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Abstract

The progressive censoring scheme has received considerable amount of attention in the
last fifteen years. During the last few years joint progressive censoring scheme has gained
some popularity. Recently, the authors Mondal and Kundu (“A new two sample Type-II
progressive censoring scheme”, arXiv:1609.05805) introduced a balanced two sample Type-II
progressive censoring scheme and provided the exact inference when the two populations are
exponentially distributed. In this article we consider the case when the two populations follow
Weibull distributions with the common shape parameter and different scale parameters. We
obtain the maximum likelihood estimators of the unknown parameters. It is observed that
the maximum likelihood estimators cannot be obtained in explicit forms, hence, we propose
approximate maximum likelihood estimators, which can be obtained in explicit forms. We
construct the asymptotic and bootstrap confidence intervals of the population parameters.
Further we derive an exact joint confidence region of the unknown parameters. We propose
an objective function based on the expected volume of this confidence set and using that we
obtain the optimum progressive censoring scheme. Extensive simulations have been performed
to see the performances of the proposed method, and one real data set has been analyzed for
illustrative purposes.
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1 Introduction

In any life testing experiment censoring in inevitable. Different censoring schemes have been intro-

duced in the literature to optimize time, cost and efficiency. Among different censoring schemes,

Type-I and Type-II are the two most popular censoring schemes. But none of these censoring

schemes allows removal of units during life testing experiment. Progressive censoring scheme in-

corporates this flexibility in a life testing experiment. Progressive Type-II censoring scheme allows

removal of experimental units during the experiment as well as ensures a certain number of failure

to be observed during the experiment to make it efficient. Extensive work had been done on the

different aspects of the progressive censoring since the introduction of the book by Balakrishnan

and Aggarwala [2]. A comprehensive collection of different work related to progressive censoring

scheme can be found in a recent book by Balakrishnan and Cramer [3].

But all these development are mainly based on a single population. Recently two sample joint

censoring schemes are becoming popular for a life testing experiment mainly to optimize time

and cost. In a Type-II joint censoring scheme two samples are put on a life testing experiment

simultaneously and the experiment is continued until a certain number of failures are observed.

Balakrishnan and Rasouli [7] first considered the likelihood inference for two exponential popu-

lations under joint a Type-II censoring scheme. Ashour and Eraki [1] extended the results for

multiple populations and when the lifetime of different populations follow Weibull distributions.

Recently, Rasouli and Balakrishnan [20] introduced a joint progressive Type-II censoring (JPC)

scheme and provided the exact likelihood inference for two exponential populations under this

censoring scheme. Parsi and Ganjali [16] extended the results of Rasouli and Balakrishnan [20]

for two Weibull populations. Doostparast and Ahmadi et al. [12] provided the Bayesian inference

of the unknown parameters based on the data obtained from a JPC scheme under LINEX loss

function. Balakrishnan and Su et al. [8] extended the JPC model to general K populations and

studied exact likelihood inference of the unknown parameters for exponential distributions.

Mondal and Kundu [13] recently introduced a balanced joint progressive Type-II censoring
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(BJPC) scheme and it is observed that it has certain advantages over the JPC scheme originally

introduced by Rasouli and Balakrishnan [20]. The scheme proposed by Mondal and Kundu [13] has

a close connection with the self relocating design proposed by Srivastava [21]. Mondal and Kundu

[13] provided the exact likelihood inference for the two exponential populations under a BJPC

scheme. The main aim of this paper is to study likelihood inference of two Weibull populations

under this new scheme. We provide the maximum likelihood estimators (MLEs) of the unknown

parameters, and it is observed that the MLEs of the unknown parameters cannot be obtained in

explicit form. Due to this reason we propose to use approximate maximum likelihood estimators

(AMLEs) of the unknown parameters, which can be obtained in explicit forms. We propose to use

the asymptotic distribution of the MLEs and bootstrap method to construct confidence intervals

(CI) of the unknown parameters. We have also provided an exact joint confidence region of the

parameter set. Further, we propose an objective function based on the expected volume of this

confidence set and this has been used to find the optimum censoring scheme (OCS). Extensive

simulations have been performed to see the effectiveness of the different methods, and one real

data set has been analyzed for illustrative purposes.

Rest of the paper is organized as follows. In Section 2 we briefly describe the model and provide

necessary assumptions. The MLEs and AMLEs are derived in Section 3. In Section 4 we provide

the joint confidence region of the unknown parameters. Next we propose the objective function

in Section 5. In Section 6 we provide the simulation results and the analysis of a real data set.

Finally we conclude the paper in Section 7.

2 Model Description and Model Assumption

The balanced joint Type-II progressive censoring scheme proposed by Mondal and Kundu [13] can

be briefly described as follows. Suppose there are two lines of similar products and it is important

to study the relative merits of these two products. A sample of size m is drawn from one product

line (say A) and another sample of size m is drawn from the other product line (say B). Let k

be the total number of failures to be observed from the life testing experiment and R1,. . . ,Rk−1
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are pre-specified non-negative integers satisfying
∑k−1

i=1 (Ri + 1) < m. Under the BJPC scheme,

two sets of samples from these two products are simultaneously put on a test. Suppose the first

failure is coming from the product line A and the first failure time is denoted by W1, then at W1,

R1 units are removed randomly from the remaining m− 1 surviving units of the product line A as

well as R1 + 1 units are chosen randomly from the remaining m surviving units of product line B

and they are removed from the experiment. Next, if the second failure is coming from the product

line B at time point W2, R2 + 1 units are withdrawn from the remaining m − R1 − 1 units from

the product line A and R2 units withdrawn from the remaining m−R1−2 units from the product

line B randomly at W2. The test is continued until k failures are observed with removal of all

the remaining surviving units from both the product lines at the k−th failure. In this life testing

experiment a new set of random variable Z1,. . . ,Zk is introduced where Zi = 1 or 0 if ith failure

comes from the product line A or B respectively. Under the BJPC, the data consists of (W,Z)

where W = (W1, . . .Wk) and Z = (Z1, . . . , Zk). A schematic diagram of the BJPC is provided in

Figure 1 and Figure 2.

