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Abstract 

Investigation of Lewis acid-base interactions has been conducted by ab initio calculations and Machine 

Learning (ML) models. This study aims to resolve two critical tasks that have not been quantitatively 

investigated. First, ML models developed from Density Functional Theory (DFT) calculations predict 

experimental BF3 affinity with Pearson correlation coefficients around 0.9 and mean absolute errors around 

10 kJ mol-1. The ML models are trained by DFT-calculated BF3 affinity of more than 3000 adducts, with 

input features readily obtained by rdkit. Second, the ML models have the capability of predicting the relative 

strength of Lewis base binding atoms in Lewis polybases, which is either an extremely challenging task to 

conduct experimentally or a computationally expensive task for ab initio methods. The study demonstrates 

and solidifies the potential of combining DFT calculations and ML models to predict experimental 

properties, especially those that are scarce and impractical to empirically acquire. 

Introduction 

Lewis acid-base interactions have been shown to have a wide range of applications. Examples include the 

Frustrated Lewis pair in organic synthesis, the surface passivation of perovskite solar cells with Lewis 

bases, and color tuning in organic electronics.1–7 A Lewis base (LB) contains atoms with lone electron pairs 

(hereinafter called LB atoms). In contrast, a Lewis acid (LA) contains atoms that have empty orbitals that 

can be used to bind with LB atoms to form a product called a Lewis acid-base adduct. For complex Lewis 

acid-base adducts, the LA-LB binding depends on a variety of intercorrelated properties such as 

electronegativity of the binding atoms, the energetic availability and steric accessibility of the lone pairs of 

the LB atom and empty orbitals of the LA atom, and the geometrical adjustment of either LA or LB upon 

binding.8 Therefore, predictive controls and rational designs of Lewis acid-base adducts require chemistry 

fundamentals, experimental experience, and computational simulations. Among computational methods, 

DFT has been demonstrated to be a powerful prediction tool for binding energy, electron population, excited 

states, and other properties of Lewis acid-base adducts.7,9–13 

The Lewis bases with multiple LB atoms (hereinafter called Lewis polybases)14 have been recognized in 

numerous promising applications of Lewis interaction, especially organic semiconducting materials.15–18 
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Understanding the binding propensity and related properties of each LB atom in a Lewis polybase would 

contribute to the theoretical framework of Lewis interaction as well as improve their effectiveness in 

different applications. Those properties were reported to be predictable using ab initio methods in previous 

studies.7,8,19,20 However, due to the employment of quantum mechanical wavefunctions, ab initio 

calculations are relatively costly, especially for large adducts.21,22 Furthermore, the computational expense 

increases significantly with Lewis polybases containing numerous LB atoms since there would be numerous 

feasible adducts. 

As a less computationally expensive alternative to quantum computation, machine learning (ML) and deep 

learning (DL) have demonstrated the potential in seeking solutions in various issues of materials science as 

well as chemistry. The diversity in model algorithms contributes to the high performance of ML and DL in 

predicting physical and chemical properties such as molecular polarizabilities,23 molecular energies,24,25 

dipole moments,25 and a variety of other  properties.26 Furthermore, the combination of quantum 

computation and ML/DL models has resulted in the remarkable power of predicting experimental 

properties. For example, a study of Sahu et al. has employed quantum calculations and gradient boosting 

to predict efficiency of organic solar cells with the Pearson coefficient of 0.79.27 A recent study of Bauer et 

al. demonstrated that ML has the capability of predicting experimental hydrogen bonding free energies with 

RMSE below 4 kJ mol-1.28 Noteworthily, the model from Bauer et al. was developed from quantum-

chemically computed free energies instead of directly training with experimental data. Besides, some 

models have the capability of filtering, screening a large dataset of molecules to a small number of most 

promising ones, and even generating new structures with favorable properties.29–31 

