
Software and System Modeling Based on a

Unified Formal Semantics

Manfred Broy, Franz Huber, Barbara Paech,
Bernhard Rumpe, and Katharina Spies

Fakultät für Informatik, Technische Universität München
{broy,huberf,paech,rumpe,spiesk}@in.tum.de

Abstract. Modeling and documentation are two essential ingredients
for the engineering discipline of software development. During the last
twenty years a wide variety of description and modeling techniques as
well as document formats has been proposed. However, often these are
not integrated into a coherent methodology with well-defined dependen-
cies between the models and documentations. This hampers focused soft-
ware development as well as the provision of powerful tool-support. In
this paper we present the main issues and outline solutions in the direc-
tion of a unified, formal basis for software and system modeling.

1 Introduction

Computer technology for commercial applications has evolved rapidly from main-
frames through personal computers to distributed systems. Software engineering
could not keep pace with the resulting demand for powerful application devel-
opment methods. This is exemplified by an ever growing number of software
projects running behind schedule, delivering faulty software, not meeting users’
needs, or even failing completely. There is a number of reasons for that, ranging
from inadequate project management, over communication problems between
domain experts and software developers to poorly documented and designed
software. A recent inquiry on industrial software developers [DHP+98] has shown
that despite the great variety of CASE-tools, development methods, and model-
ing techniques, software development still largely produces informal, incomplete
and inconsistent requirements and design descriptions and poorly documented
code. Modeling techniques are used selectively, but not integrated with each
other or the coding. The large variety of proprietary modeling techniques and
tools makes it difficult to choose an adequate selection for a project. As ex-
emplified by the newly evolving standard Unified Modeling Language [BRJ97],
the techniques provide a rich collection of complex notations without the cor-
responding semantic foundation. Since only static models are linked to code,
behavioural models can only serve as illustrations not worthwhile the big effort
of building the model.

This situation will only change if modeling techniques come with a set of
development steps and tools for incremental model development, consistency

[BHP+97] M. Broy, F. Huber, B. Paech, B. Rumpe, K. Spies. 

Software and System Modeling Based on a Unified Formal Semantics. 

In: Requirements Targeting Software and Systems Engineering. 

International Workshop RTSE‘97. Manfred Broy, Bernhard Rumpe (Eds.). 

Bernried, Germany, October 1997. 

LNCS 1526, Springer Verlag. 

www.se-rwth.de/publications



checks, reasoning support and code generation. Mathematical description tech-
niques like Z [Wor92] or LOTOS [Tur93] provide such development steps, but
their uptake by industry is hampered by their cumbersome notation, lack of
tools and lack of integration to established specification and assurance techniques
[CGR93]. Recently, a number of approaches for the combination of mathematical
and graphical modeling techniques has evolved (e.g. [Huß97,BHH+97]) proving
the viability of the integration of selected modeling techniques and formalisms.
However, the integration of mathematical and graphical modeling techniques
covering the whole process of system and software development is still an open
problem.

The paper describes coherently the major issues in providing such an integrat-
ing basis. Experience on this subject has been gained mainly in the projects Fo-
cus [BDD+93], SysLab [BGH+97b] and AutoFocus [HSS96]. The project Fo-
cus is devoted to developing a mathematical development method for distributed
systems. SysLab concentrates on graphical description techniques, their formal
semantics based on Focus and their methodical use, in particular for object-
oriented systems. AutoFocus is building a tool aimed at the development of
distributed/embedded systems allowing the combined use of mathematical and
graphical description techniques and providing powerful development steps based
on the formal semantics. Its main application areas are components of embedded
systems. None of the projects covers the whole development process, but taken
together they provide a clear picture of the road to follow.

The paper is structured as follows. In the first section we introduce Focus,
the theory of stream processing functions, as the mathematical basis of our
work. First, we present Focus independent of a particular application area.
Then we show how to adapt it to object-oriented systems. Focus comes with
a set of notations and a methodology for developing formal specifications that
can only be touched on in this paper. Refinement and compositionality provide
the foundation for the formal development steps. We close this section with a
discussion on the enhancement of formal notations to be useful for practitioners.

We then go on to describe the indirect use of Focus as the common formal
semantics for graphical modeling techniques used in software development. We
describe a set of graphical description techniques covering the main system as-
pects. These modeling techniques are similar to the ones used by structured or
object-oriented methods. However, they differ in detail, because they were de-
veloped with a particular focus on a common formal semantics. The aim of that
section is to make explicit the most important issues in providing this semantics.

The indirect use of formal methods is very valuable to the method developer.
However, it is only useful to the system developer if the modeling techniques are
accompanied by powerful development steps that allow to check and enforce the
formal dependencies between the models. In the third section we discuss con-
sistency checking, model validation and transformation as the most important
development steps, together with possible tool support.

The modeling techniques and development steps must be integrated into a
process of system development, covering requirements definition, analysis, de-



sign and implementation. In the fourth section we present a framework making
explicit the different modeling areas to be covered, namely the application do-
main, the system usage, and the software system, as well as the interplay between
different system views and their corresponding modeling techniques.

We close with an outlook on future work. Related work is dicussed along the
way.

2 Semantic Framework

In this section we describe the formal semantics as the basis for the descrip-
tion techniques and methodological aspects presented later. First we sketch the
mathematics of system descriptions treating object-oriented systems as a special
case. Then we present refinement as a major constituent of formal system de-
velopment. After a short description of the formal system development process,
we close with an evaluation of the direct use of Focus, our general framework
for formal handling of distributed reactive systems.

2.1 Mathematical Basics

Focus incorporates a general semantics basis with some variants and a variety
of techniques and specification formalisms based on this semantics. Here, we
only give a short and informal description of the main concepts and some simple
formulas. For further details, the interested reader is referred to [BS97,BDD+93]
for an introduction and more formalization, and [BBSS97] for an overview of
case studies. Besides Focus there are many other formal development methods
and description techniques like TLA, Unity or ProCoS. For further reading
and a comparison between these and many other formal methods like algebraic
or temporal logic approaches in combination with an uniform example we refer
to [BMS96a,BMS96b].

According to the concepts of Focus, a distributed system consists of a num-
ber of components that are partially connected with each other or with the envi-
ronment via one-way communication channels. Because our model is based on a
discrete global time and on channels comparable with unbounded FIFO-buffers,
the communication is time-synchronous and message-asynchronous. With the
behaviour of each component and the topology of the network – the connection
of components via the communication channels – the system is completely de-
scribed: The behaviour of a system can be deduced from the behaviour of its
constituents because the formal basis of Focus allows modular systems specifi-
cation by compositional semantics.

Timed Streams

The basic data structure needed for the definition of component behaviour are
timed streams. Assuming global and discrete time we model time flow by a special
time signal

√
(pronounced tick), indicating the end of a time interval. A timed



stream is a sequence of
√

and messages that contains an infinite number of time
ticks. Apart from the time ticks a stream contains a finite or infinite number
of messages. Let M be a set of messages that does not contain the time signal√
. By Mω we denote streams of messages and by Mω the set of infinite timed

streams containing an infinite number of ticks. To illustrate the concept of a
timed stream we show a simple example. The timed stream

a
√

ab
√ √

bca
√

b
√
. . .

contains the sequence of small letters aabbcab. In the first time interval a is
communicated, in the third interval there is no communication, and in the fourth
interval first b then c and last a is communicated.

