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Abstract

Semi-random processes involve an adaptive decision-maker, whose goal is to achieve some predetermined

objective in an online randomized environment. In this paper, we consider a recently proposed semi-random

graph process, defined as follows: we start with an empty graph on n vertices, and in each round, the

decision-maker, called Builder, receives a uniformly random vertex v, and must immediately (in an online

manner) choose another vertex u, adding the edge {u, v} to the graph. Builder’s end goal is to make the

constructed graph satisfy some predetermined monotone graph property. There are also natural offline

and non-adaptive modifications of this setting.

We consider the property PH of containing a spanning graph H as a subgraph. It was asked by N. Alon

whether for every bounded-degree H , Builder can construct a graph satisfying PH with high probability in

O(n) rounds. We answer this question positively in a strong sense, showing that any graph with maximum

degree ∆ can be constructed with high probability in (3∆/2 + o(∆))n rounds, where the o(∆) term tends

to zero as ∆ → ∞. This is tight (even for the offline case) up to a multiplicative factor of 3 + o∆(1).

Furthermore, for the special case where H is a forest of maximum degree ∆, we show that H can be

constructed with high probability in O(log ∆)n rounds. This is tight up to a multiplicative constant,

even for the offline setting. Finally, we show a separation between adaptive and non-adaptive strategies,

proving a lower bound of Ω(n
√
log n) on the number of rounds necessary to eliminate all isolated vertices

w.h.p. using a non-adaptive strategy. This bound is tight, and in fact there are non-adaptive strategies

for constructing a Hamilton cycle or a Kr-factor, which are successful w.h.p. within O(n
√
log n) rounds.
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1 Introduction

Recently, the following semi-random graph process was proposed by Peleg Michaeli, and analyzed by Ben-

Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and Stojaković [3]. A single adaptive player, called Builder,

starts with an empty graph G on a set V of n vertices. The process then proceeds in rounds, where in each

round Builder is offered a uniformly random vertex v, and chooses an edge of the form {v, u} to add to the

graph G. Builder’s objective is typically to construct a graph that satisfies some predetermined monotone graph

property; for example, to make G an expander with certain parameters, or to have G contain a Hamilton cycle.

The natural question arising in this context is the following:

Given a monotone graph property P, how many rounds of the semi-random graph process are required for

Builder to construct (with high probability1) a graph which satisfies P?

Semi-random problems of this type, involving both randomness and intelligent choices made by a “decision-

maker”, have been widely studied in the algorithmic literature. One of the first (and most famous) results on

such processes, established by Azar et al. [2], concerns sequential allocation of n balls into n bins, where the

goal is to minimize the number of balls in the fullest bin. It is well-known that if each ball is simply assigned

to a bin uniformly at random, then w.h.p., the fullest bin will contain Θ(lnn/ ln lnn) balls at the end of the

process. However, as was shown in [2], very limited “intelligent intervention” substantially improves the above

bound: if, instead of the random assignment, for any ball we are given two (random) choices of bins to pick

from, then the trivial strategy of always choosing the least loaded bin out of the two offered, results w.h.p.

in the maximum bin load dropping to Θ(ln lnn) – an exponential improvement. This idea has inspired many

subsequent theoretical and practical results in various contexts within computer science, see e.g. [8, 22, 25] for

a small sample of these.

In a sense, semi-random processes can be viewed as settings where an online algorithm aims to achieve

a predetermined objective in a randomized environment. As opposed to the “standard” setting where online

algorithms are measured in terms of their worst-case performance, in the semi-random setting the task is to

design online algorithms that achieve their goal with high (or at least constant) probability, and require as few

rounds as possible. Further discussion of related semi-random graph models, such as the so-called Achlioptas

model, can be found in Section 1.1.

In this paper we continue the investigation into the semi-random graph process. The first work on this

topic [3] proved upper and lower bounds on the number of rounds required to w.h.p. satisfy various properties

of interest. Among the upper bounds were a O(n1−ε) bound for the property of containing a copy of any

fixed graph H (here ε depends on H), a O(n) bound for containing a perfect matching or a Hamilton cycle,

and a O(∆n) bound for the property of having minimum degree ∆, as well as for the property of ∆-vertex-

connectivity. These results prompted Noga Alon to ask whether it is the case that every given (spanning)

graph of bounded maximum degree can be constructed w.h.p. in O(n) rounds in this model. Formally, define

PH as the property of containing an (unlabeled) copy of H , i.e., as the property that there exists an injection

ϕ : V (H) → V (G) (where G is the graph constructed by Builder), so that {ϕ(i), ϕ(j)} ∈ E(G) for every

{i, j} ∈ E(H).

Question 1.1 (Alon, Question 6.2 in [3]). Consider the semi-random graph process over n vertices. Is it

true that for every graph H on n vertices with bounded maximum degree, there exists a strategy which enables

Builder to w.h.p. construct a copy of H in O(n) rounds?

The main result of this paper gives a positive answer to the above question (see Theorem 1.3).

The offline setting Before addressing Question 1.1, let us consider the easier offline setting, where Builder

is provided in advance with the full sequence of vertices offered throughout the process. In other words, in

1With probability that tends to one as n → ∞; abbreviated w.h.p. henceforth.
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this setting Builder does not need to make his decisions online, but can rather choose all edges at once after

seeing the sequence of random vertices.

As an example, consider the case where Builder’s goal is to construct a triangle-factor2. Observe that if

at some point of the process, at least 2n
3 different vertices have been offered, among which at least n

3 vertices

have been offered at least twice, then Builder can already construct a triangle-factor (in the offline setting).

Indeed, Builder simply partitions the vertices into triples {u, v, w}, where u was offered at least twice and v

was offered at least once, and chooses the edges {u, v} and {u,w} at rounds when u was offered, and the edge

{v, w} at a round when v was offered. It is easy to check that O(n) rounds suffice w.h.p. to have at least 2n
3

different vertices offered, and moreover to have at least n
3 vertices offered at least twice. Thus, in the offline

setting Builder can construct a triangle-factor in O(n) rounds. This O(n) bound can in fact be generalized in

a strong sense to any bounded-degree target graph H . Proposition 4.1 in [3] – which presents necessary and

sufficient general winning conditions for Builder in the offline setting – implies that Builder wins the game as

soon as the list of offered vertices allows the construction of a suitable orientation of H . In Section 3.1 we

show how this can be used to get the following general offline result.

Proposition 1.2. Let ∆, n > 0 be integers, and let H be an n-vertex graph of maximum degree ∆. In the

offline version of the semi-random process on n vertices, Builder has a strategy allowing him to construct a

copy of H in (∆/2 + o(∆))n rounds w.h.p.

The o(∆) term here is a function of ∆ satisfying o(∆)/∆ → 0 as ∆ → ∞. Proposition 1.2 substantially

extends Theorem 1.9 in [3], which showed a similar result for the property of having minimum degree at least

k (with an explicit dependence on k). Proposition 1.2 is clearly optimal up to the o(∆) term, since ∆-regular

graphs on n vertices have exactly ∆n/2 edges (and hence trivially require at least this number of rounds).

More interestingly, it turns out that the o(∆)-term is unavoidable; it follows from [3, Theorem 1.9] that at

least (1/2 + ε∆)∆n rounds are required for Builder to construct a graph of minimum degree at least ∆, where

ε∆ > 0 (and ε∆ → 0 as ∆ → ∞).

Main result: online strategy for constructing bounded-degree spanning graphs We now return

to the more challenging online setting, where Builder is offered vertices one-by-one and must (irrevocably)

decide which edge to add immediately after being offered a vertex. Our main result in this paper, Theorem

1.3, asserts that Builder can construct any given bounded-degree spanning graph in O(n) rounds w.h.p.

Theorem 1.3. Let ∆, n > 0 be integers and let H be an n-vertex graph of maximum degree ∆. In the online

version of the semi-random graph process on n vertices, Builder has a strategy guaranteeing that w.h.p., after

{

(∆/2 + o(∆))n, if ∆ = ω(logn)

(3∆/2 + o(∆))n, otherwise

rounds of the process, the constructed graph will contain a copy of H.

As before, the o(∆) term here is a function of ∆ satisfying o(∆)/∆ → 0 as ∆ → ∞. Note that ∆ is

allowed to depend on n arbitrarily. Theorem 1.3 answers Question 1.1 in a strong sense: not only can any

bounded-degree graph be constructed w.h.p. in a linear number of rounds, but in fact, the dependence on the

maximum degree is very modest. This result clearly illustrates the power of semi-random algorithms compared

to their truly random counterparts; see the discussion below on the appearance of various spanning structures

in the random graph process.

The notion of competitive ratio [6] refers to the performance of an online algorithm compared to the best

offline algorithm for the same problem. In view of the trivial ∆n/2 lower bound and Proposition 1.2, our

algorithm is (3 + o∆(1))-competitive for general H , where the o∆(1) term tends to zero as ∆ tends to infinity.

2For a graph F and an integer n divisible by |V (F )|, the n-vertex F -factor is the graph which consists of n/|V (F )| vertex-

disjoint copies of F .
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As an open question, it will be very interesting to determine the optimal competitive ratio of an online

algorithm for this problem.

Problem 1.4. In the online version of the semi-random process on n vertices, is it true that for every n-vertex

graph H of maximum degree ∆, Builder has a strategy to construct a copy of H w.h.p. in (∆/2+o(∆))n rounds?

We end this discussion with two additional problems, which ask for tight bounds on the number of rounds

required to construct some specific graphs H of particular interest.

Problem 1.5 (Tight bounds for constructing a Hamilton cycle). Is there a number αHam such that in the

online version of the semi-random process on n vertices, Builder can w.h.p. construct a Hamilton cycle in

(αHam + o(1))n rounds, but w.h.p. cannot accomplish this in (αHam − o(1))n rounds? If so, what is the value

of αHam?

Problem 1.6 (Tight bounds for constructing a Kr-factor). For each r ≥ 2, is there a number αr such that in

the online version of the semi-random process on n vertices, for n which is divisible by r, Builder can w.h.p.

construct a Kr-factor in (αr + o(1))n rounds, but w.h.p. cannot accomplish this in (αr − o(1))n rounds? If

so, what is the value of αr?

We note that Problem 1.6 is open even for r = 2, in which case Builder’s goal is to construct a perfect

matching. Both the perfect matching problem and the Hamilton cycle problem were already considered in [3],

where some bounds for these problems were obtained.

Constructing a bounded-degree spanning forest Theorem 1.3 establishes that the (typical) number

of rounds needed to construct a general spanning graph H of maximum degree ∆ is O(∆n). This is clearly

tight for graphs whose average degree is Θ(∆). It is now natural to ask if we can break the Θ(∆n) barrier for

graphs with a much smaller average degree, such as trees. The next result answers this question positively.

Theorem 1.7. Let ∆, n > 0 be integers and let T be an n-vertex forest of maximum degree ∆. In the

online version of the semi-random process on n vertices, Builder has a strategy guaranteeing that w.h.p., after

O(n log ∆) rounds of the process, the constructed graph will contain a copy of T .

The next proposition shows that the dependence on n and ∆ in Theorem 1.7 is tight even for the offline

version of the semi-random process.

Proposition 1.8. For every ∆ ≥ 1 and for every n ≥ n0(∆), there exists a forest T with n vertices and maxi-

mum degree ∆ satisfying the following. In the offline version of the semi-random graph process, w.h.p. Builder

needs Ω(n log ∆) rounds in order to construct a copy of T .

We conclude this section by proposing the following problem:

Problem 1.9. How many rounds are required to construct n-vertex d-degenerate graphs of maximum degree ∆?

An answer to Problem 1.9 would generalize Theorem 1.7, as forests are exactly the 1-degenerate graphs.