As a typical characteristic of ML, many models are designed to perform effectively with tabular data. In 

the fields of chemistry and materials science, tabular data often includes eligible descriptors representing 

molecular structures as well as molecular properties. Among them, molecular descriptors are popular 

descriptors that can be computed readily from molecular structure, for example the molecular weight, the 

number of Carbon atoms or the mean atomic polarizability. The low computational cost promotes the 

molecular descriptors to be widely employed in ML models.32–34 For instance, our recent study has 

demonstrated the capability of ML in using the readily obtained molecular descriptors to predict DFT-

calculated properties of Lewis adducts that are challenging to obtain experimentally such as charge transfers 

from an LB to an LA upon binding.22 Another type of popular descriptors is fingerprint descriptors with the 

exceptional performance in different tasks such as predicting bandgap,35 atomic force36 and polymer 

properties.37 Some studies also constructed their own new descriptors.27,28 Different from the tabular data 

type, deep learning is more flexible in the input types of the datasets. Among different DL models, graph 

neural network (GNN) is unique in utilizing object graphs for its training process. The resemblance of a 

molecular structure to a graph contributes to the accomplishment of GNN as the state-of-the-art model in 

predicting some molecular properties such as potential energy,38,39 force field39 and optoelectronic 

properties.40 

In this study, we present the potential of machine learning in two critical aspects. Firstly, ML models 

developed from DFT calculations of BF3 affinity (i.e., the magnitude of enthalpy change in a 1:1 complex 

formation of a Lewis base and BF3) can predict experimental BF3 affinity. Secondly, the ML models are 

capable of predicting the LB binding atoms of Lewis polybases in 1:1 complex formation with BF3, which 

are extremely challenging to obtain with experiments. To the best of our knowledge, there has not been a 

comprehensive quantitative investigation of the competitiveness of different LB atoms in Lewis polybases. 

Features used in the ML models include descriptors representing atomic properties of a specific LB atom 

in an LB, and molecular descriptors of LB molecules. Additionally, the weight of descriptors is investigated 
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to provide more insights into the performance of the ML models. Besides, the ML models are briefly 

compared with GNN, which is one of the state-of-the-art DL models in learning molecular structures.38–41 

Methods 

Experimental dataset 

The experimental dataset contains BF3 affinity of 347 Lewis bases (LBs), which were assembled and 

reported by Laurence et al. (excluded one LB containing iodine).14 It should be noted that most BF3 

affinities are primary values measured in dichloromethane, while some are secondary values calculated 

from measurements in other solvents. All the reported measurements were conducted at the temperature of 

298 K and the pressure of 1 atm using the calorimetry method (i.e., a standard technique for measuring the 

amount of heat involved in a chemical reaction). 

In silico dataset 

The in silico dataset was constructed to be the training dataset for ML models. To ensure that the training 

set covers the chemical space of the experimental dataset, we used the chemical moieties from the 

experimental dataset to build new LBs for the in silico dataset. Thus, the molecules in the experimental 

dataset were manually broken down into 98 chemical moieties (Figure S1). All those moieties were 

combined to make 1000 new LBs using a customized algorithm based on rdkit.42 The algorithm regulated 

several properties of the in silico dataset to be comparable to the experimental ones: the molecular weight 

distribution (Figure S2a), the ratio between Carbon and other heavy atoms, and the number of LB atoms 

from two to seven LB atoms. This quantity of LB atoms is a reasonable number of electron-withdrawing 

atoms for the range of the molecular weight of LBs in the in silico dataset as well as the experimental 

dataset. Each generated LB was also checked to be present in Pubchem library with pubchempy for a rapid 

assessment of chemical feasibility.43 Additionally, the generated LB must not be included in the 

experimental dataset, and not be a duplicate. The SMILE strings of molecules in the in silico and 

experimental datasets are provided in the Supplementary Materials. 

All the LBs in the in silico dataset as well as the experimental dataset were bound with BF3 to form 1:1 

adducts. For a Lewis polybase, one BF3 molecule was connected to each LB atom respectively to build up 

different 1:1 adducts. In this study, the investigated LB atoms include Nitrogen, Oxygen, Phosphorus, and 

Sulfur with at least one lone pair of electrons. As a result, the 1000 molecules in the in silico dataset 

produced 3109 1:1 adducts, and the 347 LBs in the experimental dataset produced 648 adducts. Those 

adducts went through a quick geometrical optimization with the Merck molecular force field (MMFF94) 

before being optimized with DFT. 