The special time signal
√

should not be understood as a message that is
transmitted, but as a semantic concept to represent the global time progress.
Timed streams model complete communication histories: A specific stream as-
sociated with a channel between two components contains all information about
what message is sent when between these components. Semantic variants of Fo-
cus abstract from time into the untimed model or describe, in the synchronous

model, streams in which in each time interval at most one message can be trans-
mitted between two components.

Component Definition

A (system) component is an active information processing unit that communi-
cates with its environment through a set of input and output channels. To define
a component, the interface must be declared at first. This contains a description
of its input and output channels as well as the types of messages that can be
received or sent via these channels. The behaviour of a component is described
by a relation between its input and output streams fixing the set of commu-
nication histories that are valid for this component. One way to describe this
relation is to define a stream-processing function that maps input streams to sets
of output streams. Such a function reads an input stream message by message,
and - as a reaction - writes output messages onto the output channels. Stream-
processing functions must fulfill semantic properties like continuity, realizability,
time-guardedness, as explained in the Focus-literature. Additionally it is pos-
sible to use state parameters to store control states or additional data and thus
ease the modeling.

Let I be the set of input channels and O be the set of output channels. Then
by (I,O) the syntactic interface of a component is given. With every channel
in I ∪ O we associate a data type indicating the type of messages sent on that
channel.

To describe and to design the topology and the behaviour of distributed sys-
tems and their components, Focus offers different graphical and diagrammatical
notations. All these description formalisms are well founded in the mathematical
framework described in this section. A graphical representation of a component
with its syntactic interface I = {i1, . . . , in} and O = {o1, . . . , om}, and the indi-
vidual channel types S1, . . . , Sn and R1, . . . , Rm is shown in Figure 1.



f

: R

: Rm

: S11i

n: Sni

o1

o m

1

Fig. 1. Graphical Representation of a Component as Dataflow Node

Given a set of channels C we denote the set of all channel valuations by C.
It is defined by:

C = (C → Mω)

Channel valuations are the assignments of timed streams to all channels in C.
We assume that the streams for the channels carry only messages of the correct
type specified by the interface declaration.

We describe the behaviour of a component by a stream-processing function.
It defines the relation between the input streams and output streams of a com-
ponent that fulfills certain conditions with respect to their timing. A stream-
processing function is represented by a set-valued function on valuations of the
input channels by timed streams that yields the set of histories for the output
channels

f : I → P(O)

and fulfills the timing property of time-guardedness. This property ensures that
output histories for the first i+1 time intervals only depend on the input histo-
ries for the first i time intervals. In other words, the processing of messages in a
component takes at least one tick of time. Thus, time-guardedness axiomatizes
the time flow and supports the modeling of realistic applications, since the pro-
cessing of messages or the execution of computing steps always consumes time.
For a precise formal definition of this property see [BS97].

2.2 Foundations of Object Orientation

Based on the theory given above, we have defined a set of concepts to enrich
Focus with an object-oriented flavor. This allows us to give a formal semantics
to object-oriented modeling techniques, like UML [BRJ97], as we have done in
[BHH+97].

For that purpose, we have defined a system model in [KRB96] that charac-
terizes our notion of object-oriented systems. Objects can be naturally viewed as
components, as defined in the last section. Based on that, communication paths
are defined using identifiers, where each object is associated with exactly one
identifier (its identity).

In the system model, objects interact by means of asynchronous message

passing. Asynchronous exchange of messages between the components of a sys-
tem means that a message can be sent independently of the actual state of the
receiver, as, e.g., in C++ or Java. To model communication between objects we
use the Focus basic data structure of streams and stream-processing functions.



Objects encapsulate data as well as processes. Encapsulation of a process

means that the exchange of a message does not (necessarily) imply the exchange
of control: Each object is regarded as a separate process. Encapsulation of data

means that the state of an object is not directly visible to the environment
but can be accessed using explicit communication. The data part of the object
defines its state. It is given in terms of typed attributes.

Objects are grouped into classes, that define the set of attributes of an object
and its method interface (message interface). This allows to model the behavior
of the objects of each class c as stream-processing functions fc mapping input
histories to sets of output histories. As usual, classes are structured by an inher-
itance relation ⊑. We thus get a natural definition of inheritance of behavior:
We postulate if a class inherits from another, its possible behaviors are a subset:

∀c, d : Class. c ⊑ d ⇒ fc ⊆ fd

In case of method extension, this constraint is adapted to an interface refinement
constraint.

Dynamic and mobile features, such as creation of new instances and change
of communication structures, are also characterized as extension of Focus.

2.3 Refinement and Compositionality

Based on a first formal specification, the development of software and also of
distributed systems goes through several development phases (or levels of ab-
straction). Through these phases the envisaged system or system component
is described in an increasing amount of detail until a sufficiently detailed de-
scription or even an implementation of the system is obtained. The individual
steps of such a process can be captured by appropriate notions of refinement.
In a refinement step, parts or aspects of a system description are specified more
completely or more detailed. For this purpose, Focus offers a powerful compo-
sitional refinement concept as well as refinement calculi. On the semantic level,
refinement is modeled by logical implication. The important refinement concepts
are:

Behavioural Refinement: The aim of this refinement is the elimination of
underspecification as needed, e.g., for the specification of fault-tolerant be-
havior.

Interface Refinement: Here, the interface of a specification is refined by chang-
ing the number or types of the channels as needed, e.g., for concretization
of messages or splitting communication connections between components.

Structural Refinement: This concept allows the development of the structure
of the distributed system by refining components by networks of components.

2.4 A Formal System Development Process

Focus provides a general framework and a methodology in the large for formal
specification and stepwise top-down development of distributed reactive systems.



The formal system development process consists of several phases of abstraction
and three main development phases:

During the Requirements Phase, a first formalization of a given informal prob-
lem description is developed. Since the informal description is often not detailed
enough, this first step of a system specification is hard to develop. It is, however,
essential for the formal system development because it will be used as the ba-
sis for further development of specifications with a growing degree of accuracy
in the following phases. In this step, specifications can be formalized either as
trace or as functional specifications. The transition between these paradigms is
formally sound and preserving correctness.

During the Design Phase, the essential part of the system development, the
structure of a distributed system is developed by refining it up to the intended
level of granularity. These formal development steps are based on the specifica-
tion determined in the requirement phase and their correctness will be shown
relative to the first formalization. Because the formal development of a more
detailed specification possibly uncovers mistakes or unprecise properties in ear-
lier formalizations, the top-down development is not linear but rather leads to
respecifications of some parts of earlier formalizations. Only the description of
system properties in a mathematical and precise manner gives a system developer
the possibility to formally prove and refine system properties and descriptions.
During this phase, specifications in Focus are based on the denotational seman-
tics which models component behaviour by stream-processing functions. For the
development of the specifications during the design phase, paradigms like re-
lational and functional specifications as well as several specification styles like
Assumption/Commitment1 or equational specifications are defined. To increase
its usability Focus is adapted to support various engineering oriented and prac-
tically used techniques and formalisms like tables or diagrams, see section 3.
Due to the specific natures of these variants they can be used tailor-made for
the solution of specific problems.

