

`

Abstract
Generating counterfactuals to discover hypothetical
predictive scenarios is the de facto standard for ex-
plaining machine learning models and their predic-
tions. However, building a counterfactual explainer
that is time-efficient, scalable and model-agnostic,
in addition to being compatible with continuous and
categorical attributes, remains an open challenge.
To complicate matters even more, ensuring that the
contrastive instances are optimised for feature spar-
sity, remain close to the explained instance and are
not drawn from outside of the data manifold is far
from trivial. To address this gap we propose Bay-
Con: a novel counterfactual generator based on
probabilistic feature sampling and Bayesian optimi-
sation. Such an approach can combine multiple ob-
jectives by employing a surrogate model to guide
the counterfactual search. We demonstrate the ad-
vantages of our method through a collection of ex-
periments based on six real-life datasets represent-
ing three regression and three classification tasks.1

1 Introduction
The “right to explanation” foreshadowed by the General Data
Protection Regulation (GDPR) [Goodman and Flaxman,
2017] challenged the Machine Learning (ML) community to
build explainability into predictive models and their outputs.
This paradigm shift – where predictive performance is no
longer the only (and main) objective – gives rise to two dis-
tinct viewpoints. One argues that algorithmic black boxes
should continue to be optimised for predictive power with ex-
plainability needs, possibly, fulfilled through post-hoc meth-
ods due to an apparent incompatibility of these two goals,
thus forcing one of them to be sacrificed for the other.2 The
second standpoint disputes this trade-off as purely anecdotal
and persuasively argues for building inherently transparent
models, especially for high-stakes decisions [Rudin, 2019].

1* Equal contribution.

Counterfactuals are an explainability approach uniquely
positioned in this space as they can be generated post-hoc but
remain truthful with respect to the underlying black box (i.e.,
exhibit full fidelity). They enable ML users to understand
what the output of a predictive model would have been had
the instance in question changed in a particular way. This
type of counterfactual analysis helps the explainees to simu-
late certain aspects of the ML model, thus improving its in-
terpretability [Hoffman et al., 2018]. Notably, evidence from
psychology and cognitive sciences suggests that people use
counterfactual reasoning daily to analyse what could have
happened had they acted differently [Byrne, 2005].

However, the number of counterfactuals that can be gener-
ated to explain any event (a selected datapoint) may be over-
whelming [Byrne, 2019]. In addition to a large counterfactual
search space, methods that are currently available tend to
work for either classification or regression tasks, be restricted
to a specific model family (e.g., differentiable predictors),
struggle with large datasets (both in the number of instances
and features), be computationally inefficient, or output out-
of-distribution counterfactuals. Building on our previous
work in the domain of decision support systems [Gjoreski et
al., 2020; Gjoreski et al., 2022], we address the existing chal-
lenges with BayCon: a novel model-agnostic Bayesian coun-
terfactual generator. To the best of our knowledge, it is the
first counterfactual explainer based on Bayesian optimisa-
tion, making it fast to produce a sizeable number of high-
quality contrastive instances. Our approach is model-agnostic
and compatible with regression and classification tasks. It
outperforms other state-of-the-art counterfactual generation
methods on six real-life datasets, which illustrates its effec-
tiveness. Our evaluation uses three regression and three clas-
sification datasets with between 8 to 125 categorical and nu-
merical attributes, demonstrating BayCon’s speed and versa-
tility. Existing methods for generating counterfactual expla-
nations focus predominantly on differentiable models applied
to continuous features [Wachter et al., 2017; Dhurandhar et
al., 2018; Moore et al., 2019, Lash et al., 2017]. This creates
a blind spot for non-differentiable models trained on datasets

2 https://www.wired.com/story/googles-ai-guru-computers-
think-more-like-brains/

BayCon: Model-agnostic Bayesian Counterfactual Generator

Piotr Romashov1*, Martin Gjoreski1*, Kacper Sokol2, Maria Vanina Martinez3,
Marc Langheinrich1