DFT methods 

Diverse functionals and basis sets commonly used for organic molecules were examined with a small 

number of adducts reported recently.20 They include the G4 compound method44 (Table S1) and a few 

common DFT methods using APFD for functionals, Aug-cc-pVTZ and 6-311+g(2d,p) for basis sets, and 

polarizable continuum model (PCM) as well as SMD model for solvent models. The selected models were 

reported with high accuracy in previous studies.7,20 Furthermore, APFD/6-311+g(2d,p) was recommended 

by Gaussian for typical organic molecules.45 The APFD functionals, with built-in dispersion functions, has 

been tested for weak interactions with comparable accuracy to CCSD(T)/aug-cc-pVTZ calculations, which 

are recognized as an accurate and costly method.46 The performance of each method is presented in Table 

S1 and Figure S3. Considering both the accuracy and the computational cost, the APFD/6-311+g(2d,p) 

with either PCM or SMD are reasonable for the calculations in the study. We chose APFD/6-311+g(2d,p) 
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with PCM due to the popularity of PCM and the availability of our data from previous studies for 

comparison purpose.7,22,45 All calculations were conducted with dichloromethane, which was the solvent 

used in the most of experimental measurements. 

Subsequently, all the adducts, LBs, and BF3 were optimized using the aforementioned APFD/6-311+g(2d,p) 

with PCM. Thermodynamic properties, including enthalpies, of the optimized structures were then 

calculated at the temperature of 298 K and the pressure of 1 atm, which were the temperature and pressure 

used in the experimental measurements. The optimized structures were also confirmed by the absence of 

negative vibrational frequencies. Finally, BF3 affinity was calculated as the negative of the enthalpy of 

formation for Lewis acid-base adducts (i.e., 𝐵𝐹3 𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦 = −∆𝐻𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 = 𝐻𝐿𝐵 + 𝐻𝐵𝐹3
− 𝐻𝑎𝑑𝑑𝑢𝑐𝑡). 

For the in silico dataset, BF3 affinity was calculated for 3086 out of 3109 adducts whose DFT calculations 

were properly converged. For the experimental dataset, BF3 affinity was calculated for all the possible 648 

adducts. 

In order to compare with the experimental affinity in the experimental dataset, the representative DFT-

calculated affinity of LBs was calculated based on the Boltzmann average method. For an LB with one LB 

atom, the method simply took the only DFT-calculated affinity to be the representative one. For a polybase, 

the Boltzmann distribution was applied to derive the probabilities of the complex formation between the 

LB atoms and BF3 from their corresponding affinity values. Then, the probabilities and the affinities of the 

LB atoms were multiplied and summed up to result in a representative affinity of the complex formation of 

all LB atoms. The calculated representative values (hereinafter called Boltzmann-average affinity) were 

employed to statistically reflect experimental affinity. 

Descriptors 

Descriptors are used as inputs to train ML models of molecules in a training set, and then to predict target 

properties of molecules in a test set. We utilized three types of descriptors including LB-atom descriptors, 

radial charge descriptors and molecular descriptors. While the LB-atom descriptors and radial charge 

descriptors are used to represent the LB atoms, the molecular descriptors provide the information of the 

whole LBs. Rdkit was employed to calculate descriptors describing an LB atom that bonds with BF3. They 

include atomic number (Atomic_Number), atomic Gasteiger charge (Atomic_Charge), number of bonded 

neighbors (Degree), and atomic free solvent-accessible surface area (Free_SASA).42 Inspired by radial 

atomic descriptors in studies reported by Göller et al.,28,47 radial charge descriptors were calculated using 

Gasteiger charge as the core property. The Gasteiger charge is chosen because this type of charge can be 

computed readily from molecular structures with rdkit. For an LB atom, the radial charge descriptor 

numbered n (Radial_Charge_n) is the total Gasteiger charge of the LB atom and all atoms within its radius 

of n bonds. The radial charge descriptor numbered 1 (Radial_Charge_1) is the sum of the Gasteiger charge 

of the LB atom itself and all atoms directly binding to that LB atom. In this study, nine radial charge 

descriptors numbered from 1 to 9 were calculated for each LB atom. This amount of radial charge 

descriptors is suitable for LBs in the range of molecular weight in the in silico and experimental datasets. 