During the Implementation Phase the design specification is transformed into
an implementation. This phase is subject of future work.

2.5 Further Work

Since the semantic foundation of Focus, including its development techniques,
have already been explored in depth, the emphasis of further work lies in bet-
ter applicability of the methodology, especially for system developers less ex-
perienced in formal methods. For that purpose, additional wide-spread descrip-
tion techniques, (semi-)automatic and schematic proof support have to be of-
fered. Several techniques for describing and specifiying systems (like tables,
state or system diagrams, MSC-like event traces (cf. Section 3.5), the “Assump-
tion/Commitment” style) were successfully integrated in the methodology. With

1 a special relational specification style where the “Assumption” formalizes the con-
straints about the input histories that have to be fulfilled in order to guarantee the
behaviour of a component formalized by the “Commitment”. For further reading see
e.g. [Bro94] and [SDW95])



AutoFocus, tool support for system development is already available, giving
future case studies a new quality by offering appropriate editors, consistency
checks, code generation and even simulation. Current research activities con-
cern the enhancement of Focus with methodical guidelines to ease the use of
the mathematical formalism, the description techniques and the development
methodology for non-specialists and to support solutions for specific application
fields, like the modeling of operating systems concepts in [Spi98].

Case studies are an important and stimulating work for testing Focus in
different application areas. Focus will be further improved, using the experience
gained from the great number of case studies collected in [BFG+94,BBSS97] and
future studies to come.

2.6 On the Direct Use of Formal Description Techniques

In the last sections we have sketched a mathematical framework and the semantic
basis for system specification. This allows developers to precisely describe struc-
tural and behavioural properties of the components and the composed system.
As will be argued in section 3, one can hide the mathematics from developers
through the use of graphical description techniques whose semantics are based
on the formal framework. However not everything can be adequately expressed
in diagrams. Especially behavioural properties are difficult to express. Thus for
example, object-oriented specification methods typically use state transition di-
agrams to describe method acceptance in classes or collaboration diagrams to
describe method calls between classes, but only programming language code
to define the method bodies. Mathematical specification languages like Focus

allow complete behaviour description in a much more declarative style. To be
useful for practitioners, however, the notation must be simple and the specifica-
tion language must be enhanced with guidelines for a systematic development of
specifications. These guidelines are useful for developers formulating properties
of individual systems and application areas, as well as for method developers who
need to state and verify properties of the (diagrammatic) description techniques
on the basis of the formal semantics.

In the following we present an example of some guidelines to write down
formal specifications in Focus. To make formal specification techniques and
methods more acceptable it is essential that the developer is in the position
to concentrate on the problem and not on the correctness of the formalization.
In Focus, equations on stream-processing functions describe the mapping of
patterns of input messages to patterns of output messages. [Spi98] proposes
a special strategy to formulate the required behaviour as structured text. The
translation of this text into a functional equation is supported by special schemes.
In the following we show such a scheme regarding a component C with one input
channel In and one output channel Out, where messages of type Integer flow on
these channels. We require that C computes the square of each input message
and sends it on the output channel. For this input/output behaviour we give the
following textual description:



If the component C receives a message X ∈ Integer on input channel
In, then C sends as reaction the square X2 as output message on output
channel Out.

This structured text, which includes all information needed to specify the re-
quired behaviour, can be translated with the available schemes in the following
functional equation (here fC denotes the stream-processing function modeling
the behaviour of the component C):

fC({In → X} ◦ s) = {Out → X2} ◦ fC(s)

3 Description Techniques

A description technique can be best characterized as a specialized language to
describe a particular view of the systems to be developed. With the Focus

method, we can precisely define our notion of a system. It is an important task
to define an appropriate set of description techniques which allow developers to
describe properties of systems.

In the first subsection, we will describe the notion of description techniques
in general, how we treat them, and what the benefits of this treatment are.

3.1 Description Techniques, Notations and Semantics

A description technique serves the purpose of describing particular aspects (views)
of a system. There exists a variety of graphical and textual description techniques
that allow to describe different aspects.

A description technique comes along with

– a concrete syntax (this is the concrete layout of all documents),
– an abstract syntax (without “syntactic sugar”),
– context conditions for wellformedness, and
– a semantics definition.

For a precisely defined description technique all four parts must be present. In
case of textual notations, concrete and abstract grammars are common for the
syntax, attributes on this grammar can be used for wellformedness conditions,
and the semantics is usually defined as a mapping from the syntax into an
appropriate semantic domain.

Similar techniques can be used for graphical notations. Each graphical nota-
tion basically defines a language of wellformed documents, which serves as the
syntactic domain. In order to use several description techniques to describe dif-
ferent aspects of the same systems, semantics definitions are necessary that map
the different syntactic domains onto the same semantic domain. This is the ba-
sis needed to integrate the different description techniques during development.
If we map different notations onto the same semantic domain, we (meaning the
notation developer) can compute context conditions between different notations,



which ensure consistency of several views onto a system. Moreover, we can justify
the correctness of translations from one notation into another one, e.g., trans-
lating Message Sequence Charts into State Machines, or generating code. Last
but not least, we can justify the correctnes of refinement calculi for the given
descriptions.

There are other benefits of defining a precise semantics, e.g., the developer of
the semantics gains a deeper understanding of the used notations. However, usu-
ally this formal semantics definition cannot be communicated to method users,
but only the (informal) interpretation of the insights [FB97]. Thus, the most im-
portant bargain of precise semantics is the possibility to automate development
steps.

Since graphical techniques usually are not powerful enough to describe (or
prove) every property of a system, it is often essential to translate the docu-
ments from a graphical notation into their “semantics” and use the power of
the semantic formalism to specify further aspects or verify required properties.
In our case, different kinds of diagrams, such as SSDs (see Section 3.2), can be
translated into formulas only using concepts of Focus.

In the following, we sketch the most important notations we have dealt with.
We sketch the purpose of the notation in a methodological context and the results
we have achieved on that notation, such as, semantics definitions or refinement
calculi that have been developed.

We emphasize that it is important to also use explanations or other informal
kinds of diagrams and text during development. A good method does not only
deal with formal notations but also allows the systematic treatment of informal
documents.

The AutoFocus tool uses a subset of the description techniques introduced
below in variations that are tailored for the development of embedded systems
(see Figure 2). Graphical and textual editors are available to create and edit
specifications using different views on an embedded system. Consistency be-
tween these views can be ensured, controlled by the developer any time during
the development process (see Section 4.1). From sufficiently detailed specifica-
tions, executable prototypes can be generated (see Section 4.2). Implementation
work on mapping graphical specifications into semantic domains, based on our
theoretical work, e.g., to conduct proofs of correctness on specifications, is cur-
rently in progress (see Section 4.3).

3.2 System Structure Diagrams (SSD)

System Structure Diagrams as used in AutoFocus (Figure 2, upper middle) fo-
cus on the static structure of a system. They graphically exhibit the components
of a system and their interconnections. They describe the glass box view of a
Focus component and are therefore similar to ROOM charts [SGW94]. These
diagrams focus more on the static part of a system and are not used in UML
[BRJ97], where everything is assumed to be highly dynamic.