1Università della Svizzera italiana, Switzerland
2RMIT University, Australia

3Universidad de Buenos Aires, Argentina
piotr.romashov@usi.ch, martin.gjoreski@usi.ch, kacper.sokol@rmit.edu.au,

mvmartinez@dc.uba.ar, marc.langheinrich@usi.ch

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

740

`

with mixed feature types, which are relatively ubiquitous
[Rudin, 2019]. To address this gap, several authors proposed
(Mixed) Integer Programming approaches [Cui et al., 2015;
Russell, 2019; Kentaro et al., 2020]. Another counterfactual
generation method, which is somewhat similar to BayCon, is
Multi-Objective Counterfactual Explanations (MOC) [Dandl
et al., 2020]. MOC is model-agnostic, compatible with re-
gression and classification tasks, and capable of processing
numerical and categorical features. Given that both MOC and
BayCon attempt to address the same set of counterfactual
generation shortcomings, albeit with different approaches,
we directly compare them in a set of experiments using six
diverse evaluation metrics (see Tables 2 and 3). Additionally,
we show how BayCon complies with recent guidelines for
designing counterfactual generation methods, thus making it
the preferred approach [Keane et al., 2021].

2. Preliminaries
Given an instance selected to be explained for a pre-trained
ML model, BayCon generates similar instances that lead to
the desired prediction, i.e., counterfactuals. A naïve approach
is to generate all the possible feature–value combinations or
to iteratively generate random instances, discarding the ones
with unchanged prediction. However, for datasets with a con-
siderable number of features this search space can be over-
whelmingly large, rendering the naïve approaches impracti-
cal. A more appropriate strategy could use an informed
search based on the record of previously generated and eval-
uated counterfactuals. These datapoints can be used to map
the search space and the behaviour of the ML model. Based
on this approximation, promising counterfactuals can be gen-
erated more efficiently. Bayesian optimisation can be a vehi-
cle to realise such an informed search stochastically.

2.1. Counterfactual Explanations Desiderata
The BayCon optimisation pipeline is designed to produce
contrastive explanations of the highest quality, both with re-
spect to their technical and social properties. To this end, our
method adheres to the latest guidelines prescribing how to
generate desirable counterfactuals [Keane et al., 2021].

What’s Plausible? BayCon optimises for plausibility by
minimising the distance to the explained instance in addition
to automatically extracting feature constraints from the un-
derlying training dataset. Moreover, our method allows the
user to specify immutable features such as age, and indicate
attribute values that are invalid, e.g., fractional number of
rooms in a house. All these restrictions are used to guide
quasi-random feature sampling (explained in Section 3.4).

The Shape of Sparsity. Counterfactuals should strive to
tweak the smallest possible number of features to make the
explanations parsimonious, hence appealing to humans
[Keane et al., 2021]. However, the desired level of sparsity
may depend on the user and the dataset, therefore we incor-
porate the number of altered feature values into the optimisa-
tion function used by BayCon. Additionally, the user can
specify the maximum number of altered features.

Covering Coverage. Counterfactuals should be feasible
and actionable [Poyiadzi et al., 2020]. In particular, out-of-

distribution counterfactuals – which can amount to 36% of all
the generated explanations for some methods – should be
avoided [Laugel et al., 2019]. BayCon uses Local Outlier
Factor (LOF) to prevent such counterfactuals from being pre-
sented to the explainee.

Comparative Testing. BayCon is compared to state-of-the-
art counterfactual explainers on six publicly available da-
tasets using well-defined evaluation metrics.

2.2. Optimisation Objective
To assess the quality of generated counterfactual explana-
tions, we designed a suitable objective function. It captures:
(1) the distance in the feature space, (2) the distance in the
output space, and (3) the number of altered features, all scaled
to the [0, 1] range. Figure 1 shows example optimisation
scores for the Bike dataset (cf. Table 1). Each point in the plot
is a candidate counterfactual. The x-axis represents the output
of the ML model for which we are generating counterfactu-
als; the y-axis shows the Gower distance between each coun-
terfactual and the explained instance; the z-axis captures the
number of changed features; and the marker colour indicates
the optimisation score calculated with Equation 1 (higher is
better). In this example, the explained instance is predicted as
3141 (rented bikes), and the desired output range (provided
by the explainee) is set to [4500, 5000]. The figure shows
that: (i) the optimisation scores for counterfactuals whose
predictions (y-axis) are outside of the user-specified range are
close to 0 and increase as the model’s output approaches the
desired range; (ii) the optimisation scores decrease as the
Gower distance increases; and (iii) the optimisation scores
are higher for counterfactuals that require a lower number of
features to be changed.

