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ABSTRACT: From among G) triangles with vertices chosen from n points in the unit square, 
let T be the one with the smallest area, and let A be the area of T. Heilbronn's triangle 
problem asks for the maximum value assumed by A over all choices of n points. We consider 
the average-case: If the n points are chosen independently and at random (with a uniform 
distribution), then there exist positive constants c and C such that c/n3 < J.L,, < C/n3 for all 
large enough values of n, where J.Ln is the expectation of A. Moreover, c/n3 < A < C/ n3, with 
probability close to one. Our proof uses the incompressibility method based on Kolmogorov 
complexity; it actually determines the area of the smallest triangle for an arrangement in 
"general position." © 2002 Wiley Periodicals, Inc. Random Struct. Alg., 20, 206-219, 2002 

1. INTRODUCTION 

From among G) triangles with vertices chosen from among n points in the unit 
circle, let T be the one of least area, and let A be the area of T. Let ;in be the 
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maximum assumed by A over all choices of n points. H.A. Heilbronn (1908-1975) 
asked for the exact value or approximation of Aw The list [1-4, 7, 8, 13, 14, 17-27] 
is a selection of papers dealing with the problem. Obviously, the value of An will 
change only by a small constant factor for every unit area convex shape, and it has 
become customary to consider the unit square [22]. A brief history is as follows. 
Heilbronn observed the trivial upper bound An = 0( l/n) and conjectured that 
An = O(l/n2), and Erdos proved that this conjecture-if true-would be tight since 
An = O(l/n2 ) [18]. The first nontrivial result due to Roth in 1951 established the 
upper bound A11 = 0(1/(nJlog log n)) [18], which was improved in 1972 by Schmidt 
to 0(1/(nJlogn)) [23] and in the same year by Roth first to O(l/n1.1o5 ... ) [19] and 
then to O(l/nl. 117···) [20]. Roth simplified his arguments in 1973 and 1976 [21, 22]. 
Exact values of An for n ::::: 15 were studied in [7, 25-27]. In 1981, Komlos, et al. 
[13] improved Roth's upper bound to O(l/n817-e), using the simplified arguments of 
Roth. The really surprising news came in 1982 when the same authors [14] derived 
a lower bound O(log n/n2), narrowly refuting Heilbronn's original conjecture. Some 
believe that this lower bound is perhaps the best possible [5, 6]. In 1997, Bertram­
Kretzberg et al. [3] gave an algorithm that finds a specific set of n points in the 
unit square whose A11 (as defined above) is O(logn/n2 ) for every fixed n, using 
a discretization of the problem. In 1999, Barequet [1] derived lower bounds on d­
dimensional versions of Heilbronn's problem where d > 2. All of this work concerns 
the worst-case value of the minimal triangle area. 

1.1. Results 

Here, we consider the expected value: If the n points are chosen independently 
and at random (with a uniform distribution), then there exist positive constants 
c and C such that c/n3 < µ,, < C/n3 for all large enough n, where µn is the 
expectation of the area A of the smallest triangle formed by any three points. 
Moreover, c/n3 < A < C/n3, with probability close to one. This follows directly 
from Corollaries 2 and 4 of Theorems 1 and 2. Our technique is to discretize the 
problem and show that all Kolmogorov-random arrangements (see below) of n 
points in the unit square satisfy this range of area of the smallest triangle, where 
in this case the constants c, C are functions of the "randomness deficiency" of the 
arrangement-that is, how far the Kolmogorov complexity of the arrangement falls 
short of the maximum attainable Kolmogorov complexity. A Kolmogorov-random 
arrangement is a rigorous way to say that the arrangement is in "general position" 
or "typical": there are no simple describable properties that can distinguish any 
such arrangement from another one [15]. Every arrangement in which the smallest 
triangle has area outside the given range-smaller or larger--cannot be Kolmogorov 
random. According to a recent article [16], this result can act as a mathematical 
guarantee of the afficacy of certain pseudo Monte Carlo methods to determine the 
fair market value of derivatives (on the stock market)-these latter methods give 
a sequence of points satisfying certain pseudo-randomness properties but having 
less clustering and larger smallest triangles than to be expected from truly random 
sequences. For use of Heilbronn's triangles in geometrical modeling, see [1]. 