Fig. 2. AutoFocus Description Techniques: SSD, EET, and STD

Components may be hierachically decomposed. Therefore, for each non-ele-
mentary component an SSD can be defined, leading to a hierachy of SSD docu-
ments describing a hierachical system structure.

If a system (or system component) exhibits dynamic properties, like changing
the communication structure or creating/deleting components, the SSD can be
used to describe structural snapshots or the static part of the structure. In an
object-oriented flavor, an SSD defines a snapshot of data and communication
paths between a set of objects.

As SSDs describe the architectural part of a system, there exists a refinement
calculus for architectures that allows to transform the internal structure of a
component by adding new components or changing communication paths, e.g.,
without affecting the external behavior of the component [PR97b,PR97c].

3.3 Class Diagrams (CD)

Class Diagrams are the most important object-oriented notation, and are there-
fore part of UML [BRJ97]. They are used to describe data aspects of a system
as well as possible structure layouts. In contrast to System Structure Diagrams,
which focus on the “instance level”, Class Diagrams focus on the “type level”.



Each class may have several objects as instances, each association represents
links between corresponding objects.

Class Diagrams define a large class of possible structures. To further detail
these structures, different kinds of invariants are added. E.g., associations have
multiplicities and additionally, it is possible to add predicates defined in our
Specification Language SL (see below).

Class Diagrams are also used to define the signature of a class and their state
space. The signature consists of a set of method definitions that also define the
set of possible messages. The attributes define the state space.

In [BHH+97] we have argued about the semantics of Class Diagrams. Al-
though Class Diagrams are a rather well understood technique, there are still
open questions how to treat aggregates.

3.4 Specification Languages (SL)

Not every aspect of a system can or should be described using graphic techniques.
For example datatype definitions or additional constraints are best described us-
ing a textual notation. In UML, e.g., OCL has been introduced for describing
a certain type of constaints. However, since OCL does not allow to define data
types or auxilary functions, and based on our experiences with algebraic speci-
fication techniques [BBB+85,BFG+93a], we decided to define an own language
for that purpose.

SL is an axiomatic specification language based on predicate logic, resembling
Spectrum [BFG+93a,BFG+93b]. SL allows declarative definitions of properties.
Particularly, SL is used for the definition of pre- and post-conditions of tran-
sitions and for the definition of state invariants not only in single objects but
also between several objects in the Class Diagrams. In order to enable automatic
testing of verification conditions, SL also incorporates concepts of functional pro-
gramming, especially from Gofer [Jon93]. The step from high-level descriptions
towards executable code is facilitated, which in turn facilitates prototyping.

With the restriction to the executable sublanguage and furthermore to the
datatype definitions, an automatic translation into simulation code is possible.

We also have experimented with the higher order logic HOLCF [Reg94] as a
property definition language, in particular as a front end for the theorem prover
Isabelle [Pau94].

3.5 Message Sequence Charts (MSC) and Extended Event Traces
(EET)

Message Sequence Charts and Extended Event Traces are both used to describe
the flow of communication within exemplary runs of a part of a system. Con-
stituting a high level of abstraction, MSC are well suited to capture system
requirements. Moreover, MSC can be used for and generated by simulation, re-
spectively. We have developed different flavors of this technique. One focuses on
synchronous message passing between different components [BHS96,BHKS97]



and its semantics is primarily a set of traces. These are called Extended Event
Traces and are used in AutoFocus (Figure 2, top right).

The other variant focuses on object-oriented systems and is more similar to
MSC’96 [Int96]. Both variants are compared and argued about their semantics
in [BGH+97a]. For EETs a set of operators was defined to combine them se-
quentially, in parallel and iterated. This allows not only to define exemplary
behavior, but also complete sets of behaviors.

Currently, work is in progress to map EETs into State Transition Diagrams.

3.6 State Transition Diagrams (STDs)

Basically State Transition Diagrams (STDs) describe the behavior of a compo-
nent using the state of this component. But different abstractions and therefore
flavors are possible. Thus STDs can be used early in the development (analysis)
and also in the design phase, when some kind of “lifecycle” of a component is
modeled. During detailed design and also prototyping, pre- and postconditions
of a certain form (executable) can be used to generate code.

We have explored and developed several versions of State Transition Di-
agrams that allow to capture more than just one input or one output ele-
ment on a transition. Usually a transition is attributed with a set of messages
(sometimes restricted to one message) to be processed during the transition
and a set of messages to be produced. There are timed and untimed vari-
ants, and there are variants incorporating pre- and postconditions on transitions
[RK96,PR94,GKR96,GKRB96,GR95,Rum96,PR97a].

In the object-oriented flavor, State Transition Diagrams describe the lifecy-
cle of objects. In STDs, descriptions of state and behavior are combined. STDs
can be used at different levels of abstraction that allow both the specification
of an object interface as well as the specification of individual methods. Refine-
ment techniques support not only inheritance of behaviour but also stepwise
refinement of abstract STDs [Rum96], resulting in an implementation.

A textual representation of State Transition Diagrams can be given using
appropriate tables [Spi94,Bre97]. Hierachical variants of State Transition Dia-
grams are examined in [NRS96] and also used in AutoFocus (Figure 2, bottom
left).

State Transition Diagrams are an extremely promising notation, as they on
one hand allow to describe behavior, while on the other relate it to the state
of a component. They allow to think in rather abstract terms of interaction
sequences, but can also be used to describe a strategy of implementation (and
therefore code generators). It is therefore worthwhile to explore more precise
variants of STDs than the ones given in nowadays methods such as UML.

3.7 Programming Language (PL)

The ultimate description technique is the target programming language. For
object-oriented systems, Java [GJS96] is a rather interesting choice for an im-
plementation language, as it exhibits a lot of desirable properties. It is not only



a language with a set of consolidated and clear concepts, it also exhibits some
notion of concurrency, which allows to implement the concurrency concepts of
Focus. Hence, we have had a closer look on Java, e.g., selecting a suitable sub-
language which will be the target for our code generation from STD and MSC.

To include the programming language in a proper way into the formal de-
velopment process, a step has been taken in [PR97a] towards a Focus-based
transitional semantics of conventional languages like Java.

3.8 Further Work

For some of the above described notations, we already have prototype tools—like
AutoFocus—that allow to edit and manipulate documents of that notation.
Several others still need consolidation, as the process of finding not only a precise
semantics for given notations, but adapting the notation in such a way that it
is convenient to use and allows to express the desired properties, needs to do
examples.

Currently refinement calculi on Class Diagrams and State Transition Dia-
grams are implemented.

4 Methodical Ingredients

A software or system development method (see Section 5) covers a variety of
different aspects. Supplying description techniques, as introduced in Section 3,
is only one of these aspects, yet probably the most “visible” one. However, a
development method also contains a notion of a development process, a model,
how developers proceed during the development of a system in order to produce
the results (the documents, the specifications etc.) necessary for a complete and
consistent system description that fulfills the requirements and ultimately results
in the desired software product.

Such a process model usually operates on different levels of granularity, rang-
ing from a coarse view down to very detailed, even atomic operations on spec-
ification elements or documents. The former will be treated in more detail in
Section 5, while the latter are covered in this section.