Molecular descriptors were extracted from the Mordred calculator.48 15 descriptor groups from Mordred 

were selected by the level of insights they could inform molecular design. They include AcidBase, 

Aromatic, AtomCount, BondCount, CarbonTypes, Constitutional, FragmentComplexity, Framework, 

HydrogenBond, Polarizability, RingCount, RotatableBond, SLogP, VdwVolumeABC and Weight. After 

removing the descriptors whose values were the same for more than 95% of LBs, 81 molecular descriptors 

remained. The three types of descriptors were combined into a set of 94 descriptors. 
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Model evaluation and testing 

In this study, four ML models were selected from Scikit-learn based on their versatility and applicability in 

the fields of chemistry and materials science.49 They include Linear Regression (LR) and Ridge Regression 

(Ridge) as the representatives of linear-based models, while Random Forest (RF) and Gradient Boosting 

(GB) are chosen for tree-based models. The in silico dataset is the training set, and the experimental dataset 

is the final test set for the ML models. It should be noted that none of the molecules in the in silico dataset 

exists in the experimental dataset. 

We employed the standard three steps in developing and testing ML models including tuning 

hyperparameters, training models, and testing models. In order to tune hyperparameters, we applied cross-

validation grid-searches using Stratified shuffle splitting strategy. This splitting approach is used to split the 

training set (i.e., the in silico dataset) into five separate groups with comparable DFT-calculated BF3 affinity 

distributions. This is to avoid the sampling bias towards any certain range of affinity.50 Then, the models 

with the tuned hyperparameters were also trained with cross-validation strategy, resulting in 30 values of 

Pearson correlation coefficient (R) and mean absolute error (MAE) to reflect the training performance. For 

testing the accuracy and applicability of the models, two validation approaches were utilized in this study. 

First, the models were used to predict the experimental BF3 affinity in the experimental dataset. As a result, 

R and MAE between Boltzmann-average ML-predicted affinity and experimental data were calculated. 

Second, rankings of LB atoms within Lewis polybases between ML prediction and DFT calculations of 

both datasets were compared and assessed. The ML performance was also briefly compared with a GNN 

model from deepchem, a library with high quality tools to democratize the use of deep learning in the 

sciences.51 More details of the GNN model can be found in the caption of Figure S6. 

Results & Discussion 

Correlation of DFT-calculated and experimental BF3 affinity 

 

 

Figure 1. (a) Correlation of Boltzmann-average DFT-calculated affinity versus experimental BF3 affinity 

of 347 LBs in the experimental dataset. The diagonal line is a plot of y = x as a helpful visual guide; the 

two green lines are error boundaries of one standard deviation of the experimental data from the y = x line. 

(b) BF3 affinity histograms of experimental data (blue) and DFT calculations of all LB atoms (orange) of 
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347 LBs in the experimental dataset. In these histograms, each LB has one experimental BF3 affinity, while 

having multiple values of DFT-calculated BF3 affinity corresponding to multiple LB atoms. 

The assessment of DFT calculations on the experimental dataset is displayed in Figure 1. After conducting 

DFT calculations for all LB atoms, Boltzmann-average affinity of each LB was computed to reflect the 

experimental BF3 affinity. DFT simulations demonstrate a strong correlation with experimental BF3 affinity 

with an R value of 0.96 and MAE of 5.95 kJ mol-1, presented in Figure 1a. The figure also shows that most 

of the data points stay within the error boundaries of one standard deviation of experimental data (23.93 kJ 

mol-1). The results confirm the reliability of the selected method (APFD/6-311+g(2d,p) with PCM). In 

contrast to one BF3 affinity per one LB for experimental data, DFT simulations have the merit of calculating 

BF3 affinity for each LB atom, which is immensely tough to measure by experiments. It includes significant 

weak LB atoms with affinity close to zero, such as the Nitrogen of the Amide groups. This leads to the 

difference between histograms of experimental data and DFT calculations in the experimental dataset in 

Figure 1b. Noticeably, the DFT calculations of all LB atoms (orange histogram) have numerous values of 

BF3 affinity below 50 kJ mol-1, which is the range with almost no experimental data (blue histogram). This 

capability of DFT calculations is a crucial foundation for ML to learn the BF3 affinity corresponding to 

different LB atoms of a Lewis polybase and identify the binding one with BF3 in a 1:1 Lewis acid-base 

adduct. 