Non-adaptive strategies It is fairly natural to inquire whether imposing the restriction of non-adaptivity

handicaps Builder, and if so, to which extent exactly. Here, by non-adaptivity we mean that, in a sense,

Builder’s choices are decided upon beforehand, and do not depend on the situation at any given round of the

process. The precise definition that we use is as follows. A non-adaptive strategy consists of a family L of

adjacency lists L = {Lw : w ∈ [n]}, where for each w ∈ [n], the list Lw = (Lw(i) : i = 1, . . . , n − 1) is a

permutation of [n] \ {w}. The lists L = {Lw : w ∈ [n]} are specified in advance (i.e., before the sequence of

random vertices starts being exposed). Playing according to such a strategy means that during the vertex

exposure process w1, w2, . . ., if in a given round vertex w appears for the ith time, i ≥ 1, then Builder is obliged

3



to connect w to the ith vertex Lw(i) on its list. (To avoid ambiguities, let us assume that if w has already been

connected to Lw(i), then Builder simply skips his move. This assumption will not change much in our analysis.)

It turns out that the non-adaptivity assumption indeed hampers Builder — it takes him typically Ω(n
√

logn)

rounds to get rid of isolated vertices, as stated in Theorem 1.10 below. This is in rather sharp contrast with

the situation for general (i.e. adaptive) strategies. Indeed, it is easy to see that Builder can construct a

connected graph in n − 1 rounds (with probability 1); constructing a graph with no isolated vertices can be

done w.h.p. even faster, in (ln 2 + o(1))n rounds (see [3]); and finally, Theorem 1.3 shows that in fact every

bounded-degree graph can be constructed in O(n) rounds. The three theorems below are for the online version

of the semi-random graph process.

Theorem 1.10. In the semi-random process on n vertices, any non-adaptive strategy requires w.h.p. Ω(n
√

logn)

rounds to construct a graph in which none of the n vertices is isolated.

It turns out that the lower bound of Theorem 1.10 is tight in a strong sense: by executing an appropri-

ate non-adaptive strategy for O(n
√

logn) rounds, Builder can construct w.h.p. several important spanning

structures, such as a Hamilton cycle and a Kr-factor (for fixed r). This is expressed in the following two

theorems.

Theorem 1.11. In the semi-random process on n vertices, there is a non-adaptive strategy allowing Builder

to construct a Hamilton cycle in 8n
√

logn rounds w.h.p.

Theorem 1.12. For every r ≥ 2 there is C = C(r) such that for every n which is divisible by r, there is a

non-adaptive strategy allowing Builder to construct a Kr-factor in Cn
√

logn rounds w.h.p.

We remark that while the above definition of non-adaptivity is deterministic in nature (in the sense that

the lists {Lw : w ∈ [n]} are predetermined), the proof of Theorem 1.10 can be easily adapted (with the same

asymptotic lower bound) to apply also to “random non-adaptive strategies”, i.e. strategies in which for every

w ∈ [n] and i ≥ 1, the vertex which Builder connects to w at the ith time that w is sampled is drawn from

some predetermined probability distribution on [n] \ {w}.

The situation in the (“purely”-)random graph process A common theme in our results is that intro-

ducing “intelligent choices” into a random setting can allow for a dramatic improvement. (Perhaps the first

appearance of this theme is in the aforementioned work of Azar et al. [2].) To illustrate this phenomenon

in the setting of random graph processes, let us compare our Theorem 1.3 with the situation in which all

edge-choices are made completely randomly. Recall that the random graph process G̃ = (Gm)Nm=0 is defined

by choosing a random permutation e1, . . . , eN of all N =
(

n
2

)

edges of Kn, and letting Gm be the graph

whose edge-set is {e1, . . . , em}. We refer the reader to [9, 11] for an overview of this classical object, as well

as the standard random graph models G(n,m) and G(n, p), which are mentioned below. Note that for each

0 ≤ m ≤
(

n
2

)

, the graph Gm is distributed as the Erdős-Rényi graph G(n,m), i.e. as a random graph chosen

uniformly among all graphs with m edges and n (labeled) vertices.

The appearance of bounded-degree spanning graphs in the random graph process (or equivalently, in

G(n,m)) has been thoroughly investigated3. For starters, a standard first moment argument (see e.g. [11])

shows that a copy of K∆+1 only appears in the random graph process after roughly n2−2/∆ rounds. Thus,

obtaining even a single K∆+1-copy (let alone a K∆+1-factor) requires much more than a linear number

of rounds. Determining the typical time of the appearance of a K∆+1-factor turned out to be a difficult

problem. Following a long line of research, this problem was settled by (a special case of) a celebrated result

by Johansson, Kahn and Vu [12], which states that a K∆+1-factor appears in the random graph process at

3We note that the results surveyed here were actually proved for the binomial random graph G(n, p), which is the graph

obtained by selecting each of the
(

n

2

)

edges of Kn with probability p and independently. It is well known — see e.g. [11, Section

1.4] or [9, Section 1.1] — that G(n,m) is closely related to G(n, p) when p = m/
(

n

2

)

, allowing the transfer of results between the

two models.
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around m = n2−2/(∆+1)(logn)1/(
∆+1

2 ). A more general discussion on the appearance of bounded-degree graphs

H other than clique-factors (and on the closely-related notion of universality) can be found in the recent work

of Ferber, Kronenberg, and Luh [7]; see in particular Conjecture 1.5 there.

Similar superlinear lower bounds (on the number of edges required in order to typically contain a K∆+1-

factor, or even a single K∆+1) are known or can be shown for various other random graph models, such as

the random regular graph, or the model Gk-out (where one connects each vertex to exactly k other randomly

chosen vertices, discarding repetitions). Thus, while it was shown in [3] that the semi-random graph process

can simulate the random models G(n, p), G(n,m), and Gk-out, the above discussion indicates that these

cannot help in solving Question 1.1, and we must utilize the power of the intelligent player, Builder, in a more

imaginative way.

A similar comparison can be made between Theorem 1.7 and the emergence of (bounded-degree) spanning

trees in the random graph process. It is well known that in the random graph process, w.h.p. the last

isolated vertex disappears only at around m = 1
2n logn. Thus, a superlinear number of rounds is required

in order to contain a spanning tree w.h.p. Again, we observe here that intelligent choices speed up the time

required to reach the given goal: it takes Θ(n logn) rounds for the random graph process to contain even a

single spanning tree, whilst in our semi-random graph process, the number of rounds required to contain a

prescribed bounded-degree spanning tree is only O(n).

It is worth mentioning that a recent breakthrough of Montgomery [18], which confirms a conjecture of

Kahn [13], shows that for a fixed ∆, w.h.p. all spanning trees with maximum degree ∆ appear in Gm after

m = Cn logn rounds (where C = C(∆) is a large enough constant). We refer the reader to [18] for further

references to many other related works on this subject.

1.1 Related Work : Semi-Random Processes

Perhaps the most studied semi-random graph process is now known as the Achlioptas process, and was proposed

by Dimitris Achlioptas in 2000. Similarly to our semi-random process, the Achlioptas process is a one-player

game in which the player, Builder, gradually constructs a graph. The process runs in rounds, where in each

round, two uniformly random edges are picked from the set of all
(

n
2

)

edges of the n-vertex complete graph, or

alternatively (depending on the version of the process) from all edges untaken at this point. These two edges

are offered to Builder, who then must choose exactly one of them and add it to the graph.

While in our random graph process Builder’s goal is always to make his graph satisfy some given graph

property, in the context of the Achlioptas process the goal is often to avoid satisfying a given property for

as long as possible. In fact, Achlioptas’s original question was whether Builder can delay the appearance of a

giant component beyond its typical time of appearance in the (“purely”-)random graph process. This question

was answered positively by Bohman and Frieze [4], see also [1, 5, 14, 23, 24]. Similar problems have also been

studied for other properties or objectives; for example, the problem of avoiding a fixed subgraph [15, 20], or

the problem of speeding up the appearance of a Hamilton cycle [16]. Achlioptas-like processes involving two

choices were also investigated in other contexts, see e.g. [19] for a geometric perspective.

1.2 Paper Organization and Notation

In Section 2 we state several auxiliary results. Section 3 contains the proofs of Theorem 1.3 and Proposition 1.2,

as well as the description and analysis of Strategy 3.7, which is the key tool used in our proofs. Theorem 1.7

and Proposition 1.8 are proved in Section 4. Finally, the proofs of Theorems 1.10, 1.11 and 1.12 appear in

Section 5. Since the statements of Theorems 1.3 and 1.7 are asymptotic (in both n and ∆), we always assume,

where needed, that n and ∆ are sufficiently large. All logarithms are base e. We omit floor and ceiling signs

whenever these are not crucial.
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2 Preliminaries

We start by stating three known concentration inequalities that will be used in this paper. The first is a

standard Chernoff-type bound (see, e.g., [11]), the second is a simplified version of Azuma’s inequality (see,

e.g., [11, Theorem 2.27]), and the third is a simplified version of Talagrand’s inequality (see, e.g., [17]).

Lemma 2.1. Let X be a binomial random variable. Then, for every λ ≥ 0, it holds that

P[X ≤ E[X ] − λ] ≤ e−
λ2

2E[X]

and that

P[X ≥ E[X ] + λ] ≤ e−
λ2

2(E[X]+λ/3) .

Lemma 2.2. [11, Theorem 2.27] Let X be a non-negative random variable, not identically 0, which is deter-

mined by T independent trials w1, . . . , wT . Suppose that c ∈ R is such that changing the outcome of any one

of the trials can change the value of X by at most c. Then, for every λ ≥ 0, it holds that

P [X ≤ E[X ] − λ] ≤ e−
λ2

2c2T

and that

P [X ≥ E[X ] + λ] ≤ e−
λ2

2c2T .

Lemma 2.3. [17, Pages 80-81] Let X be a non-negative random variable, not identically 0, which is determined

by T independent trials w1, . . . , wT . Suppose that c, g > 0 are such that

1. Changing the outcome of any one of the trials can change the value of X by at most c.

2. For every s, if X ≥ s then there is a set of at most g · s trials whose outcomes certify4 that X ≥ s.

Then, for every 0 ≤ λ ≤ E[X ], it holds that

P

[

|X − E[X ]| > λ + 60c
√

gE[X ]
]

≤ 4e
− λ2

8c2gE[X] .

We will also need the following lemma regarding “balanced” orientations of graphs.

Lemma 2.4. Let H be an n-vertex graph of maximum degree ∆. Then there exists an orientation D of the

edges of H which satisfies the following two conditions:

(a) d+D(u) ≤ ⌊∆/2⌋ + 1 for every u ∈ V (H);

(b) there exists a set A ⊆ V (H) of size |A| ≥ n
∆2+1 such that d+D(u) = 0 for every u ∈ A.

Proof. Let H2 denote the square of H , that is, the graph obtained from H by adding an edge between any

two vertices at distance 2 in H . Let A ⊆ V (H) be a maximum independent set in H2; clearly |A| ≥ n
∆2+1 .

Let H0 = H \ A. If dH0(u) is even for every u ∈ V (H0), then let H1 = H0. Otherwise, let H1 denote the

graph obtained from H0 by adding a new vertex x and connecting it by an edge to every vertex of odd degree

in H0. Orient the edges of each connected component of H1 along some Eulerian cycle of that component.

Orient every edge of EH(V (H) \A,A) from V (H) \A to A. Delete x and denote the resulting oriented graph

by D. Observe that A is independent in H and thus D is an orientation of all the edges of H . It is evident

that D satisfies (b). Moreover, D satisfies (a) as A is independent in H2 and thus dH(u,A) ≤ 1 for every

u ∈ V (H) \A.

4To be precise, this means that if (w1, . . . , wT ) is such that X ≥ s, then there is k ≤ g · s and 1 ≤ i1 < · · · < ik ≤ T such that

changing the outcome of any trials other than wi1 , . . . , wik does not change the fact that X ≥ s.
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3 Constructing Spanning Graphs of Given Maximum Degree

In this section we prove Theorem 1.3 and Proposition 1.2. The tools we develop here will also be used in the

proof of Theorem 1.7 in Section 4. We start by introducing some definitions and sketching a rough outline of

the proof scheme that we will use to prove Theorem 1.3. From this point onward, we fix an n-vertex graph H

with maximum degree ∆. We assume that the ground-set of vertices for the semi-random process is [n]. The

following definition will play an important role in our arguments.

