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Abstract. We examine how sparse feasible solutions of integer programs
are, on average. Average case here means that we fix the constraint
matrix and vary the right-hand side vectors. For a problem in standard
form with m equations, there exist LP feasible solutions with at most m
many nonzero entries. We show that under relatively mild assumptions,
integer programs in standard form have feasible solutions with O(m)
many nonzero entries, on average. Our proof uses ideas from the theory
of groups, lattices, and Ehrhart polynomials. From our main theorem
we obtain the best known upper bounds on the integer Carathéodory
number provided that the determinants in the data are small.

1 Introduction

Let m,n ∈ Z≥1 and A ∈ Zm×n. We always assume that A has full row rank.
We also view A as a set of its column vectors. So, W ⊆ A implies that W is a
subset of the columns of A.

We aim to find a sparse integer vector in the set

P (A, b) := {x ∈ Zn
≥0 : Ax = b},

where b ∈ Zm. That is, we aim at finding a solution z such that | supp(z)| is as
small as possible, where supp(x) := {i ∈ {1, . . . ,m} : xi 6= 0} for x ∈ Rn. To
this end, we define the support function of (A, b) to be

σ(A, b) := min{| supp(z)| : z ∈ P (A, b)}.

If P (A, b) = ∅, then σ(A, b) := ∞. We define the support function of A to be

σ(A) := max{σ(A, b) : b ∈ Zm and σ(A, b) <∞}.

The question of determining σ(A) generalizes problems that have been open
for decades. A notable special case is the so-called integer Carathéodory number,
i.e. the minimum number of Hilbert basis elements in a rational pointed polyhe-
dral cone required to represent an integer point in the cone. We say that A has
the Hilbert basis property if its columns correspond to a Hilbert basis of cone(A).
For A with the Hilbert basis property, Cook et al. [8] showed that σ(A) ≤ 2m−1
and Sebő showed that σ(A) ≤ 2m−2 [12]. Bruns et al. [7] provide an example of
A with the Hilbert basis property with 7

6m ≤ σ(A). However, for matrices with
the Hilbert basis property, the true value of σ(A) is unknown.
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For general choices of A, Eisenbrand and Shmonin [10] showed that σ(A) ≤
2m log2(4m‖A‖∞), where ‖ · ‖∞ is the max norm. Aliev et al. [2] and Aliev et
al. [1] improved the previous result and showed that

σ(A) ≤ m+ log2(g
−1

√

det(AA⊺)) ≤ 2m log2(2
√
m‖A‖∞), (1)

where g = gcd{| det(B)| : B is an m×m submatrix of A}. It turns out that the
previous upper bound is close to the true value of σ(A). In fact, for every ǫ > 0,
Aliev et al. [1] provide an example of A for which m log2(‖A‖∞)1/(1+ǫ) ≤ σ(A).

In this paper, we consider σ(A, b) for most choices of b. We formalize this
‘average case’ using the asymptotic support function of A defined by

σasy(A) := min

{

k ∈ Z : lim
t→∞

|{b ∈ {−t, ..., t}m : σ(A, b) ≤ k}|
|{b ∈ {−t, ..., t}m : P (A, b) 6= ∅}| = 1

}

.

Note that σasy(A) ≤ σ(A) ≤ |A|.
The value σasy(A) can be thought of as the smallest k such that almost all

feasible integer programs with constraint matrix A have solutions with support
of cardinality at most k. The function σasy(·) was introduced by Bruns and
Gubeladze in [6], where it was shown that σasy(A) ≤ 2m− 3 for matrices with
the Hilbert basis property. In general, an average case analysis of the support
question has not been provided in the literature. Average case behavior of inte-
ger programs has been studied in specialized settings, see, e.g., [9] for packing
problems in 0, 1 variables and [3] for problems with only one constraint. How-
ever, to the best of our knowledge, there are no other studies available that are
concerned with the average case behavior of integer programs, in general.

Our analysis reveals that the sizes of the m×m minors of A affect sparsity.
It turns out that the number of factors in the prime decomposition of the minors
also affects sparsity. Moreover, for matrices with large minors but few factors,
there exist solutions whose support depends on the number of factors rather
than the size of the minors. Recall that a prime is a natural number greater
than or equal to 2 that is divisible only by itself and 1. We now formalize these
parameters related to the minors of a matrix.

