Зміни визначень основних одиниць (SI)
Зміни визначень основних одиниць Міжнародної системи одиниць (SI), які набули чинності у 2019 році, полягають у тому, що усі основні одиниці SI стали визначатись через фіксовані значення фундаментальних фізичних констант. При цьому величини цих одиниць залишились незмінними, однак з їх визначень остаточно зникли прив'язки до матеріальних еталонів. Зміни такого роду пропонувались давно, однак лише на початку XXI століття це стало можливим. Остаточне рішення про зміни було ухвалене XXVI Генеральною конференцією з мір і ваг у 2018 році.
Міжнародна система одиниць (SI) ґрунтується на семи основних одиницях вимірювання: секунда, метр, кілограм, ампер, кельвін, моль, кандела, а також містить низку похідних одиниць[1].
До зроблених змін кілограм визначався як маса одного конкретного еталона — міжнародного прототипу кілограма. Це визначення мало деякі недоліки. Інші основні одиниці не були прив'язані до конкретних артефактів, але деякі з них також виявились незручними (і до того ж самі по собі ґрунтувались на визначенні кілограма)[2].
Зміни стосуються усієї SI, але безпосередньо вони торкаються визначення кілограма, ампера, кельвіна і моля: тепер ці одиниці визначаються через фіксовані значення елементарного електричного заряду і констант Планка, Больцмана та Авогадро[3].
Спостерігається наступність SI: в результаті зроблених змін величина усіх одиниць вимірювання змін не зазнала; отже і числове значення результатів вимірювань, виражених у старих одиницях, також змін не зазнало (за виключенням деяких електричних величин, про що далі буде сказано). Однак деякі величини, що раніше були визначені точно, стали визначуваними експериментально[4].
Міжнародна система одиниць (SI), — це система одиниць, у якій обрано сім визначальних констант, через які може бути виражена будь-яка одиниця SI[5]:
- частота надтонкого розщеплення основного стану атома цезію-133 ΔνCs точно дорівнює 9192631770 Гц;
- швидкість світла у вакуумі c точно дорівнює 299792458 м/с;
- стала Планка ℎ точно дорівнює 6,62607015× 10−34 кг·м2·с−1;
- елементарний електричний заряд e точно дорівнює 1,602176634× 10−19 А·с;
- стала Больцмана k точно дорівнює 1,380649× 10−23 Дж/К;
- стала Авогадро NA точно дорівнює 6,02214076× 1023 моль−1;
- світлова віддача Kcd монохроматичного випромінювання частотою 540×1012 Гц точно дорівнює 683 лм/Вт.
Особливості визначення основних одиниць SI, що набрали чинності з 2019 року такі[1]:
- Величина секунди встановлюється через фіксування числового значення частоти надтонкого розщеплення основного стану атома цезію-133 за температури 0 К, що дорівнює точно 9192631770, коли вона виражена одиницею SI с−1, що еквівалентна Гц.
- Величина метра встановлюється через фіксування числового значення швидкості світла у вакуумі, що дорівнює точно 299792458, коли вона виражена одиницею SI м·с−1.
- Величина кілограма встановлюється через фіксування числового значення сталої Планка h, яка точно дорівнює 6,62607015 × 10−34, коли вона виражена в Дж•с.
- Величина ампера встановлюється через фіксування числового значення елементарного заряду e, який дорівнює 1,602176634 × 10−19, коли він виражений в кулонах.
- Величина кельвіна встановлюється через фіксування числового значення сталої Больцмана k, яка точно дорівнює 1,380649 × 10−23, коли вона виражена в Дж/К.
- Один моль містить рівно 6,02214076 × 1023 елементарних сутностей. Це число — фіксоване значення сталої Авогадро NA, вираженого в одиницях моль−1.
- Величина кандели встановлюється через фіксування числового значення сили світла монохроматичного випромінювання частотою 5401012 Гц яка точно дорівнює 683, коли вона виражена одиницями SI м−2·кг−1·с3·кд·ср або кд·ср·Вт−1, що еквівалентне лм·Вт−1.
Визначення секунди і метра змістовно не змінились, однак їх було переформульовано для дотримання стильової єдності визначень[3].
Величина кілограма встановлюється фіксацією числового значення сталої Планка ℎ в одиницях кг·м2·с−1 (з врахуванням встановлених значень секунди і метра)[3][7].
Раніше кілограм визначався як маса міжнародного прототипу кілограма. В результаті змін маси всіх еталонів кілограма, що належать до міжнародного прототипу кілограма, набули додаткової похибки 10 мкг, оскільки маса самого прототипу тепер дорівнює 1 кг саме з такою похибкою[8].
Хоча міжнародний прототип кілограма більше не служить еталоном кілограма як одиниці SI, він як і раніше зберігається в Міжнародному бюро мір і ваг та максимально захищений від зовнішніх впливів[9].