1.2. Technique 

Our analysis uses the incompressibility method based on Kolmogorov complexity. 
The argument proceeds by using some property to be contradicted to obtain a 
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short encoding for some object. In the present article, the object concerned is usu­

ally an arrangement of n pebbles on a K x K grid. The Kolmogorov complexity of 

!he object is a lower bound on the length of an encoding of the object. A contra­

diction arises by a postulated short encoding having length below the Kolmogorov 

complexity. We have found that thinking in terms of coding is often helpful to solve 

our problems. Afterwards, there may arise alternative proofs using counting, as in 

the case of [ 11 J, or the probabilistic method with respect to the present result. 1 In 
some cases [9], no other proof methods seem to work. Thinking in terms of code 

length and Kolmogorov complexity enabled advances in problems that were open 

for decades, like for example [9, 11]. Although the technique has been widely used 

in a plethora of applications, see the survey [15], it is not yet as familiar as the 

counting method or the probabilistic method. One goal of the present article is 

to widen acquaintance with the incompressibility method by exhibiting yet another 
nontrivial example of its application. 

2. KOLMOGOROV COMPLEXITY AND THE INCOMPRESSIBILITY METHOD 

We give some definitions to establish notation. For introduction, details, and proofs, 

sec I 15]. We write string to mean a finite binary string. Other finite objects can be 

encoded into strings in natural ways. The set of strings is denoted by {O, 1} *. 
Let x, y, z E . Y, where .V denotes the set of natural numbers. Identify . .N and 

{ O. l } • according to the correspondence 

(0, E), (1, 0), (2, 1), (3, 00), (4, 01), .... 

H_er~ E_denote~ the empty word with no letters. The length l(x) of x is the number 
ol hits m the bmary string x. 

The emphasis is on binary sequences only for convenience; observations in any 
alphabet can he so encoded in a way that is 'theory neutral'. 

2.1. Self-delimiting Codes 

A binary string Y is a proper prefix of a binary string x if we can write x = yz for 
"'#t:Aset{rv }c{Ol}*' ,;:;v · :- : . · .. · •. ·. · · · - ' is pre1wfree if for any pair of distinct elements 
'.n t~e. _s~t neither is .a prope~ prefix of the other. A prefix-free set is also called 

~aJl>lndjb. wlcfle.l E,.ac~. bmary stnng x = x l X2 .•• xn has a special type of prefix code 
e a se. -ce umtcng code, ' 

This code is self-delimiting because we can det . h -
bv ,. d' · · . . ermme w ere the code word x ends 

• re.i mg it from left to nght without scanning past the last symbol. Iterating this 

'John Tromp has informed us in December 1999 th t f II . . . 
he has given an alternative proof of th . . 1 a' 0 owmg a prehmmary version (!OJ of this work, 

e mam resu t based on the probabilistic method. 
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code, we define the standard self-delimiting code for x to be x' = l(x)x. It is easy 
to check that /(i) = 2n + 1 and l(x') = n + 2 logn + L 

Let (-, ·) be a standard one-one mapping from .. N x .IV to .V, for technical reasons 
chosen such that l( (x, y)) = l(y) + /(x) + 2/(l(x)) + 1, for example (x, y) = x'y = 
11(/(x))Q/(x )xy. 

2.2. Kolmogorov Complexity 

Informally, the Kolmogorov complexity, or algorithmic entropy, C(x) of a string x is 
the length (number of bits) of a shortest binary program (string) to compute x on a 
fixed reference universal computer (such as a particular universal Turing machine). 
Intuitively, C(x) represents a canonical form of the minimal amount of information 
required to generate x by any effective process, [12]. The conditional Kolmogorov 
complexity C(x I y) of x relative toy is defined similarly as the length of a shortest 
program to compute x, if y is furnished as an auxiliary input to the computation. The 
functions CC) and C( · I · ), though defined in terms of a particular machine model, 
are machine-independent up to an additive constant (depending on the particu­
lar enumeration of Turing machines and the particular reference universal Turing 
machine selected). They acquire an asymptotically universal and absolute character 
through Church's thesis, and from the ability of universal machines to simulate one 
another and execute any effective process, see for example [15]. Formally: 