F(𝑐,$ 𝑥̅) = 𝑆! ∗ 	𝑆" 	 ∗ 	𝑆# (1)

 Similarity in the feature space (𝑆!). Gower distance is a
distance metric used for mixed feature spaces. For categori-
cal attributes, it checks whether the two features have an
identical value – the distance component is 0 if the features

Figure 1. Example BayCon optimisation scores.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

741

`

are the same and 1 otherwise. For numerical features, it cal-
culates the absolute value of the difference between the at-
tributes, divided by the numerical range of the feature. All of
these individual components are then added up and divided
by the number of attributes, which places the distance in the
[0, 1] range. Next, we integrate this metric – the Gower dis-
tance between the explained instance 𝑥̅ and a counterfactual
candidate	𝑐$ – into our optimisation function (𝑆! in Equation
2) by subtracting it from 1:

𝑆!(𝑐,$ 𝑥̅) = 1 − 𝑑$%&'((2)

 Similarity in the output space (𝑆"). For classification tasks,
𝑆" is 1 if the ML model predicts the candidate counterfactual
as requested by the user, and 0 otherwise. For regression
problems, we define 𝑆" as:

𝑆" = /
1, 𝑖𝑓	𝑦) ∈ [𝑦*+,	,	𝑦*/0]						

	1 −	 |"!2	3|
|""2	3|4	5

,			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	 , where
(3)

𝑑 = = 𝑦678, 𝑖𝑓	
|𝑦) − 𝑦678| < |𝑦) − 𝑦69!|

	𝑦69! , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																			
. (4)

In Equation 3,	𝑦! is the output of the ML model for the ex-
plained instance; 𝑦) is the output of the ML model for the
candidate counterfactual; and [𝑦*+,	, 𝑦*/0] is the target out-
put range specified by the user. If 𝑦) is in the desired range,
𝑆" = 1 (the maximum value). Otherwise, 𝑆𝑦 captures the
closeness of 𝑦) to the borders (calculated via 𝑑) of the desired
range. 𝑆𝑦	is designed to be within the [0, 1] interval.
 Proportion of tweaked features (𝑆#). This objective counts
the number of features in the candidate counterfactual that are
different when compared to the explained instance. This
score is also in the [0, 1] range – see Equation 5.

𝑆!(𝑐,% 𝑥̅) = 	

#	$!	%&!!'(')*	!'+*,('-	.'*/'')	0	̅+)%		2̅	
34'(+55	#	$!	!'+*,('-

 (5)

For comparison, MOC formalises counterfactual search as

a multi-objective optimisation problem solved with Nondom-
inated Sorting Genetic Algorithm II (NSGA-II). The objec-
tives used by MOC are: (i) prediction closeness to the desired
goal, (ii) closeness to the initial instance in the feature space,
(iii) number of changed features, and (iv) plausibility of
counterfactual candidates based on the probability distribu-
tion over the feature values. BayCon mirrors objectives (i),
(ii) and (iii) with the aforementioned scores: 𝑆", 𝑆!, and 𝑆#	re-
spectively. Objective (iv) is addressed implicitly by the LOF
filtering.

3 Methodology
Bayesian optimisation allows utilising prior beliefs about a
problem to help navigate the sampling. This is achieved by
following a simplified version of the Bayes’ theorem: the
posterior probability of a function F given data D (or evi-
dence) is proportional to the likelihood of D (given F) and the
prior probability of F:

𝑃(𝐹|𝐷) ∝ 	𝑃(𝐷|𝐹)	𝑃(𝐹)	. (6)

In our case, 𝐷 consists of n observed counterfactuals and their
black-box prediction: D = {(𝑐:,EEE 𝐹(𝑐;,EEE 𝑥̅)), … , (𝑐8,EEEE 𝐹(𝑐8,EEEE 𝑥̅))}.

3.1 Surrogate Model
To estimate the posterior of our objective function (Equation
6), we employ a surrogate model. It is an ML model typically
learnt with regression algorithms based on a Gaussian Pro-
cess (GP) because such a model provides access to the full
probability distribution [Snoek et al., 2015, Rasmussen et al.,
2006]. By exploiting the mean and the standard deviation of
the output distribution, one can balance the exploitation
(higher mean) and exploration (higher standard deviation)
trade-off. Since GPs are computationally expensive – 𝑂(𝑛<)
complexity – ensemble regression models such as Random
Forests can be used instead [Hutter et al., 2011]. In such a
case, the mean and variance are calculated based on the pre-
dictions of all the individual models within the ensemble. In
our case, the input of the surrogate model is defined as:

In this equation ∆𝑘7 represents the distance between 𝑐̅ and
𝑥	$ 	for feature 𝑖; 𝑐𝑜𝑢𝑛𝑡(∆𝑘) is the number of features changed
in 𝑐̅ as compared to 𝑥	$; and the last input is the Gower dis-
tance between	𝑐$ and 𝑥̅. Therefore, for any given input the sur-
rogate model outputs an estimation of our optimisation score.

