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Abstract

One important problem when deploying interdomain path selec-
tion is advertising metrics that hold for a long period of time. In this
paper we propose a method to aid interdomain path selection mech-
anisms in that sense. We present a means of computing a bound on
the end-to-end delay of traversing a domain considering that the traf-
fic varies within a given uncertainty set. This provides a robust and a
verifiable quality of service value for traversing the Autonomous Sys-
tem (AS), without revealing confidential information. Consequently,
the bound can be safely conceived as a metric to be announced by
each AS in the process of interdomain path selection. We show how
the maximum delay value is obtained for an interdomain bandwidth
demand and we propose an exact method and a numerical approxi-
mation method for computing it, neither of which rely on a complex
monitoring infrastructure. Simulations with real data that illustrate
the problem and validate our results are also presented.

Keywords: 1.3. IP networks, 4.6. SLA management, 7.2. Optimization
theories

1 Introduction

There is increasing interest in value-added services, such as videoconferencing
or other bandwidth-on-demand services. In this context QoS and how to
guarantee it becomes a crucial issue for all involved actors, i.e. the Network
Provider, the Service Provider and the Customer. This is especially difficult
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when the service traverses several domains, or Autonomous Systems (AS). In
this case, QoS must be provided by all the ASs involved, which raises several
technical, economical and political issues. Concerning the technical aspects,
achieving scalability, preserving confidentiality and providing interoperability
is paramount in any solution [1].

We will focus on point-to-point services with QoS requirements. In this
case the service may be abstracted to a QoS guaranteed tunnel (for instance
an MPLS tunnel [2]). The path must cross those domains through which
destination is reached and whose combination of QoS parameters fulfills the
service requirements.

In the framework of an alliance of ASs, carriers are envisioned to work
together in order to achieve a common interest. In this scenario QoS values
related to each domain are exchanged, and Traffic Engineering decisions are
taken after them. Different mechanisms have been proposed for the selection
and establishment of interdomain QoS-constrained tunnels, that mainly rely
on RSVP-TE [3] and the PCE architecture [4] (e.g. [5, 6, 7, 8]). These
mechanisms are based on metrics announced by each AS but they do not
specify how to compute such metrics. In any case, the announced metrics
have to hold for some period of time, ideally as long as the service is provided.
Hence, it is interesting for ASs to be able to provide QoS values that are
guaranteed to hold for a certain period of time.

Other approaches providing methods for end-to-end QoS can be found in
the literature. For instance, some propose extensions to the de facto standard
interdomain routing protocol BGP (see for instance [9]). Others propose ad-
hoc functions to BGP, like [10, 11]. These are based on self-adaptive methods
and perform routing decisions at the edge routers level in order to maintain
certain QoS parameters below some given bounds. They monitor the network
state obtaining feedback which acts as an input to the self-adaptive engine.
These methods are conceived to work in a pure BGP network. However, we
are interested in the case of explicitly signaled tunnels, like the PCE-based
mechanisms, since they are more suitable in the context we are working on.
For instance, we seek a method that strictly achieves the QoS needed and
not only soft QoS. In addition, for reasons explained below, we seek for a
method with light dependence on monitoring.

For certain services, available bandwidth and end-to-end delay are critical
parameters. The latter is composed of the sum of the delays introduced
by each transit AS and the terminal ones, from source to destination. As
illustrated in Fig. 1, where we show a situation with two terminal ASs and
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Figure 1: Scenario

one transit AS, the delay in each of the ASs depends on the traffic already
present in the AS (t∗ flows in Fig. 1), the topology, the routing configuration,
and the traffic coming from the new tunnel (flow u in Fig. 1).

Naively, we may think that the problem of choosing the delay value to
advertise can be reduced to simply advertising the current one. However,
this presents two main problems, as commented in the following.

Monitoring the delay is itself a complex task. Several techniques have
been proposed in the literature, mainly based on passive measurements,
where some packets are timestamped and sent to a collector (see for instance
[12, 13]), or on active ones, where probe packets are sent along the network
and the delay is inferred from the one experienced by the probe packets (see
for instance [14, 15]). These techniques present several drawbacks, just to
mention the most common of them, they usually present issues of bandwidth
consumption and need for synchronization, for instance, based on specific
equipment as GPS devices. Moreover, all techniques need for a monitoring
architecture, which can become complex when accuracy is needed [16].

In addition, even if we were able to accurately measure the delay, the an-
nounced value, as mentioned above, should hold for a certain period of time.
In this scenario the complexity is mainly due to the existence of uncertainty.
This uncertainty can be classified into two types: network state uncertainty
and traffic uncertainty.

Uncertainty in network state refers to the situation where the topology
changes or is partially known. This may be due to information arriving out of
date or not synchronized to the entity performing the computation, or simply
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to link failures. In the literature some approaches have been proposed for
performing QoS routing under this kind of uncertainty [17, 18, 19]. However,
in the present paper we will assume that the topology does not change, and
considering this uncertainty is left for future work.

On the other hand, we will consider uncertainty in the traffic. This refers
to the fact that the flows traversing the domain are not perfectly known.
Knowing exactly the volumes of these flows, which we shall call Origin Des-
tination traffic flows, requires a measurement infrastructure that is not always
present, or could be expensive to implement. Techniques based on flow-level
measurements, like Netflow [20] are very expensive for routers in terms of
computational cost, while their sample-based version can lead to errors in
traffic volume estimation. Techniques based on SNMP data considerably
reduce the CPU load on routers. In that case, the measured data consists
of volumes of traffic traversing the different links of the network. In order
to estimate the Origin Destination traffic volumes an ill-posed linear inverse
problem has to be solved. Several methods exist in the literature for doing
so, for example [21, 22, 23]. Moreover, traffic uncertainty is not only related
to the complexity on measuring the Origin Destination flows, but also to the
fact that traffic may change rather frequently. There can be several reasons
for these changes, for instance, external routing modification, the presence of
unexpected events such as network equipment failures outside the domain,
large-volume network attacks or flash crowd occurrences [24].