Definition 1. Let Ti.i. T1, • • • be a standard enumeration of all Turing machines. 
Choose a universal Turing machine U that expresses its universality in the following 
manner: 

U(((i, p),y)) = T;((p,y)), 

for all i and (p, y), where p denotes a Turing program for T; and y an input. We fix U 
as our reference universal computer and define the conditional Kolmogorov complexity 
of x given y by 

C(xly)= min {l(q):U((q,y))=x}, 
qE{li,!}' 

(.for example, q = (i, p) above). The unconditional Kolmogorov complexity of x is 
defined by C(x) = C(x I E). For convenience we write C(x, y) for C( (x, y) ), and 
C(x I y, z).for C(x I (y, z) ). 

2.3. Incompressibility 

Since there is a Turing machine, say T;, that computes the identity function T;(x) = 
x, it follows that U((i, p)) = T;(p). Hence, C(x) _:: l(x) + c for fixed c _:: logi + 
2loglogi +land all x.2.3 

It is easy to see that there are also strings that can be described by programs 
much shorter than themselves. For instance, the function defined by f ( 1) = 2 and 

2 We need to encode i in such a way that U can determine the end of the encoding. One way to do that 
is to use the code l(/(i))Ol(i)i which has length 21(/(i)) + l(i) + 1 bits. 
1 In what follows, "log" denotes the binary logarithm. "Lr J" is the greatest integer q such that q ::: r. 
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f(k) = 2f(k-l) fork > 1 grows very fast, f(k) is a "stack" of k twos. Yet for every 
k, it is clear that f(k) has complexity at most C(k) + 0(1). What about incompress­
ibility? For every n there are 2n binary strings of length n, but only L?~d 2; = 2n - 1 
descriptions in binary string format of length less than n. Therefore, there is at least 
one binary string x of length n such that C(x) ::::_ n. We call such strings incompress­
ible. The same argument holds for conditional complexity: since for every length n 
there are at most 2n - 1 binary programs of length < n, for every binary string y, 
there is a binary string x of length n such that C(x I y) ::: n. Strings that are incom­
pressible are patternless, since a pattern could be used to reduce the description 
length. Intuitively, we think of such patternless sequences as being random, and 
we use "random sequence" synonymously with "incompressible sequence." Since 
there are few short programs, there can be only few objects of low complexity: the 
number of strings of length n that are compressible by at most 8 bits is at least 
2n - zn-8+1. 

Lemma 1. Let 8 be a positive integer. For every fixed y, every set S of cardinality m 
has at least m(l - 2-8 ) + 1 elements x with C(x I y)::: llogmJ - 8. 

Proof There are N = L7~d 2; = 2n - 1 binary strings of length less than n. A 
fortiori there are at most N elements of S that can be computed by binary programs 
of length Jess than n, given y. This implies that at least m - N elements of S cannot 
be computed by binary programs of length less than n, given y. Substituting n by 
l log m J - 8 together with Definition 1 yields the lemma. • 

If we are given S as an explicit table, then we can simply enumerate its elements 
(in, say, lexicographical order) using a fixed program not depending on Sor y. Such 
a fixed program can be given in 0( 1) bits. Hence the complexity of every x in S 
satisfies C(x IS, y) ~log ISI + 0(1). 

2.4. Incompressibility Method 

In a typical proof using the incompressibility method, one first chooses an incom­
pressible object from the class under discussion. The argument invariably says that 
if a desired property does not hold, then in contrast with the assumption, the object 
can be compressed. This yields the required contradiction. Since most objects are 
almost incompressible, the desired property usually also holds for almost all objects, 
and hence on average. 

3. GRID AND PEBBLES 

In the analysis of the triangle problem, we first consider a discrete version based 
on an equally spaced K x K grid in the unit square. The general result for the 
continuous situation is then obtained by taking the limit for K ~ oo. Call the axis­
parallel 2K lines grid lines and their crossing points grid points. We place n points 
on grid points. These n points will be referred to as pebbles to avoid confusion with 
grid points or other geometric points arising in the discussion. 
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K2 
There are ( n ) ways to put n unlabeled pebbles on the grid where at most one peb-

ble is put on every grid point. We count only distinguishable arrangements without 
regard for the identities of the placed pebbles. Clearly, the restriction that no two 
pebbles can be placed on the same grid point is no restriction anymore when we let 
K grow unboundedly. 