3.3 Acquisition Function
The mean µ(𝑆)$)	and variance 𝜎(𝑆)$)	calculated on the output
of the surrogate model are used as input to an acquisition
function, which is responsible for selecting the most promis-
ing counterfactuals. This function optimises the conditional
probability of the feature space to identify regions with prom-
ising counterfactuals. BayCon uses Expected Improvement as
its acquisition function [Močkus, 1974]. In our experiments,
the constant that controls the trade-off between global search
and local optimisation (i.e., exploration/exploitation) is set to
ξ = 0.01 [Lizotte et al. 2008, Brochu et al., 2010]. Intuitively,
this acquisition function checks the improvement that each
candidate counterfactual	brings with respect to the maximum
known value 𝑆=, i.e., µ(𝑆)$) − 𝑆=, and scales this improve-
ment with respect to the uncertainty given by 𝜎(𝑆)$). If two
counterfactuals have a similar mean value, the one with
higher uncertainty is preferred by the acquisition function.

𝑖𝑛𝑝𝑢𝑡 = [Δ𝑘:	, … , Δ𝑘8	, 𝑐𝑜𝑢𝑛𝑡(∆𝑘), 𝑑$%&'(]. (7)

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

742

`

3.4 Generating Candidate Counterfactuals
Initial Neighbourhood Generation. Given the assumption
that good counterfactuals should be close to the explained in-
stance, our search is focused on its neighbourhood. To gen-
erate this space, for each feature we sample values at random
with replacements from a truncated (based on the feature
ranges) normal distribution centred around the initial in-
stance. Categorical attributes are sampled uniformly over the
set of possible values.

Exploring Best Counterfactual Neighbourhoods. Since
good counterfactuals should come from dense regions, we ex-
plore neighbourhoods of explanations with best scores. We
reuse the generation procedure applied to the initial instance,
this time centred around the best counterfactuals.

Random Feature Sampling. To enable a higher degree of
exploration, we sample values of numerical features uni-
formly at random from within their ranges. Categorical attrib-
utes are sampled uniformly over the set of possible values.

Rounding. To avoid indistinguishable counterfactuals that
only differ beyond an nth decimal place for numerical fea-
tures, we perform k-bins discretisation with equal-width bins.
We used k = 100 for our experiments, which provides the
minimum difference of 1% relative to the attribute range.

Selecting Features to Be Tweaked. To increase sparsity,
i.e., change the fewest possible features per counterfactual,
we randomly select attributes to update based on a skewed
distribution where the probability of changing n features is
double that of changing n+1. Only the selected features are
then updated using the procedure described in the previous
steps (neighbourhood generation or random sampling).

Filtering. BayCon is an iterative algorithm. At each step,
we prune candidate counterfactuals whose score is below the
current best. Also, prior to outputting the explanations, we
remove out-of-distribution counterfactuals with LOF, which
measures the local density deviation of each explanation with
respect to its neighbourhood determined by the training da-
taset. Explanations that have a substantially lower density
than their neighbours are therefore removed. For this pur-
pose, we use scikit-learn’s LOF implementation with default
parameters [Breunig et al., 2000]. Algorithm 1 captures our
implementation of BayCon in more detail. The maximum
number of iterations was set to 100.

4 Experiments
We compare BayCon against other counterfactual generation
methods on six real-life datasets. Our method is implemented
in Python 3.6 and relies heavily on scikit-learn [Pedregosa et
al., 2011]. All the experiments were run on a 3.70GHz Intel
Core i9 CPU with 128GB of RAM. We imposed a 15-minute
runtime limit for each execution. BayCon implementation
and the experimentation code, including processed datasets
and analysis of the results, are freely available on GitHub3.

3 https://github.com/piotromashov/baycon

4.1 Experimental Setting
We compare our proposed method to a brute-force exhaus-
tive counterfactual search implemented in FAT Forensics
[Sokol et al. 2020] and MOC based on its official implemen-
tation. FAT Forensics only yielded explanations for the Dia-
betes dataset given the imposed 15-minute time limit, hence
it is not featured in our comparison. MOC, on the other hand,
generated explanations for all the datasets but the House
Sales (likely due to the size of its training set) as it is a state-
of-the-art method.