Exploratory data analysis 

  

 

Figure 2. (a) Box plots of DFT-calculated BF3 affinity of four different elements of LB atoms in the in 

silico dataset. In box plots, the line in the box represents the median, the green triangle represents the 

arithmetic mean, the box covers from the first quartile to the third quartile of the data, and the whisker 

extends from the lowest data point within the distance of 1.5 times the interquartile range below the first 

quartile to the highest data point within the same distance above the third quartile, the circle represents the 

outliers. (b) DFT-calculated BF3 affinity of the in silico dataset plot against the atomic free solvent-

accessible surface area (Free_SASA) as an example of the descriptors. 

We explore the descriptive statistics of the dataset to get insights into the relationship between BF3 affinity 

and descriptors. Figure 2a demonstrates the DFT-calculated BF3 affinity of four elements of LB atoms in 

the in silico dataset. Nitrogen is recognized as the LB element with the highest average affinity (~ 80 kJ 

mol-1). The Oxygen element is in the second place with an average affinity of approximately 65 kJ mol-1. A 
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similar pattern is also applied to the third-row elements with nearly 50 kJ mol-1 for Phosphorus and over 30 

kJ mol-1 for Sulfur. This order of N, O, P, S binding affinity could be generally explained by chemical 

intuition. The higher affinity of Nitrogen compared to Oxygen, and Phosphorus compared to Sulfur can be 

rationalized with the higher electronegativity of Oxygen and Sulfur, respectively. The higher affinity of the 

second-row elements (N, O) compared to those of the third-row (P, S) can be attributed to the higher orbital 

overlap between the lone pair orbital of the second-row LB atoms and the empty orbital of Boron (also in 

the second row). This trend has also been qualitatively explained by hard-soft acid-base theory.52–54 

The Pearson correlation coefficients between DFT-calculated BF3 affinity and 94 descriptors in the in silico 

dataset are presented in Table S2. The low average of absolute R values (0.16 ± 0.11) implies that the 

correlation is not significant. The relationship of BF3 affinity and most descriptors is rather complex, which 

is represented in Figure 2b with the atomic free solvent-accessible surface area (Free_SASA) as an 

example. Noticeably, the figure indicates three vertical clusters around Free_SASA of 5.0, 11.0 and 16.5 

A2, respectively. Each cluster contains a full range of BF3 affinity from below zero to more than 150 kJ mol-

1. This complex relation makes it improbable to interpret and predict DFT-calculated BF3 affinity with just 

Free_SASA. Although steric accessibility is considered as an important factor in Lewis acid-base 

interactions, the descriptor representing this effect, Free_SASA, does not show a direct correlation to BF3 

affinity. This might be due to the diverse chemical space of the large dataset containing different LB atoms. 

Besides, Figure S2b presents the histograms of DFT-calculated BF3 affinity in both the in silico dataset 

(training set) and the experimental dataset (test set). Along with the comparable molecular weight 

distributions of the two datasets presented in Figure S2a, the similarity of BF3 affinity distribution can be 

observed in the training and test set. It indicates the suitability of the in silico dataset as the training set for 

ML models. 
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ML validation on the in silico dataset  

 

Figure 3. (a) Pearson Correlation Coefficient and (b) Mean Absolute Error of different ML models with 

full descriptors in cross validation on the in silico dataset. (c) Top ten descriptors with highest feature 

importance in GB model (average values from the cross-validation). (d) Pearson Correlation Coefficient of 

ML models either without LB-atom descriptors, radial charge descriptors or molecular descriptors in cross 

validation on the in silico dataset. In box plots, the line in the box represents the median, the green triangle 

represents the arithmetic mean, the box covers from the first quartile to the third quartile of the data, and 

the whisker extends from the lowest data point within the distance of 1.5 times the interquartile range below 

the first quartile to the highest data point within the same distance above the third quartile. 

