minimum rank of available women, which is a
consecutive range in the array. Using an appropriate range minimum query (RMQ) data
structure such as the one introduced by Fischer [1], we can perform the scan with O(n)
preprocessing time per array and O(1) query time. Therefore, the total runtime of our
algorithm is O(n2).

In conclusion, we proved that our developed algorithm is correct and can be imple-
mented in O(n2) time, which also implicitly proves the existence of a WSNM in any in-
stance.

Theorem 1. A weakly stable noncrossing matching exists in any instance with n men and
n women with strict preference lists.

Theorem 2. There is an O(n2) algorithm to find a weakly stable noncrossing matching in
an instance with n men and n women with strict preference lists.

Remark. Our algorithm does not require the numbers of men and women to be equal. In
the case that there are n1 men and n2 women, the algorithm works similarly with O(n1n2)
runtime. Also, in the case that people’s preference lists are not strict, we can modify the
instance by breaking ties in an arbitrary way. Clearly, a WSNM in the modified instance
will also be a WSNM in the original one (because every noncrossing blocking pair in the
original instance will also be a noncrossing blocking pair in the modified instance).

4 Discussion

In this paper, we constructively prove that a WSNM always exists in any instance by
developing an O(n2) algorithm to find one. Note that the definition of a WSNM al-
lows multiple answers with different sizes for an instance. For example, in an instance

10

of three men and three women, with Pm1
= (w3, w1, w2), Pm2

= (w1, w2, w3), Pm3
=

(w2, w3, w1), Pw1
= (m2,m3,m1), Pw2

= (m3,m1,m2), and Pw3
= (m1,m2,m3), both

{(m1, w3)} and {(m2, w1), (m3, w2)} are WSNMs, but our algorithm only outputs the first
one with smaller size. A possible future work is to develop an algorithm to find a WSNM
with maximum size in a given instance, which seems to be a naturally better answer then
other WSNMs as it satisfies more people. Another possible future work is to develop an
algorithm to determine whether an SSNM exists in a given instance, and to find one if it
does.

Other interesting problems include investigate the noncrossing matching in the geo-
metric version of the stable roommates problem where people can be matched regardless
of gender. The most basic and natural setting of this problem is where people are repre-
sented by points arranged on a circle. A possible future work is to develop an algorithm to
determine whether a WSNM or an SSNM exists in a given instance, and to find one if it
does.

References

[1] J. Fischer. Optimal Succinctness for Range Minimum Queries. In Proceedings of the
9th Latin American Symposium on Theoretical Informatics (LATIN), pages 158-169
(2010).

[2] M.L. Fredman. On computing the length of longest increasing subsequences. Discrete
Applied Mathematics, 11(1):29-35 (1975).

[3] D. Gale and L.S. Shapley. College admissions and the stability of marriage. American
Mathematical Monthly, 69:9-15 (1962).

[4] D. Gale and M. Sotomayor. Some remarks on the stable matching problem. Discrete
Applied Mathematics, 11(3):223-232 (1985).

[5] D. Gusfield and R.W. Irving. The Stable Marriage Problem: Structure and Algorithms.
MIT Press (1989).

[6] R.W. Irving. An efficient algorithm for the “stable roommates” problem. Journal of
Algorithms, 6:577-595 (1985).

[7] R.W. Irving. Stable marriage and indifference. Discrete Applied Mathematics,
48(3):261-272 (1994).

[8] Y. Kajitami and T. Takahashi. The noncross matching and applications to the 3-side
switch box routing in VLSI layout design. In Proceedings of the IEEE International
Symposium on Circuits and Systems, pages 776-779 (1986).

[9] F. Malucelli, T. Ottmann, and D. Pretolani. Efficient labelling algorithms for the
maximum noncrossing matching problem. Discrete Applied Mathematics, 47(2):175-
179 (1993).

[10] A.E. Roth and M.A.O. Sotomayor. Two-sided matching: a study in game-theoretic
modeling and analysis. Volume 18 of Econometric Society Monographs. Cambridge
University Press (1990).

11

[11] P. Widmayer and C.K. Wong. An optimal algorithm for the maximum alignment of
terminals. Information Processing Letters. 10:75-82 (1985).

12

	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	3 Our Algorithm
	3.1 Outline
	3.2 Proof of Correctness
	3.3 Implementation
	3.4 Observations
	3.5 Proof of Finiteness
	3.6 Runtime Analysis

	4 Discussion