For the comparison we used three classification (Cls) and
three regression (Reg) datasets (see Table 1 and Appendix A
for more information). All the datasets are available online;
the Bike dataset can be downloaded from the UCI repository
and the other datasets are available through the OpenML re-
pository [Vanschoren et al. 2014].

For each classification dataset we selected 10 random in-
stances to be explained, generating their counterfactual ex-
planations 3 times to account for randomness (i.e., 30 runs
per dataset). For each regression dataset, we selected 3 initial
instances, one for each percentile of the output variable: the
median as well as the 25th (𝑦;> in Equation 7) and the 75th

Algorithm 1 BayCon.
Input: black-box-model f, instance to be explained x*,
desired prediction p, training data 𝑋?.
Output: counterfactuals CFs.
1: X = generate neighbourhood (x*)
2: y = f (X) # predict neighbourhood
3: 𝑆@ = objective function (X, y, p) # calculate scores
4: 𝑋A , 𝑦A = update known instances (X, y)
5: g = RandomForest (𝑋A, 𝑆@) # train surrogate
model
6:
7: while continue search do
8: CF = select counterfactuals (𝑋A, 𝑦A)
9: 𝐶𝐹=, 𝑆= = select best (CF, 𝑆@)
10: X = generate neighbourhood (𝐶𝐹=)
11: 𝑋B = update promising instances (X)
12: X += random generation (𝑆=)
13: µ, 𝜎 = g (X)
14: 𝑋C = acquisition function rank (X, µ, 𝜎)
15: y = f (𝑋C) # get black-box predictions
16: 𝑆@ += objective function (𝑋C, y, p)
17: 𝑋A = update known instances (𝑋C, y)
18: g.retrain (𝑋A, 𝑆@) # update surrogate model
19: end while
20:
21: y = f (𝑋B) # get black-box predictions
22: CFs += update with counterfactuals from (𝑋B, y)
23: CFs = LOF filter (CFs, 𝑋?)
24: return CFs

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

743

`

percentiles. Next, we generated explanations for 4 desired
target ranges – to increase, to decrease, to be in an interval
above (𝑦! + 𝑎, 𝑦! + 𝑏) and to be in an interval below (𝑦! −
𝑏, 𝑦! − 𝑎) the prediction of the explained instance, with a and
b defined in Equation 8. Each experiment was repeated 3
times (i.e., 36 runs per dataset).

a = 0. 5 ∗ 𝑦;>; 	𝑏 = 		0.75 ∗ 𝑦;> (8)

We explained predictions of two black-box models: a Ran-

dom Forest (RF) and a Support Vector Machine (SVM). The
models were trained with all the data, excluding the explained
instances. Since SVMs can be sensitive to feature scaling and
model parameterisation, we applied min–max normalisation
to the input features and tuned the model parameters using 3-
fold cross-validation on the training data.

4.2 Experimental Results
Table 2 compares BayCon and MOC with respect to the total
compute time, the time to first solution and the number of
generated counterfactuals (all times given in seconds). The
time to first solution for MOC was calculated as the total time
divided by the number of generated explanations. While such

a strategy gives MOC an advantage, BayCon outperformed it
across the board. Additionally, the House Sales dataset
caused MOC to timeout, which is likely due to the size of the
training dataset.

Table 3 outlines the experimental comparison between
BayCon and MOC using the three evaluation scores – 𝑆", 𝑆#,
𝑆! – proposed in Section 2. It presents the mean and standard
deviation for each score and the accompanying result of the
Mann–Whitney U rank test. The sample size, which depends
on the number of counterfactuals generated in each experi-
mental run, is also shown – a sample size of 833 indicates that
for this experiment we compared the scores of 833 explana-
tions generated by MOC with the same number of explana-
tions generated by BayCon. Since the methods could gener-
ate a different number of explanations, we only took the top
n counterfactuals (ranked by the evaluation score) with n de-
termined by the smallest number of explanations generated
for a given experimental setup across the two methods.
Bolded p-values highlight the experiments in which BayCon
outperformed MOC with statistical significance (p<0.05).
This happened in most of the experiments, except for the Bike
and the Tecator datasets predicted with an SVM, but only
when measured by the 𝑆" score. In these specific experi-
ments, MOC found better counterfactuals in the output space
(𝑆"), however BayCon found better counterfactuals in the
feature space (𝑆# and 𝑆!). Notably, BayCon offered counter-
factuals with a smaller number of changed features and
smaller Gower distance across all experiments.