LetW ∈ Zm×d be of full row rank, where d ∈ Z≥1. Denote the set of absolute
values of the m×m minors by

∆(W ) := {| det(W ′)| :W ′ is an invertible m×m submatrix of W},

and denote the set of ‘number of prime factors’ in each minor by

Φ(W ) :=

{

t ∈ Z≥1 :
W ′ an invertible m×m submatrix of W, and

| det(W ′)| = ∏t
i=1 αi with α1, . . . , αt prime

}

. (2)

If Φ(W ) consists of only one element (e.g., when W ∈ Zm×m), then we denote
the element by φ(W ). If W ∈ Zm×m and | det(W )| = 1, then φ(W ) = 0. We
denote the maximum and minimum of these sets by

δmax(W ) := max(∆(W )), δmin(W ) := min(∆(W )),

φmax(W ) := max(Φ(W )), and φmin(W ) := min(Φ(W )).



Our first main result bounds σasy using these parameters.

Theorem 1. Let A ∈ Zm×n and W ⊆ A such that cone(A) = cone(W ). Then

(i) σasy(A) ≤ m+ φmax(W ) ≤ m+ log2 (δ
max(W )),

(ii) σasy(A) ≤ 2m+ φmin(W ) ≤ 2m+ log2
(

δmin(W )
)

.

Theorem 1 guarantees that the average support σasy(A) is linear in m in two
special cases: (a) the minimum minor of A is on the order of 2m or (b) there is
a prime minor. We emphasize that (ii) uses the minimum values φmin and δmin,
which can be bounded by sampling any m×m invertible submatrix of A. Thus,
σasy(A) can be bounded by finding a single m×m invertible submatrix of A.

Note that the bound in (1) includes the term g. Our proof of Theorem 1
can be adjusted to prove σasy(A) ≤ m + log2(g

−1δmax(W )) and σasy(A) ≤
2m+ log2(g

−1δmin(W )). We omit this analysis here to simplify the exposition.
However, it should be mentioned that

δmax(A) ≤ (
∑

δ∈∆(A) δ
2)1/2 =

√

det(AA⊺),

where the equation follows from the so-called Cauchy-Binet formula. Therefore,
if A has two nonzerom×mminors, then Theorem 1 (i) improves (1), on average.

A corollary of Theorem 1 is that if A has the Hilbert basis property, then
the extreme rays of cone(A) provide enough information to bound σasy(A).

Corollary 1. Let V ⊆ Zm and H ⊆ Zm×t. Assume that H has the Hilbert basis
property and cone(H) = cone(V ). Then

σasy(H) ≤ m+ φmax(V ) ≤ m+ log2 (δ
max(V )) .

If δmax(V ) < 2m−3, then the bound in Corollary 1 improves the bound in [6].
By modifying a construction in [1], we obtain two interesting examples of

σasy(A). The first example shows that Theorem 1 (i) gives a tight bound. The
second example shows that Theorem 1 (ii) gives a tight bound and that σasy(A)
can be significantly smaller than σ(A).

Theorem 2. For every m ∈ Z≥1 and d ∈ Z≥1, there is a matrix A ∈ Zm×n

such that φmax(A) = d and σasy(A) = m+ d.
For every m ∈ Z≥1 and d ∈ Z≥m+3, there is a matrix B ∈ Z(m+1)×n such

that φmin(B) = 0 and σasy(B) = 2m+ 2 < m+ d = σ(B).

The proof of Theorem 1 is based on a combination of group theory, lattice
theory, and Ehrhart theory. On a high level, the combination of group and lattice
theory bears similarities to papers of Gomory [11] and Aliev et al. [2]. Gomory
investigated the value function of an IP and proved its periodicity when the
right-hand side vector is sufficiently large. Aliev et al. showed periodicity for the
function σ(A, b) provided again that b is sufficiently large. Our refined analysis
allows us to quantify the number of right-hand sides for which the support



function is small. This new contribution requires not only group and lattice
theory, but also Ehrhart theory.

Sections 2 and 3 we provide background on groups and subcones. In Section 4
we use the average support for each subcone to prove Theorem 1. We prove
Theorem 2 in Appendix A.

2 The group structure of a parallelepiped

Let W ∈ Zm×m be an invertible matrix, which we also view as a set of m
linearly independent column vectors. Let Π(W ) denote the integer vectors in
the fundamental parallelepiped generated by W :

Π(W ) := {z ∈ Zm : z =Wλ for λ ∈ [0, 1)m}.
For each b ∈ Zm, there is a unique g ∈ Π(W ) such that b = g + Wz,

where z ∈ Zm [5, Lemma 2.1, page 286]. Thus, we can define a residue function
ρW : Zm → Π(W ) by

ρW (b) = ρW (g +Wz) 7→ g. (3)

The image of Zm under ρW (i.e., Π(W )) creates a group GW (Zm) using the
operation +GW

: Π(W )×Π(W ) → Π(W ) defined by

g +GW
h 7→ ρW (g + h).