In summary, we aim at finding a valid end-to-end QoS metric. Thus, two
approaches could compete. Either we follow a dynamic approach, in which
network state is continuously monitored and the metric value is updated,
or we use a robust approach, in which a bound for the metric is provided.
Reactive approaches make it possible to tightly follow the variations of the
traffic but they require a monitoring infrastructure to be present and some
sophisticated algorithms to process the measurement data. Moreover, reac-
tive approaches are able to detect variations in the traffic demand such as
abrupt changes but they are not able to forecast them [25]. On the contrary,
proactive mechanisms provide pessimistic values of QoS metrics but they are
able to provide metrics values which should hold for a given period of time
since in that case uncertainty is taken proactively into account.

In this work we employ the proactive approach and consider the situation
where traffic variation is the principal cause of delay variation. Thus, we shall
focus on the computation of a bound for the end-to-end delay of traversing
an AS through a particular path as a function of the AS parameters we
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mentioned before: the routing configuration, the traffic demands and the
traffic injected through the new tunnel. We assume that the topology and
the routing configuration are fixed. However, we consider that traffic is
non-static, and that it is contained in a so-called uncertainty set [26]. The
question of how to choose this set is discussed later in the paper.

In this context, we provide an exact method an approximate solution for
solving the problem, which renders a solution arbitrarily close to the exact
solution and lower computation complexity. These solutions do not require
any complex monitoring infrastructure to be deployed. The solutions are
tested using topology and data from real networks.

The obtained value can be afterwards used to advertised in the context of
ASs path Selection, since it is a QoS parameter bound and does not introduce
confidentiality vulnerabilities. The latter refers to the fact that no topology
information is delivered, just the delay of traversing the AS, where the AS is
seen from the outside as a black box.

The remainder of this paper is organized as follows. Section 2 introduces
the assumptions and notations and formally states the problem. In Section
3 we show an exact solution to the problem and evaluate it through simula-
tions. Section 4 presents an approximate solution with lower computational
complexity than the exact one. Section 5 shows numerical results. Finally,
conclusions and guidelines for future work are given in Section 6.

2 Problem Statement

In this section we formally present the problem of finding the maximum end-
to-end delay experienced by a bounded amount of traffic traversing an AS
through a particular path. As mentioned before, we will consider that traffic
varies within an uncertainty set. First, let us introduce the notations that
are going to be used throughout the paper and state some assumptions.

2.1 Assumptions and Notations

The network is compounded of n nodes and of a set L of links, L = {l1 . . . l|L|},
where the notation |·| refers to the cardinality of the set. Traffic demands
will be represented by the so-called traffic matrix TM = {tmi,j}, where tmi,j

is the mean amount of traffic from node i to node j. We shall use as well
the term Origin Destination (OD) flows to refer to them. We reorder every
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traffic demand and rewrite the OD flows (tmi,j) in vector form as t, t = {tk},
k = 1 . . . n(n − 1). The amount of traffic coming from the interdomain
injected into the new tunnel will be u.

The link load Y = {yi}i∈L is a vector containing in the i-th entry the
load on link li without considering u. With these definitions we can see that
Y = R.t where R, a |L| × m matrix (m = n(n − 1)), is the routing matrix,
which means that Ri,j = 1 if flow j traverses link i, and 0 otherwise.

The flow that carries u will traverse the AS from an origin to a destination
node following a certain path. We will call this path P . We will equally refer
to the set of links that belong to that path as P , in this case P is a subset
of L.

The mean link delay is approximated by the M/M/1 model, that is to
say Dl = K

cl−yl
, where cl is the capacity of the link l and K the mean packet

size. We then obtain the delay of a path as the sum of the mean delay of the
links it traverses:

DelayP =
∑

l∈P

K

cl − yl
. (1)

The propagation delay may be ignored in our formulation since it does not
change with the load and may be added as a constant later on. Moreover, the
M/M/1 model is used for illustrating the procedures towards a solution. In
fact, any convex function may be used instead. For instance, the interested
reader should consult [27] for a method to obtain a good convex approxi-
mation of the delay function based on measurements. The same procedures
explained in this paper should be then repeated but with the new function.
We will as well ignore the constant K in the following formulations, for the
sake of notations simplification.

2.2 Traffic Demands

As mentioned above, we will not make any assumptions on the traffic matrix
except that it always belongs to a certain uncertainty set. In particular we
will follow the approach presented in [26] and define the uncertainty set as
a polytope formed by the result of the intersection of several half-spaces.
Consequently, all constraints can be written as At ≤ b, where A is a certain
matrix that can be defined according to different models, and b is a given
bound.

One such polytope was considered in the so-called Hose Model [28] in
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the context of VPN services specification. This model establishes bounds
in the ingress and egress points of a network. It is suitable for the case of
VPN, where the ingress and egress values are easily known, but no detailed
information regarding the network is available. However, in the context of
interdomain path selection, we would like to have a smaller polytope, which
is obtained with more detailed information, which would allow us to have a
tighter bound.