A random variable X is said to follow Weibull distribution with the shape parameter α > 0

and the scale parameter λ > 0 if it has the following probability density function (PDF)

f(x;α, λ) =

{
αλxα−1e−λx

α
if x > 0

0 if x ≤ 0,
(1)

and it will be denoted by WE(α, λ). We assume the lifetimes of m units of product line A, say

X1, . . . , Xm, are independent identically distributed (i.i.d) random variables from WE(α, λ1) and

the lifetimes of m units of product line B, say Y1, . . . , Ym are i.i.d random variables from WE(α, λ2).
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3 Point Estimations

3.1 Maximum Likelihood Estimators (MLEs)

The likelihood function of the unknown parameters (α, λ1, λ2) based on the observed data (W,Z),

is given by

L(α, λ1, λ2|w, z) = Cαkλ1
k1λ2

k2

k∏
i=1

wi
α−1e−(λ1+λ2)A(α) (2)

where

A(α) =
k∑
i=1

ciw
α
i , ci = Ri + 1; i = 1, . . . , k − 1,

ck = m−
k−1∑
i=1

(Ri + 1), k1 =
k∑
i=1

zi, k2 =
k∑
i=1

(1− zi) = k − k1;

C =
k∏
i=1

(m−
i−1∑
j=1

(Rj + 1)).

The log-likelihood function without the normalizing constant is given by

l(α, λ1, λ2|w, z) = k ln(α) + k1 ln(λ1) + k2 ln(λ2)− (λ1 + λ2)A(α) + (α− 1)
k∑
i=1

ln(wi). (3)

Hence, the normal equations can be obtained by taking partial derivatives of the log-likelihood

function (3) and equating them to zero as given below

∂l

∂λ1
=

k1
λ1
−

k∑
i=1

ciwi
α = 0, (4)

∂l

∂λ2
=

k2
λ2
−

k∑
i=1

ciwi
α = 0, (5)

∂l

∂α
=

k

α
− (λ1 + λ2)

k∑
i=1

ci ln(wi)wi
α +

k∑
i=1

lnwi = 0. (6)

For a given α, when k1 > 0 and k2 > 0 the MLEs of λ1 and λ2 can be obtained from (4) and (5)

as follows:

λ̂1(α) =
k1
A(α)

and λ̂2(α) =
k2
A(α)

.

When α is also unknown, it is possible to obtain the MLE of α from (6) by substituting λ1 and λ2

with λ̂1(α) and λ̂2(α), respectively. Alternatively, the MLE of α can be obtained by maximizing
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the profile log-likelihood function of α, l(α, λ̂1(α), λ̂2(α)) = P (α) (say), where

P (α) = k ln(α)− k lnA(α) + (α− 1)
k∑
i=1

ln(wi). (7)

We need the following result for further development.

Lemma 1: The function P (α) as defined in (7) attains a unique maximum at some α∗ ∈ (0,∞)

where α∗ is the unique solution of

1

α
−H(α) +

1

k

k∑
i=1

ln(wi) = 0, (8)

where H(α) =
A′(α)

A(α)
=

∑k
i=1 ci ln(wi)w

α
i∑k

i=1 ciw
α
i

.

Proof: See in the Appendix.

Once the unique MLE of α, say α̂MLE, is obtained as a solution of (8), then the MLEs of λ1

and λ2 also can be obtained uniquely as λ̂1MLE
= λ̂1(α̂MLE) and λ̂2MLE

= λ̂2(α̂MLE), respectively,

provided k1 > 0 and k2 > 0.

3.2 Approximate Maximum Likelihood Estimators

Since the MLEs cannot be obtained in explicit forms, we propose to use approximate MLEs

(AMLEs) of the unknown parameters which can be obtained in explicit forms. They are obtained

by expanding the normal equations using Taylor series expansion of first order. It can be easily

seen that for i = 1, 2, . . . , k, the distribution of (λ1 + λ2)Wi
α is independent of the parameters α,

λ1, λ2 (see Lemma 2 in Section 4). Let us define the following random variables:

Ui = ln ((λ1 + λ2)Wi
α) and Vi = lnWi; i = 1, 2, . . . , k.

Therefore, if θ = ln (λ1 + λ2), then Ui = αVi + θ, and the distribution of Ui is free from α, λ1, λ2,

for i = 1, 2, . . . k.

Now from (4) and (5) using ui and vi as defined above, we obtain

k∑
i=1

cie
ui = k, (9)
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and from (6) we have
k∑
i=1

civie
ui =

k

α
+

k∑
i=1

vi. (10)

Using Taylor series expansion of order 1 of eui , we obtain the AMLEs of the unknown parameters

as follows. The AMLE of α, say α̂AMLE, is the positive root of

α2

(
E1 −

D1E2

D2

)
+ α

(
E3 +

D3E2

D2

)
= k, (11)

and the AMLEs of λ1, λ2 are given by

λ̂1,AMLE =
k1

A(α̂AMLE)
, λ̂2,AMLE =

k2
A(α̂AMLE)

,

respectively. Here,

E1 =
k∑
i=1

ciAivi
2, E2 =

k∑
i=1

ciAivi, E3 =
k∑
i=1

(ciBi − 1)vi,

D1 =
k∑
i=1

ciAivi, D2 =
k∑
i=1

ciAi, D3 = k −
k∑
i=1

ciBi,

and for ξi = E(Ui),

Ai = eξi Bi = eξi(1− ξi); i = 1, 2, . . . , k.