The identity of GW (Zm) is the zero vector in Zm, and

|GW (Zm)| = | det(W )|, (4)

see, e.g., [5, Corollary 2.6, page 286]. Equation (4) implies GW (Zm) is finite.
The choice of notation for GW (Zm) is to emphasize that it is the group

generated by the residues of all integer linear combinations of vectors in Zm.
We can also consider the group generated by any subset of vectors in Zm. Given
B ⊆ Zm, we denote the subgroup of GW (Zm) generated by B by

GW (B) := {ρW (Bz) : z ∈ Z|B|}. (5)

If B = ∅, then GW (B) := {0}. The set GW (B) is a subgroup of GW (Zm) because
{Bz : z ∈ Z|B|} is a sublattice of Zm.

We collect some basic properties about the group GW (B).

Lemma 1. LetW ∈ Zm×m be an invertible matrix. For every B ⊆ Zm, GW (B) =

{ρW (Bz) : z ∈ Z
|B|
≥0}.

Proof. For each z ∈ Z|B|, we can write Bz as

Bz =
∑

b∈B:zb≥0 zbb+
∑

b∈B:zb<0 zbb.

Thus, it suffices to show ρW (−b) ∈ {ρW (By) : y ∈ Z
|B|
≥0} =: C for each b ∈ B. If

ρW (b) = 0, then ρW (−b) = ρW (b) = 0 ∈ C. If ρW (b) 6= 0, then because GW (B)
is finite there exists τ ∈ Z≥2 with ρW (τb) = 0. Note that ρW ((τ−1)b)+ρW (b) =
0 = ρW (b) + ρW (−b), so ρW (−b) = ρW ((τ − 1)b) ∈ C. ⊓⊔



Lemma 2. Let W ∈ Zm×m be an invertible matrix and B ⊆ Zm. If t ∈ Z≥0

with t ≥ φ(W ), then there exist w1, . . . , wt ∈ B (possibly with repetitions) such
that GW ({w1, . . . , wt}) = GW (B).

Proof. Set s := φ(W ). First, we show that for each r ∈ {0, . . . , s} there exist
w1, . . . , wr ∈ B (possibly with repetitions) such that

either GW ({w1, . . . , wr}) = GW (B)

or GW (∅) ( GW ({w1}) ( . . . ( GW ({w1, . . . , wr}). (6)

We prove (6) by induction on r. The result is vacuously true for r = 0, so assume
that (6) holds for r ∈ Z≥0 and consider r + 1. Define

Gr := GW ({w1, . . . , wr}). (7)

By the induction hypothesis, there exist w1, . . . , wr ∈ B such that (6) holds.
If Gr = GW (B), then wr+1 := wr proves (6) for r + 1. If Gr ( GW (B), then
G0 ( . . . ( Gr by (6) and induction. Recall ρW (·) from (3). If ρW (b) ∈ Gr for
every b ∈ B, then GW (B) ⊆ Gr and |GW (B)| ≤ |Gr| < |GW (B)|, which is a con-
tradiction. Thus, there exists wr+1 ∈ B such that ρW (wr+1) 6∈ Gr. The sequence
G0, . . . , Gr, Gr+1 := GW ({w1, . . . , wr+1}) satisfies (6), which proves (6).

Let G1, . . . , Gs be chosen to satisfy (6). If Gs = GW (B), then set ws+1 =
. . . = wt := ws to conclude GW ({w1, . . . , wt}) = GW (B). It is left to consider
the case when Gs ( GW (B). We claim that this leads to a contradiction.

By (2) and (4), |GW (Zm)| = ∏s
i=1 αi for primes α1, . . . , αs. By (7),G1, . . . , Gs

are subgroups of GW (Zm), so |G1|, . . . , |Gs| divide |GW (Zm)| (see, e.g., [4, Chap-
ter 2]). Also, Gs ( GW (B) and (6) imply that G1 ( . . . ( Gs. Hence, 1 < |G1| <
. . . < |Gs| and |Gi| divides |Gi+1| for each i ∈ {1, . . . , s− 1}. This implies that
|Gs| has at least s many prime factors. However, |Gs| < |GW (B)| ≤ |GW (Zm)|,
and |GW (Zm)| only has s many prime factors. Thus, |Gi| = |GW (Zm)| for some
i ∈ {1, . . . , s}, which contradicts Gi = GW (Zm) ⊇ GW (B). ⊓⊔

3 Lattice points in cones

A set Λ ⊆ Zm is a lattice if 0 ∈ Λ, x + y ∈ Λ for x, y ∈ Λ, and if x ∈ Λ then
−x ∈ Λ (see, e.g., [5, Chapter VII]). So, Λ is a subgroup of Zm. We assume that
a lattice contains m linearly independent vectors. For B ⊆ Rm and x ∈ Rm, set
B + x := {b+ x : b ∈ B}.