Erdos [18] demonstrated that for the special case of p x p grids, where p is a 
prime number, there exist necessarily arrangements of p pebbles with every pebble 
placed on a grid point such that no three pebbles are collinear. The least area of 
a triangle in such an arrangement is at least l/(2p2). This implies that the triangle 
constant iln = !1(1/n2 ) as n ~ oo through the special sequence of primes. 

We now give some detailed examples-used later-of the use of the incompress­
ibility method. By Lemma 1, for every integer o independent of K, every arrange­
ment X 1, ••• , Xn (locations of pebbles), out of at least a fraction of 1 - 1/26 of all 
arrangements of n pebbles on the grid, satisfies 

(1) 

Notation 1. For convenience, we abbreviate the many occurrences of the phrase 
"Let X 1, ••• , Xn be an arrangement of n pebbles on the K x K grid, let n be fixed 
and K be sufficiently large, and let o be a positive integer constant such that (1) 
holds" to "If ( 1) holds" in the rest of the article. 

Note that, for every arrangement X 1, ••• , Xn of n pebbles on a K x K grid, we 
have C(X1' ... ' xn I n, K) :'.::log (:2

) + 0(1)-there is a fixed program of 0(1) bits 
for the reference universal computer that reconstructs the X 1, ••• , X" from n, K, 
and its index in the lexicographical ordering of all possible arrangements. That (1) 
holds with o small means that the arrangement X 1, ••• , Xn of pebbles on the grid 
has no regularity that can be used to prepare a description that is significantly 
shorter than simply giving the index in the lexicographical ordering of all possible 
choices of n positions from the available K x K grid positions. We can view such 
an arrangement as being "random" or "in general position." 

Lemma 2. ff' (1) holds, then no three pebbles can be collinear, and so the area of a 
smallest triangle is at least l/(2(K - 1 )2). 

Remark 1. This is the first proof of the article using the incompressibility argu­
ment. Let us explain the proof idea in detail: On the one hand, we construct a 
description d such that the arrangement X 1, ••• , X 11 can be reconstructed from d 
by a fixed program p for the universal reference computer, given also n and K. 
If p is in self-delimiting format, then the universal reference computer can parse 
pd into its constituent parts p and d, and subsequently execute p to reconstruct 
X 1, ••• , X 11 from the auxiliary information n, K, together with the description d. 
On the other hand, by definition, the Kolmogorov complexity of an object is the 
length of its shortest program for the reference universal computer and we have 
assumed a lower hound on the Kolmogorov complexity. Since the description pd is 
a program for the reference universal computer, its length l(pd) must be at least as 
large as the Kolmogorov complexity (the auxiliary information n, K being the same 
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in both cases). By the lower bound (1), this shows that !(pd) ~ log (~1') - 8. Since 

l(p) is independent of n, K, we can set l(p) = 0( l) in this context, and obtain 

l(d) ::::: log (~2 ) - 8 - 0(1 ). By exploiting collinearity of pebbles in the description 

d, to make it as compact as possible, this inequality will yield the required contra­

diction for n fixed and K large enough. 

Proof Place n - 1 pebbles at positions chosen from the total of K 2 grid points­

there are (,~21 ) choices. Choose two pebbles, P and Q, from among the n - 1 

pebbles-there are (n~ 1 ) choices. Choose a new pebble R on the straight line deter­

mined by P, Q. The number of grid points on this line between P (or Q) and R, 

which number is < K, identifies R uniquely in ::=: log K bits. There is a fixed algo­

rithm that, on input n and K, decodes a binary description consisting of the items 

above-each encoded as the logarithm of the number of choices-and computes 

the positions of the n pebbles. By (1) this implies 

Using the asymptotic expression 

(a) a 1 
log b - b log b ~ b log e - Z log b + 0(1), (2) 

for b fixed and a ~ oo, one obtains 3 log n ::::: log K - o + 0( 1 ), which is a contra­

diction for n fixed and K sufficiently large. II 

Lemma 3. If (1) holds, then no two pebbles can be on the same grid line. 

