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Abstract. This paper aims at introducing a method to quickly design compact 
dual-rail asynchronous primitives. If the proposed cells are dedicated to the de-
sign of dual-rail asynchronous circuits, it is also possible to use such primitives 
to design dual-rail synchronous circuits. The method detailed herein has been 
applied to develop the schematics of various basic primitives. The performances 
of the 130nm obtained cells have been simulated and compared with more tra-
ditional implementations.  

I   Introduction 

If asynchronous circuits can outperform synchronous ICs in many application do-
mains such as security, the design of integrated circuits still remains essentially lim-
ited to the realization of synchronous chips. One reason can explain this fact: no CAD 
suite has been proposed by the EDA industry to provide a useful and tractable design 
framework. However, some academic tools have been or are under development [1], 
[2], [3], [6].  

Among them TAST [3] is dedicated to the design of micropipeline (µP) and Quasi 
Delay Insensitive (QDI) circuits. Its main characteristic is to target a standard cell 
approach. Unfortunately, it is uncommon to find in typical libraries (dedicated to 
synchronous circuit design) basic asynchronous primitives such as Rendezvous cells 
also called C-elements. Consequently, the designer of dual-rail asynchronous IC, 
adopting a standard cell approach, must implement the required boolean functions 
with AO222 or Majority gates [1], [4], [5]. It results in sub optimal physical imple-
mentations. Within this context, we developed a method allowing the quick design of 
the main combinatorial functionalities in dual-rail CMOS style.  

Our goal is here to introduce the proposed design method and to compare the per-
formances of the resulting cells with those of more traditional implementation styles. 
The remainder of the paper is organized as follows. Section II is dedicated to the in-
troduction of the method itself. Before concluding, section III is devoted to the com-
parisons of performances (propagation delays, power consumption and realization 
cost) for the various boolean functions implemented with our design technique and 
with more usual implementation styles.  
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II   Dual-Rail Cell Design 

In this paragraph, we introduce the dual-rail cell design technique which can be either 
used to design new functionalities or to quickly translate in dual-rail the content of 
any single rail library. 

II.a   Targeted Cell Topology 

Before to detail the design technique, let us remind the main specificities of the primi-
tives required to design dual-rail logic blocks exchanging data one with another ac-
cording to a four phase handshake protocol, and to the dual-rail encoding given in 
Fig.1. 

For such circuits, the data transfer through a channel starts by the emission of a re-
quest signal encoded into the data, and finishes by the emission of an acknowledge 
signal. During this time interval, which is a priori unknown, the incoming data must 
be hold in order to guarantee the quasi-delay-insensitivity property. This implies the 
intensive use of logical gate including a state holding element usually latch or feed-
back loops.  

 
Fig. 1. Dual-rail encoding 

As we target a CMOS implementation, it results from the preceding consideration 
that any dual-rail primitive may be considered as the juxtaposition of two complex 
gates, each one driving a latch as illustrated in Fig.2.  

 
Fig. 2. Targeted cell topology 

II.b   Dual-Rail Cell Design Method 

Adopting the dual-rail cell topology of Fig.2, the design of dual-rail asynchronous 
primitives amount to the identification of the two complex cells controlling the 
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latches. This can be realized in six successive steps that constitute the proposed de-
sign method. 

Step n°1 
The first step consists in identifying the three boolean expressions characterizing the 
functionality to be realized. 
Two of those three expressions are related to the settling conditions of the output rails 
z1 and z0 to VDD, indicating respectively that the output has a boolean value of �1� 
or �0�. 

The third expression is related to the settling conditions z1 and z0 to Gnd which 
correspond to the invalid state of the dual-rail encoding. So, in order to illustrate this 
identification step, let us realize a 3-input OR gate: A(a1,a0)+B(b1, b0)+C(c1,c0). The 
three expressions characterizing this functionality in dual-rail logic are: 

CBAZ ++=  (1) 

CBAZ ⋅⋅=  (2) 

IIII CBAZ ⋅⋅=  (3) 

If expressions (1) and (2), that are related to the settling conditions of z1 and z0 to VDD 
are well known, expression (3) is more specific to the dual-rail encoding of Fig.1 
since it defines the settling conditions to Gnd of both rails. In this expression, the 
character �I� is used to stipulate that the logical bits Z, A, B and C are all in the invalid 
state. In the same way, the character �V� will be used to stipulate that a logical bit is in 
a valid state (see fig. 1). 