5 Conclusions and Future Work
Our experiments demonstrated that, compared to state-of-
the-art methods, BayCon is more time-efficient and generates
larger and more diverse sets of counterfactuals (see Table 2).
Furthermore, the explanations output by our algorithm are of
better quality: they are placed closer to the explained instance
and require fewer feature tweaks, thus making them more
similar to it. In future work, we will address the counterfac-
tual multiplicity by exploring various filtering, pruning and
selection methods. We will also investigate visualisation
techniques to help the users better navigate the output expla-
nations and select them based on (possibly implicit) user pref-
erences. Moreover, we will conduct user studies to analyse
the perceived quality and benefit of BayCon’s counterfactu-
als to avoid “neglecting the users” [Keane et al., 2021].

Appendices

A. Datasets
Diabetes: https://www.openml.org/d/37
KC2: https://www.openml.org/d/1063
Biodeg: https://openml.org/d/1494
Bike: http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
House: https://www.openml.org/d/42731
Tecator: https://www.openml.org/d/505

Dataset Features
(Num/Cat)

Type Samples

Diabetes 8/0 Cls 768
Kc2 22/0 Cls 522
Biodeg 41/0 Cls 1055
Bike 7/3 Reg 730
House Sales 19/2 Reg 21613
Tecator 125/0 Reg 240

Table 1: Datasets used for experimental evaluation.

 Method Total t t to 1st CF #CFs
Diabetes BC 3.5(1) 0.1(0) 398(173)

 MOC 80.7(40) 1.6(1) 58(28)
Kc2 BC 9.0(5) 0.4(1) 2529(1437)

 MOC 192.1(133) 8.5(21) 45(19)
Biodeg BC 13.2(9) 0.3(0) 1138(755)

 MOC 302.7(167) 4.5(8) 100(49)
Bike BC 4.7(2) 0.0(0) 1446(493)

 MOC 47.6(27) 1.1(2) 78(56)
H. Sales BC 26.2(4) 0.2(0) 1723(674)

 MOC / / /

Tecator BC 83.3(34) 0.1(1) 42949(20154)
 MOC 429.1(98) 155.5(52) 3(1)

Average BC 23.3(9.2) .18(.33) 8363(3947)

 MOC 210.4(93) 3.16(17) 47(25)

 Table 2. Experiment runtimes and numbers of generated

counterfactuals given as: mean (standard deviation).

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

744

`

Acknowledgements
The work at Università della Svizzera italiana was supported
by the Swiss National Science Foundation, project
200021_182109 (BASE: Behavioral Analytics for Smart En-
vironments). Kacper Sokol was supported by the ARC Centre
of Excellence for Automated Decision-Making and Society,
funded by the Australian Government through the Australian
Research Council (project number CE200100005).

References
[Breunig et al., 2020] Markus M. Breunig, Hans-Peter

Kriegel, Raymond T. Ng, and Jörg Sander. LOF: Identi-
fying density-based local outliers. In Proceedings of the
2000 ACM SIGMOD international conference on man-
agement of data, pp. 93-104, 2000.

[Brochu et al., 2010] Eric Brochu, Vlad M. Cora, and Nando
De Freitas. A tutorial on Bayesian optimisation of expen-
sive cost functions, with application to active user model-
ing and hierarchical reinforcement learning. arXiv pre-
print arXiv:1012.2599, 2010.

[Byrne, 2005] Ruth M. J. Byrne. The rational imagination:
How people create alternatives to reality. MIT Press,
Cambridge, Massachusetts, 2005.

[Byrne, 2019] Ruth M. J. Byrne. Counterfactuals in explain-
able artificial intelligence (XAI): Evidence from human
reasoning. In IJCAI, pp. 6276-6282. 2019.

[Cui et al., 2015] Zhicheng Cui, Wenlin Chen, Yujie He, and
Yixin Chen. Optimal action extraction for random forests
and boosted trees. In Proceedings of the 21st ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 179–188, 2015.

[Dandl et al., 2020] Susanne Dandl, Christoph Molnar, Mar-
tin Binder, and Bernd Bischl. Multi-objective counterfac-
tual explanations. In International Conference on Parallel
Problem Solving from Nature, pp. 448-469. Springer,
Cham, 2020.