Proof Place n - 1 pebbles at positions chosen from the total of K2 grid points­

there are e~_21 ) choices. Choose one pebble P from among the n - 1 pebbles-there 

are n - 1 choices. Choose a new pebble R on the grid line determined by P-there 

are 2(K - 1) choices. There is a fixed algorithm that, on input n and K, reconstructs 

the positions of all n pebbles from a description of these choices. By ( 1) this implies 

log C ~ 1) + log(n - 1) + logK + 0(1)::::: Jog ( :
2

) _ 8. 

Using (2) with fixed n and K ~ oo we obtain 2 log n ~ log K - o + 0( 1 ), which is 

a contradiction for large enough K. 111 

4. LOWER BOUND 

Our strategy is to show that if we place n pebbles on a K x K grid, such that 

the arrangement has high Kolmogorov complexity, then every three pebbles form 

a triangle of at least a certain size area. If the area is smaller, then this can be 

used to compress the description size of the arrangement to below the assumed 
Kolmogorov complexity. 
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Theorem 1. If' (1) holds, then there is a positive constant c1 such that the least area 
of a triangle formed by three pebbles on the grid is at least c1 /(28113). 

Pro<~{ Place n - 1 pebbles at positions chosen from the total of K 2 grid points-
K' there are (,,__:-1) choices. Choose two pebbles, P and Q, from among the n 

pebbles-there are G) choices. Place a new pebble R at one of the remaining grid 
points. Without loss of generality, let the triangle PQR have PQ as the longest 
side. Center the grid coordinates on P = (0, 0) with Q = (q 1, q2 ) and R = (r1 , r2 ) 

in units of l/(K - 1) in both axes directions. Then R is one of the grid points on 

the two parallel line segments of length L = IPQI = j qf + qV(K - l) at distance 

H = lq2r 1 - q 1r2 1/((K - l)j qr+ q~) from the line segment PQ, as in Figure l. 
The number of grid points on each of these line segments (including one endpoint 
and excluding the other endpoint) is a positive integer g = gcd( q1' q2)-the line 
q2x = q1y has g integer coordinate points between (0, 0) and (q 1, q2 ) including 
one of the endpoints. This implies that f defined by LH(K - 1)2 = fg is a positive 
integer as well. 

Enumerating the grid points concerned in lexicographical order, the index of 
R takes at most log(2gf) = log(2g) + logf = log(4IPQRl(K - 1)2) bits, where 
IPQRI denotes the area of the triangle PQR. Altogether this constitutes an effective 
description of the arrangement of the n pebbles. By the assumption in the theorem 
the arrangement satisfies (1), that is, the number of bits involved in any effective 
description of the arrangement is lower bounded by the right-hand side. Then, 

log (nK__2
1) +log(;)+ log(4IPQRl(K - 1)2 ) + 0(1)::: log (~2)- 8. 

By approximation (2), 

(K2) ( K1 ) Kz log - log -7 log - + 0(1), 
n n-1 n 

for large enough fixed n and K -7 oo. Therefore, log IPQRI + 0(1)::: -3 logn -
8 + 0(1), K -7 oo. Consequently, there exists a positive constant cl> independently 
of the particular triangle PQR, such that IPQRI > cJl(n32°) for all large enough n 
and K. Since this holds for every triangle PQR, constructed as above, it holds in 
particular for a triangle of least area A. II 

Fig. 1. Triangle situation based on pebbles P, Q. 
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By Lemma 1, the probability concentrated on the set of arrangements satisfying 
(1) is at least 1 - 1/28: 

Corollary 1. If n points are chosen independently and at random (with a uniform 
distribution) in the unit square, and A is the least area of a triangle formed by three 
points, then there is a positive constant c1 such that for every positive 8 we have 
A > cif(28n3) with probability at least 1 - 1/28. 

