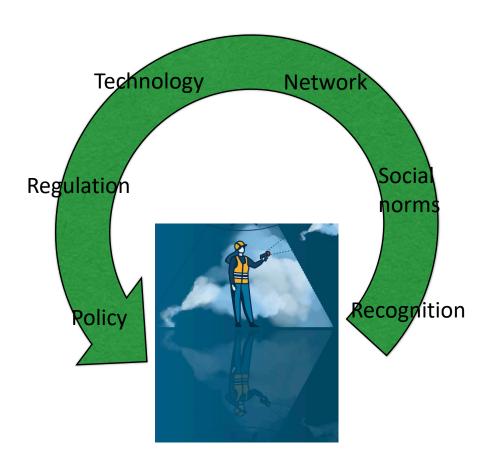


Methane emissions from energy production


Methane emissions from energy sector

Total: 123MT

UNEP's IMEO: action centered around the agent of change

From data to action

The International Methane Emissions
Observatory exists to provide open,
reliable, and actionable data to the
individuals that can act to reduce
methane emissions

IMEO Metcoal Theory of Change

Low carbon alternatives are insufficiently mature to replace metcoal in steel production at scale.

Thermal coal use has a plethora of clean alternatives

Demand for steel and metcoal will persist

IEA's most aggressive decarbonisation scenario sees only a 30% drop in metcoal production by 2030. For thermal coal the drop is starker, standing at 50%.

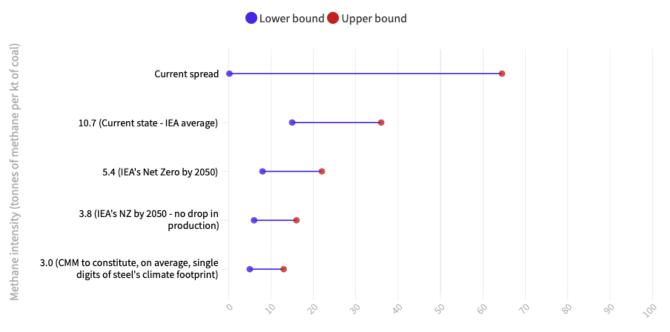
Metcoal has high value supply chain

Metcoal is typically twice as expensive as thermal coal.

The UN position on thermal coal is clear: thermal needs to be phased out in OECD nations by 2030 and by 2040 in other countries. The UN position on metallurgical coal is not explicit.

METCOAL Used mainly in steelmaking, usually high calorie content

THERMAL COAL
Used mainly in heat and electricty generation



Coal Mine Methane averages 1/3 of steel climate footprint

Coal mine methane emissions as a proportion of total emissions from steel production

Current state vs different 2030 scenarios

Methane emissions as a % of total emissions from steel production (GWP20), in %

Source: IMEO's own calculations

Lower and upper bound estimates have been calculated based on the following ranges: CO2 intensity of steel production (excl coking coal extraction): 1,5-3 tCO2/tonne of raw steel; tonnage of coking coal needed to produce one tonne of steel: 0,59-0,9t

Partnership

Reporting Commitments

Member companies commit to reach level 5 reporting for their sites within 3 years from joining the partnership for operated underground sites. For non-operated sites and all surface mines this is 5 years.

2030 Performance Targets

Achieving a 60-75% reduction of methane emissions per unit of marketed coal down to a level of 1-3 tonnes of methane per kilotonne of marketed coal.

Science Studies

Member companies are supported
throughout the journey from level 1 to level 5
reporting and can partner in IMEO funded
science studies that help to define best
reporting methods.

Reporting: from emission factors to empirical measurements

Level 1 – per aggregated source categories | country level

Level 2 – per aggregated source categories using available source-specific activity data and regional or country-specific emission factors | asset level

Level 3 – per detailed source type using available source-specific activity factors and generic emission factors for a given source type derived from existing literature, engineering calculations, or source-level measurements | source level

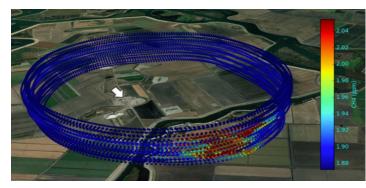
Level 4 – per detailed source type using source-specific activity factors and source-specific emission factors established with **empirical measurements**, taken at an appropriate sampling frequency | source level

Level 5 — Emissions reported similarly to Level 4, but with the addition of reconciliation with site-level (top down) measurements

Progression to the next reporting level represents a reduced uncertainty in the reported emissions figures.

Technical guidance will be provided to ensure that requirements/criteria for meeting each of the 5 levels is clear and science-based.

IMEO Science Studies


Atmos. Meas. Tech., 10, 3345-3358, 2017 https://doi.org/10.5194/amt-10-3345-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.

Application of Gauss's theorem to quantify localized surface emissions from airborne measurements of wind and trace gases

Stephen Conley^{1,6}, Ian Faloona¹, Shobhit Mehrotra¹, Maxime Suard¹, Donald H. Lenschow², Colm Sweeney⁴, Scott Herndon³, Stefan Schwietzke^{4,5}, Gabrielle Pétron^{4,5}, Justin Pifer⁶, Eric A. Kort⁷, and Russell Schnell⁵

The future of Metcoal Methane Partnership

Current Status

Draft framework under consideration by the 4 foundational companies

Next steps

Joint creation of Technical Guidance Documents

Contact Us

Open to all metcoal companies co-designing the partnership.