4 Exact Confidence Set

In this section we provide a methodology to construct an exact 100(1 − γ)% confidence set of α,

λ1 and λ2. We need the following results for further development.

Lemma 2: Suppose G1, G2, . . . , Gk are independent exponential random variables and

E(Gj) =
1

(λ1 + λ2)(m−
∑j−1

l=1 (Rl + 1))
; j = 1, 2, . . . , k.

Then Wα
i

d
=

i∑
j=1

Gj for i = 1, 2, . . . , k, where Wi’s are same as defined before, and ‘
d
=’ means equal

in distribution.

Proof: See in the Appendix.
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Let us use the following transformation:

S1 = m(λ1 + λ2)W1
α

S2 = (m− (R1 + 1))(λ1 + λ2)(W2
α −W1

α)

...

Sk = (m−
k−1∑
i=1

(Ri + 1))(λ1 + λ2)(Wk
α −Wk−1

α).

From Lemma 2, it is evident that S1, S2, . . . , Sk are independent identically distributed (i.i.d.)

exponential random variables with mean one. Let us define

U = 2
k∑
i=2

Si, V = 2S1, T1 =
U

(k − 1)V
, T2 = U + V.

Observe that U and V are independent, U ∼ χ2
2k−2, V ∼ χ2

2, T1 ∼ F2k−2,2 and T2 ∼ χ2
(2k). Using

Basu’s theorem it follows that T1 and T2 are independently distributed. Note that

T1 =
U

(k − 1)V
=

∑k
i=1 Si

S1(k − 1)
− 1

k − 1
=

∑k
i=1 ciW

α
i

(k − 1)mWα
1

− 1

k − 1
. (12)

T2 = = 2(λ1 + λ2)
k∑
i=1

ciW
α
i . (13)

From (12) it is clear that T1 is a function α, and from now on we denote it by T1(α). We have the

following result.

Lemma 3: Let 0 < w1 < w2 < . . . < wk, and

t1(α) =

∑k
i=1 ciw

α
i

(k − 1)mwα1
− 1

k − 1
,

then t1(α) is a strictly increasing function in α and limα→0 t1(α) = 0, limα→∞ t1(α) = ∞. Hence,

the equation t1(α) = t has a unique solution for α > 0 and for all t > 0.

Proof: See Lemma 1 in Wu and Shuo-Jye [23].

We introduce the following notations. Let ϕ(·) = t−11 (·) and note that ϕ(·) is an increasing

function. Fγ,δ1,δ2 denotes the upper γ-th quantile of F distribution with degrees of freedom δ1, δ2

and χ2
γ,δ denotes the upper γ-th quantile of χ2 distribution with degrees of freedom δ.
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Theorem 4.1 (i) A 100(1− γ)% confidence interval of α is given by

[
ϕ(F1−γ/2,2k−2,2), ϕ(Fγ/2,2k−2,2)

]
= B(γ) (say).

(ii) For a given α, a 100(1− γ)% confidence set of (λ1, λ2) is given by{
(λ1, λ2);λ1 ≥ 0, λ2 ≥ 0,

χ2
1−γ/2,2k

2
∑k

i=1 ciw
α
i

< λ1 + λ2 <
χ2
γ/2,2k

2
∑k

i=1 ciw
α
i

}
= C(γ;α) (say).

Proof:

(i) Since T1(α) ∼ F2k−2,2, we have P (F1−γ/2,2k−2,2 < T1(α) < Fγ/2,2k−2,2) = 1− γ. As t1(α) is an

increasing function of α and ϕ(t) is the unique solution of t1(α) = t we also have

P (ϕ(F1−γ/2,2k−2,2) < α < ϕ(Fγ/2,2k−2,2)) = 1− γ.

(ii) Since T2 ∼ χ2
2k, using (13), we obtain

P (χ2
1−γ/2,2k < 2(λ1 + λ2)

k∑
i=1

ciW
α
i < χ2

γ/2,2k) = 1− γ.

Hence,

P

(
(λ1, λ2);λ1 ≥ 0, λ2 ≥ 0,

χ2
1−γ/2,2k

2
∑k

i=1 ciw
α
i

< λ1 + λ2 <
χ2
γ/2,2k

2
∑k

i=1 ciw
α
i

)
= 1− γ.

Note that C(γ;α) is a trapezoid enclosed by four straight lines

i) λ1 = 0, ii) λ2 = 0, iii) λ1 + λ2 =
χ2
1−γ/2,2k

2
∑k

i=1 ciw
α
i

iv) λ1 + λ2 =
χ2
γ/2,2k

2
∑k

i=1 ciw
α
i

.

Corollary 4.2 A 100(1− γ)% joint confidence region of α, λ1, λ2 is given by

D(γ) =
{

(α, λ1, λ2);α ∈ B(γ1), (λ1, λ2) ∈ C(γ2;α)
}
,

here γ1 and γ2 are such that 1− γ = (1− γ1)(1− γ2).
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5 Optimum Censoring Scheme

Finding an optimum censoring scheme is an important problem in any life testing experiment. In

this section we propose a new objective function and based on which we provide an algorithm to

find the optimum censoring scheme.