An alternative is the Links Capacity Model. This model results from
the application of bounds on the total traffic traversing the different links
of the network. Its definition can vary from a simple static one, imposing
the physical constraints, i.e. links capacity, to a more dynamic one, allowing
the constraints to be obtained from historical metrics. In the latter, the
constraints can be written as Rht ≤ b, where b = {bi} is the vector of an
historical link load and Rh is the routing matrix at the moment when the
measurements were taken. This approach is used for example in [29] where
a polyhedral definition of the traffic matrix is preferred to its estimation
because of non stationarity artifacts and estimation errors.

The Links Capacity Model with historical bounds, for instance consid-
ering the maximum observed link load, provides more detailed information
than the Hose Model, along with dynamism, while it is still simple to obtain.
The polytope can be frequently updated but does not require complexity for
its computation.

Yet another alternative for computing tighter polytopes are prediction
based mechanisms. In this case the polytope is defined through imposing
bounds on the value of traffic demands which are based on traffic prediction.
The prediction of future demands is based on past observations. For example
artificial intelligence methods such as neural networks or time series analysis
can be used in order to forecast the future values of the traffic demand; see
for example [30] for prediction based on a seasonal ARIMA model. These
mechanisms provide a more dynamic polytope, which must be updated ac-
cording to predictions but involves more complexity. The result is a tighter
polytope that provides, in turn, a tighter bound.

The choice of the model for defining the polytope involves a trade-off
between complexity and tightness of the bound. As we have shown above,
simpler approaches could be used providing looser bounds, or more complex
ones, needing in addition to be updated frequently, to provide tighter bounds.
In the remainder of this work we shall use the Links Capacity Model, though
the solutions provided are still valid for any other model. We shall consider
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historical maximums for the bounds, thus measurements have to be carried
out. These measurements can be performed using SNMP, which is a widely
deployed protocol. Since the value needed is just the overall interface traffic
volume, we can safely assume that these values are going to be available on
any AS.

2.3 Mathematical Formulation

For the path traversed by the new tunnel the maximum link delay is going to
be computed allowing the flows t to vary within a polytope. Therefore, we will
work with a maximization problem with linear constraints. In order to have
a more compact notation of the problem we shall define the m-dimensional
column vector wl, l ∈ P , as wl = {wl,i} = Rl,i/cl.

The optimization problem is described by (2), where A and b define the
polytope.

max
t

∑

l∈P

1/cl
1

1 − wT
l t − u/cl

(2)

s.t. At − b ≤ 0.

Please note that if some additional linear constraints must be taken into
account they can be integrated in the definition of the polytope At ≤ b.
Example of such constraints can be wT

l t + u/cl < 1, for l ∈ P , which simply
states that there should be enough link capacity in order to accommodate
all the traffic, including the new tunnel.

We can see that the objective function in the maximization problem (2)
is not a concave function, consequently, the problem is not a convex one. On
the contrary, the problem is the maximization of a convex function over a
polytope. This is a very difficult problem, all the more so since the objective
function is not strictly convex (as shown in Appendix A).

Intuitively we can see that the reason why the function is not strictly
convex is due to the difference between the number of links and the number
of OD flows. Indeed, while the number of links grows linearly with the
number of nodes in the network, the number of OD flows squares with the
number of nodes in the network. This means that for different values of
the vector t, the objective function of Problem (2) can have the same value,
while its gradient remains always non-negative. In the following section we
reformulate the problem and show a possible way to find its solution.
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3 Finding the Exact Solution

3.1 Formulation

We now state the problem in a different way and show a method for finding
the exact solution. We aim at formulating the problem in such a way that
the objective function is strictly convex and the dimension of the problem is
reduced. For doing so we shall decompose the vector t over a particular basis
of Rm.

The procedure consists in decomposing the vector t over the vectors wl,
l ∈ P , and their orthogonal complement. We define the matrix W1 as an m
by |P | matrix, whose columns are the vectors wl, with l ∈ P , and W2, an m
by m − |P | full rank matrix such that it verifies

W T
1 W2 = 0. (3)

In other words, the columns of W2 form a basis of the space orthogonal to
the one spanned by the columns of W1.

Provided that the columns of W1 are as well linearly independent, the
columns of the matrix W defined after W1 and W2 as

W = [W1W2] = [w1, . . . , wl, . . . , w|P |, . . . wm] (4)

represent a basis of Rm.
We shall decompose the vector t over the defined basis using the auxiliary

variables x ∈ R|P | and h ∈ Rm−|P | as

t = W1x + W2h. (5)

By multiplying both sides of Equation (5) by wT
l , and using Equation (3) we

obtain
wT

l t = wT
l W1x = vT

l x, (6)

where we have set vT
l = wT

l W1, for all l ∈ P . Note that both vl and x are
column vectors of dimension |P |.

Equation (6) will directly lead us to rewriting the objective function of
Problem (2) as a function of x. We shall now redefine the polytope by writing
it in the basis W . For doing so the change of variables defined by Equation
(5) needs to be done in the constraints of Problem (2). This leads to defining
a new matrix denoted D and computed as AW . The polytope over the new
basis can be compactly written as D[xT hT ]T ≤ b.
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All in all, Problem (2) can be rewritten in the form of Problem (7). Please
note that the objective function depends only on the variable x.

max
x

∑

l∈P

1/cl
1

1 − vT
l x − u/cl

(7)

s.t D

(
x
h

)

≤ b.