Methodical steps can basically be partitioned in two disjoint sets of oper-
ations on specifications, operations that modify the contents of specifications,
thus effectively yielding a different (possibly refined) description, and operations
that change the (possibly informal) status of specifications, for instance from
a draft status to a status “validated”, indicating that certain properties of the
specification are fulfilled in an informal process.

In the following sections, we give a set of examples for both kinds of steps
that have been treated in our work.

4.1 Completeness and Consistency

Generally, a system specification, just like a program that is being written, is
neither complete nor consistent most of the time within a development process.



This is particularly the case in view-based systems development, which specif-
ically aims at separating different aspects of a system description in different
specification units (specifiation documents, for instance) that use appropriate
description techniques. From a methodical point of view, allowing inconsistency
and incompleteness during a development process is reasonable because enforc-
ing them at any time restricts developers way too much in their freedom to
specify systems. For instance, instead of concentrating on a certain aspect of a
specification, developers, when changing parts thereof, would immediately have
to update all other specification units that are possibly affected by such a change
in order to maintain a consistent specification. Apart from diverting the devel-
opers’ attention from their current task, this is virtually impossible in practical
development, especially with respect to completeness of specifications. Note that
the notion of consistency used here refers to the properties of the abstract syn-
tax (the “meta-model”) of the description techniques used to specify a system.
Semantic aspects, such as consistency of behavior with certain requirements, are
not treated in this context. This approach is quite similar to compilers for pro-
gramming languages, which can ensure the “consistency” of a program, but not
the correctness of the algorithm encoded in the program.

The AutoFocus tool, which uses a view-based approach to specify dis-
tributed systems, offers such a mechanism to test specifications for completeness
and consistency. System specification is based on a subset of the description
techniques introduced in Section 3, namely, system structure diagrams, datatype
definitions, state transition diagrams, and extended event traces. The view spec-
ifications covered by these techniques can be developed separately to a large
extent. Only at specific points in the development process, for instance, when
generating a prototype from a specification (see Section 4.2), some global condi-
tions of consistency have to be fulfilled. Consequently, the consistency mechanism
available in AutoFocus is user-controlled and can be invoked at any time dur-
ing development, allowing to select both an appropriate set of specifications to
be checked and the (sub-)set of consistency conditions to be applied.

4.2 Validation of Specifications

Today in practical systems development, validation techniques, in contrast to
formal verification techniques, are widely used [BCR94] to gain more confidence
in specifications and implementations fulfilling their requirements. However, only
verification techniques can prove correctness. They will be treated in the next
section. Validation techniques are the focus of this section. They cover a broad
range of diverse techniques, such as

– review of specifications,
– systematic specification inspection,
– (usability) test of software, or
– prototype generation and execution.

These techniques show different facets of validation. For instance, testing
is usually applied to ensure that program code (the ultimate target of a de-
velopment process) fulfills certain required properties. Reviews and inspections



techniques, in contrast to that, are applicable in virtually any stage in the de-
velopment process to ensure consistency and certain correctness aspects on an
informal level. Reviews, for instance, can be held about requirements documents
in the very early stages of a devlopment process as well on program code imple-
mented by developers. Prototype generation for a system or parts thereof can
be used once a specification has been developed that is sufficiently consistent
and complete to validate the desired properties. Since a prototype, especially
an executable prototype in the form of a program, virtually brings a system
specification “into life”, this kind of validation technique is relevant in commu-
nicating development results to customers. Prototyping has been successfully
applied particularly in areas like graphical user interfaces (GUI).

In software engineering, the usage of graphical formalisms that describe sys-
tems from a point of view rather close to an implementation is widespread.
Examples for such techniques are statecharts [HPSS87] used in the StateMate

tool [Ilo90], or state transition diagrams as used in the AutoFocus tool, both
of which can basically be regarded as a kind of graphical programming language.
In such cases generating executable prototypes (or as well final implementation
code) is possible.

In the remainder of this section, we will take a brief look at such a prototyping
environment, the AutoFocus component SimCenter [HS97]. It is based on
generating program code from a set of sufficiently detailed and consistent system
specifications and on observing the behavior of that prototype program in its
environment.

SimCenter works by generating Java program code from a specification of
a distributed system, given in the AutoFocus description techniques briefly
outlined in Section 4.1. The generated program code, executed in SimCenter’s
runtime environment, is linked to a visualization component where the progress
of the prototype execution can be monitored at the same level of description
techniques as used to specify the system. An obvious prerequisite for generating
such an executable prototype is that the specification is sufficiently complete and
consistent in the sense outlined in Section 4.1. Nondeterminism, however, may
be present in the behavioral aspects of the specification. It is currently resolved
by selecting one possible behavior in the code generation process. This approach
can be made more flexible for developers, for instance, by allowing them to select
one of several nondeterministic behaviors during prototype execution.

As the primary application domain of AutoFocus are embedded systems,
SimCenter allows to monitor the interactions of such a gerated prototype with
its environment. In particular, developers are able to inject stimuli into the sys-
tem and observe its reactions, both from its environment interface in a black box
manner and from the internal perspective, as outlined above. Additionally, black
box behavior of an embedded system prototype can be optionally observed and
influenced from a user-definable, application domain-oriented environment view
that can be attached to SimCenter via a standard communication interface.
This allows developers to build a very customer-oriented presentation of the be-



havior of such a prototype and thus supports communication between system
developers and application domain experts.

For technical details about the process and the basics of code generation in
SimCenter we refer the reader to [HS97], for an AutoFocus development case
study using SimCenter to validate certain correctness aspects of a specification
of a simple embedded system, we refer to [HMS+98].

4.3 Verification Techniques

In contrast to informal validation, formal techniques allow developers to math-
ematically prove that a system specification fulfills certain requirements. As a
prerequisite, both the requirements and the specifications need to be formal-
ized using a common mathematical basis, thus allowing formal proofs to be
conducted.

Our goal is to integrate formal techniques as seamless as possible with some
of the description techniques introduced in Section 3. Within the AutoFoc-

us project two categories of verification tools are currently under consideration
for an integration with graphical formalisms. First, verification systems such
as PVS [ORS92], STeP [BBC+96], or interactive theorem provers like Isabelle

[Pau94] in conjunction with HOLCF [Reg94] could be used to interactively prove
properties of a specification. For that purpose, graphical specifications have to
be transformed into the specification laguage used in the verification system,
and developers have to conduct their proofs on this notational level. Obviously,
this approach is not very intuitive because it forces developers used to graphical
notations to use a more or less complex mathematical formalism to conduct
proofs.

Thus, the second category of tools, automated verification tools like model
checkers seem to be more suitable for a seamless integration. Currently, a pro-
totype for the integration of the µ-cke model checker [Bie97] into AutoFocus

is implemented. It will check whether a concrete system specification, given by
a component network and the corresponding behavioral descriptions, exposes a
refinement of the behavior of a given, more abstract specification.