In a progressive censoring scheme for fixed sample size (m) and for fixed effective sample size

(k), the efficiency of the estimators depends on the censoring scheme {R1, . . . , Rk−1}. In practical

situation out of all possible set of censoring schemes it is important to find out the optimal censoring

scheme (OCS) i.e. the censoring scheme which provides maximum information about the unknown

parameters. In this case, for fixed m and k, the possible set of censoring schemes consists of Ri’s,

i = 1, . . . , k − 1 such that
∑k−1

i=1 (Ri + 1) < m.

In case of Weibull and other lifetime distributions most of the available criteria to find the op-

timum censoring scheme, are based on the expected Fisher information matrix, i.e. the asymptotic

variance covariance matrix of the MLEs, see for example Ng et al. [14], Pradhan and Kundu [17],

Pradhan and Kundu [18], Balakrishnan and Cramer [3] and the references cited therein. In this

paper we propose a new objective function based on the volume of the exact confidence set of the

unknown parameters, which is more reasonable than the asymptotic variance covariance matrix.

In this case first we will show that it is possible to determine the volume of the exact joint

confidence set of α, λ1 and λ2. From the Theorem 4.1 the area Area(C(γ2;α) of the trapezoid

C(γ2;α) is

Area(C(γ2;α) =
(χ2

γ2/2,2k
)2 − (χ2

1−γ2/2,2k)
2

8A(α)2
.

The volume V (D(γ)) of the confidence region D(γ) as in Corollary 4.2, becomes

V (D(γ)) =
1

8
((χ2

γ2/2,2k
)2 − (χ2

1−γ2/2,2k)
2)

∫
B(γ1)

1

A(α)2
dα. (14)

Based on (14), we propose the objective function as Edata(V (D(γ))). Therefore, for fixed m and k

if R1 = (R1,1, R2,1, . . . , Rk−1,1) and R2 = (R1,2, R2,2, . . . , Rk−1,2) are two censoring plans then R1

is better than R2 if R1 provides smaller Edata(V (D(γ))) than R2. The following algorithm can be

used to compute Edata(V (D(γ))), for fixed m, k and R1, . . . , Rk−1.
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Algorithm:

• Step1: Given m, k and R1, . . . , Rk−1 generate the data (W,Z) under BJPC from two

Weibull populations, WE(α, λ1) and WE(α, λ2) .

• Step2: Compute V (D(γ)) based on the data, this can be done by various numerical method

like trapezoidal rule.

• Step3: Repeat Step 1 to 2 say B times, and take their average which approximates

Edata(V (D(γ))).

6 Simulation Study And Data Analysis

6.1 Simulation Study

In this section we compare the performance of the MLEs and AMLEs based on an extensive

simulation experiment. We have taken the sample size m = 25 and different effective sample

size namely, k = 15, 20. For different censoring schemes and for different parameter values we

compute the average estimate (AE) and mean square error (MSE) of the MLEs and AMLEs based

on 10,000 replications. We have also computed the 90% asymptotic and percentile bootstrap

confidence intervals, and we have reported the average length (AL) and the coverage percentages

(CP) in each case. Bootstrap confidence intervals are obtained based on 1000 bootstrap samples.

The results are reported in Tables 1 to 6. We have used the following notations denoting different

censoring scheme. For example, the progressive censoring scheme R1 = 2, R2 = 0, R3 = 0, R4 = 0,

has been denoted by R = (2, 0(3)).

Some of the points are quite clear from this simulation experiment. It is observed that for

fixed m (sample size) as k (effective sample size) increases the biases and MSEs decrease for both

MLEs and AMLEs as expected. The performances of the MLEs and AMLEs are very close to

each other in all cases considered both in terms of biases and MSEs. Hence we recommend to use

AMLEs in this case as they have explicit forms. Now comparing the bootstrap and asymptotic
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confidence intervals in terms of the average lengths and coverage percentages, it is observed the

performance of the bootstrap confidence intervals are not very satisfactory. Most of the times it

cannot maintain the nominal level of the coverage percentages. Where as even for small sample

sizes the performances of the asymptotic confidence intervals are quite satisfactory. In most of

the cases considered the coverage percentages are very close to the nominal level. Hence, we

recommend to use asymptotic confidence interval in this case.

We have further studied the relation between E(V (D(γ))) and the expected time of test

(ETOT) for different censoring schemes and for different parameter values. E(V (D(γ)) is com-

puted as described in Section 5 based on B = 50, 000 samples with γ = 0.1 and γ1 = γ2. The

ETOT i.e. E(Wk) is computed by Monte-Carlo simulation based on 10,000 samples. The results

are reported in Tables 7 to 9 for different parameter values and for different censoring schemes.

We have also provided a scatter plot of ETOT vs. E(V (D(γ))) for different censoring schemes in

Figure 4. It is evident that as the ETOT increases, E(V (D(γ))) decreases as expected.

Table 1: m = 25, n = 25, α = 0.5, λ1 = 0.5, λ2 = 1

Censoring scheme Parameter MLE AMLE
AE MSE AE MSE

k=15,R=(7,0(13)) α 0.550 0.017 0.534 0.015
λ1 0.576 0.109 0.568 0.101
λ2 1.149 0.279 1.132 0.253

k=15,R=(0(6),7,0(7)) α 0.552 0.019 0.547 0.018
λ1 0.601 0.143 0.595 0.137
λ2 1.198 0.371 1.187 0.352

k=15,R=(0(13),7) α 0.564 0.024 0.559 0.023
λ1 0.628 0.184 0.622 0.176
λ2 1.248 0.514 1.236 0.491

k=20,R=(3,0(18)) α 0.537 0.012 0.529 0.011
λ1 0.547 0.056 0.544 0.054
λ2 1.079 0.123 1.074 0.118

k=20,R=(0(9),3,0(9)) α 0.539 0.013 0.534 0.012
λ1 0.548 0.062 0.546 0.061
λ2 1.097 0.147 1.093 0.143

k=20,R=(0(18),3) α 0.538 0.012 0.529 0.011
λ1 0.542 0.055 0.539 0.054
λ2 1.083 0.130 1.078 0.125
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Table 2: m = 25, n = 25, α = 1, λ1 = 0.5, λ2 = 1