In the particular case of 8 = 1, the probability concentrated on arrangements 
satisfying (1) is at least ~ which immediately implies: 

Corollary 2. If n points are chosen independently and at random (with a uniform 
distribution) in the unit square, then there is a positive constant c such that the area of 
a triangle of least area formed by three points has expectation f.Ln > c / n3 • 

5. UPPER BOUND 

Every pair of pebbles out of an incompressible arrangement of n pebbles on a 
K x K grid defines a distinct line by Lemma 2. The two pebbles defining such 
a line together with any other pebble forms a triangle. If A is the least area of 
a triangle formed by three pebbles, then this constrains the possibilities of placing a 
third pebble close to a line defined by two pebbles. Thus, every such line defines a 
.forbidden strip on both sides of the line where no pebbles can be placed. It is easy 
geometry to see that every forbidden strip covers an interval of length 2A of every 
grid line on both sides of the intercept of the "forbidding" line concerned. Our 
strategy is as follows: Divide the pebbled unit square by a straight line parallel to 
the horizontal sides into two parts containing about one half of the n pebbles each. 
Show that the pebbles in the larger half (the halves may not have equal area) of the 
unit square define il(n2 ) distinct "forbidding lines'', that cross both the dividing line 
and the opposite parallel side of the unit square. While the associated forbidden 
grid point positions can overlap, we show that they do not overlap too much. As 
a consequence, the set of grid points allowed to place the remaining n/2 pebbles 
in the smaller remaining half of the unit square, gets restricted to the point that 
the description of the arrangement can be compressed too far. This argument is so 
precise that for small 8 in (1), the upper bound is of the same order of magnitude 
as the previously proven lower bound. 

Theorem 2. If (1) holds with 8 < (2 - e)logn for some fixed positive constant e, 
then there is a positive constant C1 such that the least area of a triangle formed by 
three pebbles on the grid is at most 

A(B) = 148 + 0(1). 
4C1n3 1oge 

(3) 

Proof. Choose n pebbles at positions chosen from the total of K 2 grid points such 
that (1) is satisfied. Divide the unit square by a horizontal grid line into an upper 
and a lower half, each of which contains n/2 ± 1 pebbles-there are no grid lines 
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containing two pebbles by Lemma 3. We write forbidding line for a line determined 
by two pebbles in the upper half that intersects all horizontal grid lines in the lower 
half of the unit square. 

Claim l. If (1) holds, then there is a positive constant C1 such that there are at least 
C1 n2 forbidding lines. 

Proof Take the top half to be the larger half so that it has area at least 1/2. Divide 
the top half into five vertical strips of equal width of 1/5 and five horizontal strips 
of equal width 1/10 starting from the top-ignore the possibly remaining horizontal 
strip at the bottom of the top half. Clearly, a forbidding line determined by a pebble 
in the upper rectangle and a pebble in the lower rectangle of the middle vertical strip 
intersects the bottom horizontal grid line. We show that these rectangles contain at 
least n/ 100 points each, and hence the claim holds with C1 = 1/10, OOO. 

Consider either rectangle (the same argument will hold for the other rectangle). 
Let it contain m :::::: n pebbles. Since the area of the rectangle is 1/5 x 1/10, it 
contains K 2 /50 grid points (plus or minus the grid points on the circumference 
of length 3K/5 which we ignore). Place n - m pebbles at positions chosen from 
49K2 /50 grid points outside the rectangle-there are (49,~;;'0) choices-and place 
m pebbles at positions chosen from the total of K 2 /50 grid points in the rectangle­
there are (K:;,50) choices. Given n and K, the n pebble positions are determined by 
m, the position of the rectangle and an index number i of log i bits with 

. (49K2 /50) (K2 /50) log 1 = log 
n-m m 

49K2 /50 K 2 /SO 1 
_,. (n - m) log + mlog-- + nloge - - log nm+ 0(1), 

n-m m 2 

for K _,. oo with n, m fixed, by (2). Given n, we can describe m in log n bits. Thus, 
given n and K, the total description length of the description of the arrangement 
of the n pebbles is log n + log i + 0( 1) bits. This must be at least the Kolmogorov 
complexity of the arrangement. Then, by ( 1 ), 

49K2 /50 K 2 /50 1 K 2 
(n - m) log + m log-- - - logm + 0(1) :=:: n log - - 8. 

n-m m 2 n 

This implies 

50(n-m) 1 
8 :=:: (n - m) log 49 + m log50m + 2 logm - n logn - 0(1) 

50(n - m) 
> (n - m) log + m log50m - n logn - 0(1). 