Table 1. Truth table of a 3-input OR gate 

A B C Z 
0 0 0 0 
0 0 1 1 
0 1 0 1 
0 1 1 1 
1 0 0 1 
1 0 1 1 
1 1 0 1 
1 1 1 1 

Step n°2 
After the identification stage of the three characteristic expressions, the second step of 
the method consists in rewriting these three expressions under a canonical form. This 
can easily be done starting from the truth table of the functionality to be realized (see 
Table 1). For the considered 3-input OR gate, this step leads to the following expres-
sions:  

CBACBACBACBACBACBACBAZ ⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅=  (4) 

CBAZ ⋅⋅=  (5) 

IIII CBAZ ⋅⋅=  (6) 
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Step n°3 
In the third step, the canonical expressions obtained in the second step are reformu-
lated so that the dual-rail encoding appears explicitly. This translation, from a natural 
encoding to the dual-rail encoding of Fig.1, is done using the conversion table (see 
Table 2) that defines the equivalences between the traditional simple rail logic and the 
dual-rail logic. Note that in table 2, �bit� and �bit!� mean that the �bit� logical variable 
correspond respectively to �1� logical value and �0� one. So, for example, if we con-
sider the following expression: CBA ⋅⋅ , the dual-rail equivalent will be: A0B0C0. As 
a result, for the considered 3-input OR gate, this step leads to the following dual-rail 
expressions: 

1000101100011010111111 cbacbacbacbacbacbacbaz ⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅=  (7) 

0000 cbaz ⋅⋅=  (8) 

01010101 ccbbaazz ⋅⋅⋅⋅⋅=⋅  (9) 

Expressions (7-9) are sufficient to derive in a traditional way the topologies of the 
complex cells. However, for the considered 3-input OR gate, expression (9) leads to 
serially stack an excessive number of P transistors. In order to overcome this problem, 
it is necessary to introduce some additional variables. This is done in a fourth step. 

Table 2. Single rail to dual-rail conversion table 

 Type bit bit! BitV BitI 
A(a1,a0) Input a1 a0 a1⊕ a0 ≡ a1+ a0 a1 !⋅ a0 ! 
B(b1,b0) Input b1 b0 b1⊕b0 ≡  b1+ b0 b1 !⋅ b0 ! 
C(c1,c0) Input c1 c0 c1⊕c0 ≡ c1+ c0 c1 !⋅ c0 ! 
Z(z1,z0) Output z1 z0 z1⊕z0 ≡ z1+ z0 z1 !⋅ z0 ! 

Step n°4 
If it is possible to insert any additional variables to implement the P transistor arrays, 
it is also possible to take advantage of the dual-rail encoding specificities. Among 
those main specificities of the dual-rail encoding, two are particularly interesting. The 
existence of forbidden state (1,1) constitutes the first one, while the second is related 
to the mutually exclusive behaviour of the rails conveying the boolean value of a 
logical bit (see Table 2). These two specificities confer some interesting properties to 
the �exclusive-or� operation. 

Table 3. Truth table of a1⊕ a0 

a1 a1 A a1⊕ a0 a1+ a0 
0 0 Invalid 0 0 
0 1 Valid, �0� 1 1 
1 0 Valid,�1� 1 1 
1 1 forbidden Impossible Impossible 

As shown in Table 3, the existence of the prohibited state allows defining a bijec-
tion between the state of validity of the logical bit A, and the value of a1⊕ a0 which is 
strictly equal to a1+a0.  

This bijection, that justifies the single-rail to dual-rail conversion table (see Ta-
ble 2), can be used to redefine the settling conditions to the invalid state of the output 
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bit. For the considered 3-input OR gate, this implies the definition of three additional 
variables: 

0101

0101

0101

ccccW
bbbbV
aaaaU

+=⊕=
+=⊕=
+=⊕=

 (10) 

These three intermediate values being defined, it is afterward possible to simplify the 
expressions (7), (8), (9) to obtain: 

1001011 cbaWbaWVaz ⋅⋅+⋅⋅+⋅⋅=  (11) 

0000 cbaz ⋅⋅=  (12) 

WVUzz 01 ⋅⋅==  (13) 
Expressions (11), (12), (13) enable implementing the N and P transistor arrays with-
out transgressing the rules defining the maximum number of transistor that can be 
serially stacked.  