Censoring scheme Parameter MLE AMLE
AE MSE AE MSE

k=15,R=(7,0(13)) α 1.096 .071 1.064 0.063
λ1 0.575 0.103 0.566 0.095
λ2 1.154 0.292 1.136 0.264

k=15,R=(0(6),7,0(7)) α 1.107 0.078 1.096 0.074
λ1 0.602 0.155 0.597 0.148
λ2 1.204 0.446 1.193 0.426

k=15,R=(0(13),7) α 1.126 0.101 1.116 0.097
λ1 0.620 0.210 0.614 0.201
λ2 1.244 0.660 1.232 0.625

k=20,R=(3,0(18)) α 1.082 0.057 1.073 0.055
λ1 0.557 0.066 0.554 0.064
λ2 1.109 0.162 1.105 0.158

k=20,R=(0(9),3,0(9)) α 1.080 0.052 1.071 0.050
λ1 0.550 0.060 0.548 0.059
λ2 1.093 0.139 1.089 0.135

k=20,R=(0(18),3) α 1.085 0.058 1.076 0.056
λ1 0.555 0.066 0.553 0.065
λ2 1.113 0.172 1.109 0.167

Table 3: m = 25, n = 25, α = 2, λ1 = 0.5, λ2 = 1

Censoring scheme Parameter MLE AMLE
AE MSE AE MSE

k=15,R=(7,0(13)) α 2.209 0.294 2.147 0.259
λ1 0.578 0.110 0.569 0.101
λ2 1.150 0.289 1.132 0.258

k=15,R=(0(6),7,0(7)) α 2.220 0.319 2.197 0.304
λ1 0.597 0.132 0.592 0.126
λ2 1.192 0.388 1.181 0.365

k=15,R=(0(13),7) α 2.261 0.414 2.240 0.397
λ1 0.630 0.193 0.624 0.184
λ2 1.253 0.531 1.241 0.504

k=20,R=(3,0(18)) α 2.148 0.191 2.113 0.178
λ1 0.545 0.055 0.542 0.054
λ2 1.087 0.131 1.081 0.125

k=20,R=(0(9),3,0(9)) α 2.158 0.207 2.140 0.199
λ1 0.548 0.060 0.546 0.059
λ2 1.098 0.141 1.094 0.137

k=20,R=(0(18),3) α 2.164 0.227 2.145 0.218
λ1 0.552 0.063 0.549 0.062
λ2 1.108 0.155 1.103 0.151
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Table 4: AL and CP of CI’s,m = 25, n = 25, α = 0.5, λ1 = 0.5, λ2 = 1

Censoring scheme Parameter Bootstrap 90% CI Asymptotic 90%CI
AL CP AL CP

k=15,R=(7,0(13)) α 0.435 83.1% 0.378 90.1%
λ1 1.141 87.8% 0.882 90.1%
λ2 1.812 84.5% 1.296 92.1%

k=15,R=(0(6) ,7,0(7)) α 0.457 78.8% 0.378 89.8%
λ1 1.374 86.8% 0.937 90.6%
λ2 2.245 83.8% 1.430 92.9%

k=15,R=(0(13),7) α 0.519 79.2% 0.431 89.7%
λ1 1.809 84.1% 1.049 91.1%
λ2 3.084 82.2% 1.667 93.8%

k=20,R=(3,0(18)) α 0.365 82.9% 0.323 89.6%
λ1 0.811 88.6% 0.700 88.3%
λ2 1.241 86.4% 1.018 90.5%

k=20,R=(0(9),3,0(9)) α 0.366 83.2% 0.323 89.3%
λ1 0.836 89.6% 0.711 88.8%
λ2 1.285 87.5% 1.044 90.5%

k=20,R=(0(18),3) α 0.392 84.7% 0.343 90.3%
λ1 0.852 88.7% 0.724 89.3%
λ2 1.355 85.7% 1.065 90.8%

Table 5: AL and CP of CI’s,m = 25, n = 25, α = 1, λ1 = 0.5, λ2 = 1

Censoring scheme Parameter Bootstrap 90% CI Asymptotic 90%CI
AL CP AL CP

k=15,R=(7,0(13)) α 0.866 83.6% 0.759 89.9%
λ1 1.089 89.7% 0.869 89.4%
λ2 1.745 86.2% 1.293 92.0%

k=15,R=(0(6) ,7,0(7)) α 0.914 78.4% 0.758 90.0%
λ1 1.525 86.8% 0.947 90.5%
λ2 2.683 82.8% 1.451 93.5%

k=15,R=(0(13),7) α 1.027 81.7% 0.862 90.1%
λ1 1.639 88.4% 1.053 91.4%
λ2 2.810 84.4% 1.667 93.7%

k=20,R=(3,0(18)) α 0.726 82.3% 0.643 90.3%
λ1 0.808 87.2% 0.697 88.5%
λ2 1.222 86.1% 1.012 90.3%

k=20,R=(0(9),3,0(9)) α 0.7355 82.5% 0.648 89.9%
λ1 0.835 88.9% 0.712 89.2%
λ2 1.292 86.0% 1.039 90.7%

k=20,R=(0(18),3) α 0.789 81.9% 0.684 90.2%
λ1 0.920 86.7% 0.723 89.7%
λ2 1.419 84.8% 1.063 90.7%
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Table 6: AL and CP of CI’s,m = 25, n = 25, α = 2, λ1 = 0.5, λ2 = 1