[Dhurandharetal et al., 2018] Amit Dhurandhar, Pin Yu
Chen, Ronny Luss, Chun-Chen Tu, Paishun Ting,
Karthikeyan Shanmugam, and Payel Das. Explanations
based on the missing: Towards contrastive explanations
with pertinent. In NIPS, pp. 590-601, 2018.

[Gjoreski et al., 2020] Martin Gjoreski, Vladimir Kuz-
manovski, and Marko Bohanec. Generating alternatives
for DEX models using Bayesian optimization. Proceed-
ings of the 23rd International Multiconference Information
Society, 2020.

[Gjoreski et al., 2022] Martin Gjoreski, Vladimir Kuz-
manovski, and Marko Bohanec. BAG-DSM: A Method

 Bike Kc2
 RF (sample size = 833) SVM (sample size = 767) RF (sample size = 528) SVM (sample size = 512)
 𝑺" 𝑺# 𝑺𝒙 𝑺" 𝑺# 𝑺𝒙 𝑺" 𝑺# 𝑺𝒙 𝑺" 𝑺# 𝑺𝒙
 BC M BC M BC M BC M BC M BC M BC M BC M BC M BC M BC M BC M
µ 1.0 1.0 .90 .69 .98 .69 .72 1.0 .85 .69 .93 .65 1.0 1.0 .90 .87 .97 .96 1.0 1.0 .87 .67 .99 .81
𝜎 0.0 0.0 .01 .07 .03 .49 .23 0 .07 .06 .08 .57 0.0 0.0 .06 .09 .06 .09 0.0 0.0 .14 .33 .02 .33

 p>.05 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p>.05 p=.046 p<0.001 p>.05 p<0.001 p<0.001

 Diabetes Tecator
 RF (sample size = 1,002) SVM (sample size = 1,137) RF (sample size = 6) SVM (sample size = 20)
 𝑺" 𝑺# 𝑺𝒙 𝑺" 𝑺# 𝑺𝒙 𝑺" 𝑺# 𝑺𝒙 𝑺" 𝑺# 𝑺𝒙
 BC M BC M BC M BC M BC M BC M BC M BC M BC M BC M BC M BC M
µ 1.0 1.0 .84 .70 .94 .89 1.0 1.0 .83 .71 .97 .90 .95 1.0 .99 .94 .99 .93 .67 1 .99 .85 .99 .92
𝜎 0.0 0.0 .06 .18 .03 .10 0.0 0.0 .08 .14 .02 .08 .05 0.0 .01 .02 .11 .01 .02 0.0 .01 .03 .01 .02

 p>.05 p<0.001 p<0.001 p>.05 p<0.001 p<0.001 *Sample size too small for a statistical test p<0.001 p<0.001 p<0.001

 Biodeg House Sales
 RF (sample size = 1,437) SVM (sample size = 1,857) RF (sample size = 31,036) SVM (sample size = 45,797)
 𝑺" 𝑺# 𝑺𝒙 𝑺" 𝑺# 𝑺𝒙 𝑺" 𝑺# 𝑺𝒙 𝑺" 𝑺# 𝑺𝒙
 BC M BC M BC M BC M BC M BC M BC M BC M BC M BC M BC M BC M
µ 1.0 1.0 .95 .94 1.0 1.0 1.0 1.0 .98 .95 1.0 .99 .46 - .96 - .86 - .47 - .98 - .88 -
𝜎 0.0 0.0 .02 .03 .004 .007 1.0 1.0 .01 .03 .01 .01 .28 - .04 - .09 - .26 - .02 - .08 -

 p>.05 p<0.001 p<0.001 p>.05 p<0.001 p<0.001

(M did not finish within the imposed 15-minute time limit.)

Table 3. Comparison of evaluation scores for BayCon (BC) and MOC (M).

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

745

`

for Generating Alternatives for Hierarchical Multi-Attrib-
ute Decision Models using Bayesian Optimization. Algo-
rithms, 15, 1972022, 2022.

[Goodman and Flaxman, 2017] Bryce Goodman, and Seth
Flaxman. European Union regulations on algorithmic de-
cision-making and a “right to explanation”, AI Magazine
38 (3) 50–57, 2017.

[Hoffman et al., 2018] Robert Hoffman, Tim Miller, Shane
T. Mueller, Gary Klein, and William J. Clancey. Explain-
ing explanation, part 4: A deep dive on deep nets. IEEE
Intelligent Systems 33, no. 3:87-95, 2018.