Let us call the objective function of Problem (7) as J(x) and the new
polytope as V (i.e. V = {[xT hT ]T ∈ Rm : D[xT hT ]T ≤ b}). Let us as well
define the polytope Vx as

Vx = {x ∈ R|P | | ∃ h ∈ Rm−|P | : D[xT hT ]T ≤ b}. (8)

Let W1 = span{w1 . . . w|P |}, where span refers to the set of all linear combi-
nations of vectors w1 . . . w|P |. Clearly Vx is the projection of V onto W1.

Since V is a convex polytope by definition, it is easy to check that Vx is
also a convex polytope. More precisely, Vx is the convex hull of the projection
of the extreme points of V onto W1 [31].

Then, since J(x) does not depend on h, Problem (7) can be represented
in the space W1 as follows:

max
x

J(x) (9)

s.t. x ∈ Vx.

It is proven in Appendix B that J(x) is strictly convex in Vx and that the
solution of Problem (9) is attained at an extreme point of the polytope Vx.

Problem (9) allows us to work with a strictly convex function, and to
reduce the dimension of the feasible region, in some cases, considerably. In
order to find the solution, we need to be able to perform the projection of a
polytope, and afterwards enumerate its extreme points. Methods for doing so
are available (see for instance [32]), although these can be computationally
expensive tasks. In the following subsection we explore this solution by
performing simulations in a real topology.

3.2 Simulations

In order to assess the results of the proposed method we will use the Abilene
network, whose topology, historical traffic demands and routing matrix are
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(b) Link load.

Figure 2: Example of traffic variation in the Abilene network, one week of
traffic.

available from [33]. The Abilene Network consists of 30 internal links and 12
routers (all exchanging traffic among them).

For defining the polytope linear constraints were set using the links ca-
pacity model with a maximum in the link utilization equal to the maximum
achieved by historical data. We actually did a scaling of these data in order
to obtain a more interesting case, since historically link utilizations in the
Abilene Network have been quite small.

Figure 2 shows a traffic trace of Abilene Network. This example shows
how the traffic matrix is prone to sudden traffic variations. Figure 2(a)
shows the traffic for some OD flows corresponding to 2016 consecutive mea-
surements (where each color corresponds to one OD flow), while Fig. 2(b)
shows the link load (each color corresponds to the load of a certain link).

In order to test the method in different scenarios, we compute the solution
for four paths between a pair of Origin and Destination nodes and three
different amount of bandwidth for the interdomain request. The paths were
computed using a Shortest Path algorithm, and keeping the four shortest
paths. Please note that the way of selecting the paths could have been a
different one. This choice and its impact on the delay are out of the scope of
the present paper. The values for the bandwidth of the interdomain demands
(i.e. u) are 1 Mbps, 19.4Mbps and 270Mbps. These values could correspond,
for instance, to a VoIP service, a broadcast quality HDTV service and a VPN
service, respectively.

For each path we will compute the maximum delay suffered by a flow

11



0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0.03

Bandwidth (Mbps)

D
el

ay
 (

m
s)

 

 

Instantaneous Value Maximum Value

(a) Comparison of the maximum delay
value and an instantaneous one for one
path.

Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

0.005

0.01

0.015

0.02

0.025

Time (h)

D
el

ay
 (

m
s)

 

 

Bound Real Value

(b) Comparison of the real delay values
and a computed bound for one path and
one bandwidth demand.

Figure 3: Simulations on the Abilene network.

traversing it and carrying each one of these services at a time. All results
were computed on a recent machine with good computational power (two
processors Intel Xeon X5660 2.80GHz, 24GB of RAM). For computing the
polytope projection and enumerating its extreme points we used the MPT
library [34].

In Fig.3(a) a comparison of the maximum delay value for the fourth short-
est path and the real mean delay of the same path at a certain instant is
shown. For this particular case the maximum delay value is approximately
3 times more than the instantaneous one. This highlights the need of an-
nouncing a value that the domain is able to assure, rather than a measured
one. Figure 3(b) shows the same bound, compared to several delay values
occurred during the two weeks after computing the bound. Again, this shows
that the delay can vary considerably and considering a value obtained in a
given moment could not be safe. The bound in this case is quite loose, it
should be noticed that it could be tightener by including more information
in the description of the polytope, for instance, considering at the same time
the Hose model, as introduced in Subsection 2.2.

The time consumed to perform the computation of all demands for one
path varied between 4 and 38 minutes, which for a moderately sized network
is rather high. In fact, even if in several topologies we were able to find the
exact solution through these means, it is still an open question whether there
exists an algorithm for enumerating all extreme points of a polytope of an
arbitrary dimension in polynomial running time [35]. In the following section,
we present an approximate method that can be used as an alternative to the
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previous one when its computational time becomes excessive.

4 Finding an Approximate Solution

In Section 3 we have presented a method that allows to find the exact solu-
tion. Nevertheless, we have pointed out that its complexity remains open.
In this sense, we now present a method that provides an approximate solu-
tion to Problem (2), while reducing the computational time. More precisely,
we present a numerical method based on the approximation of the objective
function by a piecewise linear function. This method provides a value that
is arbitrarily close to the exact solution (up to some controlled error).

Let us introduce the method with a detailed description of the proce-
dure to obtain it. First of all, we transform each link’s delay function,
K
cl

1
1−yl/cl−u/cl

, into a piecewise linear function over yl. For this, we partition
each function’s domain into ηl subintervals and approximate the function
in each subinterval by its first order Taylor polynomial. We shall note the
subintervals of link l as ∆l,j , j = 1 . . . ηl.