Величина ампера встановлюється фіксацією числового значення елементарного електричного заряду e в одиницях А⋅с. Крім того, відмінено раніше рекомендовані для реалізації вольта і ома фіксовані значення сталої Джозефсона KJ-90 і сталої фон Клітцинга RK-90[3].
Змінені значення и шкали електричних напруг та опорів змінились на частку порядку 10−7 і 10−8, відповідно, однак це пов'язане не зі зміною визначень основних одиниць, а з тим, що раніше для реалізації одиниць напруги і опору було рекомендовано фіксовані значення сталих Джозефсона і фон Клітцинга, не узгоджені з рештою SI[10].
Величина кельвіна встановлюється фіксацією числового значення сталої Больцмана k в одиницях кг·м2·с−2·К−1. При цьому через визначальні константи кельвін виражається як ℎ ΔνCs/k з певним безрозмірнісним множником, тобто його величина в дійсності не пов'язана зі швидкістю світла і величиною метра, не дивлячись на те що в одиницю для k, виражену через основні одиниці, входить метр[3][6][7].
Величина моля встановлюється фіксацією числового значення сталої Авогадро NA[3].
Визначення кандели змістовно не змінилось, крім того, що воно пов'язане з іншими одиницями, а їх визначення змінилися[3][7].
Міжнародну систему одиниць (SI), було прийнято у 1960 році і вона доповнювалась та коректувалась Міжнародним бюро мір і ваг (BIPM) у подальші роки. Понад 50 років в SI зберігалось визначення кілограма, що було чинним ще з 1889 року: 1 кілограм — це маса міжнародного прототипу кілограма MIPK (більше того, і в XIX столітті кілограм теж визначався через матеріальний еталон). Це створювало труднощі: і сам прототип, і його копії з часом змінюють масу через забруднення та зношування; однозначно встановити напрямок зміни можна лише для копій відносно прототипу; при цьому для мінімізації змін маси прототипу його порівняння з копіями проводилось надзвичайно рідко, і у проміжках між порівняннями накопичувались похибки через зміну мас копій — а оскільки іншого способу відтворити кілограм не було, усі користувачі стандарту кілограма (національні метрологічні організації) отримували значення кілограма з цими похибками. Пропозиції змінити визначення кілограма через фіксування значення якоїсь природної сталої, як це було зроблено з метром, звучали давно і регулярно, однак лише на початку XXI століття точність експериментів стала достатньою, щоб реалізувати цю ідею[11].
Спільноти фахівців з метрології в різних областях науки і техніки також підтримали ідею змін. Практична реалізація одиниць напруги і опору спиралася не на визначення ампера, а на фіксовані значення сталих Джозефсона і фон Клітцинга; відмова від цих фіксованих значень з одночасною фіксацією e і ℎ зробила б одиниці з розділу електрики і магнетизму узгодженими з рештою SI. Одиниця температури визначалась через фіксацію температури потрійної точки води TTPW, однак ця температура залежить від ізотопного складу води та домішок у ній, й до того ж таке визначення не зовсім підходить до дуже низьких і дуже високих температур — перевизначення кельвіна через фіксацію k вирішувало ці проблеми. Нарешті, оскільки концепція кількості речовини не пов'язана з масою частинок, було запропоновано заодно змінити визначення моля, відв'язавши його від маси атома вуглецю-12m(12C) і прив'язавши до фіксованого значення NA[12].
Можна було б позбутися прив'язки системи одиниць до конкретного електронного переходу в конкретному атомі, що фігурує у визначенні секунди, зафіксувавши замість нього ще одну фундаментальну сталу — наприклад, гравітаційну сталу, як це робиться, наприклад, у планківській системі одиниць. Однак невизначеність виміряного значення гравітаційної сталої є занадто великою для цього[13].
Зміни у тому вигляді, у якому вони були ухвалені, беруть початок від пропозиції 2006 року[4]. Основні принципи реформи і вимоги до точності вимірювань значень фізичних констант, необхідних для реформи, ухвалювались на Генеральних конференціях мір і ваг у 2011 і 2014 роках[14].
В рамках підготовки змін у 2014 році було проведене позачергове порівняння маси міжнародного прототипу кілограма з його копіями. Різноманітні наукові групи по всьому світу провели вимірювання фундаментальних констант, щоб знизити похибку до потрібного рівня. Робоча група з фундаментальних констант Комітету з даних для науки і техніки (CODATA) зібрала ці дані у позачерговому випуску набору значень констант 2017 року, і на основі цих значень було обрано фіксовані значення для нової SI[15].
Рішення про зміни у SI та конкретні значення фізичних сталих було остаточно ухвалено 16 листопада 2018 року, коли за них одноголосно проголосували учасники XXVI Генеральної конференції з мір і ваг[14]. Нові визначення SI вступили у силу 20 травня 2019 року, у Всесвітній День метрології[16].
Для кожної з основних одиниць у новій SI визначені рекомендовані методи для практичної реалізації одиниць. Так, для кілограма це ватові терези (вага Кіббла) і рентгенівський аналіз щільності кристала (X-ray crystal density, XRCD)[17].