4.4 Transformations

Transformations are methodical steps that effectively change a system descrip-
tion. Thus, each action that adds or changes specification elements results in a
different system description. Whether such modifications to specifications pre-
serve certain properties of a specification that have been established before, is
not clear a priori and has thus again to be validated (or verified, in case of a
formal development process). For that reason, it is desirable as well as feasible
to have a class of methodical steps that allow developers to change specifications
in a way that previously established properties will still hold after the modifica-
tions [BHS96]. Providing such property-preserving modification steps for a set
of object-oriented description techniques is one of the main goals of the SysLab
project. Such property-preserving transformations are defined on the level of the



description techniques and provided for developers in the form of a syntactical
refinement calculus that will be integrated in the toolset currently being de-
veloped within SysLab. These transformation rules are formally proven to be
property-preserving by the method developers and thus enable system develop-
ers to perform transformations on specifications on the syntactical level without
having to re-establish the validity of previously valid properties. Currently, such
transformation calculi exist for state transition diagrams [Rum96] and for system
structure diagrams [PR97b,PR97c], and are being integrated into the SysLab

toolset. If developers choose not to use transformations provided by the refine-
ment calculus, but to modify their specifications in an arbitrary way, they have
to explicitly re-establish the necessary properties again.

4.5 Further Work

In the context of methodical development steps, tool-based active developer
support is a major area of work in the near future. One aspect consists of guiding
developers through the development process, offering them possible development
steps that can be or must be performed in order to develop a system.

Another important aspect consists of tracing the development steps applied
to specifications and their effects on other specifications. This pertains both
to syntactic consistency and completeness of the specifications and to possibly
invalidated semantic properties that need to be re-established after development
steps.

5 A Model-Based Software Development Process

Up to now we have looked at formal modeling techniques, tool-support for model
development and analysis based on an integrating formal basis, and a formal
development process. The modeling techniques mentioned above aim at the de-
scription of the software system on various levels of granularity. In the following
we show that they can naturally be complemented with a set of description tech-
niques for the software system context and the informal problem description. We
will sketch a framework for a model-based development process. This framework
is made up of three main ingredients:

– the distinction between the world, the machine, and their interface [Jac95]
and the explicit system models of all three of them,

– the distinction between the external view, the internal analysis view, and
the (distributed) design view of each system, and

– a careful deployment of formality.

The last issue has been discussed in the preceding sections, the first two will
be discussed in the following subsections. Depending on the application domain
and the project context this framework needs to be instantiated. We sketch an
example process for information system development at the end of this section.



5.1 The World, the Machine and their Interface

The distinction between the world and the machine is due to Jackson [Jac95].
The problem to be solved by a software system is in the world, the machine
constitutes the solution we construct. Phenomena shared by the world and the
machine make up the interface. Descriptions produced during software devel-
opment must be clearly associated to one of the these three domains. This is
especially difficult for requirement documents, which typically contain references
to the world, namely the effects to be achieved by the software system, to the
interface, namely the system services, and to the machine. In particular, it is not
possible to describe the system services precisely without a clear understanding
of the relevant phenomena of the world. Therefore software engineering methods
- formal or pragmatic - typically start with informal descriptions of the issues
in the world relevant to the software system. These are then transformed into
so-called analysis models. The modeling techniques used for these models are
the same as the ones used for the description of the machine. Object-oriented
methods like OMT [RBP+91] or OOSE [Jac92] use object models, structured
methods like SSADM [DCC92] use dataflow models. This is reasonable, because
the world and the machine can both be viewed as systems, thus allowing the use
of the same modeling techniques. However, there are semantical differences: in
object models of the software systems associations represent references directly
implementable in the programming language. Associations between objects in
the world represent invariant relationships which typically manifest themselves
as natural phenomena (e.g., a person has a mother and a father) or as social
or legal processes (e.g., a book has an author). Also, the purpose of the mod-
els of the world and the machine is quite distinct. Models of the world capture
the understanding of important phenomena while models of the software system
capture requirements to be realized by the software system or document the
running system.

To make these distinctions explicit, we therefore distinguish three categories
of models:

Models of the world: They model the context of the software system, e.g.,
a railway system or a lift to be controlled by the software system, or a
production company whose engineers are supported by software systems. In
particular, it is important to model the processes that the software system
is involved in.

Models of the interface: They model the phenomena shared between the
world and the machine. In particular, it is important to model the inter-
action between the software system and its external partners. The latter
may be humans or machines.

Models of the machine: They model the internals of the software system,
namely the internal components (e.g., objects, subsystems ) and how they
render the system services.



5.2 The External View, the Internal View and the Design View

The world, the interface, and the machine constitute systems. They all consist
of actors, communicating with each other and executing activities making use of
their (data) ressources. Figure 3 collects elements of the three different systems
in case of a railway control system.

actors data activities

world trains, passengers, timetable, position passengers enter and
conductor get off the train,

train stops

interface train personnel, signals signaling, to switch
software system the points

machine objects, operating attributes assignment,
system processes method call

Fig. 3. The world, the interface and the machine as systems

Software development methods traditionally either focus on the activities
and their data flow (structured methods) or on the actors and their commu-
nication (object-oriented methods). We claim that both views are important
during system development, and that a third view has made to be explicit: the
external view. The external view describes the services to be delivered by the
system. The activities describe steps to achieve the required services. We call
activities and their data the internal analysis view because at this level one ex-
periments with different ways of achieving the services without regard for the
actors. The actors constitute the distributed design view. Activities and data
are encapsulated within actors such that data flow between activities has to
be realized through communication. As exemplified by object-oriented designs,
an actor-oriented structure allows better reusability and extensibility of designs
than activity-structured designs.

Each of these views can be applied to the world, the interface, and the ma-
chine. To understand the purpose of the context of the software system, it is
usually helpful to describe the services of this context. In the case of the railway
control the services are the transport services offered by trains at particular lo-
cations and at particular times. In order to adequately understand the services,
the activities and data of the world have to be modelled quite extensively. The
actor structure of the world is frequently changed by introduction of the soft-
ware system since often human labour is replaced. Furthermore, it is very often
subject to a lot of political decisions.

The services of the interface are the work processes or technical processes
to be supported by the software system. Jacobsen [Jac92] has coined the term
use case for this. Very often there is a close correspondence between machine
and interface services, the latter being a high-level view of the former. The



internal analysis and the design view of the interface are heavily intertwined. In
the interface the actors are mostly given (humans and technical systems), but
there is a choice of how to distribute the activities between the machine and the
external partners.

The services of the machine are determined by the design of the interface.
Typically, the external view and the internal analysis view of the machine is
heavily intertwined, because the services cannot be described without resorting
to the data of the software system. Often, also some parts of the design view
are fixed because the machine has to fit into an already existing landscape of
software systems. Thus, for example, one actor may be a particular database,
other actors may be given by a library of classes for a particular application
domain.

5.3 An Example Process

The discussions above can be captured in the following proposal for the deliv-
erables of an informations systems development process. In this short overview
we do not go into detail into the dependencies between the deliverables and the
possible timing of their production. The deliverables cover the external, inter-
nal, and design views for the world, the interface, and the machine. The formal
system descriptions and development steps discussed in the previous sections
are typically only used for the machine view. Only if the effects of the software
system in the world are critical (e.g., chemical processes), formalization of the
world and interface models will be worthwile.

Figure 4 lists the deliverables for developing a software system design.