Secondly, we obtain the delay of the path, as before, by summing up
the delay on each link belonging to it. Therefore, we obtain a maximization
problem similar to (2) but now with a piecewise linear objective function.
Let us utilize the indicator function, defined as1∆(x) =

{

1 if x ∈ ∆

0 otherwise.
(10)

Then, the new problem can be seen in (11), where α and β are taken from
the Taylor polynomial of the original function.

max
t

∑

l∈P

ηl∑

j=1

(
αl,jw

T
l t + βl,j

) 1∆l,j
(wT

l t) (11)

s.t. At − b ≤ 0.

The next step is to redefine Problem (11) in order eliminate the indicator
function and to obtain a linear objective function. To do so, we decompose

Problem (11) into
∏

l∈P

ηl problems, each of them having a linear function
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as objective one. This linear function stems from the consideration of one
of the linear functions that compound each link delay’s approximation, and
summing them up. Let us now use the index j(l), j(l) = 1 . . . ηl for all l ∈ P ,
to denote the linear function chosen for link l, corresponding to subinterval
∆l,j. In order to consider each linear function only on the corresponding
domain we introduce new constraints to the problem. That is to say, the
solution has to be restricted to belong to the original polytope and at the
same time to the set {t ∈ Rm|wT

l t ∈ ∆l,j}. It can be readily proved that this
set is equivalent to imposing restrictions on the load on each link. Thus, it
is itself a polytope. We represent the intersection of the original polytope
and the new one, which is also a polytope, in the matrix form as the set {t ∈Rm|A∗t ≤ b∗}, where the matrix A∗ and the vector b∗ define the intersection
polytope.

Finally, in order to have a problem equivalent to Problem (11) we consider
all combinations of linear functions for each link, find the maximum over t
for each combination and keep the combination which leads to the greatest
value of the objective.

The mathematical formulation of the equivalent problem can be seen in
(12), where the maximum on j(1), j(2), . . . , j(|P |) means that we consider
the maximum obtained when we let each value j(l) vary between 1 and ηl.

max
j(1),j(2)...j(|P |)







max
t

∑

l∈P

αj(l)w
T
l t + βj(l)

s.t. A∗t − b∗ ≤ 0.
(12)

As we have claimed above, this method leads to a solution that is arbitrary
close to the exact solution of the original problem (Problem (2)). The proof
of this statement is shown in Appendix C.

Problem (12) can be solved computationally by performing a loop of
∏

l∈P ηl iterations. Please note that the problem solved on each iteration is
a linear one, which is very easy to solve.

For obtaining the partition needed to define the piecewise linear function,
we propose to iteratively compute the subintervals such that within each of
them the maximum difference between the approximate function and the
original one is a given ǫ, at most. This constructive procedure is shown in
Appendix C, and is part of the proof of achieving a solution arbitrary close
to the exact solution.

In order to reduce the number of iterations, we pre-compute the maximum

14



value that the load can achieve at each link according to the constraints
imposed by the polytope. Table 1 shows the number of subintervals needed
to define the piecewise linear function, for different percentage errors and
maximum link utilization (LU). This gives an idea of the complexity of the
procedure. For example, for a 6-link length path, at most 46 ≈ 4000 linear
problems need to be resolved for obtaining a result with 10% of error, thus
the numerical complexity is still feasible.

5 Numerical Results

In order to assess the results of the numerical approximation method we shall
first use the Abilene network as before. We will as well use the same polytope
as before, so as to be able to compare results afterwards. As optimization
software we use CPLEX [36]. We shall secondly perform further simulation
studies on another network, so as to be able to have more information about
the computational time.

We compute the maximum delay for the four paths and three interdo-
main demands used in Subsection 3.2, using the numerical approximation
method. The results along with the exact solutions are displayed on Fig. 4,
where the bars indicate the maximum error (10% in this case). Overall, the
computation of each of the aforementioned values takes in mean 2.28 seconds.
The maximum link utilization (imposed by the topology) was between 30%
and 80%. These computational times are dramatically smaller than the ones
necessary for obtaining the exact solution (approximately a 1000× decrease)
while providing a very tight bound.

The previous simulations allowed us to validate the method and show that
its computational time is much smaller than the one obtained through the
exact method. We shall now explore this computational time when varying
different parameters of the problem, namely the error, the maximum links’
load and the number of links in the path.

The computational time depends on the accuracy needed by the applica-
tion, which is not established a priori since it is a decision to be taken by each
AS. It depends, in addition, on the maximum link utilizations allowed by the
polytope along with the topology, and on the number of links compounding
the path.

In order to asses the impact of the accuracy in the time consumed by
the procedure we repeated the simulations allowing a maximum error of 5%
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Figure 4: Approximate and Exact Solution: Maximum delay for one Origin-
Destination pair for different Bandwidth demands and paths.

and of 2%. The mean time needed for computing the maximum delay over
one path for one interdomain demand is of 1 and 7.9 seconds, for obtaining a
solution within 5% and 2% of error respectively, which implies approximately
a 90× decrease for the 2% error, with respect to the exact method.

The previous results were obtained using historical traffic demands over
the Abilene Network. This implies that the maximum link load, imposed by
the polytope, is between 30 and 80%, as mentioned before. We now present
further simulation results using synthetic data to define the polytope, so as
to obtain results on a scenario with higher maximum link utilizations.

Figure 5 shows the ratio of the time consumed for computing the delay
bound through the Approximate Method to the time consumed by the Exact
Method. The bound was computed for one interdomain demand of 19.4
Mbps for a polytope imposing maximum link utilizations between 80 an 90%
and three different values of errors (i.e. ǫ). This was repeated for the same
four different paths presented above. Results of these simulations show that
the time consumed by the Approximate Method is much less than the one
consumed by the Exact Method. In the worst case, that is, ǫ = 2% and the
4th shortest path, the time consumed by the approximate method is of 19
minutes while the time consumed by the Exact Method is of 38 minutes.