Definition 3.1. Let G be a graph on the vertex set [n], and let ϕ : V (H) → [n] be a bijection. We say

that a subset A ⊆ V (H) is (G,ϕ)-good if ϕ maps all edges of H contained in A to edges of G; that is, A is

(G,ϕ)-good if {ϕ(x), ϕ(y)} ∈ E(G) for every x, y ∈ A such that {x, y} ∈ E(H).

The graph G under consideration will always be Builder’s graph at some given moment during the process.

It will usually be clear which moment we are considering, and so we will omit G from the notation, simply

writing “ϕ-good”. Note that, if at some point during the process, there is a bijection ϕ : V (H) → [n] such

that V (H) is ϕ-good, then Builder has succeeded in constructing a copy of H .

Our strategy consists of two stages: in the first stage, Builder fixes an arbitrary bijection

ϕ : V (H) → [n] and plays so as to construct a ϕ-good set which is as large as possible. We show (see

Lemma 3.5 below) that Builder can w.h.p. guarantee the existence of a ϕ-good set which covers “almost all”

of the vertices of H , within (∆/2 + o(∆))n rounds. This part of the argument is fairly straightforward, and

is given in Section 3.1. In the second stage, which is far more involved and constitutes the heart of the proof,

Builder tries to iteratively extend this ϕ-good set by updating the embedding ϕ. We will show that by using

a suitable “role-switching” strategy (i.e., Strategy 3.7), Builder can ensure that w.h.p. V (H) will be ϕ-good

after (∆ + o(∆))n additional rounds. This is done in Lemma 3.14.

3.1 The Initial Embedding, Proposition 1.2, and the Easy Case of Theorem 1.3

In this section we describe and analyze the first stage of Builder’s strategy. Along the way we prove Proposition

1.2, as well as the easy part of Theorem 1.3, which corresponds to the regime ∆ = ω(logn). In what follows,

we will need the following lemma.

Lemma 3.2. Let n, d be positive integers, let α ∈ (0, 0.1), and suppose that d ≫ log(1/α). In the course of

(d+ o(d))n rounds of the semi-random process on n vertices, the number of vertices i ∈ [n] which were offered

at most d times is w.h.p. less than αn.

Proof. Set ℓ :=
(

d +
√

6d log(1/α)
)

n = (d + o(d))n (here we use our assumption that d ≫ log(1/α)), and let

w1, . . . , wℓ be the first ℓ random vertices offered to Builder. Let U be the set of all vertices i ∈ [n] such that

|{1 ≤ j ≤ ℓ : wj = i}| ≤ d. Evidently, |{1 ≤ j ≤ ℓ : wj ∈ U}| ≤ d · |U |. So in order to prove the lemma, it is

enough to show that w.h.p., every U ⊆ [n] of size αn satisfies the inequality XU := |{1 ≤ j ≤ ℓ : wj ∈ U}| >
d · |U | = dαn.

Fix any U ⊆ [n] of size |U | = αn. Note that X = XU has the distribution Bin(ℓ, |U|
n ), and in particular

E[X ] = ℓ|U |/n = αℓ. By Lemma 2.1 with λ = αℓ− dαn, we have

P [X < dαn] = P [X < E[X ] − λ] ≤ exp

(

−α2n2 · (ℓ/n− d)
2

2αℓ

)

≤ exp

(

−αn · (ℓ/n− d)
2

2d + o(d)

)

= e−(3+od(1))α log(1/α)n ≤ e−2.5α log(1/α)n ,

where the last inequality holds if d is large enough. Now our assertion follows by taking the union bound over all
(

n

αn

)

≤ (e/α)αn = e(log(1/α)+1)·αn ≤ e2α log(1/α)n
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sets U ⊆ [n] of size |U | = αn.

Proof of Proposition 1.2. Since the statement of the proposition is asymptotic in ∆, we may (and will)

assume that ∆ is large enough, where needed. Moreover, in light of Theorem 1.3, we may assume that

∆ = O(log n) (because otherwise, Builder can w.h.p. construct a copy of H in (∆/2 + o(∆))n rounds even in

the online version of the semi-random process). Let D be an orientation of the edges of H as in Lemma 2.4.

Let w1, w2, . . . denote the sequence of random vertices Builder is offered. Let m(D) denote the smallest integer

m for which there exists a bijection ϕ : V (H) → [n] such that ϕ(u) appears in (w1, w2, . . . , wm) at least d+D(u)

times for every u ∈ V (H). It follows by Proposition 4.1 in [3] that the number of rounds needed for Builder to

construct a copy of H in the offline version of the semi-random process is at most m(D). Hence, in order to

complete the proof of this proposition, it suffices to show that w.h.p., in the course of m := (∆/2 + o(∆))n

rounds, at least n−n/(∆2+1) vertices are offered at least ⌊∆/2⌋+1 times each. But this is just the statement

of Lemma 3.2 with parameters d = ⌊∆/2⌋ and α = 1/(∆2 + 1).

In subsequent proofs, Builder will employ the following simple (non-adaptive) strategy.

Strategy 3.3. Let H be an n-vertex graph of maximum degree ∆. Fix an orientation D of the edges of H

which satisfies property (a) of Lemma 2.4. Let ϕ : V (H) → [n] be an arbitrary bijection. At any given round of

the process, having been offered a random vertex w, Builder chooses an arbitrary vertex u ∈ ϕ
(

N+
D (ϕ−1(w))

)

which is not adjacent to w in his current graph, and claims the edge {u,w}; if no such vertex u exists, then

Builder claims an arbitrary edge incident with w.

In the following proposition we prove the easy part of Theorem 1.3.

Proposition 3.4. For every ε ∈ (0, 1) there exists an integer C for which the following holds. Let n and

∆ = ∆(n) ≥ C logn be positive integers and let H be an n-vertex graph of maximum degree at most ∆. Then,

in the online version of the semi-random process on n vertices, Builder has a strategy guaranteeing that w.h.p.,

after (1 + ε)∆n
2 rounds of the process, his graph will contain a copy of H.

Proof. Builder executes Strategy 3.3 for ℓ := (1 + ε)∆n
2 rounds. In the notation of Strategy 3.3, it is evident

that if for every x ∈ V (H), the vertex ϕ(x) is offered at least d+D(x) times, then Builder is successful in building

a copy of H . Therefore, in order to complete the proof of the proposition, it suffices to show that w.h.p., for

every 1 ≤ i ≤ n, the vertex i is offered at least ⌊∆/2⌋+ 1 times in the course of these ℓ rounds of the process.

Fix any 1 ≤ i ≤ n, and let Zi be the random variable counting the number of times i is offered during

the ℓ rounds. Then Zi ∼ Bin(ℓ, 1/n), implying that E[Zi] = ℓ/n = (1 + ε)∆/2. Applying Lemma 2.1 with

λ = ε∆/2, we obtain

P[Z ≤ ∆/2] = P[Z ≤ E[Z] − ε∆/2] ≤ exp

(

− (ε∆/2)2

(1 + ε)∆

)

≤ e−∆ε2/8 ≤ n−Cε2/8 ≤ 1/n2

where the penultimate inequality holds since ∆ ≥ C logn, and the last inequality holds for C ≥ 16ε−2. A

union bound then implies that with probability at least 1− 1
n = 1− o(1), every 1 ≤ i ≤ n was offered at least

⌊∆/2⌋ + 1 times, as required.

We now return to the main case of Theorem 1.3, assuming henceforth that ∆ = O(log n). In the following

lemma, we analyze the aforementioned first stage of Builder’s strategy.

Lemma 3.5. Let n,∆ be positive integers, let α ∈ (0, 0.1), and suppose that ∆ ≫ log(1/α). Let H be an

n-vertex graph of maximum degree ∆ and let ϕ : V (H) → [n] be a bijection. Then, Builder has a strategy

guaranteeing that after (∆/2 + o(∆))n rounds of the process, w.h.p. there will be a ϕ-good set A ⊆ V (H) of

size at least (1 − α)n.
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Proof. Builder executes Strategy 3.3 for ℓ = (∆/2 + o(∆))n rounds. Let A′ be the set of all vertices x ∈ V (H)

such that ϕ(x) was offered at least ⌊∆/2⌋ + 1 times in the course of the ℓ rounds. Apply Lemma 3.2 with

d = ⌊∆/2⌋ and with α
2∆ in place of α, to conclude that w.h.p. we have |A′| ≥ (1 − α

2∆ )n. Here we use the

assumption that ∆ ≫ log(1/α), which is necessary in order to apply Lemma 3.2 with the above parameters.

From now on we assume that |A′| ≥ (1 − α
2∆ )n (which happens with high probability).

Now, let B = {u ∈ V (H) : N−
D (u, V (H)\A′) 6= ∅}, where D is the orientation from Strategy 3.3. It readily

follows from the description of Builder’s strategy (namely, Strategy 3.3) that if x ∈ A′ \B, then after ℓ rounds

of the process, ϕ(x) is adjacent in Builder’s graph to every vertex of ϕ (NH(x)). Thus, A := A′ \B is ϕ-good.

Since the maximum degree of H is ∆, it follows that |B| ≤ ∆ · |V (H) \ A′| ≤ αn
2 . We conclude that w.h.p.

|A| ≥ (1 − α)n, completing the proof.

3.2 Improving the Embedding

In this section we introduce and analyze Builder’s strategy for the second stage (see Strategy 3.7 below). Our

starting point is the state of Builder’s graph immediately after applying the strategy given by Lemma 3.5.

(The value of the parameter α, with which this lemma is applied, will be chosen later; the bijection ϕ can

be chosen arbitrarily.) Our goal is to iteratively update ϕ, so as to maintain a ϕ-good set which gradually

increases in size until it equals V (H).

Before delving into the details, let us illustrate the idea behind Strategy 3.7 by considering the following

“toy” example: suppose that at some point during the process, Builder has already managed to obtain a

bijection ϕ : V (H) → [n] for which there is a ϕ-good set A of size n − 1. Let b denote the unique element

of V (H) \ A. The fact that A is ϕ-good means that ϕ(A) spans a copy of H [A] in Builder’s graph. So in

order to make ϕ an embedding of H into Builder’s graph, it remains to connect ϕ(b) to all of the vertices

in ϕ(NH(b)). A naive way of doing this would be for Builder to wait until ϕ(b) will have been offered dH(b)

times, and at each such time, to connect ϕ(b) to a new vertex in ϕ(NH(b)). This, however, will not work,

since the probability that ϕ(b) is offered (even once) in the course of O(n) rounds does not tend to 1. So

instead, Builder will try to find another vertex in [n] to “play” the role ϕ(b), and to have ϕ(b) play the role

which was previously played by that other vertex. To this end, Builder fixes (a large number of) vertices

a1, . . . , am ∈ A which are not adjacent to b. (We note that in order to make the strategy work, we need the

additional assumption that the neighbourhoods of a1, . . . , am are pairwise-disjoint, but the reader may ignore

this issue at the moment.) Now Builder acts as follows: each time a vertex of {ϕ(a1), . . . , ϕ(am)} is offered,

Builder connects it to some new vertex of ϕ(NH(b)); and each time a vertex of
⋃m

i=1 ϕ(NH(ai)) is offered,

Builder connects it to ϕ(b). Now, if at some point there is an index 1 ≤ i ≤ m such that ϕ(ai) has already been

offered at least ∆(H) times and every vertex in ϕ(NH(ai)) has already been offered at least once, then at this

point ϕ(ai) is adjacent in Builder’s graph to every vertex of ϕ(NH(b)), and ϕ(b) is adjacent in Builder’s graph

to every vertex of ϕ(NH(ai)). Hence, Builder can now safely “switch” the roles of ϕ(ai) and ϕ(b). Formally,

Builder defines a new bijection ϕ′ : V (H) → [n] by setting ϕ′(b) = ϕ(ai), ϕ
′(ai) = ϕ(b), and ϕ′(x) = ϕ(x) for

every x ∈ V (H) \ {b, ai}. Then ϕ′ is an embedding of H into Builder’s graph. A key point of this method is

that, since there are many “candidates” for the role of b (i.e. the vertices a1, . . . , am), it is very likely that one

of them will indeed be chosen to be switched with b.