Censoring scheme Parameter Bootstrap 90% CI Asymptotic 90%CI
AL CP AL CP

k=15,R=(7,0(13)) α 1.774 81.4% 1.515 90.1%
λ1 1.169 87.6% 0.873 89.8%
λ2 1.875 85.7% 1.300 91.9%

k=15,R=(0(6) ,7,0(7)) α 1.813 79.7% 1.521 89.1%
λ1 1.332 88.1% 0.948 90.0%
λ2 2.227 83.1% 1.440 93.0%

k=15,R=(0(13),7) α 2.101 78.6% 1.722 90.0%
λ1 1.765 86.4% 1.074 91.2%
λ2 3.010 83.5% 1.708 93.7%

k=20,R=(3,0(18)) α 1.461 80.9% 1.294 89.8%
λ1 0.821 88.0% 0.699 88.9%
λ2 1.237 86.6% 1.014 90.0%

k=20,R=(0(9),3,0(9)) α 1.478 81.0% 1.296 89.8%
λ1 0.844 88.7% 0.713 89.0%
λ2 1.294 86.2% 1.044 90.5%

k=20,R=(0(18),3) α 1.555 83.3% 1.374 89.3%
λ1 0.883 89.6% 0.724 89.3%
λ2 1.386 86.0% 1.066 91.5%

Table 7: α = 0.5, λ1 = 0.5, λ2 = 1

Censoring scheme E(V ol0.1) ETOT

m=25,k=20,R=(5,0(18)) 12.463 6.420

m=25,k=20,R=(0,5,0(17)) 12.583 6.383

m=25,k=20,R=(0(2),5,0(16)) 12.845 6.369

m=25,k=20,R=(0(3),5,0(15)) 13.032 6.245

m=25,k=20,R=(0(4),5,0(14)) 13.243 6.181

m=25,k=20,R=(0(8),5,0(10)) 14.614 6.043

m=25,k=20,R=(0(14),5,0(4)) 17.319 5.092

m=25,k=20,R=(0(16),5,0(2)) 20.768 4.458

m=25,k=20,R=(0(17),5,0) 20.918 3.884

m=25,k=20,R=((18),5) 22.883 3.023

m=30,k=25,R=(5,0(23)) 9.616 7.181

m=30,k=25,R=(0,5,0(22)) 9.718 7.145

m=30,k=25,R=(0(2),5,0(21)) 9.743 7.081

m=30,k=25,R=(0(3),5,0(20)) 9.834 7.074

m=30,k=25,R=(0(5),5,0(18)) 9.908 6.986

m=30,k=25,R=(0(8),5,0(15)) 10.304 6.954

m=30,k=25,R=(0(12),5,0(11)) 10.680 6.675

m=30,k=25,R=(0(15),5,0(8)) 11.217 6.454

m=30,k=25,R=(0(18),5,0(5)) 12.045 5.934

m=30,k=25,R=(0(23),5) 14.197 3.451
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Table 8: α = 1, λ1 = 0.5, λ2 = 1

Censoring scheme E(V ol0.1) ETOT

m=25,k=20,R=(5,0(18)) 24.360 2.393

m=25,k=20,R=(0,5,0(17)) 25.214 2.384

m=25,k=20,R=(0(2),5,0(16)) 25.524 2.374

m=25,k=20,R=(0(3),5,0(15)) 26.034 2.366

m=25,k=20,R=(0(4),5,0(14)) 26.513 2.359

m=25,k=20,R=(0(8),5,0(10)) 28.065 2.300

m=25,k=20,R=(0(14),5,0(4)) 36.513 2.120

m=25,k=20,R=(0(16),5,0(2)) 38.831 1.963

m=25,k=20,R=(0(17),5,0) 40.552 1.816

m=25,k=20,R=(0(18),5) 46.317 1.582

m=30,k=25,R=(5,0(23)) 19.331 2.549

m=30,k=25,R=(0,5,0(22)) 19.414 2.536

m=30,k=25,R=(0(2),5,0(21)) 19.538 2.524

m=30,k=25,R=(0(3),5,0(20)) 19.895 2.523

m=30,k=25,R=(0(5),5,0(18)) 20.094 2.522

m=30,k=25,R=(0(8),5,0(15)) 20.665 2.488

m=30,k=25,R=(0(12),5,0(11)) 21.478 2.445

m=30,k=25,R=(0(15),5,0(8)) 22.538 2.374

m=30,k=25,R=(0(18),5,0(5)) 23.846 2.274

m=30,k=25,R=(0(23),5) 28.662 1.692
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Table 9: α = 2, λ1 = 0.5, λ2 = 1

Censoring scheme E(V ol0.1) ETOT

m=25,k=20,R=(5,0(18)) 49.927 1.523

m=25,k=20,R=(0,5,0(17)) 50.653 1.522

m=25,k=20,R=(0(2),5,0(16)) 51.265 1.515

m=25,k=20,R=(0(3),5,0(15)) 51.578 1.512

m=25,k=20,R=(0(4),5,0(14)) 52.719 1.508

m=25,k=20,R=(0(8),5,0(10)) 57.245 1.492

m=25,k=20,R=(0(14),5,0(4)) 67.359 1.424

m=25,k=20,R=(0(16),5,0(2)) 77.601 1.365

m=25,k=20,R=(0(17),5,0) 88.436 1.322

m=25,k=20,R=(0(18),5) 89.061 1.229

m=30,k=25,R=(5,0(23)) 38.486 1.572

m=30,k=25,R=(0,5,0(22)) 38.571 1.572

m=30,k=25,R=(0(2),5,0(21)) 38.781 1.569

m=30,k=25,R=(0(3),5,0(20)) 39.411 1.568

m=30,k=25,R=(0(5),5,0(18)) 40.220 1.561

m=30,k=25,R=(0(8),5,0(15)) 41.074 1.560

m=30,k=25,R=(0(12),5,0(11)) 43.549 1.538

m=30,k=25,R=(0(15),5,0(8)) 45.367 1.517

m=30,k=25,R=(0(18),5,0(5)) 48.084 1.486

m=30,k=25,R=(0(23),5) 55.966 1.277
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52
56

