Електронний промінь: відмінності між версіями
Samsiq (обговорення | внесок) Створено на замовлення сторінки Катодні промені |
(Немає відмінностей)
|
Версія за 19:11, 5 лютого 2024
Електро́нний про́мінь (англ. electron beam) — потік вільних електронів у вакуумі, напрям руху якого змінюється магнітними та електричними полями через наявність електричного заряду. Електронний промінь є основою для різноманітних спеціалізованих застосувань у виробництві напівпровідників, мікроелектромеханічних системах, наноелектромеханічних системах, мікроскопії та пікоскопії [2].
Електронно-променева технологія
Для формування променя та управління ним використовують електронні гармати. Вільними електронами у вакуумі можна керувати електричними та магнітними полями для формування тонкого пучка. Там, де промінь стикається з твердою речовиною, електрони перетворюються на тепло або кінетичну енергію. Цю концентрацію енергії в невеликому об’ємі речовини можна точно контролювати за допомогою електроніки, що приносить багато переваг. Швидке підвищення температури в місці удару може швидко розплавити цільовий матеріал. В екстремальних умовах роботи швидке підвищення температури може навіть призвести до випаровування, що робить електронний промінь чудовим інструментом для нагрівання, наприклад, зварювання. Електронні проміни використовуються в багатьох технологічних процесах [3].
Зварювання
З початку електронно-променевого зварювання в промислових масштабах наприкінці 1950-х років було розроблено незліченну кількість електронно-променевих зварювальних апаратів, які використовуються в усьому світі. Ці зварювальні апарати мають робочі вакуумні камери об’ємом від кількох літрів до сотень кубічних метрів з електронними гарматами потужністю до 100 кВт. Сучасні електронно-променеві зварювальні апарати зазвичай розроблені з системою відхилення, керованою комп’ютером, яка може швидко й точно вести промінь по вибраній ділянці заготовки[4].
Механічна обробка
Електронно-променева обробка — це процес, у якому високошвидкісні електрони концентруються у вузький пучок із дуже високою площинною щільністю потужності. Потім поперечний переріз променя фокусується та спрямовується на заготовку, створюючи тепло та випаровуючи матеріал. Електронно-променева обробка може бути використана для точного різання або свердління різних металів. Отримана обробка поверхні краща, а ширина пропилу вужча, ніж в інших процесах. Однак через високу вартість обладнання використання цієї технології обмежується продуктами високої вартості[4].
Поверхнева обробка виконується шляхом швидкого нагрівання тонкого поверхневого шару матеріалу. Застосування включають загартування, відпал, відпустку, текстурування та полірування (за допомогою аргону)[3].
Печі
У вакуумі електронний промінь є джерелом тепла, яке може розплавити або модифікувати будь-який матеріал [5]. Це джерело тепла або фазових перетворень є абсолютно стерильним через вакуум і оболонку затверділого металу навколо холодних мідних стінок тигля. Це гарантує, що найчистіші матеріали можуть бути виготовлені та очищені в електронно-променевих вакуумних печах. Рідкісні та тугоплавкі метали можна виробляти або рафінувати у вакуумних печах малого об'єму. Для масового виробництва сталі в промислово розвинутих країнах існують великі печі з потужністю в метричних тоннах і потужністю електронного променя в мегаватах[6].
Літографія
Електронно-променева літографія дозволяє в рекордних експериментальних установках отримувати структури з роздільною здатністю менш як 1 нм, недосяжною для жорсткого ультрафіолетового випромінювання, завдяки меншій дебройлівській довжині хвилі електронів, порівняно зі світлом[7] (див. Квантова механіка).
Електронна оптика
Електронна оптика займається питаннями формування, фокусування і транспортування пучків заряджених частинок, зокрема електронів, у магнітних і електричних полях [8].