We use following lemma to find suitable translated subcones in which σ(A, ·)
is bounded. The proof of Lemma 3 is in Appendix B.

Lemma 3. Let v1, . . . , vm ∈ Zm be linearly independent vectors and set K :=
cone({v1, . . . , vm}). For t ∈ Z≥0 and x1, . . . , xt ∈ Zm, there is a z =

∑m
i=1 kiv

i ∈
K ∩ Zm, where k1, . . . , km ∈ Z≥0, such that K + z ⊆ K ∩⋂t

i=1(K + xi).

Let W ⊆ Zm. For each x ∈ cone(W ), Carathéodory’s Theorem implies that
there is a linearly independent set W i ⊆W such that x ∈ cone(W i). Thus,

cone(W ) =
⋃s

i=1 cone(W
i), (8)



where s ∈ Z≥1 and W 1, . . . ,W s ⊆ W are the linearly independent subsets of
W . The following lemma states that for a given lattice Λ, ‘most’ of the points in
cone(W )∩Λ are found in translations of the subcones cone(W 1), . . . , cone(W s).

Lemma 4. Let W ⊆ Zm be such that cone(W ) is m-dimensional. Let s ∈ Z≥1

and W 1, . . . ,W s ⊆ W be as in (8). Let Λ ⊆ Zm be a lattice and assume that
W 1, . . . ,W s ⊆ Λ. For each i ∈ {1, . . . , s}, choose any kw ∈ Z≥0 for each w ∈ W i,
and define zi :=

∑

w∈W i kww. Then

lim
t→∞

|{−t, ..., t}m ∩⋃s
i=1(Λ ∩ (cone(W i) + zi))|

|{−t, ..., t}m ∩⋃s
i=1(Λ ∩ cone(W i))| = 1. (9)

Proof. For i ∈ {1, . . . , s} set Ki := cone(W i). The fraction in (9) equals

1− |{−t, ..., t}m ∩⋂s
i=1(Λ ∩ [cone(W ) \ (Ki + zi)])|

|{−t, ..., t}m ∩⋃s
i=1(Λ ∩Ki)| ,

which is at least as large as

1− |{−t, ..., t}m ∩⋃s
i=1(Λ ∩ [Ki \ (Ki + zi)])|

|{−t, ..., t}m ∩⋃s
i=1(Λ ∩Ki)| .

Thus, in order to prove (9), it is enough to prove

lim
t→∞

|{−t, ..., t}m ∩⋃s
i=1(Λ ∩ [Ki \ (Ki + zi)])|

|{−t, ..., t}m ∩⋃s
i=1(Λ ∩Ki)| = 0. (10)

By assumption, cone(W ) is m-dimensional. Thus, we may assume that the sets
W 1, . . . ,W s each have m linearly independent vectors.

Let i ∈ {1, . . . , s} and Li ⊆ Λ ∩Ki be the Λ points that are coordinate-wise
at most one more than zi in the coordinate system defined by W i:

Li := {∑w∈W i βww : βw ∈ R and 0 ≤ βw ≤ kw + 1 ∀ w ∈W i} ∩ Λ.

The set Li is finite.
The numerator of (10) considers Λ ∩ [Ki \ (Ki + zi)], so take y ∈ Λ ∩ [Ki \

(Ki + zi)]. We claim that

y ∈ r + {∑w∈I λww : λw ∈ R≥0 ∀ w ∈ I}, (11)

where r ∈ Li and I ⊆ W i with |I| ≤ m − 1. Write y as y =
∑

w∈W i γww,

where γw ∈ R≥0 for each w ∈ W i and γw̄ < kw̄ for some w̄ ∈ W i. We have
y − τw ∈ Λ for each w ∈ W i \ {w̄} and τ ∈ Z because W i ⊆ Λ and y ∈ Λ. In
particular, y − ⌊γw⌋w ∈ Λ ∩ Ki and y −∑

w∈V ⌊γw⌋w ∈ Li, where V := {w ∈
W i : γw > kw+1}. This proves (11). Note that we use the fact that Li is defined
by βw ≤ kw +1 rather than βw ≤ kw: if L

i was defined by βw ≤ kw, then in the
extreme case 0 = kw and γw ∈ (0, 1), the vector y − ⌊γw⌋w = y is not in Li.