49 

Assume, by way of contradiction, m::::: n/100. Then, 

99 4950 1 50 
8 :=:: 100 n log 4900 n + 100 n log 100 n - n log n - 0( 1) 

_ (J:!_ 4950 _1_ lo . ~)- O(l) 
- n 100 log 4900 + 100 g 100 

> n(0.0145 - 0.01) - 0(1), 
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which contradicts 8 = O(log n) in the statement of the theorem. Hence the top 
rectangle and the bottom rectangle of the middle strip in the top half contain at 
least n/100 pebbles each. Each pair of pebbles, one in the top rectangle and one 
in the bottom rectangle, determine a distinct forbidding line by Lemma 2 (no three 
pebbles can he collinear under assumption (1)). The claim is proven with C1 = 
(1/100). (1/100) = 1/104 . Ill 

Claim 2. Let w 1, w2, w3 , w4 , w5 be the ~pacings between the six consecutive intercepts 
of a sextuplet o.f forbidding lines, with a horizontal grid line in the bottom half containing 
a pebble, and let D = w1 + w2 + w3 + w4 + w5 . If (1) holds, then there is a positive 
C2 such that D > C2/n3-'l5 with E as in the statement of the theorem. 

Proof Place n - S pebbles at positions chosen from the total of K2 grid points­
there are ( ~',) choices. Choose eight pebbles, P; (i = 0, 1, 2, 3, S, 7, 9, 11) from 

" . s among the n - S pebbles-there are at most ("~-) choices-and five new pebbles Pj 
(j = 4, 6, 8, 10, 12) such that P1P2 , P3P4 , P5P6, P7P8 , P9Pw, P 11 P 12 is the sextuplet 
of forbidding lines in the claim, and P0 is a pebble in the lower half. Without 
loss of generality, we assume that the "middle" pebbles of unknown position P1 
(j = 4, 6, 8, 10, 12), as well as P2 in known position, are in between the other 
defining pebble of the forbidding line concerned and its intercept with the lower 
grid line containing P0 . That is, the top-to-bottom order on a forbidding line is 
P 1, P2' intercept 1, P3 , P4, intercept2, and so on. Then, a forbidding line determined 
by an outermost pebble and an intercept, together with the grid line containing the 
middle pebble, enables us to determine the grid point on which the middle pebble 
is located. An error in the position of the intercept leads to a smaller error in the 
position of the middle pebble. Thus, a precision of the position of the intercept 
up to 1/(4(K - 1)), together with the precise position of the outermost pebble, 
enables us to determine the grid point containing the middle pebble as the unique 
grid point in a circle with radius l/(4(K -1)) centered on the computed geometric 
point. The coordinates of the five unknown Pjs are determined by (i) the locations 
of the five intercepts of the associated quintuplet of forbidding lines with the lower 
half horizontal grid line on which P0 is located, and (ii) the five unknown distances 
between these intercepts and the Pjs along the five associated forbidding lines. 
The grid point positions of the Pjs are uniquely determined if we know the latter 
distances up to precision l/(4(K - 1)). All six intercepts in the statement of the 
claim are in an interval of length D which contains DK grid points (rounded to 
the appropriate close entire value). We can describe every intercept in this interval 
(up to the required precision) in log DK+ 0(1) bits. Relative to the intersection 
of the known forbidding line P 1 P2, therefore, item (i) uses Slog DK + 0( 1) bits. 
Item (ii) uses SlogK + 0(1) bits. Given n,K, we can describe the placement of 
the /1 - s pebbles in log e~~,;) hits; the choice of the eight pebbles among them in 
log ("85) bits; and we have ~hown that the placement of the five unknown pebbles 
can be reconstructed from an additional S log DK + 5 log K + 0( 1) bits. Together, 
this forms a description of the complete arrangement. By (1) this implies: 

log C ~2 
S) + 8 log n +Slog DK+ Slog K + 0( 1) ::: log ( : 2

) - 8. 
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A now familiar calculation using (2) yields 5 log D + 0( 1) ::: -13 log n - 8, for fixed 
n and K ---* oo. This shows D > C22(2 Iogn-o)/5 /n 3 for some positive constant C2_ 