We now give a precise definition of the setting in which we will apply our “role-switching” strategy.

Setting 3.6. We are given a graph5 G on the vertex-set [n], a bijection ϕ : V (H) → [n], and a ϕ-good set

A ⊆ V (H). We set B = V (H) \ A and write B = {b1, . . . , br}. We are also given an integer m > 0 and

distinct vertices ai,k ∈ A, where 1 ≤ i ≤ r and 1 ≤ k ≤ m. Finally, we are given an integer6 d such that

dH(x) ≤ d for every x ∈ ⋃r
i=1{bi, ai,1, . . . , ai,m}. We assume that the following two properties are satisfied.

5We think of G as Builder’s graph immediately after employing the strategy whose existence is guaranteed by Lemma 3.5 for

the number of rounds specified in that lemma.
6The reason for allowing flexibility in the choice of d (as opposed to simply letting d be the maximum degree of H), is that in

one application (namely, Theorem 1.7), we will be able to make sure that the degrees of the vertices bi, ai,1, . . . , ai,m (1 ≤ i ≤ r)

are much smaller than ∆(H), which will be crucial for obtaining the desired bound.
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1. There are no edges in H between {ai,k : (i, k) ∈ [r] × [m]} and B.

2. The sets {ai,k} ∪NH(ai,k) are pairwise-disjoint, where (i, k) run over all pairs in [r] × [m].

Throughout the second stage of his strategy, Builder maintains and updates sets At ⊆ V (H) and bijections

ϕt : V (H) → [n]. Initially, A0 = A and ϕ0 = ϕ. For every positive integer t, the pair (At, ϕt) will be defined

immediately after round t of the second stage. We also set Bt = V (H)\At (so in particular, B0 = B). Finally,

we let Gt denote Builder’s graph after exactly t rounds of the second stage (so in particular, G0 = G). We are

now ready to describe Builder’s strategy for round t of the second stage (for any integer t ≥ 1).

Strategy 3.7. Let wt ∈ [n] be the random vertex Builder is offered at round t of the second stage.

1. If some pair (i, k) ∈ [r] × [m] is such that wt ∈ ϕ ({ai,k} ∪NH(ai,k)) and bi ∈ Bt−1, then do:

(a) If wt ∈ ϕ(NH(ai,k)), then claim the edge {wt, ϕ(bi)}.
(b) If wt = ϕ(ai,k), then choose an arbitrary vertex u ∈ ϕt−1 (NH(bi) ∩ At−1) which is not adjacent to

ϕ(ai,k) in Gt−1, and claim the edge {ϕ(ai,k), u}.
(c) Check whether ϕ(bi) is adjacent in Gt to every vertex of ϕ(NH(ai,k)) and, moreover, ϕ(ai,k) is

adjacent in Gt to every vertex of ϕt−1 (NH(bi) ∩At−1). If so, then set At = At−1∪{bi} (and hence

Bt = V (H) \At = Bt−1 \ {bi}), and

ϕt(x) =











ϕt−1(bi) x = ai,k,

ϕt−1(ai,k) x = bi,

ϕt−1(x) x ∈ V (H) \ {ai,k, bi}.

(d) Otherwise (i.e., if the condition in Item 1(c) does not hold), set At = At−1 and ϕt = ϕt−1.

2. Else (i.e., if there is no pair (i, k) ∈ [r]× [m] which satisfies the condition in Item 1), claim an arbitrary

edge which is incident with wt; this edge will not be considered as part of Builder’s graph in our analysis.

Set At = At−1 and ϕt = ϕt−1.

The operation of defining At and ϕt as done in Item 1(c), is referred to as switching ai,k and bi. This

name stems from the fact that we swap the vertices which play the roles of bi and ai,k in our current partial

embedding ϕt of H into Gt. Evidently, switching ai,k and bi does not change the role of any of the other n− 2

vertices. Switching ai,k and bi is only done if, roughly speaking, the vertex currently playing the role of bi can

play the role of ai,k, and the vertex currently playing the role of ai,k can play the role of bi; the exact condition

for switching is stated in Item 1(c) above. Note that the only pairs of vertices which can be switched are of

the form (ai,k, bi) for some 1 ≤ i ≤ r and 1 ≤ k ≤ m. In the following lemma we collect several simple facts

regarding Strategy 3.7.

Lemma 3.8. Consider the execution of Strategy 3.7 for ℓ consecutive rounds, where ℓ is an arbitrary positive

integer. Then the following statements hold.

1. If ai,k and bi were switched in round t, then none of the vertices bi, ai,1, . . . , ai,m was switched at any

other round.

2. If x ∈ V (H) was not switched at any round, then ϕs(x) = ϕ(x) for every 0 ≤ s ≤ ℓ. If x was switched

in round t, then ϕs(x) = ϕ(x) for every 0 ≤ s ≤ t− 1 and ϕs(x) = ϕt(x) for every t ≤ s ≤ ℓ.

3. For every x ∈ V (H) \ (
⋃r

i=1{bi, ai,1, . . . , ai,m}), we have ϕs(x) = ϕ(x) for every 0 ≤ s ≤ ℓ.

4. Fix 1 ≤ i ≤ r, and define Nt := ϕt−1 (NH(bi) ∩ At−1) for every 1 ≤ t ≤ ℓ. Then, Nt ⊆ Nt′ holds for

every 1 ≤ t < t′ ≤ ℓ.
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Proof. We start with Item 1. Switching ai,k and bi in round t forces bi ∈ At. It then follows by the description

of Strategy 3.7 that bi ∈ As for every t < s ≤ ℓ, making the condition in Item 1 of Strategy 3.7 false for bi
in each of the rounds t + 1, . . . , ℓ. Hence, if ai,k and bi were switched in round t, then none of the vertices

bi, ai,1, . . . , ai,m could have been switched in any subsequent round. Moreover, none of these vertices could

have been switched in any round prior to round t as this would have made bi ineligible for switching in round

t. This proves Item 1. Item 2 can be easily proved by induction, using Item 1 and the definition of the

functions (ϕs : 0 ≤ s ≤ ℓ) in Strategy 3.7. Item 3 follows from Item 2 and the fact that only vertices in
⋃r

i=1{bi, ai,1, . . . , ai,m} can be switched.

Let us prove Item 4. Fix 1 ≤ i ≤ r and 1 ≤ t < t′ ≤ ℓ, and let v ∈ Nt be an arbitrary vertex; we will

prove that v ∈ Nt′ . Set x = ϕ−1
t−1(v), and note that x ∈ NH(bi) ∩ At−1 ⊆ NH(bi) ∩ At′−1. We will show that

ϕt′−1(x) = ϕt−1(x) = v, which would imply that v ∈ ϕt′−1 (NH(bi) ∩ At′−1) = Nt′ , as required. Assume first

that x ∈ A. It then follows by Item 1 of Setting 3.6 that x /∈ ⋃r
j=1{bj, aj,1, . . . , aj,m}. By Item 3 of Lemma 3.8

we then have ϕs(x) = ϕ(x) for every 0 ≤ s ≤ ℓ; in particular, ϕt′−1(x) = ϕt−1(x) = v, as claimed. Suppose

now that x ∈ B, that is, x = bj for some 1 ≤ j 6= i ≤ r. Since bj = x ∈ At−1, the vertex bj must have been

switched with some aj,k prior to round t. Now, Item 2 of Lemma 3.8 implies that ϕt′−1(x) = ϕt−1(x) = v in

this case as well.

The following lemma can be thought of as a proof of the “correctness” of Strategy 3.7.

Lemma 3.9. For every non-negative integer t, the set At is (Gt, ϕt)-good.

Proof. The proof is by induction on t. The base case t = 0 is immediate from our assumption that A is

ϕ-good (see Setting 3.6), and the fact that A0 = A, ϕ0 = ϕ and G0 = G. For the induction step, fix some

t ≥ 1 and suppose that the assertion of the lemma holds for t− 1. Consider the execution of Strategy 3.7 in

round t. If either the condition in Item 1 or the condition in Item 1(c) does not hold, then there is nothing to

prove, since in that case At = At−1 and ϕt = ϕt−1. Suppose then that both of these conditions hold, and let

(i, k) ∈ [r] × [m] be the pair satisfying the condition in Item 1 of Strategy 3.7. That is, we assume that ai,k
and bi were switched in round t.

We need to show that for every x, y ∈ At, if {x, y} ∈ E(H), then {ϕt(x), ϕt(y)} ∈ E(Gt). Hence,

let x, y ∈ At be such that {x, y} ∈ E(H). Note that {x, y} 6= {ai,k, bi}, as {ai,k, bi} /∈ E(H) by Item 1

in Setting 3.6. If x, y /∈ {ai,k, bi} then we have x, y ∈ At−1, ϕt(x) = ϕt−1(x) and ϕt(y) = ϕt−1(y); so our

assertion that {ϕt(x), ϕt(y)} ∈ E(Gt) follows from the induction hypothesis for t−1. Therefore, without loss of

generality, we may assume that x ∈ {ai,k, bi} and y /∈ {ai,k, bi}. This assumption implies that ϕt(y) = ϕt−1(y)

and that y ∈ At−1.

Suppose first that x = ai,k. Since {x, y} ∈ E(H), it follows that y ∈ NH(x) = NH(ai,k). Now Items 1 and 2

of Setting 3.6 imply that y /∈ ⋃r
i=1{bi, ai,1, . . . , ai,m}, which in turn implies that ϕt(y) = ϕ(y) ∈ ϕ(NH(ai,k)),

see Item 3 of Lemma 3.8. As for x, it follows from the definition of ϕt in Item 1(c) of Strategy 3.7 that

ϕt(x) = ϕt(ai,k) = ϕt−1(bi) = ϕ(bi), where the last equality holds by Item 2 of Lemma 3.8. Since ai,k and bi
were switched in round t, it follows by Item 1(c) of Strategy 3.7 that ϕt(x) = ϕ(bi) is adjacent in Gt to all

vertices of ϕ(NH(ai,k)). In particular, {ϕt(x), ϕt(y)} ∈ E(Gt) as required.

Suppose now that x = bi. Since {x, y} ∈ E(H), it follows that y ∈ NH(bi). Therefore, ϕt(y) = ϕt−1(y) ∈
ϕt−1(NH(bi) ∩ At−1). Observe that ϕt(x) = ϕt(bi) = ϕt−1(ai,k) = ϕ(ai,k), where the last equality holds by

Item 2 of Lemma 3.8. Since ai,k and bi were switched in round t, it follows by Item 1(c) of Strategy 3.7 that

ϕ(ai,k) is adjacent in Gt to all vertices of ϕt−1(NH(bi) ∩ At−1). In particular, {ϕt(x), ϕt(y)} ∈ E(Gt). This

concludes the proof of the lemma.

In the following three lemmas, we consider the execution of Strategy 3.7 for ℓ rounds for some positive

integer ℓ. For every 1 ≤ i ≤ r and 1 ≤ k ≤ m, we denote by Ai,k the event: “ϕ(ai,k) was offered at least d

times after each of the vertices in ϕ(NH(ai,k)) had already been offered”. In other words, Ai,k is the event

that there are indices 1 ≤ t1 < . . . < tq < s1 < . . . < sd ≤ ℓ, where q = |NH(ai,k)|, such that each element of

ϕ(NH(ai,k)) was offered in one of the rounds t1, . . . , tq, and ϕ(ai,k) was offered in each of the rounds s1, . . . , sd.

11



Lemma 3.10. Let 1 ≤ i ≤ r. If there exists some 1 ≤ k ≤ m for which Ai,k occurred, then bi ∈ Aℓ.

Proof. Suppose for a contradiction that Ai,k occurred for some 1 ≤ i ≤ r and 1 ≤ k ≤ m, but bi /∈ Aℓ,

i.e., bi ∈ Bℓ. This means that bi was not switched at any of the ℓ rounds for which we execute Strategy 3.7.