We use the fact that |I| < m to show Λ ∩ [Ki \ (Ki + zi)] is contained in
finite union of lower dimensional spaces. Although we showed |I| ≤ m − 1, we



can assume |I| = m− 1 by extending it arbitrarily to have m− 1 columns and
setting λw = 0 for these new columns. Hence,

s
⋃

i=1

Λ ∩ [Ki \ (Ki + zi)]

⊆
s
⋃

i=1

⋃

r∈Li

⋃

I⊆W i

|I|=m−1

r +

{

∑

w∈I

λww : λw ∈ R≥0 ∀ w ∈ I

}

. (12)

For each i ∈ {1, . . . , s} and I ⊆W i with |I| = m− 1, define the polytope

P (i,I) := {∑w∈I λww : λw ∈ [0, 1] ∀ w ∈ I}.

By assumption, w ∈ Λ for each w ∈ I, so the vertices of P (i,I) are in Λ. Ehrhart
theory then implies that there is a polynomial π(i,I)(t) of degree m−1 such that

π(i,I)(t) = |tP (i,I) ∩ Λ| = |{∑w∈I λww : λw ∈ [0, t] ∀ w ∈ I} ∩ Λ|

for each t ∈ Z≥1. The leading coefficient of π(i,I) is the (m− 1) dimensional vol-
ume of P (i,I), which is positive, see [5, Chapter VIII]. Similarly, for the polytope

P i := {∑w∈W i λww : λw ∈ [0, 1] ∀ w ∈ W i}

there exists a polynomial πi(t) of degree m with positive leading coefficient such
that for each t ∈ Z≥1

πi(t) = |tP i ∩ Λ| = |{∑w∈W i λww : λw ∈ [0, t] ∀ w ∈ W i} ∩ Λ|.

Define

d := max{‖r +∑

w∈I w‖∞ : i ∈ {1, . . . , s}, r ∈ Li, I ⊆W i with |I| ≤ m− 1}.

We show that the values in (10) go to zero as t→ ∞ by bounding the fraction

|{−td, ..., td}m ∩⋃s
i=1(Λ ∩ [Ki \ (Ki + zi)])|

|{−td, ..., td}m ∩⋃s
i=1(Λ ∩Ki)|

for each t ∈ Z≥0. By the definition of d, tP i ⊆ {−td, . . . , td}m ∩ Ki for every
i ∈ {1, . . . , s}. So for each i ∈ {1, . . . , s}, say i = 1, it follows that

π1(t) = |tP 1 ∩ Λ| ≤ |{−td, . . . , td}m ∩ Λ ∩K1| ≤
∣

∣

∣

∣

{−td, ..., td}m ∩
s
⋃

i=1

(Λ ∩Ki)

∣

∣

∣

∣

.

Hence,
1

|{−td, ..., td}m ∩⋃s
i=1(Λ ∩Ki)| ≤

1

π1(t)
. (13)



If i ∈ {1, . . . , s} and y ∈ {−td, . . . , td}m ∩Λ∩ [Ki \ (Ki + zi)], then, by (12),
y = r+

∑

w∈I λww for r ∈ Li, I ⊆W i with |I| = m− 1, and λw ∈ R≥0 for each
w ∈ I. This implies that

‖∑w∈I λww‖∞ = ‖y − r‖∞ ≤ ‖y‖∞ + ‖r‖∞ ≤ td+ d = (t+ 1)d.

Hence,

{−td, . . . , td}m ∩ Λ ∩ [Ki \ (Ki + zi)] ⊆
⋃

r∈Li

⋃

I⊆W i

|I|=m−1

r + (t+ 1)dP (i,I).

If r ∈ Li, then by the definition of Li, r ∈ Λ. This implies that the number of Λ
points in r + (t+ 1)dP (i,I) is equal to π(i,I)((t+ 1)d). So,

|{−td, . . . , td}m ∩
s
⋃

i=1

(Λ ∩ [Ki \ (Ki + zi)])| ≤
s

∑

i=1

∑

r∈Li

∑

I⊆W i

|I|=m−1

π(i,I)((t+ 1)d).

(14)

The polynomial on the right-hand side of (14), call it ψ(t + 1), is of degree
m− 1 and has a positive leading coefficient. Also, by (13) and (14),

|{−td, ..., td}m ∩⋃s
i=1(Λ ∩ [Ki \ (Ki + zi)])|

|{−td, ..., td}m ∩⋃s
i=1(Λ ∩Ki)| ≤ ψ(t+ 1)

π1(t)
.