Finally, we shall explore the influence on the computational time of the
number of links in the path. For doing so, let as utilize a larger network, the
GÉANT network [37], which is composed of 23 nodes and 74 links. Figure
6 shows the computational time for one interdomain demand of 19.4 Mbps

16



2 5 10
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Epsilon (%)

R
at

io
 (

lo
g)

 

 

Shortest path (SP) 2nd SP 3rd SP 4th SP

Figure 5: Ratio of the time consumed by the Approximate Method to the
Exact Method: one interdomain demand for different allowed error and maxi-
mum link utilization between 80 and 90%. Bound computed for four different
paths over the Abilene network.

from an origin to a destination node, through different paths. Results are
presented for a link utilization between 20% and 90% and different values
of the allowed error. Is it worth clarifying that the topology does not allow
to have high link utilizations in all links at the same time, since there are a
number of bottleneck links on it. Results show that the computational time
is not very sensitive to the path-length. For the case of a 11-link path, which
greatly exceeds the maximum path length on a domain, is of approximately
7 minutes, providing a value within the 2% of error.

The Approximate Method was shown, through extensive simulation stud-
ies, to consume low computational times in most of the cases. The methods
proposed on this work are conceived to be used by each AS in order to obtain
a value of a metric to announce in the process of Interdomain Path Selec-
tion. The announced bound is supposed to hold for a long period of time,
for instance, several hours. In this context, the time consumed by the Ap-
proximate Method is considered totally acceptable. However, we have not
focused our work on optimizing this computational time, which could be, for
instance, diminished through parallelizing the code, since its nature allows it
(it solves an optimization problem over several independent feasible regions).
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6 Conclusion and Future Work

We have presented a means of computing a bound on the end-to-end delay.
The method takes into account the uncertainties in the traffic traversing the
AS, which have been modeled as a polytope. Therefore, it is a value that
the AS can guarantee for a certain period of time. The problem was mathe-
matically stated and different solutions were provided. A method for finding
the exact solution was given, and an alternative approximate method was
proposed, as a remedy for the high computational cost of the former. Such
approximate method renders rather than a value of the delay, an interval to
where the real value of the maximum delay is guaranteed to belong. The
latter was theoretically proven and numerically validated, by comparing the
results to the real maximum. Both methods were tested on real networks us-
ing measurement and synthetic data. The Approximate method was shown,
through simulations, to provide acceptable computational times on several
scenarios. Altogether, we have proposed a method to enhance PCE-based
interdomain path selection mechanisms, which can be implemented with low
computation complexity and little monitoring infrastructure.

As future work, we shall explore the case of having uncertainty on the AS
topology in addition to traffic uncertainty. For instance, taking into account
the case of link or node failures, and being able to provide even in those
cases a tight end-to-end delay bound. We shall as well explore the possibility
of building a delay curve as a function of ingress traffic. If the delay can
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be advertised as a function of ingress traffic, this would allow to take more
sophisticated routing decisions, leading to lower end-to-end delay values. In
addition, in the scenario considered in this paper where ASs collaborate
among them, the problem of distributing all flows among the ASs involved
for achieving social welfare at the time they have QoS requirements becomes
an interesting one and raises new questions. Studying such scenario using
the present approach as a building block, is a challenging work which we
shall address in the future.
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A Convexity of the Objective Function

In this section we prove that the objective function of Problem (2) is a convex
function but not a strictly convex one. We use the notations introduced in
Section 2.1. In addition, we will denote the objective function of Problem
(2) as f(t) and the feasible region of such problem as S.

We are interested in finding out if f(t) is a convex function over S, thus
we shall explore if the following inequality holds [38]

f(t1) ≥ f(t2) + ∇f(t2)
T (t1 − t2), t1, t2 ∈ S. (13)

Applying the definition of f to Equation (13) we obtain the following
inequality

∑

l∈P

1/cl

1 − wT
l t1 − u/cl

≥
∑

l∈P

1/cl

1 − wT
l t2 − u/cl

+
∑

l∈P

1/clw
T
l (t1 − t2)

(1 − wT
l t2 − u/cl)2

, t1, t2 ∈ S.

(14)
Let us now define gl(t), an auxiliary function in order to simplify the

notations, as
gl(t) = 1 − wT

l t − u/cl, t ∈ S. (15)
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Substituting the latter definition in Equation (14) and performing some
regular math operations we obtain the following inequality

∑

l∈P

(gl(t2) − gl(t1))
2

gl(t1)gl(t2)2
≥ 0, t1, t2 ∈ S. (16)

Please note that each term on Inequality (16) is either zero or greater
than zero for all t1, t2 ∈ S. Therefore, the function f is convex over S. It
remains to show if the function is strictly convex or not.

Therefore, we need to find out if there exist t1 and t2 ∈ S such that
gl(t2) − gl(t1) is equal to zero for all l ∈ P . The latter is equivalent to
showing that there exist t1 and t2 ∈ S such that < wl, t2 − t1 >, the scalar
product of vector wl and (t2 − t1), is equal to zero for all l ∈ P , that is to
say, having all vectors wl, l ∈ P orthogonal to the vector (t2 − t1). Since the
vectors wl do not form a basis of Rm it is possible to find t1 and t2 ∈ S such
that their difference is orthogonal to all vectors wl, l ∈ P . This finishes the
proof, which concludes that f is a convex function, but not a strictly convex
one.