Set q = |NH(ai,k)| and let 1 ≤ t1 < . . . < tq < s1 < . . . < sd ≤ ℓ be the round numbers appearing in the

definition of Ai,k. Item 1(a) of Strategy 3.7 dictates that whenever a vertex from ϕ(NH(ai,k)) is sampled,

Builder connects it to ϕ(bi). This implies that, for every tq ≤ t ≤ ℓ, every vertex of ϕ(NH(ai,k)) is adjacent in

Gt to ϕ(bi).

As in Lemma 3.8, we let Nt = ϕt−1 (NH(bi) ∩ At−1) for each 1 ≤ t ≤ ℓ. Suppose first that there exists

some 1 ≤ j ≤ d such that ϕ(ai,k) is adjacent in Gsj to every vertex of Nsj . Then by Item 1(c) of Strategy 3.7,

Builder would have switched ai,k and bi in round sj , which would contradict our assumption that bi was never

switched. Hence, for every 1 ≤ j ≤ d there exists a vertex of Nsj which is not adjacent in Gsj to ϕ(ai,k). It

follows by Item 1(b) of Strategy 3.7 that, in round sj , Builder claims an edge {ϕ(ai,k), uj} for some uj ∈ Nsj

which is not adjacent to ϕ(ai,k) in Gsj−1. Note that u1, . . . , ud are distinct. It follows by Item 4 of Lemma 3.8

that u1, . . . , ud ∈ Nsd . On the other hand, |Nsd | ≤ |NH(bi)| ≤ d, implying that Nsd = {u1, . . . , ud}. But this

means that in the graph Gsd , the vertex ϕ(ai,k) is adjacent to every vertex of Nsd , contrary to the above.

The following technical lemma provides lower bounds on the probability of the events Ai,k.

Lemma 3.11. Fix any 1 ≤ i ≤ r and 1 ≤ k ≤ m.

(a) If ℓ ≥ 2d, then

P[Ai,k] ≥
(

ℓ2

12dn2

)d

· e−
(d+1)(ℓ−2d)

n−d−1 .

(b) If ℓ ≥ (log(2d) + d + 3
√
d)n, then P[Ai,k] ≥ 1

4 .

Proof. We start with Item (a). Since |NH(ai,k)| ≤ d, it follows that

P[Ai,k] ≥
(

ℓ

2d

)

· d! ·
(

1

n

)2d

·
(

1 − d + 1

n

)ℓ−2d

≥
(

ℓ

2dn

)2d

·
(

d

e

)d

· e−
(d+1)(ℓ−2d)

n−d−1 ≥
(

ℓ2

12dn2

)d

· e−
(d+1)(ℓ−2d)

n−d−1 ,

where in the second inequality we used the estimates 1 − x ≥ e−
x

1−x (which holds for every 0 < x < 1) and

d! ≥
(

d
e

)d
(which holds for every d ≥ 1).

Next, we prove (b). Let Ek be the event that every vertex of ϕ(NH(ai,k)) was offered in the course of

the first log(2d)n rounds, and let Fk be the event that ϕ(ai,k) was offered at least d times in the course

of the last (d + 3
√
d)n rounds. Since ℓ ≥ (log(2d) + d + 3

√
d)n by assumption, the events Ek and Fk are

independent. Note that Ek ∩ Fk ⊆ Ai,k; that is, if both Ek and Fk occur, then so does Ai,k. Therefore,

P[Ai,k] ≥ P[Ek ∩ Fk] = P[Ek] · P[Fk]. The probability that Ek did not occur is at most

d ·
(

1 − 1

n

)log(2d)n

≤ d · e− log(2d) =
1

2
,

and the probability that Fk did not occur equals the probability that Bin
((

d + 3
√
d
)

n, 1/n
)

is smaller than

d, which is at most

P

[

Bin
((

d + 3
√
d
)

n, 1/n
)

< d
]

≤ e
− 9d

2(d+3
√

d) ≤ e−
9d
8d ≤ 1

2
.

Here in the first inequality we used Lemma 2.1 with λ = 3
√
d. We thus conclude that P[Ai,k] ≥ 1/2 ·1/2 = 1/4

as claimed.

12



The following lemma forms the main result of Section 3.2, and plays a key role in the proofs of Theorems

1.3 and 1.7. Roughly speaking, this lemma states that if ϕ : V (H) → [n] is a bijection admitting a ϕ-good set

that misses only a small fraction of V (H), then by following Strategy 3.7 for a suitable (and not too large)

number of rounds, Builder can obtain a bijection ϕ′ : V (H) → [n] which admits a ϕ′-good set that misses

significantly fewer vertices. The actual statement is somewhat convoluted, since we simultaneously handle two

regimes: one where the number of bad vertices is small but not very small, and another where this number is

tiny (these also correspond to the two items in Lemma 3.11). The proof of Lemma 3.12 utilizes Lemmas 3.9,

3.10 and 3.11, as well as some of the concentration inequalities from Section 2.

Lemma 3.12. Let H be an n-vertex graph, let ϕ : V (H) → [n] be a bijection, let V (H) = A∪B be a partition,

and consider a moment in the semi-random process at which A is ϕ-good with respect to Builder’s graph. Write

B = {b1, . . . , br}. Let m be a positive integer, and let {ai,k ∈ A : 1 ≤ i ≤ r and 1 ≤ k ≤ m} be vertices which

satisfy Items 1 and 2 of Setting 3.6. Let d ≥ 100 be such that dH(x) ≤ d for every x ∈ ⋃r
i=1{bi, ai,1, . . . , ai,m}.

Let ℓ1 = (log(2d) + d + 3
√
d)n, ℓ2 = ⌈n · m−1/4d⌉, q1 = 1

4 , and q2 = d−2dm−1/2. Fix any j ∈ {1, 2}, and
suppose that mqj ≥ 106d. Let

p =

{

o(1),
mqj
64d ≥ logn,

e−
√

n
O(d) ,

mqj
64d < logn.

Suppose that Builder executes Strategy 3.7 for ℓj additional rounds. Then, with probability at least 1− p, after

ℓj rounds of the process Builder’s graph G will satisfy the following: there will be a bijection ϕ′ : V (H) →
V (G) = [n] and a partition V (H) = A′ ∪B′ such that A′ is (G,ϕ′)-good, A ⊆ A′, and

|B′| ≤
{

0,
mqj
64d ≥ logn,

5n · e−
mqj
256d ,

mqj
64d < logn.

(1)

Proof. We will show that the assertion of the lemma holds with ϕ′ = ϕℓj , A′ = Aℓj , and B′ = Bℓj . The

fact that Aℓj is ϕℓj -good follows immediately from Lemma 3.9. It thus remains to prove that (1) holds for

B′ = Bℓj with probability at least 1 − p.

Fix arbitrary indices 1 ≤ i ≤ r and 1 ≤ k ≤ m. For j ∈ {1, 2}, let us denote by Pj(Ai,k) the probability

that Ai,k occurred in the course of the first ℓj rounds of the process. We claim that Pj [Ai,k] ≥ qj . The fact

that P1[Ai,k] ≥ 1
4 = q1 follows immediately from Item (b) of Lemma 3.11 and our choice of ℓ1. As for j = 2,

recall that ℓ2 = ⌈n · m−1/4d⌉, which implies that ℓ2 ≥ 2d holds for n which is sufficiently large with respect

to d (since we trivially have m ≤ n, and since d ≥ 100, something like n ≥ (2d)1.01 would suffice). Therefore,

Item (a) of Lemma 3.11 yields

P2[Ai,k] ≥
(

ℓ22
12dn2

)d

· e−
(d+1)(ℓ2−2d)

n−d−1 ≥
(

1

12d

)d

·m−1/2 · e−d−1 ≥ d−2dm−1/2 = q2 ,

where the last inequality holds for sufficiently large d (our assumption that d ≥ 100 suffices).

We have thus proved our assertion that Pj [Ai,k] ≥ qj holds for every j ∈ {1, 2}. For the remainder of the

proof, we fix an arbitrary j ∈ {1, 2} and suppose (as in the statement of the lemma) that mqj ≥ 106d. For

convenience, we put ℓ := ℓj and q := qj . For every 1 ≤ i ≤ r, let Xi be the random variable counting the

number of indices 1 ≤ k ≤ m for which Ai,k occurred in the course of the first ℓ rounds. It follows by linearity

of expectation that E[Xi] ≥ mq.

Now, consider the sequence (w1, . . . , wℓ) of random vertices offered to Builder, and observe that changing

any one coordinate in this sequence can change the value of Xi by at most 1 (here we use Item 2 in Setting

3.6). Furthermore, for every s, if Xi ≥ s, then there is a set of at most 2ds coordinates in the sequence

(w1, . . . , wℓ) which certify that Xi ≥ s (indeed, each event Ai,k that occurred is certified by a set of at most

2d coordinates). It thus follows by Lemma 2.3 with c = 1, g = 2d, and λ = E[Xi]
2 , that

P

[

Xi <
E[Xi]

2
− 60

√

2dE[Xi]

]

≤ 4e
− (E[Xi]/2)

2

16dE[Xi] = 4e−
E[Xi]

64d ≤ 4e−
mq
64d .
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Therefore, with probability at least 1 − 4e−
mq
64d , it holds that

Xi ≥
E[Xi]

2
− 60

√

2dE[Xi] =
√

E[Xi] ·
(

√

E[Xi]

2
− 60

√
2d

)

≥
√

E[Xi] ·
(√

mq

2
− 60

√
2d

)

> 0,

where the last inequality follows from our assumption that mq ≥ 106d.

Now let I be the set of all 1 ≤ i ≤ r such that Xi = 0. It follows by Lemma 3.10 that if some 1 ≤ i ≤ r

satisfies Xi > 0, then bi /∈ Bℓ. Hence, we have Bℓ ⊆ {bi : i ∈ I}. So to complete the proof it is enough to show

that the bounds in (1) hold for the set I. We have seen that P[i ∈ I] ≤ 4e−
mq
64d holds for every 1 ≤ i ≤ r. Hence,

E[|I|] ≤ r · 4e−
mq
64d .

Suppose first that mq
64d ≥ logn, and note that we have r ≤ n

m ≤ n
logn . It follows that

E[|I|] ≤ r · 4e−
mq
64d ≤ n

logn
· 4

n
= o(1).

So by Markov’s inequality, we have |I| = 0 w.h.p., as required.

Suppose now that mq
64d < logn. Observe that changing any one coordinate in the sequence (w1, . . . , wℓ) of

random vertices, can change the value of |I| by at most 1. Hence, it follows by Lemma 2.2 with c = 1 and

λ = n · e− mq
256d ≥ n3/4, that

P [|I| ≥ E[|I|] + λ] ≤ e−
λ2

2ℓ ≤ e−
n3/2

2ℓ ≤ e−
√

n
O(d) ,

where the last inequality holds since ℓ1, ℓ2 = O(dn). We conclude that with probability at least 1 − e−
√

n
O(d) ,

we have |I| ≤ E[|I|] + λ ≤ (4r + n) · e− mq
256d ≤ 5n · e− mq

256d , as required.

3.3 Putting it All Together

In this section we iterate Lemma 3.12 to prove Lemma 3.14, from which Theorem 1.3 then easily follows.

Lemma 3.14 roughly states that given a bijection ϕ : V (H) → [n] which admits a ϕ-good set covering almost

all of V (H), Builder can use ϕ as a basis for constructing a copy of H in his graph, and he can achieve this

objective w.h.p. fairly quickly. In the proof we will need the following simple claim, which asserts that we can

satisfy the conditions listed in Setting 3.6 with a relatively large choice of m.

Claim 3.13. Let H be an n-vertex D-degenerate graph of maximum degree ∆. Let A ∪ B be a partition of

V (H) and suppose that |A| ≥ 4∆|B|. Set r := |B| and

m :=

⌈ |A|
8∆2|B|

⌉

.

Then, there exist vertices (ai,k : 1 ≤ i ≤ r and 1 ≤ k ≤ m) such that ai,k ∈ A and dH(ai,k) ≤ 2D for every

(i, k) ∈ [r] × [m], and such that Conditions 1 and 2 of Setting 3.6 are satisfied.