Recall that π1 is of degree m, ψ is of degree m− 1, and ψ and π1 have positive
leading coefficients. Moreover, the limit as t→ ∞ is the same as td→ ∞. Hence,

lim
t→∞

|{−t, ..., t}m ∩⋃s
i=1(Λ ∩ [Ki \ (Ki + zi)])|

|{−t, ..., t}m ∩⋃s
i=1(Λ ∩Ki)|

= lim
t→∞

|{−td, ..., td}m ∩⋃s
i=1(Λ ∩ [Ki \ (Ki + zi)])|

|{−td, ..., td}m ∩⋃s
i=1(Λ ∩Ki)| = lim

t→∞

ψ(t+ 1)

π1(t)
= 0. ⊓⊔

4 Proof of Theorem 1

The assumption cone(A) = cone(W ) indicates that we can write cone(A) as

cone(A) =
⋃s

i=1 cone(W
i), (15)

where s ∈ Z≥1 andW
1, . . . ,W s ⊆W are linearly independent sets; see (8). Also,

A has full row rank, so we assume that W 1, . . . ,W s each contain m linearly
independent vectors. For i ∈ {1, . . . , s}, let Ki := cone(W i).

First, we prove σasy(A) ≤ m+φmax(A). In order to do this, we find a lattice
Λ and points z1 ∈ K1, . . . , zs ∈ Ks such that

σ(A, b) ≤ m+ φmax(W ) ∀ b ∈ (Λ ∩ (K1 + z1)) ∪ . . . ∪ (Λ ∩ (Ks + zs))



and Λ contains every b ∈ Zm such that P (A, b) 6= ∅. With these values, we will
be able to apply Lemma 4 to prove the desired result.

Fix i ∈ {1, . . . , s} and set φi := φ(W i). Let GW i(Zm) be the group defined
in Section 2. In view of Lemma 2, there exist w1, . . . , wt ∈ A with t ≤ φi and

GW i({w1, . . . , wt}) = GW i(A).

We emphasize that the choice of w1, . . . , wt depends on W i. Define the lattice

Λi :=

{

∑

h∈G
Wi (A)

khh+
∑

w∈W i

pww : kh ∈ Z ∀ h ∈ GW i(A), pw ∈ Z ∀ w ∈W i

}

.

In Lemma 6, we show that Λi does not depend on i. Lemma 1 implies that
Λi ⊇ {g ∈ GW i(Zm) : ∃ b ∈ Zm such that ρW i(b) = g and P (A, b) 6= ∅}. Thus,

if b 6∈ Λi (equivalently, if ρW i(b) 6∈ GW i(A)), then P (A, b) = ∅. (16)

Lemma 5. There exists zi ∈ Λi ∩ Ki that satisfies the following: for every
b ∈ (Ki + zi)∩Zm, either b 6∈ Λi (so P (A, b) = ∅) by (16)) or σ(A, b) ≤ m+φi.
The vector zi satisfies zi =

∑

w∈W i kww, where kw ∈ Z≥0 for each w ∈ W i.

Proof of Lemma. For each g ∈ GW i(A) = GW i({w1, . . . , wt}), there exists xg ∈
Zm such that

xg − g =
∑

w∈W i τww and xg =
∑

w∈W i qww +
∑t

ℓ=1 pℓw
ℓ, (17)

where τw ∈ Z and qw ∈ Z≥0 for each w ∈ W i and p1, . . . , pt ∈ Z≥0. By
Lemma 3, there exists zi ∈ Λi ∩ Ki such that ρW i(zi) = 0 and Ki + zi ⊆
Ki ∩ ⋂

g∈G
Wi (A)(K

i + xg). Let b ∈ (Ki + zi) ∩ Zm such that P (A, b) 6= ∅.
By (16), there is a g ∈ GW i(A) such that ρW i(b) = g. So, by (17),

b = g +
∑

w∈W i τ̄ww = xg +
∑

w∈W i(τ̄w − τw)w

=
∑t

ℓ=1 pℓw
ℓ +

∑

w∈W i(qw + τ̄w − τw)w,
(18)

where τ̄w ∈ Z for each w ∈ W i. Note τ̄w − τw ∈ Z≥0 for each w ∈ W i because
b ∈ Ki + zi ⊆ Ki + xg. Thus, P (A, b) 6= ∅ and σ(A, b) ≤ |W i|+ t ≤ m+ φi. ⊓⊔

Lemma 6. For every pair i, j ∈ {1, . . . , s}, the lattices Λi and Λj are equal.

Proof of Lemma. It is enough to show that Λ1 ⊆ Λ2. Let x ∈ Λ1. By Lemmata 3
and 5, there is a point y ∈ (K1 + z1) ∩ Λ1 such that ρW 1(y) = ρW 1(x). Also,
by Lemma 5, P (A, y) 6= ∅. Hence, by (16), y ∈ Λ2. Similarly, w ∈ Λ2 for each
w ∈W 1. These inclusions along with ρW 1(y) = ρW 1(x) imply x ∈ Λ2. ⊓⊔

Set Λ := Λ1 = . . . = Λs. Lemma 5 implies that

⋃s
i=1(Λ ∩ (Ki + zi)) ⊆ {b ∈ Zm : σ(A, b) ≤ m+ φmax}.