B Convexity of J(x) and Characterization of

the Optimal Point

In this appendix we shall prove that the function J(x) defined in Section 3 is
indeed a strictly convex function over Vx and that the solution to Problem (9)
is an extreme point of the polytope Vx. We shall use the notations introduced
in Sections 2.1 and 3.

Let us define λl(x) as

λl(x) = (1 − vT
l x − u/cl)

−2, ∀l ∈ P (17)

and the matrix Λ as
Λ(x) = diag(λ1, . . . , λ|P |). (18)

For all x ∈ Vx and l ∈ {1 . . . |P |}, λl(x) > 0. Thus, Λ(x) is a positive-
definite matrix1.

1A n × n real symmetric matrix M is positive-definite if zT Mz > 0 for all non-zero
vectors z, z ∈ Rn.
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In addition, we can check that [v1 . . . v|P |] = W T
1 W1 is also a positive-

definite matrix. Thus, the Hessian of J(x), which is

∇2J(x) = (W T
1 W1)Λ(x)(W T

1 W1) (19)

is as well a positive-definite matrix, which concludes the proof.
We are now able to show that the solution to Problem (9) is attained at

an extreme point of Vx.
Indeed, we can prove by contradiction that the maximum of J(x) over

Vx must be reached at an extreme point of Vx. Since J is a strictly convex
function, inequality (20) holds [38].

J(Φ) > J(θ) + ∇J(θ)T (Φ − θ), ∀ θ, Φ ∈ Vx. (20)

Now, let θ̄ ∈ Vx be an optimal point of Problem (7). Therefore, θ̄ is a
strict maximum, since J is strictly convex, and, for all Φ ∈ Vx \{θ̄}, we must
have:

J(Φ) − J(θ̄) < 0. (21)

Together with inequality (20), we get

∇J(θ̄)T (Φ − θ̄) < 0, ∀Φ ∈ Vx \ {θ̄}. (22)

By contradiction we suppose that θ̄ is not an extreme point of Vx. Then
there exists µ ∈ R|P | such that ||µ|| > 0 and θ̄ + µ, θ̄ − µ ∈ Vx. By letting
Φ = θ̄ − µ and Φ = θ̄ − µ at a time, we would get:

∇J(θ̄)Tµ < 0 and −∇J(θ̄)T µ < 0, (23)

which is not possible.
This allows us to conclude that θ̄ can not be a non extremal point of Vx,

which finalizes the proof.

C Validation of the Approximate Method

In this Section we prove that the Approximate Method presented in Section
4 reaches the exact solution of Problem (2), up to some controlled error.

We remind the reader that we start from a problem like Problem (2), we
then partition the feasible region into several sub-regions and approximate
the objective function of Problem (2) as a linear function within each of the

21



sub-regions. This problem can be seen in Problem (12). We then keep the
maximum of the output of all the possible problems of maximization over t
in Problem (12).

Let us call the original function, defined in Problem (2), as f(t) and the
piecewise linear approximation of f as f̃ . Let t̃f and tf be the values at
which the maximum of f̃ and f are attained respectively. Let us as well note
the feasible region of Problem (2) as S.

We set the hypothesis that for a given real positive ǫ, the approximation
of f can be made such that the difference between f and f̃ is bounded by ǫ.
That is to say that

f(t) − f̃(t) ≤ ǫ ∀t ∈ S. (24)

Under the conditions of Equation (24) and with the definitions of t̃f and tf
provided above we can prove that

f(tf) − f(t̃f) ≤ ǫ. (25)

Let us first prove that Equation (24) holds for the case of the M/M/1
model mean delay function. Please note that for other functions this is
an hypothesis to be checked before applying the algorithm. We provide a
constructive proof showed in the following. For the sake of simplicity on the
notations we will not include u in the formulation, but the whole procedure
can be reproduced in an analogous way considering u.

Let e(y) = 1
1−y

be such that f(t) =
∑

l∈P 1/cle(w
T
l t), t ∈ S. Let us note

the partition of the domain of e over y ([0, 1)) as the set of subsets ∆i where

∆ = {∆i : i = 1 . . . η}. (26)

Let ẽ be the piecewise linear approximation of e over each one of the subsets
defined in (26), such that the following inequality holds

|e(y) − ẽ(y)| ≤
ǫ

∑

l∈P 1/cl

= δ ∀y ∈ ∆. (27)

This will ensure that Equation (24) holds since f̃(t) =
∑

l∈P 1/clẽ(w
T
l t).

We shall consider the graphic displayed on Fig. 7. Let us note ∆i as
∆i = [yi−1, yi], with y0 = 0. We define zi ∈ ∆i as the linearization point of
function e in ∆i. Let us define ǫi−1 and ǫi as the difference between e and ẽ
at each yi−1 and yi respectively. That is to say

ǫi−1 = e(yi−1) − ẽ(yi−1) and ǫi = e(yi) − ẽ(yi), i = 1 . . . η. (28)
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Figure 7: Difference between function e and its approximation ẽ.

It is not difficult to see that the maximum of the difference between e and ẽ
will be attained at either yi−1 or yi, i ∈ 1 . . . η.

Given yi−1 fixed, let zi increase from yi−1. We define yi such that ǫi = δ.
As zi increases, yi and ǫi−1 increase. Therefore, the maximum subinterval
size under the constraint ǫi−1, ǫi ≤ δ is achieved when

ǫi−1 = ǫi = δ. (29)

Therefore, given yi−1 and δ, we can find a value zi imposing that

e(yi−1) − ẽ(yi−1) = δ. (30)

Once zi is known, we can compute yi by imposing

e(yi) − ẽ(yi) = δ. (31)

All in all, it appears that e can be approximated over its domain by
means of a piecewise linear function. Thus, f(t) =

∑

l∈P 1/cle(w
T
l t) can

be approximated by means of a sum of piecewise linear functions, and this
approximation, which we note as f̃(t), is such that Equation (24) holds for
all t ∈ S.