Step n°5 
The fifth step consist in designing the schematic of the two complex cells starting 
from expressions (11) (12) (13) and considering that the additional variables are de-
livered by the neighbourhood of the cell. This can be performed in traditional way. In 
the case of the 3-input OR gate, this leads to the schematic of the Fig.3. 

 

Fig. 3. Proposed dual-rail 3-input OR gate schematic 

Step n°6 
The final step aims at obtaining the complete schematic of the dual-rail primitive. 
This is achieved by implementing the calculus of the additional variables, i.e. by inte-
grating the exclusive-or of all the pairs of rails carrying a single binary value. 

These 2-input XOR gates, being equivalent to classical 2-input OR gates, as dem-
onstrated earlier, they can be integrated at a low cost using usual single-rail 2-input 
OR gate. Consequently, it is very easy to obtain the complete schematic (see Fig. 4) 
of the dual-rail 3-input OR gate which is constituted of 42 transistors. This schematic 
clearly highlights that the incoming signals will have to cross in the worst case: two 
layers of transistors (elementary layer) allowing the evaluation of the intermediate 
values U, V and W, a layer related to the complex gates and finally a layer relating to 
the output latches. 
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Consequently, if the transistors are properly sized, the forward latency, i.e. the 
propagation delay of the 3-input OR gate under consideration will be in the worst case 
of four transistor layers what is very little with respect to more usual implementations, 
as we will see in section III.  

 
Fig. 4. Pseudo-static implementation of the 3-input OR gate. 

It should be noted that this pseudo static implementation of the 3-input OR gate 
can easily be transformed into a fully static one (see Fig.5). However, if this can re-
duce significantly the propagation delays of the considered dual-rail 3-input OR gate, 
this increases its realization cost. 

III   Performance Analysis 
In order to evaluate the performance and the limits of the method suggested herein, 
we derived the dual-rail schematics of various combinatorial primitives adopting the 
proposed method and also three other implementation styles. 

Among these three implementation styles, two of them have the characteristic of 
using only cells that can be traditionally found in industrial libraries such as INV, 
NAND, NOR, Majority and AO222 gates.  

 
Fig. 5. Proposed static schematic of the dual-rail 3-input OR gate 

Those two styles are afterwards denoted by AO222 and Majority gate based styles 
since they do use (Fig.6) respectively AO222 gates and Majority gates to implement 
the electrical rendezvous (C-element) of two signals. The third implementation style 
considered in the remainder of this paper is the one proposed in [5]. 
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III.a   Implementation Cost 

The implementation of those various boolean functions has allowed evaluating the 
integration cost of the four implementation styles considered. Table 4 that gives the 
obtained results highlights the benefits offered by the suggested design technique. As 
shown, following this technique we are able to design the most widely used function-
alities with up to 65% less transistors. 

This reduction of the realization cost, ranging from 43% to 73%, is due to the fact 
that several electrical paths share the same state holding element. This pooling of the 
state holding element appears clearly while comparing the structure of Fig.4 to that of 
Fig.6. Indeed, one can note that only one state holding element by rail is required for 
the 3-input OR gate we proposed, whereas eight state holding elements (8 of the C-
element) are necessary to guarantee the correct behaviour of the structures represented 
in fig. 6. 

If the pooling of the state holding elements explains partially this reduction of the 
integration cost, this one is mainly due to the fact that the suggested method enables 
the implementation of 3 and 4-input gates without necessarily cascading several 2 
input gates. This constitutes a decisive advantage in term of cost, but also in term of 
speed, since the number of elementary layers crossed by the signals is also reduced. 
This point is illustrated by Table 5.  

 
Fig. 6. Wiring (a) an AO222 and (b) a majority cell to obtained a C-element, (c) synoptic 
scheme of a dual-rail OR3 realized with AO222 or Majority cells;  is the symbol of the C-
element 
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Table 4. Realization cost 

Integration cost (transistor count) 

Dual-rail Cell Proposed  
Pseudo-static style 

Proposed  
Static  
Style 

AO222  
based style 

Majority  
based style [5] 

Or2 / And2 / Nor2 /Nand2 30 38 64 56 42 
Or3 / And3 / Nor3 /Nand3 42 54 128 112 84 
Or4 / And4 / Nor4 /Nand4 56 72 192 168 126 

Xor2 / Xnor2 32 40 68 60 44 
Xor3 / Xnor3 52 64 136 120 88 
Xor4 / Xnor4 72 88 204 180 132 
AO21/AOI21 43 55 128 112 84 
AO22/AOI22 58 74 192 168 126 