Оновлена SI допускає подальші зміни. Зокрема, прогрес в галузі вимірювання частот електромагнітних хвиль і конструювання атомного годинника дозволяє сподіватись, що приблизно через десятиліття секунду буде перевизначено через частоту якогось іншого електронного переходу[18].
Оскільки атомна одиниця маси як і раніше визначається через масу атома вуглецю-12, вона перестала дорівнювати точно 1 граму, поділеному на число Авогадро. Деякі автори критикують нову SI, вказуючи, що фіксація атомної одиниці маси замість сталої Планка вирішила б цю проблему, а аргументи, що привели до вибору сталої Планка у 2000-х роках, до 2010-х років втратили силу[19].
Електрична стала і магнітна стала в SI до змін мали точні значення: м/Гн і Гн/м. Після реформи ці рівності стали виконуватись не абсолютно точно, а до дев'яти значущих цифр, отримавши ту ж відносну похибку, що і стала тонкої структури . З цього, зокрема, випливає, що коефіцієнти для переведення між одиницями SI й різними варіантами системи СГС перестали бути точними, фіксованими величинами, оскільки вони виражаються через магнітну сталу. Цього можна було б уникнути, якщо було б зафіксовано не елементарний заряд , а попереднє значення магнітної сталої або, що рівносильне при фіксованих і , планківський заряд . Однак цей варіант було відкинуто, оскільки попередня реалізація еталонів одиниць фізичних величин, пов'язаних з електрикою і магнетизмом, ґрунтувалась на фіксованих сталих Джозефсона і фон Клітцинга, що рівнозначне фіксації сталої Планка і елементарного заряду, тому перехід до нової системи ставав легшим ніж за фіксації саме елементарного заряду[20].
- ↑ а б Брошура SI, 2019, с. 18—23, 130—135.
- ↑ Stock et al, 2019, с. 3—4.
- ↑ а б в г д е ж Брошура SI, 2019, с.92—94, 197—199.
- ↑ а б Stock et al, 2019, с. 2.
- ↑ Брошура SI, 2019, с. 15—16, 127—128.
- ↑ а б в Richard S. Davis. // Journal of Research of the National Institute of Standards and Technology. — 2018. — Т. 123. — С. 123021. — DOI: .
- ↑ а б в г Richard Davis. // IEEE Instrumentation & Measurement Magazine. — 2019. — Т. 22, вип. 3. — С. 4—8. — DOI: .
- ↑ Note on the impact of the redefinition of the kilogram on BIPM mass calibration uncertainties (PDF). BIPM. Архів оригіналу (PDF) за 27 травня 2019. Процитовано 9 червня 2019.
- ↑ FAQs: Frequently Asked Questions about the revision of the SI. BIPM. Архів оригіналу за 29 червня 2019. Процитовано 12 червня 2019.
- ↑ CCEM Guidelines for Implementation of the ‘Revised SI’ (PDF). BIPM. Архів оригіналу (PDF) за 5 жовтня 2018. Процитовано 9 червня 2019.
- ↑ Stock et al, 2019, с. 1—2.
- ↑ Stock et al, 2019, с. 2—3.
- ↑ C. Rothleitner and S. Schlamminger. // Review of Scientific Instruments. — 2017. — Т. 88. — С. 111101. — DOI: .
- ↑ а б Resolution 1 of the 26th CGPM (2018). BIPM. Архів оригіналу за 4 лютого 2021. Процитовано 22 травня 2019.
- ↑ Stock et al, 2019, с. 3—10.
- ↑ The International System of Units - making measurements fundamentally better. BIPM. Архів оригіналу за 24 травня 2019. Процитовано 22 травня 2019.
- ↑ Practical realizations of the definitions of some important units. BIPM. Архів оригіналу за 9 квітня 2020. Процитовано 10 червня 2019.
- ↑ Fritz Riehle, Patrick Gill, Felicitas Arias and Lennart Robertsson. The CIPM list of recommended frequency standard values: guidelines and procedures // Metrologia. — 2018. — Т. 55. — С. 188. — DOI: .
- ↑ Бронников К. А., Иващук В. Д., Калинин М. И., Мельников В. Н., Хрущёв В. В. О выборе фиксируемых фундаментальных констант для новых определений единиц СИ. — 2016. — № 8. — С. 11—15.
- ↑ Ronald B. Goldfarb. The Permeability of Vacuum and the Revised International System of Units // IEEE Magnetics Letters. — Т. 8. — DOI: .
- Le Système international d’unités (SI) / The International System of Units (SI). — 9-е вид. — BIPM, 2019. — ISBN 978-92-822-2272-0.
- Michael Stock, Richard Davis, Estefanía de Mirandés and Martin J T Milton. The revision of the SI—the result of three decades of progress in metrology // Metrologia. — 2019. — Т. 56, № 022001. — DOI: .