View World Interface Machine

service

specifica-

tion

(textual) description of
the enterprise services

use case model listing
the user tasks

system services (speci-
fied in terms of their in-
put/output and/or the
data changes)

data and

activity

analysis

glossary, application
domain processes

work processes or tech-
nical processes

data model described
as ERD or CD, data
changes described by
STD

actor and

commu-

nication

design

(textual) description of
the responsibility (in
terms of data and ac-
tivities) of the depart-
ments

(textual) description of
user roles and technical
system partners, allo-
cation of data, and ac-
tivities to software sys-
tem

description of the
component-oriented
design by SSD, CD,
STD, EET

Fig. 4. Products of a model-based software development process



The choice of the deliverables is influenced by SSADM [DCC92], especially
regarding the the machine service and analysis view. It has similarities to OOSE
in the use of use cases for the external view of the interface. The use of exem-
plary communication flow descriptions like EETs in the machine design view is
borrowed from FUSION [CAB+94].

Of course, these deliverables constitute only a framework to be instantiated
for different application domains and projects. The interface models have to be
quite detailed in case of human-computer interaction with a new technology
[Suc95]. The world models have to be quite detailed in case of a new or critical
application domain. Models of the software system should support a systematic
transition to code using the development steps described in Section 4.

6 Conclusion

The paper has discussed the issues of using formally founded description tech-
niques for system and software engineering. We have shown that formal methods
like Focus provide a rich basis for textual and graphical system descriptions as
well as the basic methodical steps for system development. This formal basis al-
lows an integrated view on the wealth of description techniques found in the lit-
erature. Equally important for the system developer are the methodical elements
based on the formal semantics, like consistency checks and transformations. For
real-world applications, this formal development process must be embedded into
a process of application domain (world) and usage (interface) understanding and
description. From our experience, each of these issues is worth its own project.
Our projects have demonstrated that it is possible to resolve each of these issues
on its own, restricted to a particular application domain. The challenge is now
to connect all of this together and to transfer it to new application domains.
This can only be achieved by a widespread use of these techniques in university
and industry.

Acknowledgments

We like to thank all the people who have contributed to the work presented
in this paper, especially those involved in the projects Focus, AutoFocus,
ForSoft and SysLab. Furthermore, we like to thank Bernhard Schätz for his
careful proof reading of the whole paper.

The authors of this paper were funded by the DFG-Sonderforschungsbereich
342, the project SysLab supported by DFG-Leibnitz and Siemens Nixdorf,
and the Forschungsverbund ForSoft supported by the Bayerische Forschungss-
tiftung.

References

[BBB+85] F.L. Bauer, R. Berghammer, M. Broy, W. Dosch, F. Geiselbrechtinger,
R. Gnatz, E. Hangel, W. Hesse, B. Krieg-Brückner, A. Laut, T. Matzner,



B. Möller, F. Nickl, H. Partsch, P. Pepper, K. Samelson, M. Wirsing, and
H. Wössner. The Munich Project CIP, Vol 1: The Wide Spectrum Language
CIP-L. LNCS 183. Springer-Verlag, 1985.

[BBC+96] N. Bjørner, A. Browne, E. Chang, M. Colón, A. Kapur, Z. Manna, H. B.
Sipma, and T. E. Uribe. STeP: Deductive Algorithmic Verification of Re-
active and Real-Time Systems. In R. Alur and T. A. Henzinger, editors,
Computer Aided Verification: 8th International Conference, volume 1102
of Lecture Notes in Computer Science. Springer, 1996.

[BBSS97] M. Broy, M. Breitling, B. Schätz, and K. Spies. Summary of Case Studies
in Focus – Part II. SFB-Bericht 342/24/97 A, Technische Universität
München, September 1997.

[BCR94] V.R. Basili, G. Caldiera, and H.-D. Rombach. Goal Question Metric
Paradigm. In J.J. Marciniak, editor, Encyclopedia of Software Engineering,
pages 528–532. John Wiley & Sons, 1994.

[BDD+93] M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T. F. Gritzner, and R. We-
ber. The Design of Distributed Systems – An Introduction to Focus.
SFB-Bericht Nr. 342/2-2/92 A, Technische Universität München, January
1993.

[BFG+93a] M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hußmann, D. Nazareth,
F. Regensburger, O. Slotosch, and K. Stølen. The Requirement and Design
Specification Language Spectrum, An Informal Introduction, Version 1.0,
Part 1. Technical Report TUM-I9312, Technische Universität München,
1993.

[BFG+93b] M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hußmann, D. Nazareth,
F. Regensburger, O. Slotosch, and K. Stølen. The Requirement and Design
Specification Language Spectrum, An Informal Introduction, Version 1.0,
Part 2. Technical Report TUM-I9312, Technische Universität München,
1993.

[BFG+94] M. Broy, M. Fuchs, T. F. Gritzner, B. Schätz, K. Spies, and K. Stølen. Sum-
mary of Case Studies in Focus — a Design Method for Distributed Sys-
tems. SFB-Bericht 342/13/94 A, Technische Universität München, June
1994.

[BGH+97a] R. Breu, R. Grosu, Ch. Hofmann, F. Huber, I. Krüger, B. Rumpe,
M. Schmidt, and W. Schwerin. Exemplary and Complete Object Inter-
action Descriptions. In H. Kilov, B. Rumpe, and I. Simmonds, editors,
Proceedings OOPSLA’97 Workshop on Object-oriented Behavioral Seman-
tics. TUM-I9737, 1997.

[BGH+97b] R. Breu, R. Grosu, F. Huber, B. Rumpe, and W. Schwerin. Towards a
Precise Semantics for Object-Oriented Modeling Techniques. In J. Bosch
and S. Mitchell, editors, Object-Oriented Technology, ECOOP’97 Work-
shop Reader. Springer Verlag, LNCS 1357, 1997.

[BHH+97] R. Breu, U. Hinkel, C. Hofmann, C. Klein, B. Paech, B. Rumpe, and
V. Thurner. Towards a Formalization of the Unified Modeling Language.
In ECOOP, LNCS 1241, pages 344–366, 1997.

[BHKS97] M. Broy, C. Hofmann, I. Krueger, and M. Schmidt. Using Extended Event
Traces to Describe Communication in Software Architectures. In Proceed-
ings APSEC’97 and ICSC’97,. IEEE Computer Society, 1997.

[BHS96] M. Broy, H. Hußmann, and B. Schätz. Formal Development of Consistent
System Specifications. In M.-C. Gaudel and J. Woodcock, editors, FME’96:
Industrial Benefit and Advances in Formal Methods, LNCS 1051, pages
248–267. Springer, 1996.



[Bie97] A. Biere. Effiziente Modellprüfung des µ-Kalküls mit binären Entschei-
dungsdiagrammen. PhD thesis, Universität Karlsruhe, 1997.

[BMS96a] M. Broy, S. Merz, and K. Spies, editors. Formal Systems Specification –
The RPC-Memory Specification Case Study, LNCS 1169. Springer, 1996.

[BMS96b] M. Broy, S. Merz, and K. Spies. The RPC-Memory Specification Problem:
A Synopsis. In [BMS96a], pages 5–20, 1996.

[Bre97] M. Breitling. Formalizing and Verifying TimeWarp with Focus. SFB-
Bericht 342/27/97 A, Technische Universität München, 1997.

[BRJ97] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language
for Object-Oriented Development, Version 1.1, 1997.

[Bro94] M. Broy. A Functional Rephrasing of the Assumption/Commitment Spec-
ification Style. Technical Report TUM-I9417, Technische Universität
München, 1994.