Figure 3 presents the performance of ML models in learning DFT-calculated BF3 affinity in the in silico 

dataset. Box plots in Figure 3a,b are Pearson Correlation Coefficients (R) and negative Mean Absolute 

Errors (MAE) of four different models in the cross validation. The performance is divided into two clear 

clusters of linear-based models and tree-based models. While GB and RF have high R values of 0.91 ± 0.01 

and small MAE of 9.58 ± 0.39 kJ mol-1, LR and Ridge models demonstrate much worse results with 0.72 

± 0.02 for R and 18.92 ± 0.45 kJ mol-1 for MAE. The dominance of the tree-based models shows that GB 

and RF are suitable ML models for learning the patterns of BF3 affinity. This dominance has also been 

observed in previous studies,22,55,56 and might be resulted from the aforementioned low correlations between 
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BF3 affinity and descriptors.22 Consequently, we choose the GB and RF models for further analysis of the 

prediction. 

The feature importance of the tree-based models is analyzed to comprehend how each group of descriptors 

affects the prediction. In GB and RF models, the feature importance quantifies how much a descriptor 

contributes to reducing the uncertainty of prediction.57–59 The descriptor with higher feature importance has 

more influence on the model prediction. Additionally, the sum of all values of feature importance in a model 

is normalized to be 1.00. As a result, the average feature importance of 94 descriptors is approximately 

0.01. Figure 3c and Figure S4a present ten descriptors with the highest average feature importance in the 

GB and RF models, respectively. Noticeably, the ten descriptors include all three distinct types of 

descriptors (radial charge descriptors, LB-atom descriptors, and molecular descriptors), which confirms the 

robustness in the selection of descriptors. In both tree-based models, Atomic_Charge dominates with the 

highest feature importance of 0.195 for GB and 0.181 for RF. For other LB-atom descriptors, the feature 

importance of Free_SASA is higher than that of Atomic_Number. This implies that, at least for those 

models, the prediction of BF3 affinity is influenced by the properties of LB atoms in the descending order 

of the electronegativity, the steric accessibility, and the elements of those atoms. Among the two dominant 

radial charge descriptors, Radial_charge_1 is recorded with higher feature importance than 

Radial_Charge_2 in both models, which demonstrates that the more localized the radial charge is to the LB 

atoms, the more influence it has on the prediction. For molecular descriptors, we notice that the ones with 

high feature importance also have relatively high correlation coefficients (0.396 - 0.485) with DFT-

calculated BF3 affinity, as compared to the average coefficients of all molecular descriptors (0.16 ± 0.11, 

presented in Table S2). 

To further investigate the influence of each descriptor type, we build ML models without either LB-atom 

descriptors, radial charge descriptors, or molecular descriptors, respectively. The performance of these 

models is presented in the Pearson correlation coefficient boxplots in Figure 3d and negative mean absolute 

error boxplots in Figure S4b. Without LB-atom descriptors, the GB and RF models demonstrate noticeably 

inferior accuracy with a decrease of R from 0.91 to 0.80 on average, and an increase of MAE from around 

10 kJ mol-1 to 14.5 kJ mol-1. This indicates the importance of the LB-atom descriptors for ML in learning 

BF3 affinity, hence implies that the BF3 affinity mostly depends on the local environment surrounding the 

LB atoms. The models without one of the two remaining descriptor types do not show significant 

performance degradation. Interestingly, the difference in MAEs between models without molecular 

descriptors and with full descriptors is negligible. This behavior could be further explored in the future 

investigation. 
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ML prediction and application 

 

Figure 4. GB-predicted BF3 affinity versus (a) DFT-calculated and (b) experimental BF3 affinity in the 

experimental dataset. The diagonal lines are simply a plot of y = x as a helpful visual guide; the green lines 

in (b) are error boundaries of one standard deviation of experimental data from the y = x line. Although 

each LB has one experimental BF3 affinity, it can have multiple values of DFT-calculated and ML-predicted 

BF3 affinity corresponding to multiple LB atoms. While ML-predicted BF3 affinity of all LB atoms are 

compared to their corresponding DFT-calculated ones, the Boltzmann-average ML-predicted BF3 affinity 

is used to compare with the experimental BF3 affinity. 