Substituting 8 < (2 - e) log n proves the claim. • 

We have now established that there are C1n2 distinct forbidding lines (with C1 as 
in Claim 1) determined by pairs of pebbles in the upper half, and by construction 
every such forbidding line intersects every lower half horizontal grid line. Moreover, 
every D-length interval (with Das in Claim 2) on a lower half horizontal grid line­
that contains a pebble-contains at most six intercepts of forbidding lines. This 
means that we can select C 1 n2 /7 consecutive intercepts on such a grid line that 
are separated by intervals of at least length D. The two pebbles P, Q defining the 
forbidding line /1' together with any pebble R on a lower half horizontal grid line 
12, determine a triangle. If dis the distance between the intercept point of 11 with /2 
and the pebble R, and a is the angle between the forbidding line /1 and grid line /2, 

then the triangle side located on the forbidding line has length :s 1/ cos a while the 
height of the triangle with respect to that side is d cos a. Thus, if A is the area of 
the smallest triangle formed by any three pebbles, then d ::; 2A. Consequently, all 
grid positions in intervals of length 2A on both sides of an intercept of a forbidding 
line with a lower half grid line-that contains a pebble-are forbidden for pebble 
placement. In case 

4A :S D, (4) 

this means that the C1n2/7 consecutive intercepts exclude 4AC1n2/7 grid positions 
from pebble placement on the horizontal lower grid line concerned. If (4) does not 
hold, that is, 4A > D, then at least DC1 n2 /7 grid positions are excluded. Given 
the pebbles in the upper half, and therefore the forbidding lines, the excluded grid 
points in the lower half are determined. Therefore, with 

B = min{4A, D}, (5) 

and also given the horizontal lower half grid line concerned, we can place a pebble 
on the grid line in at most a number of positions not exceeding. 

(6) 

We now use this fact to construct a short encoding of the total arrangement of 
the n pebbles satisfying (1): Select n horizontal grid lines (there can be only one 
pebble per grid line by Lemma 2) chosen from the total of K grid lines-there 
are (~) choices. Select on everyone of the upper n/2 horizontal grid lines a grid 
point to place a pebble-there are Kn/Z choices. Finally, select in order, from top to 
bottom, on the lower n/2 horizontal grid lines n/2 grid points to place the pebbles­
there are only (K(l - C1n2B/7))nfZ choices by (6). Together, these choices form a 
description of the arrangement. Given the values of n, K we can encode these 
choices in self-delimiting items, and by (1) this implies: 

log(~)+ i logK + i logK(l - C1n2B/7) + 0(1)::; log (~2)- 8. 

Using (2) with n fixed yields 

i log(l - C1n2B/7) 2: -8 - 0(1), K---* oo. 
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so that 
148 + 0(1) 

B-:::_---­
C1n3 loge 
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n _,. oo, 

(7) 

Since 8 < 2 log n in the right-hand side, Claim 2 shows that D > B. Therefore, (5) 
implies B = 4A so that (7) establishes the theorem. 111111 

Together with Lemma l, Theorem 2 implies that the smallest triangle in an 
arrangement has an area below a particular upper bound with a certain proba­
bility. 

Corollary 3. If n poims are chosen independent~v and at random (with a uniform 
distribution) in the unit square, and A is the least area of a triangle formed by three 
points, thenfi>r every positive o < ( 2 - t:) log n ( t: > 0), we have 

A< A(B) 

with probability at least l - 1 /2°. 

That is. the probability that A < A(l) at least ~ ( 8 = 1 ), the probability that A < 
A(2) is at least i(B = 2). and so on. Since A(8 + 1) ::=:: A(B), we can upper bound 
the expectation µn of A by upper bounding the probability of A with A( 8) < A S 
A(8 + 1) by 2-("~ 1 1 = [(1 - 2-H) - (1 - 2-'1)]. We do this for B-:::_ 1.9 logn. The 
remaining probability is J / n 14 or slightly less (because 8 is integer). This probability 
is so small that. even if we assume the known worst-case upper bound on A for the 
remaining cases. known to be C3/n 817-< for some positive constant C3 for every 
E' > 0, [BJ. the result is insignificant. Hence, there is a positive constant C such 
that: 

Corollary 4. If n points are chosen independent(v and at random (with a uniform 
distribution) in the unit square, then there is a positive constant C such that the area 
of a triangle of least area f(mned by three points has expectation µ,,, < C/n3 . 
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