We have provided a constructive proof of Equation (24). We are now able
to show that (25) holds. Indeed, let again t̃f and tf be the values at which
the maximum of f̃ and f are attained respectively. The following inequalities
are obtained straightforwardly from the definition of the maximum

f̃(t̃f ) ≥ f̃(tf ) (32)

f(tf) ≥ f(t̃f). (33)
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We are interested in finding a bound to the difference f(tf )−f(t̃f) which
can be rewritten as in the following equation

f(tf ) − f(t̃f ) =

≤0
︷ ︸︸ ︷

f̃(t̃f ) − f(t̃f) +

≤0
︷ ︸︸ ︷

f̃(tf) − f̃(t̃f) +

≤ǫ
︷ ︸︸ ︷

f(tf ) − f̃(tf ). (34)

Equation (34) immediately leads to the inequality f(tf) − f(t̃f) ≤ ǫ,
which completes the proof. Please note that in Equation (34) we have used
the fact that f(t) is greater than f̃(t) for all t ∈ S, which is true since f̃ is
the piecewise linear approximations of a convex function.
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[18] R. A. Guérin, A. Orda, QoS Routing in Networks with Inaccurate Infor-
mation: Theory and Algorithms, in: Networking, IEEE/ACM Transac-
tions on, Vol. 7, IEEE Press, Piscataway, NJ, USA, 1999, pp. 350–364.

[19] J. Levendovszky, C. Orosz, Developing Novel Statistical Bandwidths for
Communication Networks with Incomplete Information, in: Experimen-
tal and Efficient Algorithms, 2005, pp. 614–617.

[20] B. Claise, RFC 3954 - Cisco Systems NetFlow Services Export Version
9, Internet Engineering Task Force. (2004).

[21] Y. Vardi, Network Tomography: Estimating Source-Destination Traffic
Intensities from Link Data, Journal of the American Statistical Associ-
ation 91 (433) (1996) 365–377.

[22] Y. Zhang, M. Roughan, C. Lund, D. L. Donoho, Estimating point-to-
point and point-to-multipoint traffic matrices: an information-theoretic
approach, Networking, IEEE/ACM Transactions on 13 (2005) 947–960.

[23] P. Casas, S. Vaton, L. Fillatre, T. Chonavel, Efficient Methods for Traffic
Matrix Modeling and On-line Estimation in Large-scale IP Networks, in:
21st International Teletraffic Congress, 2009, pp. 1–8.

[24] R. Teixeira, N. Duffield, J. Rexford, M. Roughan, Traffic Matrix
Reloaded: Impact of Routing Changes, in: Passive and Active Net-
work Measurement, Vol. 3431 of Lecture Notes in Computer Science,
Springer Berlin, 2005, Ch. 20, pp. 251–264.

[25] P. Casas, S. Vaton, L. Fillatre, I. Nikiforov, Optimal Volume Anomaly
Detection and Isolation in Large-scale IP Networks Using Coarse-grained
Measurements, Vol. 54, 2010, pp. 1750–1766.

[26] W. Ben-Ameur, H. Kerivin, Routing of Uncertain Traffic Demands, in:
Optimization and Engineering, Vol. 6, 2005, pp. 283–313.

[27] F. Larroca, J. L. Rougier, Robust Regression for Minimum-delay Load-
balancing, in: 21st International Teletraffic Congress, 2009, pp. 1–8.

26



[28] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan,
J. E. Van der Merive, A Flexible Model for Resource Management in
Virtual Private Networks, in: SIGCOMM ’99, ACM, New York, USA,
1999, pp. 95–108.

[29] M. Johansson, A. Gunnar, Data-driven traffic engineering: techniques,
experiences and challenges, in: Broadband Communications, Networks
and Systems, 2006. 3rd International Conference on, 2006, pp. 1–10.

[30] L. Fillatre, D. Marakov, S. Vaton, Forecasting Seasonal Traffic Flows,
in: Workshop on QoS and Traffic Control, 2005.

[31] A. Brondsted, An Introduction to Convex Polytopes, Springer, 1982.

[32] C. N. Jones, Polyhedral Tools for Control, Ph.D. thesis, Pembroke Col-
lege (2005).

[33] Y. Zhang, The Abilene Dataset, http://www.cs.utexas.edu/
yzhang/research/AbileneTM/ (Last Visited June 2011).

[34] Multi-Parametric Toolbox (MPT) A tool (not only) for multi-parametric
optimization, http://control.ee.ethz.ch/~mpt/ (Last Visited June 2011).

[35] L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, V. Gurvich, Generating
All Vertices of a Polyhedron Is Hard, Vol. 39, Springer New York, 2008,
pp. 174–190.

[36] IBM ILOG CPLEX Optimizer, http://www-
01.ibm.com/software/integration/optimization/cplex-optimizer/ (Last
Visited June 2011).

[37] The GÉANT network, http://www.geant.net (Last Visited June 2011).

[38] M. Minoux, Mathematical programming : theory and algorithms, John
Wiley, 1986.

27



ǫ 1 % ǫ 10 %
LU 60% 5 2
LU 80% 9 3
LU 90% 12 4

Table 1: Number of subintervals needed to define the piecewise linear func-
tion.
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