Table 5. Min and Max numbers of elementary layers crossed by the signals 

Min and Max numbers of elementary layers crossed by the signals 

Dual-rail Cell Proposed  
Pseudo-static style 

Proposed  
Static Style 

AO222  
based style 

Majority  
based style [5] 

Or2 / And2 / Nor2/Nand2 4/2 4/2 4/2 4/2 2 
Or3 / And3 / Nor3 /Nand3 4/2 4/2 8/4 8/4 4 
Or4 / And4 / Nor4 /Nand4 4/2 4/2 8/4 8/4 4 

Xor2 / Xnor2 4/2 4/2 4/2 4/2 2 
Xor3 / Xnor3 4/2 4/2 8/4 8/4 4 
Xor4 / Xnor4 4/2 4/2 8/4 8/4 4 
AO21/AOI21 4/2 4/2 8/4 8/4 4 
AO22/AOI22 4/2 4/2 8/4 8/4 4 

III.b   Speed Performances 

If the number of elementary layers crossed by the signals is a good first order indica-
tor of the speed performances, we wanted to quantify them more precisely. Therefore 
we simulated the propagation delays of various cells under different loading and con-
trolling conditions. More precisely, we applied on theirs inputs linear ramps of vari-
ous durations (10, 50, 100, 200 and 500ps) and we varied the values of the output 
loading capacitance (5, 10, 20, 50, 100fF). Table 6 summarizes the results obtained 
taking the AO222 based design style as reference. 

Table 6. Average propagation delay reduction 

Average propagation delay reduction 

Cell Proposed Pseudo  
Static Style 

AO222 based  
style 

Majority based  
style [5] 

Or2 5.2 % 0 22.6 % 18.1 % 
Or3 38.7 % 0 38.1 % 26.6 % 
Or4 35.8 % 0 38.9 % 25.3 % 

Xor2 7.3 % 0 27.2 % 19.0 % 
Xor3 39.0 % 0 38.9 % 28.1 % 
Xor4 30.7 % 0 37.7 % 27.4 % 
AO21 36.8 % 0 34.3 % 28.0 % 
AO22 28.5 % 0 31.8 % 26.9 % 
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As expected from table 5, for 2-input cells the propagation delays of our cells are 
equivalent to those obtained for the AO222 and Majority based cells while they are 
smaller for 3 and 4 input gates.  

III.c   Energy Consumption 

If the integration cost, evaluated as the number of transistors necessary to realize of 
boolean function, is a first order metric of the energy consumption, we characterized 
it more precisely. Therefore, we simulated the energy consumption for various cells 
controlled by voltage ramps of different durations (10, 50, 100, 200 and 500ps) and 
loaded by different capacitances (5, 10, 20, 50, 100fF). Table 7 gives the average 
energy consumption reduction of the various implementation styles considered herein 
taking the AO222 based design style as reference. 

Table 7. Average energy consumption reduction 

Average energy consumption reduction 

Cell Proposed Pseudo  
Static Style 

AO222 based  
style 

Majority  
based style [5] 

Or2 -30.3 % 0 % 17.0 % 14.7 % 
Or3 7.2 % 0 % 26.6 % 31.9 % 
Or4 11.3 % 0 % 29.2 % 34.6 % 

Xor2 -36.1 % 0 % 17.6 % 19.1 % 
Xor3 2.2 % 0 % 29.1 % 32.5 % 
Xor4 6.1 % 0 %  30.7 % 33.5 % 
AO21 5.5 % 0 % 29.8 % 27.7 % 
AO22 7.5 % 0 % 30.9 % 27.0 % 

As expected, the 3 and 4-input gates that we proposed have smaller energy con-
sumption than the AO222 based cells have. However, this is not the case for our 2-
input cells that consumes significantly more than the other implementation styles. 
This is mainly explained by the energy dissipated in the 2-input OR gates generating 
the internal signals. They do have, indeed a high toggling rate that penalizes the en-
ergy consumption. 

IV   Conclusion 
We have introduced a method to quickly design dual-rail CMOS asynchronous primi-
tives. The primitives obtained thanks to this design technique have better or similar 
performances than those of more traditional implementation styles such as the AO222 
based style. Moreover, this technique allows designing 3 and 4 input CMOS dual-rail 
cells. To our knowledge, this was not possible up to now. As a result, the cells ob-
tained with the design techniques introduced in this paper are good candidates for the 
design of dual-rail asynchronous and synchronous circuits. 
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