Proof. Let A′ := {a ∈ A : |NH(a) ∩ A| ≤ 2D and NH(a) ∩ B = ∅}. Note that every a ∈ A′ satisfies

dH(a) = |NH(a) ∩ A| ≤ 2D. Since H is D-degenerate, there are less than |A|/2 vertices a ∈ A which satisfy

|NH(a)∩A| > 2D. As ∆(H) = ∆, there are at most ∆|B| ≤ |A|/4 vertices a ∈ A which have a neighbour in B.

Altogether, we get |A′| ≥ |A|/4. Using again the assumption ∆(H) = ∆, we infer that there exists an integer

M ≥ |A′|
∆2 + 1

≥ |A|
8∆2

and vertices a1, . . . , aM ∈ A′ such that distH(ai, aj) ≥ 3 for every 1 ≤ i < j ≤ M . Recalling our choice of m,

we index (a subset of) the vertices a1, . . . , aM by pairs (i, k) ∈ [r]× [m]. For every (i, k) ∈ [r]× [m], let ai,k be

the vertex in {a1, . . . , aM} which is indexed by the pair (i, k). Now Condition 1 of Setting 3.6 is satisfied due

to our choice of A′, and Condition 2 of Setting 3.6 is satisfied because distH(ai,k, ai′,k′) ≥ 3 for every choice

of distinct pairs (i, k), (i′, k′) ∈ [r] × [m].
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Lemma 3.14. Let H be an n-vertex D-degenerate graph of maximum degree ∆. Set d = min{2D,∆}.
Suppose that at some point in the semi-random process, there is a bijection ϕ : V (H) → [n] and a partition

V (H) = A∪B such that A is ϕ-good with respect to Builder’s graph; such that |B| ≤ 10−8∆−5n; and such that

dH(b) ≤ d for every b ∈ B. Then Builder has a strategy guaranteeing that w.h.p., after (d + o(d))n additional

rounds his graph will contain a copy of H.

Proof. We may and will assume that d is large enough, say d ≥ 100. Builder’s strategy consists of two phases,

which correspond to the two cases (i.e. j = 1 and j = 2) in Lemma 3.12.

Phase 1: Let

m0 :=

⌈

n

8∆2|B|

⌉

.

Find vertices (ai,k : 1 ≤ i ≤ |B| and 1 ≤ k ≤ m0) such that ai,k ∈ A and dH(ai,k) ≤ d for every

(i, k) ∈ [r] × [m0], and such that Conditions 1 and 2 of Setting 3.6 are satisfied (with m = m0). Apply

the strategy whose existence is guaranteed by Lemma 3.12 with parameter j = 1 and with m = m0.

Lemma 3.12 (with j = 1) ensures that after ℓ1 = (log(2d) + d + 3
√
d)n = (d + o(d))n rounds, there will

be a bijection ϕ0 : V (H) → [n] and a partition V (H) = A0 ∪ B0 such that A0 is ϕ0-good with respect

to Builder’s graph, A ⊆ A0 (and hence B0 ⊆ B), and

|B0| ≤
{

0, m0

256d ≥ logn,

5n · e− m0
1024d , m0

256d < logn.
(2)

If B0 = ∅ then A0 = V (H) is ϕ0-good, implying that Builder has successfully embedded H into his

graph, and so Builder is done. Otherwise, proceed to Phase 2.

Phase 2: Define a sequence of bijections ϕ1, ϕ2, . . . from V (H) to [n], and a sequence of partitions A1 ∪
B1, A2 ∪B2, . . . of V (H), by performing the following steps for every integer t ≥ 1 for which Bt−1 6= ∅.

(a) Find vertices
(

ai,k : 1 ≤ i ≤ |Bt−1| and 1 ≤ k ≤ mt := ⌈ n
8∆2|Bt−1|⌉

)

such that ai,k ∈ At−1 and

dH(ai,k) ≤ d for every (i, k) ∈ [r] × [mt], and such that Conditions 1 and 2 of Setting 3.6 are

satisfied for the partition At−1 ∪Bt−1 with m = mt.

(b) Invoke the strategy whose existence is guaranteed by Lemma 3.12 with j = 2, with m = mt, and

with input ϕt−1 and At−1 ∪Bt−1. Using this strategy, Builder obtains a bijection ϕt : V (H) → [n]

and a partition At∪Bt of V (H) such that At is ϕt-good with respect to Builder’s graph, At−1 ⊆ At

(and hence Bt ⊆ Bt−1), and

|Bt| ≤
{

0, m′
t ≥ logn,

5n · e−m′
t/4 , m′

t < logn,
(3)

where

m′
t :=

mt · q2
64d

=

√
mt

64d2d+1
,

and q2 is as in Lemma 3.12. (Here and later on we slightly abuse notation by hiding the fact that

q2 = d−2d/
√
mt depends on t.)

Having described Builder’s strategy, we now turn to prove that w.h.p. Builder can follow it. First, note that

by Claim 3.13, there exist vertices (ai,k : 1 ≤ i ≤ |B| and 1 ≤ k ≤ m0) such that ai,k ∈ A and dH(ai,k) ≤ d

for every (i, k) ∈ [r] × [m0], and such that Conditions 1 and 2 of Setting 3.6 hold. Moreover, the conditions

required for the application of Lemma 3.12 with j = 1 are satisfied as m0q1 = m0

4 ≥ n
32∆2|B| > 106∆ ≥ 106d,

where the second inequality follows from our assumption that |B| ≤ 10−8∆−5n. This shows that Builder can

follow Phase 1 of his strategy. It remains to show that w.h.p. Builder can follow Phase 2 of his strategy.
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Similarly to Phase 1, the existence of the desired vertices (ai,k ∈ At−1 : 1 ≤ i ≤ |Bt−1| and 1 ≤ k ≤ mt)

for every given integer t ≥ 1 follows from Claim 3.13 with input At−1 ∪ Bt−1. It remains to prove that the

conditions of Lemma 3.12 are met whenever Builder wishes to apply it (with j = 2). The fact that At−1 is

ϕt−1-good for every positive integer t is guaranteed by the previous applications of Lemma 3.12. The fact

that dH(b) ≤ d for every b ∈ Bt−1 follows from our assumption that the same holds for every b ∈ B, and the

fact that B0 ⊆ B and Bi ⊆ Bi−1 for every i ≥ 1. We now show that
√
mt · d−2d = mt · q2 ≥ 106d holds for

every integer t ≥ 1 for which Bt−1 6= ∅. To this end, first note that

|B0| ≤ 5n · e−
m0

1024d ≤ 5n · exp

(

− n

213∆3|B|

)

e ≤ n · e−∆2

, (4)

where the first inequality follows from (2), and the third from our assumption that |B| ≤ 10−8∆−5n. Since

Bi ⊆ Bi−1 for every i ≥ 1, we have |Bi| ≤ n · e−∆2

for each i ≥ 0. Now we obtain

mt · q2 =
√
mt · d−2d ≥

√
n

3∆2∆+1
√

|Bt−1|
≥ e∆

2/2

3∆2∆+1
≥ 106∆ ≥ 106d, (5)

where the penultimate inequality holds for sufficiently large ∆ (say, ∆ ≥ 100). This shows that we can indeed

apply Lemma 3.12 with j = 2 and with input At−1 ∪ Bt−1 for every integer t ≥ 1 for which Bt−1 6= ∅. We

conclude that Builder can follow Phase 2 of his strategy.

Before moving on to prove the correctness of Builder’s strategy, we first prove the following claim.

Claim 3.15. Let ζ = e−∆2

and, for every non-negative integer t, let βt = |Bt|/n. Suppose either that t = 0

or that t ≥ 1 and m′
t < logn. Then βt ≤ ζt+1.

Proof. Our proof proceeds by induction on t. The base case t = 0 follows from (4). Let then t ≥ 1 and

suppose that m′
t < logn. Observe that the sequence m′

s is monotone non-decreasing in s (this follows from

the fact that Bi ⊆ Bi−1 for every i ≥ 1). So either t− 1 = 0, or m′
t−1 < logn. In either case we can apply the

induction hypothesis to get βt−1 ≤ ζt. Note that

m′
t =

√
mt

64d2d+1
≥

√
n

200∆2∆+2
√

|Bt−1|
. (6)

Now we get

βt ≤ 5 · e−m′
t/4 ≤ 5 · exp

(

− 1

800∆2∆+2
√

βt−1

)

≤ 5 · exp

(

− 1

800∆2∆+2ζt/2

)

= 5 · exp

(

− e∆
2t/2

800∆2∆+2

)

≤ e−∆2(t+1) = ζt+1 ,

where the first inequality holds by (3), the second inequality holds by (6), the third inequality holds by the

induction hypothesis for t − 1, and the last inequality holds for every t ≥ 1, provided that ∆ is larger than

some suitable absolute constant (again, ∆ ≥ 100 suffices). This proves the claim.

Returning to the proof of the lemma, we now prove the correctness of Builder’s strategy. For the time being,

we will assume that all applications of Lemma 3.12 throughout Builder’s strategy are successful; later we will

show that w.h.p. this is indeed the case. It follows from (6) and from Claim 3.15 that m′
t ≥ e∆

2t/2 · 1
200∆2∆+2

holds for every t ≥ 1. Hence, m′
t ≥ logn must hold for some t ≤ log logn (and in fact much earlier, but we

will not need this). Now, if m′
t ≥ logn then by (3) we have Bt = ∅, which in turn implies that Builder has

successfully embedded H into the graph he is constructing.

Next, we estimate the probability that Builder’s strategy fails. Recall that Lemma 3.12 is only applied once

with parameter j = 1, and that this application is w.h.p. successful. Let us now consider the applications
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of Lemma 3.12 with j = 2 (in Phase 2). As previously noted, there is at most one such application with

m′
t ≥ logn, and at most log logn such applications with m′

t < log n. The failure probability of the former

application is o(1), and the failure probability of each of the latter applications is at most e−
√

n
O(d) . We thus

conclude that w.h.p. all of the above applications of Lemma 3.12 are successful, as required. This completes

the proof of correctness of Builder’s strategy.

It remains to estimate the overall number of rounds required for implementing Builder’s strategy. Recall

that the sole application of Lemma 3.12 with j = 1 requires (d+o(d))n rounds. It thus remains to bound from

above the number of rounds required for Phase 2 of Builder’s strategy. To this end, let t∗ denote the smallest

integer t satisfying m′
t ≥ logn, and note that t∗ ≤ log logn. Then in Phase 2, Lemma 3.12 was invoked at

most t∗ times. Moreover, for each 1 ≤ t ≤ t∗, invoking Lemma 3.12 with input At−1 ∪Bt−1 (and with j = 2)

required at most

⌈

n ·m− 1
4d

t

⌉

≤ n ·m− 1
4∆

t + 1 ≤ n ·
(

n

8∆2|Bt−1|

)− 1
4∆

+ 1 ≤ O(n) ·
(

1

βt−1

)− 1
4∆

+ 1 ≤ O(n) · e−∆t/4 + 1

rounds, where in the last inequality we used Claim 3.15. Therefore, the overall number of rounds required for

the (at most) t∗ applications of Lemma 3.12 in Phase 2 is no more than

t∗
∑

t=1

(

O(n) · e−∆t/4 + 1
)

≤ O(n) ·
∞
∑

t=1

e−∆t/4 + log logn = O(n).

We conclude that the overall number of rounds required for implementing Builder’s strategy is at most

(d + o(d))n, thus completing the proof of Lemma 3.14.

Equipped with Lemma 3.14, we can finally prove Theorem 1.3.