With confirmed performance in the cross validation, GB and RF models are applied to predict BF3 affinity 

in the experimental dataset. The correlation between ML prediction and DFT-calculated BF3 affinity of the 

experimental dataset is shown in Figure 4a for GB, with R of 0.9 and MAE of 10.31 kJ mol-1, which are 

comparable to RF model (Figure S4c). It should be noted that Figure 4a and S4c show ML-predicted and 

DFT-calculated BF3 affinity of all LB atoms. The results from the two tree-based models validate the 

capability of ML in learning and predicting DFT-calculated BF3 affinity in the test set. Then, the models 

are examined with experimental BF3 affinity. Performance of GB and RF models on experimental BF3 

affinity (Figure 4b and Figure S4d) are comparable with a slight superiority for GB (R value of 0.86 for 

GB and 0.84 for RF, MAE value of 10.26 kJ mol-1 for GB and 11.40 kJ mol-1 for RF). The comparable 

MAE of the tree-based performance on DFT calculations and experimental data (10.62 kJ mol-1 for DFT 

calculations and 10.83 kJ mol-1 for experimental data in average of both models) validates the capability of 

the models built from DFT-calculated affinity in predicting experimental BF3 affinity. Furthermore, the 

robustness of the ML models is further assessed with a slight superiority in comparison with the results of 

the GNN model (R of 0.81 and MAE of 12.68 kJ mol-1, Figure S6). This demonstrates the combined 

potential of ML and DFT in predicting experimental properties.

Moreover, the prediction of BF3 affinity for all LB atoms (Figure 4a) allows us to predict the relative 

strength of LB atoms of Lewis polybases in 1:1 adducts with BF3. Table 1 and Figure 5a show the analysis 

of the binding strength of LB atoms, via affinity ranking, between DFT-calculated and ML-predicted BF3 

affinity for an example polybase in the in silico dataset. The LB atom with the highest affinity in a polybase 

is ranked first, and this atom is regarded as the binding atom in the 1:1 adduct of the polybase with BF3. 

The prediction accuracy in affinity order is calculated by dividing the number of correct rankings over all 
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the rankings. The prediction accuracy in highest-affinity atoms is calculated by dividing the correct 1st 

rankings over all the 1st rankings. For the example polybase, the ML model presents the accurate prediction 

of the highest-affinity atom and four out of six LB atoms in the affinity order, which results in the prediction 

accuracy in affinity order and highest-affinity atoms of 0.67 (4/6) and 1.00, respectively. 

 

Table 1. BF3 affinity of an example molecule in in silico dataset 

LB atom 

DFT-calculated  ML-predicted  

BF3 Affinity 

(kJ mol-1) 
Affinity Ranking 

BF3 Affinity 

(kJ mol-1) 
Affinity Ranking 

N1 45.23 3 48.27 3 

O1 23.19 4 21.93 5 

O2 88.36 1 87.53 1 

O3 3.49 6 14.44 6 

O4 20.81 5 22.20 4 

O5 66.37 2 64.83 2 

  

 

Figure 5. (a) ML performance of affinity orders and highest-affinity atoms for the example molecule in 

Table 1 with six LB atoms. (b) GB performance of affinity orders and highest-affinity atoms for the whole 

experimental dataset where color scale represents the number of LB atoms. In the experimental dataset, the 

highest number of LB atoms in an LB is four. 

Figure 5b and Figure S5a display the ML prediction accuracy of the affinity orders and the highest-affinity 

atoms in the experimental dataset and the in silico dataset, respectively. The GB and RF performance on 

the experimental dataset comprising of 193 Lewis polybases (out of 347 LBs) demonstrates the prediction 

accuracy of 0.79 and 0.75 for the affinity orders and 0.94 and 0.91 for the highest-affinity atoms. The 
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prediction of 1000 Lewis polybases in the in silico dataset is revealed with an accuracy of 0.90 for the 

affinity orders and 0.93 for the highest-affinity atoms in both tree-based models (Figure S5b,c). 