By (15) and (16), it follows that

{b ∈ Zm : P (A, b) 6= ∅} ⊆ cone(A) ∩ Λ =
⋃s

i=1 Λ ∩Ki

Hence, for each t ∈ Z≥1, it follows that

|{b ∈ {−t, ..., t}m : σ(A, b) ≤ m+ φmax}|
|{b ∈ {−t, ..., t}m : P (A, b) 6= ∅}|

≥ |{b ∈ {−t, ..., t}m ∩
(
⋃s

i=1 Λ ∩ (Ki + zi)
)

}|
|{b ∈ {−t, ..., t}m ∩ (

⋃s
i=1 Λ ∩Ki)}| . (19)

By Lemma 4, it follows that σasy(A) ≤ m + φmax(W ). Also, the inequality
φi ≤ log2(| det(W i)|) for each i ∈ {1, . . . , s} implies φmax(W ) ≤ log2(δ

max(W ))
and σasy(A) ≤ m+ φmax(W ) ≤ m+ log2(δ

max(W )).
Consider the inequality σasy(A) ≤ 2m+φmin(W ). Without loss of generality,

φ1 ≤ . . . ≤ φs. Let z1 ∈ K1 ∩ Λ be given from Lemma 5. Let i ∈ {2, . . . , s}.
Using Lemma 3 and the fact that K1 + z1 is m-dimensional, the representative
set {xg : g ∈ GW i(A)} from (17) can be chosen in K1 + z1. Let b ∈ Ki + zi.
By (18), there exists a g ∈ GW i(A) such that

b = xg +
∑

w∈W i(τ̄w − τw)w,

where τ̄w − τw ∈ Z≥0 for each w ∈ W i. The point xg is in K1 + z1, so

P (A, xg) 6= ∅ and there are w1, . . . , wm+φ1 ∈ A such that xg =
∑m+φ1

i=1 qℓw
ℓ,

where q1, . . . , qm+φ1
∈ Z≥0. So,

b =
∑m+φ1

ℓ=1 qℓw
ℓ +

∑

w∈W i(τ̄w − kw)w.

Thus, P (A, b) 6= ∅ and σ(A, b) ≤ 2m + φ1 = 2m+ φmin(W ). Hence, σasy(A) ≤
2m+ φmin(W ).

Finally, assume log2(δ
min(W )) = log2(W

2). Observe that φ(W 2) ≤ log2(W
2),

so σasy(A) ≤ 2m+ φmin(W ) ≤ 2m+ log2(δ
min(W )). ⊓⊔
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A Proof of Theorem 2

We construct both matrices A and B using a submatrix Ã, which we construct
first. Let d ∈ Z≥1 and p1 < . . . < pd be prime. For i ∈ {1, . . . , d}, define

qi :=
∏d

j=1,j 6=i pi and δ :=
∏d

j=1 pi. Define the matrix Ã :=
[

q1, . . . qd, −δ
]

.

The matrix Ã has d+1 columns, so σasy(Ã) ≤ 1+ d. The matrix Ã is similar to
the example in [1, Theorem 2] and the theory of so-called primorials. We claim

if b ∈ Z<0 and b ≡ 1 mod δ, then P (Ã, b) 6= ∅ and σ(Ã, b) = 1 + d. (20)

Note that gcd(q1, . . . , qd) = 1. The Frobenius number of {q1, . . . , qd} is the largest
integer that cannot be written as a positive integer linear combination of q1, . . . ,
and qd. Hence, if we choose b̄ ∈ Z≥1 to be the Frobenius number of {q1, . . . , qd},
then b ≥ b̄ + 1 implies P (Ã, b) 6= ∅. If b ≡ 1 mod δ, then b is not divisible by
pi for any i ∈ {1, . . . , d}. Thus, if b ≥ b̄ + 1 and b ≡ 1 mod δ, then σ(Ã, b) = d.
Finally, observe that if b < 0, then b + kδ > b̄ for large enough k ∈ Z≥1. The

only negative column of Ã is −δ, so σ(Ã, b) = 1 + d. This proves (20).
Now we define the matrix A. Let m ∈ Z≥1 and define

A :=

[

Im−1 0(m−1)×(d+1)

01×(m−1) Ã

]

∈ Zm×(m+d),

where Ik ∈ Zk×k is the identity matrix and 0k×s ∈ Zk×s is the all zero matrix
for k, s ∈ Z≥1. Note that φmax(A) = d. If b ∈ Zm−1