Proof of Theorem 1.3. Let n, ∆, and H be as in the statement of the theorem. Due to Proposition 3.4,

we only need to handle the case ∆ = O(log n). Set α = 10−8∆−5. Builder’s strategy for embedding H is as

follows. Fix an arbitrary bijection ϕ : V (H) → [n]. In the first (∆/2 + o(∆))n rounds, Builder invokes the

strategy whose existence is guaranteed by Lemma 3.5, and thus obtains w.h.p. a ϕ-good set A ⊆ V (H) of

size at least (1 − α)n. Setting B := V (H) \A, observe that the requirements of Lemma 3.14 are satisfied for

D := ∆. Builder now applies the strategy given by Lemma 3.14 for an additional (∆ + o(∆))n rounds, and

by doing so successfully constructs a copy of H in his graph w.h.p. The overall number of rounds is then

(3∆/2 + o(∆))n, as required.

4 Constructing Spanning Forests

In this section we prove Theorem 1.7 and Proposition 1.8. We start with the following simple lemma, whose

proof demonstrates a strategy for greedily embedding an almost-spanning forest.

Lemma 4.1. Let n be a positive integer and let α ∈ (0, 1) be such that n ≫ α−2 log(1/α). Let T ′ be a forest

on (1 − α)n vertices and let ℓ = log(2/α) · n. Then, in the semi-random process on n vertices, Builder has a

strategy which w.h.p. allows him to construct a copy of T ′ within ℓ rounds.

Proof. Assume without loss of generality that T ′ is a tree (otherwise simply replace T ′ with a tree containing

it). Let t = (1 − α)n and let v1, . . . , vt be an ordering of the vertices of T ′ such that T ′[{v1, . . . , vi}] is a tree

for every 1 ≤ i ≤ t. Throughout the process, Builder maintains a partial function ϕ which is initially empty.

For every positive integer i, let wi denote the vertex Builder is offered in the ith round. In the first round,

Builder connects w1 to an arbitrary vertex u; he then sets ϕ(v1) = w1 and ϕ(v2) = u. For every i ≥ 2, Builder

plays the ith round as follows. Let r denote the largest integer for which ϕ(vr) has already been defined.

If wi /∈ {ϕ(v1), . . . , ϕ(vr)}, then Builder connects wi to ϕ(vj), where j ≤ r is the unique integer for which
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{vr+1, vj} ∈ E(T ′); he then sets ϕ(vr+1) = wi. Otherwise, Builder claims an arbitrary edge incident with wi,

which he does not consider to be part of the tree he is building (alternatively, Builder skips this round).

It is evident that, by following the proposed strategy, Builder’s graph contains a copy of T ′ as soon as t

different vertices are offered. Hence, it suffices to prove that w.h.p. at least t different vertices are offered

during the first ℓ rounds.7 For every 1 ≤ j ≤ n, let Ij be the indicator random variable for the event: “vertex

j was not offered during the first ℓ rounds of the process”. Let X =
∑n

j=1 Ij ; then

E(X) =

n
∑

j=1

E(Ij) = n(1 − 1/n)ℓ ≤ n · e−ℓ/n = αn/2.

Observe that changing any one coordinate in the sequence (w1, . . . , wℓ) of random vertices, can change the

value of X by at most 1. Hence, it follows by Lemma 2.2 with c = 1 and λ = αn/2, that

P[X ≥ αn] ≤ P [X ≥ E(X) + αn/2] ≤ e−
(αn/2)2

2ℓ = e−
α2n2

8 log(2/α)n = o(1) ,

where the last equality holds by our assumption that n ≫ α−2 log(1/α).

We are now in a position to prove Theorem 1.7.

Proof of Theorem 1.7. Let n, ∆, and T be as in the statement of the theorem. Assume first that ∆ ≥ n1/11.

In this case Builder employs the strategy presented in the proof of Lemma 4.1. It is easy to see that as soon

as each of the n vertices has been offered, Builder’s graph contains a copy of T . It is well-known (and easy to

prove) that this will happen w.h.p. in (1 + o(1))n logn = O(n log ∆) rounds. For the remainder of the proof

we thus assume that ∆ < n1/11.

Set α = 10−8∆−5, and note that n ≫ α−2 log(1/α), as required by Lemma 4.1. Since T is a forest, there

are at least n/2 vertices of T whose degree is at most 2. Fix a set B of αn such vertices. Set A := V (H) \B
and T ′ := T [A]. At the first stage of his strategy, Builder invokes Lemma 4.1, which enables him to construct

a copy of T ′ w.h.p. in log(2/α)n = O(n log ∆) rounds.

Let ϕ : V (T ) → [n] be a bijection such that ϕ|A is an embedding of T ′ into Builder’s graph. Note that

the conditions of Lemma 3.14 are satisfied with D = 1, since forests are 1-degenerate, and since we made sure

that all vertices in B have degree at most 2. In the second stage of his strategy, Builder applies (the strategy

given by) Lemma 3.14 in order to construct a copy of T in his graph w.h.p. This requires O(n) additional

rounds. The total number of rounds is thus O(n log ∆), as required.

4.1 A Lower Bound : Proof of Proposition 1.8

Proof of Proposition 1.8. Let ∆ and n ≥ n0(∆) be as in the statement of the proposition. Since Builder

clearly needs at least n− 1 rounds in order to build a tree on n vertices, we can assume that ∆ is a sufficiently

large constant. We prove the proposition for the n-vertex forest T consisting of ⌊ n
∆+1⌋ pairwise-disjoint (∆+1)-

vertex stars, together with some (at most ∆) isolated vertices (if needed). Let us denote the center of the ith

star by ui, and its leaves by xi,1, . . . , xi,∆ (1 ≤ i ≤ ⌊ n
∆+1⌋).

Let w1, w2, . . . denote the sequence of random vertices offered to Builder, and let m = 0.1n log ∆. Suppose

that Builder did manage to build a copy of T within m rounds, and let ϕ : V → [n] be a bijection such

that {ϕ(u), ϕ(v)} is an edge in Builder’s graph for every {u, v} ∈ E(T ). It is then evident that, for every

1 ≤ i ≤ ⌊ n
∆+1⌋, either ϕ(ui) appears at least

√
∆ times in (w1, w2, . . . , wm), or at least ∆ −

√
∆ of the

elements of the set {ϕ(xi,j) : 1 ≤ j ≤ ∆} appear at least once in (w1, w2, . . . , wm). A straightforward

calculation then shows that either at least 1√
∆
· ⌊ n

∆+1⌋ ≥ n
2∆3/2 of the vertices in {ϕ(ui) : 1 ≤ i ≤ ⌊ n

∆+1⌋} were

7This can be restated as saying that in the coupon collector’s problem, ℓ = log(2/α)n rounds suffice in order to collect

t = (1− α)n different coupons w.h.p.
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offered at least
√

∆ times each, or all but at most

∆ + ∆ · 1√
∆

·
⌊

n

∆ + 1

⌋

+

⌊

n

∆ + 1

⌋

· (
√

∆ + 1) ≤ 3n√
∆

of the n vertices were offered at least once. In the inequality above we use the assumption that n ≥ n0(∆) for

some suitable n0(∆). So in order to prove that w.h.p. Builder needs more than m rounds to build T , it suffices

to show that w.h.p. there are more than 3n/
√

∆ vertices 1 ≤ i ≤ n that do not appear in (w1, w2, . . . , wm),

and less than n
2∆3/2 vertices 1 ≤ i ≤ n which appear in (w1, w2, . . . , wm) at least

√
∆ times.

Let X be the random variable which counts the number of vertices 1 ≤ i ≤ n that do not appear in

(w1, w2, . . . , wm). Our goal is to show that w.h.p. X > 3n/
√

∆. We have

E(X) = n(1 − 1/n)m ≥ n · e−m/(n−1) = n · e−0.1 log∆· n
n−1 = n · ∆−0.1−o(1) > 4n/

√
∆,

where the first inequality follows from the fact that (1− 1/n)n−1 ≥ 1/e for each n ≥ 1, and the last inequality

holds for sufficiently large n and ∆. We will use Lemma 2.2 to prove that w.h.p. X is not much smaller

than its expected value. Observe that changing any single coordinate in the sequence of random vertices

(w1, w2, . . . , wm) can change the value of X by at most 1. Therefore, applying Lemma 2.2 with parameters

c = 1 and λ = n/
√

∆ yields

P

[

X ≤ 3n/
√

∆
]

≤ P

[

X ≤ E(X) − n/
√

∆
]

≤ e−
(n/

√
∆)2

2m ≤ e−
(n/

√
∆)2

n log ∆ = e−
n

∆ log ∆ = o(1),

where the last equality holds since n is sufficiently large with respect to ∆.

Let Z be the random variable which counts the number of vertices 1 ≤ i ≤ n that appear at least
√

∆ times

in (w1, w2, . . . , wm). Our goal is to prove that w.h.p. Z < n
2∆3/2 . For every 1 ≤ i ≤ n, let Zi be the random

variable counting the number of times i appears in (w1, w2, . . . , wm). Then Zi ∼ Bin(m, 1/n), implying that

E[Zi] = m/n ≤ 0.1 log ∆. Applying Lemma 2.1 with parameter λ = 2 log ∆ ≤
√

∆ − 0.1 log ∆, we obtain

P[Zi ≥
√

∆] ≤ P[Zi ≥ E[Zi] + λ] ≤ exp

(

− (2 log ∆)2

2(E[Zi] + 2
3 log ∆)

)

≤ e−2 log∆ ≤ 1

4∆3/2
, (7)

where the last inequality holds for sufficiently large ∆. For every 1 ≤ i ≤ n, let Ii be the indicator random

variable for the event Zi ≥
√

∆; note that Z =
∑n

i=1 Ii. It follows by (7) and by the linearity of expectation

that E(Z) ≤ n
4∆3/2 . Since changing any single coordinate in the sequence of random vertices (w1, w2, . . . , wm)

can change the value of Z by at most 1, applying Lemma 2.2 with parameters c = 1 and λ = n
4∆3/2 yields

P

[

Z ≥ n

2∆3/2

]

≤ P

[

Z ≥ E(Z) +
n

4∆3/2

]

≤ e−
n2

32∆3m ≤ e
− n2

32∆3n log ∆ = o(1),

where the equality holds since n is sufficiently large with respect to ∆.

5 Non-Adaptive Strategies

In this section we prove Theorems 1.10, 1.11 and 1.12.

Proof of Theorem 1.10. Let L = {Lw : w ∈ [n]} be a family of lists as in the definition of a non-adaptive

strategy. Recall that for each w ∈ [n], the list Lw is a permutation of [n] \ {w}. Our goal is to show that the

strategy corresponding to L requires w.h.p. at least Ω(n
√

logn) rounds to make all n vertices non-isolated.

Set t = n
√

logn/4, and let w1, . . . , wt be the first t random vertices Builder is offered. For every v ∈ [n], let

tv denote the number of appearances of v in the sequence (w1, . . . , wt). Let U = {v ∈ [n] : tv >
√

logn/2} and

let W =
⋃

v∈U{Lv(i) : 1 ≤ i ≤ tv}. Our main observation (which follows immediately from the definitions of

U and W ) is that a vertex u ∈ [n] will be left isolated after t rounds, if all of the following conditions hold:
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(1) u does not appear in (w1, . . . , wt);

(2) none of the vertices v, for which u is included among the first
√

logn/2 elements of Lv, appear in

(w1, . . . , wt);

(3) u /∈ W .

So in order to complete the proof of the theorem, it remains to prove that w.h.p. there exists a vertex

u ∈ [n] which satisfies Conditions (1), (2), and (3) above. To this end, we will use a two-round exposure

argument. Let Z denote the set of vertices which do not appear in (w1, . . . , wt); clearly Z ∩ U = ∅. In the

following claim we collect some simple facts regarding the sets U,Z and the integers (tv : v ∈ [n]).

Claim 5.1. The following hold w.h.p.

(a) |U | ≤ e−Ω(
√
logn)n.

(b) tv < logn for every v ∈ [n].

(c) |Z| ≥ (1 − o(1))e−
√
logn/4n.

Proof. We start with Item (a). Recall that for a given vertex v ∈ [n], we have tv ∼ Bin(t, 1
n ); hence,

E[tv] =
√

logn/4. Now, by Lemma 2.1 with λ =
√

logn/4, we have

P[v ∈ U ] = P[tv >
√

logn/2] = P[tv > E[tv] +
√

logn/4] ≤ e
− log n

O(
√

log n) = e−Ω(
√
logn) .