[BS97] M. Broy and K. Stølen. FOCUS on System Development – A Method for
the Development of Interactive Systems, 1997. Manuskript.

[CAB+94] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, and
P. Jeremaes. Object-Oriented Development - The FUSION Method. Pren-
tice Hall, 1994.

[CGR93] D. Craigen, S. Gerhart, and T. Ralston. Formal Methods Reality Check:
Industrial Usage. In FME, LNCS 670, pages 250–267. Springer, 1993.

[DCC92] E. Downs, P. Clare, and I. Coe. Structured Systems Analysis and Design
Method: Application and Context. Prentice-Hall, 1992.

[DHP+98] B. Deifel, U. Hinkel, B. Paech, P. Scholz, and V. Thurner. Die Praxis der
Softwareentwicklung: Eine Erhebung. Submitted to publication, 1998.

[FB97] R. B. France and J.-M. Bruel. Integrated Informal Object-Oriented and
Formal Modeling Techniques. In H. Kilov and B. Rumpe, editors, Pro-
ceedings ECOOP’97 Workshop on Precise Semantics for Object-Oriented
Modeling Techniques. Technische Universität München, TUM-I9725, 1997.

[GJS96] J. Gosling, B. Joy, and G. Steele. The Java Language Specification.
Addison-Wesley, 1996.

[GKR96] R. Grosu, C. Klein, and B. Rumpe. Enhancing the SysLab System Model
with State. TUM-I 9631, Technische Universität München, 1996.

[GKRB96] R. Grosu, C. Klein, B. Rumpe, and M. Broy. State Transition Diagrams.
TUM-I 9630, Technische Universität München, 1996.

[GR95] R. Grosu and B. Rumpe. Concurrent Timed Port Automata. TUM-I 9533,
Technische Universität München, 1995.

[HMS+98] F. Huber, S. Molterer, B. Schätz, O. Slotosch, and A. Vilbig. Traffic Lights
– An AutoFocus Case Study. In International Conference on Application
of Concurrency to System Design. IEEE CS Press, 1998.

[HPSS87] D. Harel, A. Pnueli, J.P. Schmidt, and R. Sherman. On the Formal Seman-
tics of Statecharts. Proceedings on the Symposium on Logic in Computer
Science, pages 54 – 64, 1987.

[HS97] F. Huber and B. Schätz. Rapid Prototyping with AutoFocus. In A. Wolisz,
I. Schieferdecker, and A. Rennoch, editors, Formale Beschreibungstech-
niken für verteilte Systeme, GI/ITG Fachgespräch 1997, pp. 343-352.
GMD Verlag (St. Augustin), 1997.

[HSS96] F. Huber, B. Schätz, and K. Spies. AutoFocus - Ein Werkzeugkonzept
zur Beschreibung verteilter Systeme. In U. Herzog and H. Hermanns,
editors, Formale Beschreibungstechniken für verteilte Systeme, pages 165–
174. Universität Erlangen-Nürnberg, 1996. Arbeitsberichte des Insituts für
mathematische Maschinen und Datenverarbeitung, Bd.29, Nr. 9.



[Huß97] H. Hußmann. Formal Foundations for Software Engineering Methods,
LNCS 1322. Springer, 1997.

[Ilo90] i-Logix Inc., 22 Third Avenue, Burlington, Mass. 01803, U.S.A. Languages
of Statemate, 1990.

[Int96] International Telecommunication Union, Geneva. Message Sequence
Charts, 1996. ITU-T Recommendation Z.120.

[Jac92] I. Jacobson. Object-Oriented Software Engineering. Addison-Wesley, 1992.
[Jac95] M. Jackson. The World and the Machine. In ICSE-17, pages 283–294,

1995.
[Jon93] M. P. Jones. An Introduction to Gofer, Manual, 1993.
[KRB96] C. Klein, B. Rumpe, and M. Broy. A Stream-based Mathematical Model

for Distributed Information Processing Systems - SysLab system model -
. In E. Naijm and J.-B. Stefani, editors, FMOODS’96 Formal Methods
for Open Object-based Distributed Systems, pages 323–338. ENST France
Telecom, 1996.

[NRS96] D. Nazareth, F. Regensburger, and P. Scholz. Mini-Statecharts: A Lean
Version of Statecharts. Technical Report TUM-I9610, Technische Univer-
sität München, 1996.

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verification
System. In D. Kapur, editor, Proceedings International Conference on
Automated Deduction (CADE) ’92. Springer, 1992.

[Pau94] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, LNCS 828.
Springer-Verlag, 1994.

[PR94] B. Paech and B. Rumpe. A New Concept of Refinement Used or Be-
haviour Modelling with Automata. In FME’94, Formal Methods Europe,
Symposium ’94, LNCS 873. Springer-Verlag, Berlin, October 1994.

[PR97a] B. Paech and B. Rumpe. State Based Service Description. In J. Der-
rick, editor, Formal Methods for Open Object-based Distributed Systems.
Chapman-Hall, 1997.

[PR97b] J. Philipps and B. Rumpe. Refinement of Information Flow Architectures.
In M. Hinchey, editor, ICFEM’97 Proceedings, Hiroshima. Japan. IEEE
CS Press, 1997.

[PR97c] J. Philipps and B. Rumpe. Stepwise Refinement of Data Flow Architec-
tures. In M. Broy, E. Denert, K. Renzel, and M. Schmidt, editors, Software
Architectures and Design Patterns in Business Applications. Technische
Universität München, TUM-I9746, 1997.

[RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.
Object-oriented Modeling and Design. Prentice-Hall, 1991.

[Reg94] F. Regensburger. HOLCF: Eine konservative Erweiterung von HOL um
LCF. PhD thesis, Technische Universität München, 1994.

[RK96] B. Rumpe and C. Klein. Automata Describing Object Behavior, pages
265–287. Kluwer Academic Publishers, Norwell, Massachusetts, 1996.

[Rum96] B. Rumpe. Formal Method for the Development of Distributed Object-
Oriented Systems (in German). Herbert Utz Verlag Wissenschaft, 1996.
PhD thesis, Technische Universität München.

[SDW95] K. Stølen, F. Dederichs, and R. Weber. Specification and Refinement of
Networks of Asynchronously Communicating Agents using the Assump-
tion/Commitment Paradigm. Formal Aspects of Computing, 1995.

[SGW94] B. Selic, G. Gulkeson, and P. Ward. Real-Time Object-Oriented Modeling.
John Wiley and Sons, 1994.



[Spi94] K. Spies. Funktionale Spezifikation eines Kommunikationsprotokolls. SFB-
Bericht 342/08/94 A, Technische Universität München, May 1994.

[Spi98] K. Spies. Eine Methode zur formalen Modellierung von Betriebssys-
temkonzepten. PhD thesis, Technische Universität München, 1998.

[Suc95] L. Suchman(ed.). Special Issue on Representations of Work. CACM, 38(9),
1995.

[Tur93] K.J. Turner(ed.). Using Formal Description Techniques - An Introduction
to ESTELLE, LOTOS and SDL. John Wiley & Sons, 1993.

[Wor92] J.B. Wordsworth. Software Development with Z. Addison-Wesley, 1992.