Електронний мікроскоп
Електронний мікроскоп — прилад для отримання збільшеного зображення мікроскопічних предметів, в якому використовується властивість речовини частково поглинати електронний промінь. Електронні мікроскопи мають більшу роздільну здатність у порівнянні з оптичними мікроскопами, окрім того, вони можуть застосовуватися також для отримання додаткової інформації щодо матеріалу й структури об'єкта. Перший електронний мікроскоп збудував в 1931 році німецький інженер Ернст Руска [9]. Він отримав за це відкриття Нобелівську премію з фізики в 1986 році. Існують два поширені типи: сканувальний електронний мікроскоп (SEM) та просвічуючий електронний мікроскоп (TEM).
Електронна пікоскопія
Електронна пікоскопія(англ. picoscopy) — технологія для отримання прямого зображення пікоскопічних об'єктів (атомів, молекул та хімічних зв'язків), яка використовує ефект зсуву електронного променя пропорційно щільності електронної хмарки атома[14]. Цей ефект робить атом видимим, - атом починає світитися, зображуючи власну форму. Перший пікоскоп був створений українським фізиком О. П. Кучеровим та інженером С. Є. Лавровським у 2017 році[13]. Електронна пікоскопія дозволяє доволі точно в деталях вивчати взаємне розташування атомів в кристалі або в молекулі та просторову форму хімічних зв'язків. В результаті використання електронної пікоскопії було знайдено нову речовину Руденіт, який являє собою надщільну алотропну форму вуглецю з двошаровою алмазоподібною структурою[15] існування якого згодом було підтверджене незалежною групою вчених[16].
Бета-промені
Проміні, що виникають при бета-розпаді ядер називають Бета-промені. Бета-частинки з конкретного джерела не мають типової енергії, а натомість можуть мати будь-яку енергію у широкому спектрі від нуля до деякої максимальної енергії, характерної для цього нукліда[17]. Крім того, концентрація іонізованих частинок є значно нижчою, оскільки проникна здатність бета-променів є значно більшою, ніж в альфа-частинок: пробіг електрона з енергією 1.1 МеВ становить майже 4 м у повітрі. близько 5 мм у тілі та близько 0.5 мм у свинці. Довжина пробігу залежить від енергії. Існує емпіричне правило для визначення пробігу бета-частинок у речовині: довжина пробігу у сантиметрах дорівнює половині енергії частинки (у МеВ) поділеної на густину середовища (у г/см³)[18]. Через більшу проникну здатність джерела бета-променів призводять до опіків при потраплянні на шкіру, проте затримуються одягом.
Електронний промінь в природі
В природі електронний промінь зустрічається у вигляді блискавки, яка є іскровим розрядом. Під впливом електричного поля вільні електрони, які завжди є в атмосфері, набувають великої швидкості та при зіткненні з молекулами іонізують їх. Унаслідок цього у повітрі збільшується кількість електронів, які знову розганяються електричним полем і, своєю чергою, спричиняють іонізацію молекул. У вузькому каналі повітря лавиноподібно збільшується кількість електронів, що рухаються від хмари до землі. Цим іонізованим каналом, як у провіднику, із хмари починають витікати заряди. Виникає так званий лідер блискавки, який пробігає 50—100 м і зупиняється. Потім він відразу ж відновлюється у тому ж каналі та пробігає ще таку ж відстань. Так триває, доки електронний промінь не досягне землі[19].
Примітки
- ↑ Кучеров, О.П.; Лавровський, С.Є. (2022). Видимий атом (PDF). Інформаційні технології та спеціальна безпека. 8 (1): 29—62.
- ↑ [Архівовано 9 листопада 2016 у Wayback Machine.] // Українська радянська енциклопедія : у 12 т. / гол. ред. М. П. Бажан ; редкол.: О. К. Антонов та ін. — 2-ге вид. — К. : Головна редакція УРЕ, 1974–1985.
- ↑ а б «Електроннопроменева технологія» [Архівовано 9 листопада 2016 у Wayback Machine.] // Українська радянська енциклопедія : у 12 т. / гол. ред. М. П. Бажан ; редкол.: О. К. Антонов та ін. — 2-ге вид. — К. : Головна редакція УРЕ, 1974–1985.