It thus follows by Markov’s inequality that w.h.p. |U | ≤ e−Ω(
√
logn)n.

We now prove Item (b). Observe that for every v ∈ [n] we have

P[tv ≥ logn] ≤
(

t

logn

)(

1

n

)logn

≤
(

et

n logn

)logn

≤
(

1√
log n

)log n

= o(1/n).

A union bound over [n] then shows that w.h.p. tv < logn for every v ∈ [n].

Finally, we prove Item (c). For each v ∈ [n], the probability that v ∈ Z is (1− 1/n)t = (1− o(1))e−
√
log n/4.

Therefore, E[|Z|] = (1− o(1))e−
√
logn/4n. To show that |Z| is concentrated around its expected value, observe

that changing any single coordinate in the sequence (w1, . . . , wt) of random vertices, can change the value of

|Z| by at most 1. Hence, by Lemma 2.2 with c = 1 and (say) λ = n2/3, we have

P

[

|Z| ≤ E[|Z|] − n2/3
]

≤ e−
n4/3

2t = e
− n4/3

O(n
√

log n) = o(1).

We conclude that w.h.p. |Z| ≥ (1 − o(1))e−
√
logn/4n.

From now on we condition on the events stated in Items (a)-(c) of Claim 5.1 (which hold w.h.p. by

that claim). Items (a) and (b) imply that |W | ≤ |U | logn ≤ logn · e−Ω(
√
logn)n = o(n). Observe that

conditioning on their sizes, U,Z are uniformly distributed among all pairs of disjoint subsets of [n] of the

corresponding sizes. From this point on we condition on U , which in turn determines W (or, more precisely,

the set
⋃

v∈U{Lv(i) : 1 ≤ i ≤ logn}, which contains W and has size o(n)).

For each u ∈ [n], let Au be the set of all vertices v ∈ [n] \ {u} such that u is included among the first√
logn/2 elements of Lv. Let V0 be the set of all u ∈ [n] satisfying |Au| ≤

√
log n. Since the union (as a

multiset) of the first
√

logn/2 elements in all lists has size n
√

logn/2 altogether, we deduce that |V0| ≥ n/2;

hence |V0 \W | ≥ (1/2 − o(1))n.

Now expose Z, conditioning on its size. Observe that if u ∈ [n]\W is such that Au∪{u} ⊆ Z, then u satisfies

Conditions (1), (2) and (3). So from now on our goal is to show that w.h.p. there exists a vertex u ∈ [n] \W
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for which Au ∪ {u} ⊆ Z. Since each u ∈ [n] belongs to at most
√

log n/2 + 1 of the sets {Av ∪ {v} : v ∈ [n]},

and since |Au ∪ {u}| ≤ √
logn + 1 for each u ∈ V0, one can find a collection B1, . . . , Bs′ of

s′ ≥
⌊ |V0 \W |

(
√

logn/2 + 1)(
√

logn + 1) + 1

⌋

= Ω

(

n

logn

)

pairwise-disjoint sets among the sets {Au ∪{u} : u ∈ V0 \W}. Since B1, . . . , Bs′ are pairwise-disjoint, at least

s := s′ − |U | ≥ Ω(n/ logn) − e−Ω(
√
logn)n = Ω(n/ logn) of these sets are contained in [n] \ U . So suppose,

without loss of generality, that B1, . . . , Bs ⊆ [n] \ U , and let us show that w.h.p., there is 1 ≤ i ≤ s such that

Bi ⊆ Z. To this end, we will couple Z with a binomial random set of slightly smaller size. Recall that we are

conditioning on the size of Z and on the event |Z| ≥ (1 − o(1))e−
√
logn/4n, which occurs w.h.p. by Claim 5.1.

We denote z = |Z|, recalling that (under this conditioning), Z is distributed uniformly among all subsets of

[n] \ U of size z. We generate Z by performing the following experiment: set p = z
2n , and let R be a random

subset of [n] \ U , obtained by independently including each element of [n] \ U with probability p. If |R| ≤ z,

then we uniformly choose a set Z ′ ⊆ [n] \ U of size z which contains R. It is easy to see that, conditioned

on |R| ≤ z, the set Z ′ is distributed uniformly among all subsets of [n] \ U of size z. Hence (conditioned

on |R| ≤ z), Z ′ has the same distribution as Z (conditioned on |Z| = z). Note that |R| is stochastically

dominated by Bin(n, z
2n ), so by Lemma 2.1 with λ = z

2 we have

P[|R| > z] ≤ P

[

|R| ≥ E[|R|] +
z

2

]

≤ e−
(z/2)2

2(E[|R|]+z/6) ≤ e−Ω(z) = o(1).

Since the sets B1, . . . , Bs are pairwise-disjoint and of size at most
√

logn + 1 each, the probability that R

contains none of these sets is at most

(

1 − p
√
logn+1

)s

≤ exp
(

−p
√
logn+1 · s

)

= exp

(

−
( z

2n

)

√
logn+1

· s
)

≤ exp
(

−e− logn/2 · s
)

= e−s/
√
n = e−Ω(

√
n/ logn) = o(1),

where in the second inequality we used the assumption that z ≥ (1 − o(1))e−
√
logn/4n. We conclude that

w.h.p. there will be some 1 ≤ i ≤ s such that Bi ⊆ Z, as required.

Proof of Theorem 1.11. Setting k = n/
√

logn, partition [n] into sets V1, . . . , Vk, each of size either ⌊n/k⌋
or ⌈n/k⌉. For each 1 ≤ i ≤ k and v ∈ Vi, Builder sets the adjacency list Lv so that first appear all the vertices

of Vi \ {v}, then all the vertices of Vi+1 (where i+ 1 is taken modulo k), and finally all other vertices. In each

of the three “segments”, the inner order among the vertices is arbitrary.

Now, set t = 8n
√

logn, and let (w1, . . . , wt) be the first t random vertices Builder is offered. Let W be the

set of vertices appearing at most ⌈n/k⌉ times in (w1, . . . , wt). Let A be the event that |Vi ∩W | ≤ |Vi|/2 − 1

for each 1 ≤ i ≤ k. We will show that A happens w.h.p., and that if A happens then after t rounds, Builder’s

graph contains a Hamilton cycle.

We start by estimating P[A]. Fixing 1 ≤ i ≤ k, note that if |Vi ∩W | ≥ |Vi|/2 then there is a set U ⊆ Vi of

size |U | = |Vi|/2 = (1 + o(1))
√

log n/2, such that X := |{1 ≤ j ≤ t : wj ∈ U}| ≤ |U | · ⌈n/k⌉ ≤ logn. Note that

X has the distribution Bin(t, |U |/n). By Lemma 2.1 with λ = (3 + o(1)) log n, and by our choice of t, we get

P[X ≤ logn] ≤ P

[

Bin

(

8n
√

log n ,
(1 + o(1))

√
logn

2n

)

≤ logn

]

≤ exp

(

− (1 + o(1))9 log2 n

8 logn

)

= o(n−1.1) .

By taking the union bound over all k = o(n) indices 1 ≤ i ≤ k, and over all at most 2|Vi| = 2(1+o(1))
√
logn =

no(1) choices of U ⊆ Vi, we obtain P[A] = 1 − o(1).

Suppose now that A happened. Then for each 1 ≤ i ≤ k, each of the at least |Vi|/2 + 1 vertices v ∈ Vi \W
has been connected to all vertices in Vi, and to at least 2 vertices in Vi+1 (indeed, this is due to our choice of

the lists Lv, and the definition of A). It follows that the minimum degree inside Vi is at least |Vi|/2 + 1 (for
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each 1 ≤ i ≤ k), and that we can choose distinct vertices xi, yi ∈ Vi such that yi is connected to xi+1 for each

1 ≤ i ≤ k (with indices taken modulo k).

Recall that a graph is called Hamilton-connected if for each pair of distinct vertices u, v, there is a Hamilton

path whose endpoints are u and v. It follows from a classical result of Ore [21] that any m-vertex graph with

minimum degree at least m+1
2 is Hamilton-connected. Let G denote Builder’s graph immediately after t

rounds of the process. By the above result of Ore, G[Vi] is Hamilton-connected for each 1 ≤ i ≤ k. So fix,

for each 1 ≤ i ≤ k, a Hamilton path Pi in G[Vi], whose endpoints are xi and yi. Now it is easy to see that

P1, {y1, x2}, P2, {y2, x3}, . . . , {yk−1, xk}, Pk, {yk, x1} is a Hamilton cycle in G, as required.

Proof of Theorem 1.12. The proof is somewhat similar to the proof of Theorem 1.11, and so we only give

a rough sketch. Partition [n] into k = n/
√

log n parts V1, . . . , Vk whose sizes are all divisible by r and are as

close to each other as possible. Let smin = min{|Vi| : 1 ≤ i ≤ k} and let smax = max{|Vi| : 1 ≤ i ≤ k}; observe

that smin, smax = (1 ± o(1))
√

logn. Then, for every 1 ≤ i ≤ k and every v ∈ Vi, Builder sets the adjacency list

Lv so that first appear all the vertices of Vi \ {v} (in an arbitrary order), and then all other vertices (in an

arbitrary order).

Now, set t = Cn
√

logn (where C = C(r) will be chosen later), and let (w1, . . . , wt) be the first t random

vertices offered to Builder. Let W be the set of vertices appearing at most smax − 2 times in (w1, . . . , wt).

Observe that if |W ∩ Vi| < smin/r, then the resulting induced subgraph of Builder G[Vi] has minimum degree

at least (1 − 1/r) |Vi| and thus admits a Kr-factor by the Hajnal-Szemerédi Theorem [10]. If this happens

for every 1 ≤ i ≤ k, then the union over 1 ≤ i ≤ k of these Kr-factors obviously forms a Kr-factor of G. It

remains to prove that w.h.p. |W ∩ Vi| < smin/r holds for every 1 ≤ i ≤ k. Fix some 1 ≤ i ≤ k. Then

P[|W ∩ Vi| ≥ smin/r] ≤
(

smax

smin/r

)

· P [Bin(t, smin/(rn)) ≤ (smax − 2) · smin/r]

≤ (3r)smin/r · exp

{

− rn

2tsmin
· C

2 · s4min

4r2

}

= (3r)smin/r · exp

{

− C · s3min

8r
√

logn

}

≤ (3r)
√
logn · exp

{

−C · (1 − o(1)) log n

8r

}

≤ exp

{

−C logn

9r

}

= o(1/k),

where the second inequality holds by Lemma 2.1 with λ = C
2 · s2min

r , and the equality holds if, say, C = 9r.

We also assumed throughout that n is large enough with respect to r. A union bound over all 1 ≤ i ≤ k then

shows that w.h.p. |W ∩ Vi| < smin/r holds for every 1 ≤ i ≤ k, as required.
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[12] Anders Johansson, Jeff Kahn, and Van Vu. Factors in random graphs. Random Structures and Algorithms,

33(1):1–28, 2008.

[13] Jeff Kahn, Eyal Lubetzky, and Nicholas Wormald. The threshold for combs in random graphs. Random

Structures and Algorithms, 48(4):794–802, 2016.

[14] Mihyun Kang, Will Perkins, and Joel Spencer. The BohmanFrieze process near criticality. Random

Structures and Algorithms, 43(2):221–250, 2013.

[15] Michael Krivelevich, Po-Shen Loh, and Benny Sudakov. Avoiding small subgraphs in Achlioptas processes.

Random Structures and Algorithms, 34:165–195, 2009.

[16] Michael Krivelevich, Eyal Lubetzky, and Benny Sudakov. Hamiltonicity thresholds in Achlioptas pro-

cesses. Random Structures and Algorithms, 37:1–24, 2010.

[17] Michael Molloy and Bruce Reed. Graph Colouring and the Probabilistic Method. Springer, 2002.

[18] Richard Montgomery. Spanning trees in random graphs. Advances in Mathematics, 356:106793, 2019.
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