60
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Figure 3: The ETOT and E(D(γ)) for m = 22, k = 20, α = 2, λ1 = 0.5, λ2 = 1

6.2 Data Analysis

In this section we perform the analysis of a real data set to illustrate how the propose methods can

be used in practice. We have used the following data set originally obtained from Proschan [19]

and here the data indicate the failure times (in hour) of air-conditioning system of two airplanes.
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The data are provided below.

Plane 7914: 3, 5, 5, 13, 14, 15, 22, 22, 23, 30, 36, 39, 44, 46, 50, 72, 79, 88, 97, 102, 139, 188, 197,

210.

Plane 7913: 1, 4, 11, 16, 18,18, 24, 31, 39, 46, 51, 54, 63, 68, 77, 80, 82, 97, 106, 141, 163, 191,

206, 216.

From the above data sets we have generated two different jointly progressively censored samples

with the censoring schemes Scheme 1: k = 20 and R = (14, 0(8)) and Scheme 2: k = 10, R =

(2(7), 0(2)). The generated data sets are provided below.

Scheme 1:

w = (1, 4, 5, 13, 15, 16, 22, 36, 80, 97) z = (0, 0, 1, 1, 1, 0, 1, 1, 0, 0);

For the above data set the MLEs, AMLEs, and the two different 90% confidence intervals are

provided in Tables 10 and 11. In Figure 4 we have provided the profile log-likelihood function

P (α) of the shape parameter α and it is clear that P (α) attains a unique maximum. To get an

idea about the joint confidence region of α, λ1, λ2, we have provided the confidence set of (λ1, λ2)

for different values of α in Figure 5.

Table 10: real data analysis(scheme-1)

Parameter MLE AMLE

α 0.983459 0.982218
λ1 0.017541 0.017622
λ2 0.017541 0.017622
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Figure 4: profile-loglikelihood function of shape parameter α for scheme-1

Table 11: real data analysis (90% CI)(scheme-1)

Parameter 90% Asymptotic CI 90% Bootstrap CI
LL UL LL UL

α 0.6508 1.3160 0.7253 1.5900
λ1 0 0.0426 0.001641 0.05592
λ2 0 0.0426 0.001644 0.05623

Scheme 2:

w = (1, 3, 4, 5, 5, 13, 14, 31, 44, 51), z = (0, 1, 0, 1, 1, 1, 1, 0, 1, 0);

In this case the estimates and the associated confidence intervals are reported in Tables 12 and

13. The profile log-likelihood function P (α) has been provided in Figure 6 and it indicates that it

attains a unique maximum. The confidence set of (λ1, λ2) for different values of α is provided in

Figure 7.
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Figure 5: Confidence region of λ1 and λ2 for different values α for scheme-1

Table 12: real data analysis(scheme-2)

Parameter MLE AMLE

α 1.1740 1.1612
λ1 0.01367 0.01421
λ2 0.009116 0.009479
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Figure 6: profile-loglikelihood function of shape parameter α for scheme-2

Table 13: real data analysis (90% CI)(scheme-2)

Parameter 90% Asymptotic CI 90% Bootstrap CI
LL UL LL UL

α 0.7533 1.5947 0.91046 2.036402
λ1 0 0.03351 0.001241 0.03696
λ2 0 0.02303 0.0007122 0.02532

7 Conclusion

In this paper we analyze the new joint progressive censoring (BJPC) for two populations. It is

assumed that the lifetimes of the two populations follow Weibull distribution with the same shape

parameter but different scale parameters. We obtained the MLEs of the unknown parameters and

since they cannot be obtained in explicit forms we have proposed to use AMLEs which can be

obtained explicitly. Based on extensive simulation experiments it is observed that the performances

of MLEs and AMLEs are very similar in nature. We obtained asymptotic and bootstrap confidence
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Figure 7: Confidence region of λ1 and λ2 for different values of α for Scheme-2

intervals and it is observed that the asymptotic confidence intervals perform quite well even for

small sample sizes. We further construct an exact joint confidence set of the unknown parameters

and based on the expected volume of the joint confidence set we have proposed an objective function

and it has been used to obtain optimum censoring scheme. Note that all the developments in this

paper are mainly based on the classical approach. It will be important to develop the necessary

Bayesian inference. It may be mentioned that in this paper we have considered the sample sizes

to be equal from both the populations, although most of the results can be extended even when

they are not equal.

Appendix

proof of Lemma 1:
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P (α)→ −∞ as α→ 0

lim
α→∞

P (α) = −k limα→∞(
∑k−1

i=1 (Ri + 1) ln(wi)wi
α + (m−

∑k−1
i=1 (Ri + 1)) ln(wi)wk

α))

(
∑k−1

i=1 (Ri + 1)wiα + (m−
∑k−1

i=1 (Ri + 1))wkα))
+

k∑
i=1

ln(wi)

= −k ln(wk) +
k∑
i=1

ln(wi)

=
k∑
i=1

ln(
wi
wk

) < 0

⇒ P (α)→ −∞ as α→∞ This concludes mle α∗ is attained in (0,∞).