- ↑ а б «Електронно-променева технологія» [Архівовано 10 листопада 2016 у Wayback Machine.] // Енциклопедія сучасної України / ред. кол.: І. М. Дзюба [та ін.] ; НАН України, НТШ. — К. : Інститут енциклопедичних досліджень НАН України, 2001–2024. — ISBN 966-02-2074-X.
- ↑ ДСТУ 2821-94 Промислове електронагрівання. Терміни та визначення
- ↑ Будник А. Ф. Типове обладнання термічних цехів та дільниць: Навчальний посібник. [Архівовано 2 листопада 2018 у Wayback Machine.] — Суми: Вид-во СумДУ, 2008. — 212 с. — ISBN 978-966-657-185-7.
- ↑ McCord, M. A.; M. J. Rooks. 2 // [1] — 2000. Архівовано з джерела 19 серпня 2019
- ↑ Білий М. У., Охріменко Б. А. Атомна фізика. — К. : Знання, 2009. — 559 с.
- ↑ E. Ruska. The Early Development of Electron Lenses and Electron Microscopy. Hirzel, Stuttgart, 1980, ISBN 3-7776-0364-3
- ↑ Kucherov, O. P.; Lavrovsky, S.E. (2017). Electron Trajectory Shifting Effect (PDF). Abstract book. International research and practice conference: NANOTECNOLOGY AND NANO-MATERIALSE (NANO-2017): 491—491.
- ↑ Rud, Alexander D.; Kornienko, Nikolay E.; Kirian, Inna M.; Kirichenko, Alexey N; Kucherov, O. P. (2018). Local heteroallotropic structures of carbon. Materials Today: Proceedings. 5 (12): 26089—26095. doi:10.1016/j.matpr.2018.08.035.
- ↑ Kucherov, O. P. (2021). Direct Visualization of Covalent Chemical Bonds in Crystalline Silicon (PDF). American Journal of Engineering Research (AJER). 10(6): 54—58.
- ↑ а б Patent UA115602 – Спосіб отримання зображення з субдифракційною роздільною здатністю та оптико-електронна система для його здійснення
- ↑ Kucherov, O (2022). Electron Cloud Densitometry of Inner and Valence Electrons in Carbon Allotropes. Applide Functional Materials AFM. 2: 36—43.
- ↑ Rud, A.D.; Kornienko, N.E.; Kiryan, I.M.; Kirichenko, A.N.; Kucherov, O.P. (2016). Local-allotropic structures of carbon (PDF). Thesis "Carbon: the fundamental problems of science, materials science, technology". Troisk. Архів оригіналу (PDF) за 16 квітня 2021. Процитовано 11 березня 2021. (англ.)
- ↑ Gao, Yang; Cao, Tengfei; Cellini, Filippo; Berger, Claire; de Heer, Walter A.; Tosatti, Erio; Riedo, Elisa; Bongiorno, Angelo (2018). Ultrahard carbon film from epitaxial two-layer graphene. Nature Nanotechnology. 13: 133—138. doi:10.1038s41565-017-0023-9.
{{cite journal}}
: Cite має пустий невідомий параметр:|1=
(довідка); Перевірте значення|doi=
(довідка) (англ.) - ↑ Are alpha particles more ionising than beta? [Архівовано 20 жовтня 2020 у Wayback Machine.](англ.)
- ↑ α, β, γ Penetration and Shielding [Архівовано 12 листопада 2020 у Wayback Machine.](англ.)
- ↑ Хіміч О. С., Тертус Л. С. Лінійна блискавка, природа явища та захист [Архівовано 14 вересня 2007 у Wayback Machine.]. 2005
Джерела
- Патон Б. Е., Тригуб Н. П., Ахонин С. В. Электронно-лучевая плавка тугоплавких и высокореакционных металлов. — К.: Наук. думка, 2008. — 312 с.