Remarkably, the prediction accuracy of the highest-affinity atoms for the experimental dataset and the in 

silico dataset is comparable. The affinity order accuracy for the experimental dataset, however, is lower 

compared to the in silico dataset. It should be noted that the prediction of the highest-affinity atoms might 

be critical to empirical data because it reflects the LB binding atoms in 1:1 experimental adducts, while the 

affinity orders are an illustration of the relative strength of LB atoms in Lewis polybases. The performance 

of both tree-based models confirms the capability of ML in predicting the LB binding atoms of Lewis 

polybases in 1:1 adducts with BF3. The validation of the ML models is further reinforced with the 

comparable performance of the GNN model (accuracy of affinity order of 0.79 and highest-affinity atom 

of 0.94, Figure S6). As an application, our models can be applied in identifying LB binding atoms of an 

LB where properties of adducts depend on the specific LB binding atoms. This will provide more tools for 

chemists and material scientists to increase the effectiveness of a priori design of Lewis acid-base 

interactions and adducts. 

Finally, we assess the outliers in the predictions of the experimental BF3 affinity in the ML and DL models 

to investigate the reasons behind the suboptimal prediction for certain structural motifs. The molecules with 

the prediction error larger than one standard deviation of the experimental data (green lines in Figure 4b, 

S4d and S6a) were defined as the outliers. We selected common outliers in GB, RF and GNN models for 

the assessment to avoid certain biases of each model. The structures and affinity data of the outliers are 

presented in Figure S7 and Table S3. Some noticeable structural motifs in the outlier molecules are N,N-

disubstituted aniline groups, 3-aminocyclohex-2-en-1-one groups and phosphonate groups. The suboptimal 

performance of the models in predicting 3-aminocyclohex-2-en-1-one groups is possibly because the 

descriptors and models cannot capture the electron donation from Nitrogen to Oxygen via the conjugated 

system in this structural motif. Similarly, phosphonate outliers might come from the inconsistence of the 

model performance in learning the pattern of the electron donation to the dominant Oxygen from other 

Oxygens via Phosphorus atom. The issue with those motifs might be attributed to the input descriptors, 

which are not designed for capturing the quantum effects, leading to the outlier performance of them. The 

reason for N,N-disubstituted aniline outliers is unclear to us since several other N,N-disubstituted anilines 

are not outliers. Although we highlight some structural motifs whose BF3 affinity are challenging to predict 

by the presented machine learning and deep learning models, a more comprehensive investigation into those 

behaviors remains for future studies. 

Conclusion 

In summary, we have demonstrated the potential of combining ab initio methodology and ML models in 

accurately predicting experimental values. By employing LB-atom descriptors, radial charge descriptors, 

and molecular descriptors, which can be rapidly calculated, different ML models are able to predict 

experimental BF3 affinity. Furthermore, the models have the capability of identifying the binding LB atom 

in a 1:1 adduct of a Lewis polybase with BF3, which is either an intensively challenging task to conduct 

experimentally or a computationally expensive task to calculate by ab initio methods. The descriptors that 

highly influence the tree-based model prediction are also investigated via their feature importance and 

performance degradation of models without each descriptor type, providing more insights into the impact 

of each descriptor type on the prediction. Additionally, the ML models are compared with GNN, and the 

outliers are assessed in detail, which reinforces the robustness and the interpretability of the models. This 

study expands and strengthens the power of ML as well as ab initio methodology in analyzing and 

predicting Lewis acid-base interaction at the atomic level, which can be applied to a priori design of 

functional adducts used in organic electronics and catalysis. Moreover, it demonstrates the power of 
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augmenting experimental data with high-quality calculations from simulation to create a dataset capable of 

encoding complex features beyond the original experiment, in this case the behavior of individual atoms in 

a Lewis polybase. In a broader context, we show that the approach of combining ML and DFT is a potential 

solution for diverse problems with limited experimental data. 
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