>0 × Z<0 is such that the last



component is equivalent to 1 mod δ, then σ(A, b) = m + d by the arguments
above. Now, the set of b ∈ Zm such that P (A, b) 6= ∅ is contained in Zm−1

≥0 × Z.
So, for every t ∈ Z≥1, the set of feasible solutions in {−tδ, . . . , tδ}m contains
t(tδ − 1)m−1 points b such that σ(A, b) = m + d. Moreover, if t ∈ Z≥b̄, then
P (A, b) 6= ∅ for every b ∈ {0, . . . , tδ}m−1 × {−tδ, . . . , tδ}. Therefore,

lim
t→∞

|{b ∈ {−t, ..., t} : σ(A, b) ≤ (m− 1) + d}|
|{b ∈ {−t, ..., t} : P (A, b) 6= ∅}|

= lim
t→∞

|{b ∈ {−tδ, ..., tδ} : σ(A, b) ≤ (m− 1) + d}|
|{b ∈ {−tδ, ..., tδ} : P (A, b) 6= ∅}|

≤ lim
t→∞

(2tδ + 1)(tδ + 1)m−1 − t(tδ + 1)m−1

(2tδ + 1)(tδ + 1)m−1
< 1.

Using this and the fact that A has m+ d columns, we have σasy(A) = m+ d.
Now we define the matrix B. Let A ∈ Zm×(m+d) be as above. Let e1×(m+1) ∈

Z1×(m+1) be the all ones matrix and U ∈ Zm×(m+1). Assume
∣

∣

∣

∣

det

([

U

e1×(m+1)

])∣

∣

∣

∣

= 1

and set

B :=

[

U A

e1×(m+1) 01×(m+d)

]

∈ Z(m+1)×(2m+1+d).

Note that φmin(B) = 0, so Theorem 1 (ii) implies that σasy(B) ≤ 2m + 2. Let
b ∈ Zm × {0} be such that P (B, b) 6= ∅. If z ∈ P (B, b), then the first m + 1
components of z are zero. So, similarly to above, there are b ∈ Zm+1 such that
σ(B, b) = m+ d. Hence, σasy(B) ≤ 2m+ 2 < m+ d = σ(B). ⊓⊔

B Proof of Lemma 3

Assume that t = 2. Let x := x1 and y := x2. First, we show that K ∩ (K + x) ∩
(K + y) 6= ∅. Since v1, . . . , vm are linearly independent, K is a full-dimensional
simplicial cone. Hence, there exist linearly independent vectors a1, . . . , am ∈ Rm

such thatK = {w ∈ Rm : (ai)⊺w ≤ 0 ∀ i ∈ {1, . . . ,m}} and linearly independent
vectors r1, . . . , rm ∈ K such that (ai)⊺ri < 0 for each i ∈ {1, . . . ,m}.

There is a set J ⊆ {1, · · · ,m} such that (aj)⊺(x− y) > 0 for each j ∈ J and
(aj)⊺(x− y) ≤ 0 for each j ∈ {1, . . . ,m} \ J . For j ∈ {1, . . . ,m}, set

λj :=















max
{

0,− (aj)⊺x
(aj)⊺rj

}

, if j ∈ {1, . . . ,m} \ J

max
{

− (aj)⊺(x−y)
(aj)⊺rj ,− (aj)⊺x

(aj)⊺rj

}

, if j ∈ J.

Note that λ1, . . . , λm ∈ R≥0, so x+
∑m

j=1 λjr
j ∈ K+x. For each i ∈ {1, . . . ,m},

it follows that

(ai)⊺
(

x+
m
∑

j=1

λjr
j − y

)

≤ (ai)⊺(x− y) + λi(a
i)⊺ri ≤ 0.



So, x +
∑m

j=1 λjr
j − y ∈ K and x +

∑m
j=1 λjr

j ∈ K + y. Finally, for each
i ∈ {1, . . . ,m}, it follows that

(ai)⊺
(

x+

m
∑

j=1

λjr
j

)

≤ (ai)⊺x+ λi(a
i)⊺ri ≤ 0.

Hence, x+
∑m

j=1 λjr
j ∈ K and K ∩ (K + x) ∩ (K + y) 6= ∅.

Let w ∈ K ∩ (K + x) ∩ (K + y). Then K + w ⊆ K ∩ (K + x) ∩ (K + y).
Because K is full-dimensional, there exists a point z ∈ (K + w) ∩ Zm such that
z =

∑m
i=1 kiv

i for ki ∈ Z≥0. Note that z ∈ K + w ⊆ K and

K + z ⊆ K + w ⊆ K + (K ∩ (K + x) ∩ (K + y)) ⊆ K ∩ (K + x) ∩ (K + y).

For t ≥ 3, the result follows by induction. ⊓⊔
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