According to Balakrishnan and Kateri [6] H(α) is increasing function of α and 1
α

is decreasing

in α resulting unique solution of equation of equation(5).

proof of Lemma 2: The proof can be obtained similarly as the proof of Lemma 2 of Mondal

and Kundu [13] using m = n.

References

[1] Ashour, S. and Eraki, O. (2014), “Parameter estimation for multiple Weibull populations under

joint type-II censoring”, International Journal of Advanced Statistics and Probability, vol 2, 2,

pp 102–107.

[2] Balakrishnan, N. and Aggarwala, R. (2000), Progressive censoring: theory, methods, and ap-

plications, Birkhauser, Boston, U.S.A.

[3] Balakrishnan, N. and Cramer, E. (2014), The art of progressive censoring, Springer, New York.

[4] Balakrishnan, N. and Kannan, N. and Lin, C. T. and Ng, H. K. T. (2003), “Point and interval

estimation for Gaussian distribution, based on progressively Type-II censored samples”, IEEE

Transactions on Reliability, vol 52, 1, pp 90–95.

24



[5] Balakrishnan, N. and Kannan, N. and Lin, C. T. and Wu, S. J. S. (2004), “Inference for

the extreme value distribution under progressive Type-II censoring”, Journal of Statistical

Computation and Simulation, vol 74, 1, pp 25–45.

[6] Balakrishnan, N. and Kateri, M. (2008), “On the maximum likelihood estimation of parameters

of Weibull distribution based on complete and censored data”, Statistics & Probability Letters,

vol 78, 17, pp 2971–2975.

[7] Balakrishnan, N. and Rasouli, A. (2008), “Exact likelihood inference for two exponential pop-

ulations under joint Type-II censoring”, Computational Statistics & Data Analysis, vol 52, 5,

pp 2725–2738,

[8] Balakrishnan, N. and Su, F. and Liu, K. Y. (2015), “Exact likelihood inference for k expo-

nential populations under joint progressive Type-II censoring”, Communications in Statistics-

Simulation and Computation, vol 44, 4, pp 902–923.

[9] Balakrishnan, N. and Varadan, J. (1991), “Approximate MLEs for the location and scale

parameters of the extreme value distribution with censoring”, IEEE Transactions on Reliability,

vol 40, 2,pp 146–151.

[10] Burkschat, M. and Cramer, E. and Kamps, U. (2006), “On optimal schemes in progressive

censoring”, Statistics & probability letters, vol 76, 10, pp 1032–1036.

[11] Burkschat, M. and Cramer, E. and Kamps, U. (2007), “Optimality criteria and optimal

schemes in progressive censoring”, Communications in StatisticsTheory and Methods, vol 36,

7, pp 1419–1431.

[12] Doostparast, M. and Ahmadi, M. V. and Ahmadi, J. (2013), “Bayes Estimation Based on

Joint Progressive Type II Censored Data Under LINEX Loss Function”, Communications in

Statistics-Simulation and Computation, vol 42, 8,pp 1865–1886.

[13] Mondal, S. and Kundu, D. (2016), “A new two sample Type-II progressive censoring scheme”,

arXiv:1609.05805.

25

http://arxiv.org/abs/1609.05805


[14] Ng, H. K. T. and Chan, P. S. and Balakrishnan, N. (2004), “Optimal progressive censoring

plans for the Weibull distribution”, Technometrics, vol 46, 4, pp 470–481.

[15] Pareek, B. and Kundu, D. and Kumar, S. (2009), “On progressively censored competing

risks data for Weibull distributions”,Computational Statistics & Data Analysis, vol 53, 12, pp

4083–4094.

[16] Parsi, S. and Ganjali, M. and Farsipour, N. S. (2011), “Conditional maximum likelihood and

interval estimation for two Weibull populations under joint Type-II progressive censoring”,

Communications in Statistics-Theory and Methods, vol 40, 12, pp 2117–2135.

[17] Pradhan, B. and Kundu, D. (2009), “On progressively censored generalized exponential dis-

tribution” , Test, vol 18, 3, pp 497–515.

[18] Pradhan, B. and Kundu, D. (2013), “Inference and optimal censoring schemes for progressively

censored Birnbaum–Saunders distribution”, Journal of Statistical Planning and Inference, vol

143, 6, pp 1098–1108,

[19] Proschan, F. (1963), “Theoretical explanation of observed decreasing failure rate”, Techno-

metrics, vol 15, 375 - 383.

[20] Rasouli, A. and Balakrishnan, N. (2010), “Exact likelihood inference for two exponential

populations under joint progressive type-II censoring”, Communications in StatisticsTheory

and Methods, vol 39, 12, pp 2172–2191.

[21] Srivastava, J.N. (1987), “More efficient and less time consuming censoring design for life

testing”, Journal of Statistical Planning and Inference, vol. 16, 389 - 413.

[22] Wang, B. X. and Yu, K. and Jones, M. C. (2010), “Inference under progressively type II right-

censored sampling for certain lifetime distributions”, Technometrics, vol 52, 4, pp 453–460.

[23] Wu, S. J. (2002), “Estimations of the parameters of the Weibull distribution with progressively

censored data”, Journal of the Japan Statistical Society, vol 32, 2, pp 155–163.

26


	1 Introduction
	2 Model Description and Model Assumption
	3 Point Estimations
	3.1 Maximum Likelihood Estimators (MLEs)
	3.2 Approximate Maximum Likelihood Estimators

	4 Exact Confidence Set
	5 Optimum Censoring Scheme 
	6 Simulation Study And Data Analysis
	6.1 Simulation Study
	6.2 Data Analysis

	7 Conclusion