[Hutter et al., 2011] Frank Hutter, Holger H. Hoos, and Kevin
Leyton-Brown. Sequential model-based optimisation for
general algorithm configuration. In International Confer-
ence on Learning and Intelligent Optimisation, Springer,
2011.

[Keane et al., 2021] Mark T. Keane, Eoin M. Kenny, Eoin
Delaney, and Barry Smyth. If only we had better counter-
factual explanations: Five key deficits to rectify in the
evaluation of counterfactual XAI techniques. In IJCAI,
pp. 4466-4474. 2021.

[Kentaro et al., 2020] Kanamori Kentaro, Takuya Takagi,
Ken Kobayashi, and Hiroki Arimura. DACE: Distribu-
tion-aware counterfactual explanation by mixed-integer
linear optimization. In IJCAI, pp. 2855-2862. 2020.

[Lash et al., 2017] Michael T. Lash, Qihang Lin, W. Nick
Street, Jennifer G. Robinson, and Jeffrey W. Ohlmann.
Generalised inverse classification. In Proceedings of the
SIAM International Conference on Data Mining, pp. 162–
170, 2017.

[Laugel et al., 2019] Thibault Laugel, Marie-Jeanne Lesot,
Christophe Marsala, Xavier Renard and Marcin
Detyniecki. The dangers of post-hoc interpretability. In
IJCAI-19, pp. 2801-2807, 2019.

[Lizotte, 2008] Daniel James Lizotte. Practical Bayesian op-
timization. PhD Thesis, University of Alberta, Depart-
ment of Computing Science, 2008.

[Močkus, 1974] Jonas Močkus, On Bayesian methods for
seeking the extremum. IFIP Technical Conference on Op-
timization Techniques (pp. 400-404). Springer, 1974.

[Moore et al., 2019] Jonathan Moore, Nils Hammerla, and
Chris Watkins. Explaining deep learning models with
constrained adversarial examples. In Proceedings of the
16th Pacific Rim International Conference on Artificial
Intelligence, pp. 43–56, 2019.

[Pedregosa et al., 2011] Fabian Pedregosa, Gaël Varoquaux,
Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, et al. scikit-learn: Ma-
chine learning in Python. The Journal of Machine Learn-
ing research. 12:2825-30, 2011.

[Poyiadzi et al., 2020] Rafael Poyiadzi, Kacper Sokol, Raul
Santos-Rodriguez, Tijl De Bie, Peter Flach. FACE: Fea-

sible and actionable counterfactual explanations. In Pro-
ceedings of the AAAI/ACM Conference on AI, Ethics,
and Society pp. 344–350, 2020.

[Rasmussen et al., 2006] Carl Edward Rasmussen, and Chris-
topher K. I. Williams. Gaussian Processes for Machine
Learning. Cambridge: The MIT Press, 2006.

[Rudin, 2019] Cynthia Rudin. Stop explaining black box ma-
chine learning models for high stakes decisions and use
interpretable models instead. Nature Machine Intelligence
1, no. 5:206-215, 2019.

[Russell, 2019] Chris Russell. Efficient search for diverse co-
herent explanations. In Proceedings of the Conference on
Fairness, Accountability, and Transparency, 2019.

[Snoek et al., 2015] Jasper Snoek, Oren Rippel, Kevin
Swersky, Ryan Kiros, Nadathur Satish, Narayanan
Sundaram, Mostofa Patwary, Mr Prabhat, and Ryan Ad-
ams. Scalable Bayesian optimisation using deep neural
networks. In International conference on machine learn-
ing, pp. 2171-2180. PMLR, 2015.

[Sokol et al., 2020] Kacper Sokol, Alexander Hepburn, Ra-
fael Poyiadzi, Matthew Clifford, Raul Santos-Rodriguez,
and Peter Flach. FAT Forensics: A Python toolbox for im-
plementing and deploying fairness, accountability and
transparency algorithms in predictive systems. Journal of
Open Source Software 5, no. 49 (2020): 1904, 2020.

[Vanschoren et al., 2014] Joaquin Vanschoren, Jan N. Van
Rijn, Bernd Bischl, and Luis Torgo. OpenML: Networked
science in machine learning. ACM SIGKDD Explorations
Newsletter 15, no. 2 (2014): 49-60, 2014.

[Wachter et al., 2017] Sandra Wachter, Brent Mittelstadt, and
Chris Russell. Counterfactual explanations without open-
ing the black box: Automated decisions and the GDPR.
Harvard journal of law & technology, 31:841–887, 2017.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

746

