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Abstract 
Generating counterfactuals to discover hypothetical 
predictive scenarios is the de facto standard for ex-
plaining machine learning models and their predic-
tions. However, building a counterfactual explainer 
that is time-efficient, scalable and model-agnostic, 
in addition to being compatible with continuous and 
categorical attributes, remains an open challenge. 
To complicate matters even more, ensuring that the 
contrastive instances are optimised for feature spar-
sity, remain close to the explained instance and are 
not drawn from outside of the data manifold is far 
from trivial. To address this gap we propose Bay-
Con: a novel counterfactual generator based on 
probabilistic feature sampling and Bayesian optimi-
sation. Such an approach can combine multiple ob-
jectives by employing a surrogate model to guide 
the counterfactual search. We demonstrate the ad-
vantages of our method through a collection of ex-
periments based on six real-life datasets represent-
ing three regression and three classification tasks.1 

1 Introduction 
The “right to explanation” foreshadowed by the General Data 
Protection Regulation (GDPR) [Goodman and Flaxman, 
2017] challenged the Machine Learning (ML) community to 
build explainability into predictive models and their outputs. 
This paradigm shift – where predictive performance is no 
longer the only (and main) objective – gives rise to two dis-
tinct viewpoints. One argues that algorithmic black boxes 
should continue to be optimised for predictive power with ex-
plainability needs, possibly, fulfilled through post-hoc meth-
ods due to an apparent incompatibility of these two goals, 
thus forcing one of them to be sacrificed for the other.2 The 
second standpoint disputes this trade-off as purely anecdotal 
and persuasively argues for building inherently transparent 
models, especially for high-stakes decisions [Rudin, 2019]. 

 
1* Equal contribution. 

Counterfactuals are an explainability approach uniquely 
positioned in this space as they can be generated post-hoc but 
remain truthful with respect to the underlying black box (i.e., 
exhibit full fidelity). They enable ML users to understand 
what the output of a predictive model would have been had 
the instance in question changed in a particular way. This 
type of counterfactual analysis helps the explainees to simu-
late certain aspects of the ML model, thus improving its in-
terpretability [Hoffman et al., 2018]. Notably, evidence from 
psychology and cognitive sciences suggests that people use 
counterfactual reasoning daily to analyse what could have 
happened had they acted differently [Byrne, 2005]. 

However, the number of counterfactuals that can be gener-
ated to explain any event (a selected datapoint) may be over-
whelming [Byrne, 2019]. In addition to a large counterfactual 
search space, methods that are currently available tend to 
work for either classification or regression tasks, be restricted 
to a specific model family (e.g., differentiable predictors), 
struggle with large datasets (both in the number of instances 
and features), be computationally inefficient, or output out-
of-distribution counterfactuals. Building on our previous 
work in the domain of decision support systems [Gjoreski et 
al., 2020; Gjoreski et al., 2022], we address the existing chal-
lenges with BayCon: a novel model-agnostic Bayesian coun-
terfactual generator. To the best of our knowledge, it is the 
first counterfactual explainer based on Bayesian optimisa-
tion, making it fast to produce a sizeable number of high-
quality contrastive instances. Our approach is model-agnostic 
and compatible with regression and classification tasks. It 
outperforms other state-of-the-art counterfactual generation 
methods on six real-life datasets, which illustrates its effec-
tiveness. Our evaluation uses three regression and three clas-
sification datasets with between 8 to 125 categorical and nu-
merical attributes, demonstrating BayCon’s speed and versa-
tility. Existing methods for generating counterfactual expla-
nations focus predominantly on differentiable models applied 
to continuous features [Wachter et al., 2017; Dhurandhar et 
al., 2018; Moore et al., 2019, Lash et al., 2017]. This creates 
a blind spot for non-differentiable models trained on datasets

2 https://www.wired.com/story/googles-ai-guru-computers-
think-more-like-brains/ 
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with mixed feature types, which are relatively ubiquitous 
[Rudin, 2019]. To address this gap, several authors proposed 
(Mixed) Integer Programming approaches [Cui et al., 2015; 
Russell, 2019; Kentaro et al., 2020]. Another counterfactual 
generation method, which is somewhat similar to BayCon, is 
Multi-Objective Counterfactual Explanations (MOC) [Dandl 
et al., 2020]. MOC is model-agnostic, compatible with re-
gression and classification tasks, and capable of processing 
numerical and categorical features. Given that both MOC and 
BayCon attempt to address the same set of counterfactual 
generation shortcomings, albeit with different approaches, 
we directly compare them in a set of experiments using six 
diverse evaluation metrics (see Tables 2 and 3). Additionally, 
we show how BayCon complies with recent guidelines for 
designing counterfactual generation methods, thus making it 
the preferred approach [Keane et al., 2021]. 
 
2.  Preliminaries 
Given an instance selected to be explained for a pre-trained 
ML model, BayCon generates similar instances that lead to 
the desired prediction, i.e., counterfactuals. A naïve approach 
is to generate all the possible feature–value combinations or 
to iteratively generate random instances, discarding the ones 
with unchanged prediction. However, for datasets with a con-
siderable number of features this search space can be over-
whelmingly large, rendering the naïve approaches impracti-
cal. A more appropriate strategy could use an informed 
search based on the record of previously generated and eval-
uated counterfactuals. These datapoints can be used to map 
the search space and the behaviour of the ML model. Based 
on this approximation, promising counterfactuals can be gen-
erated more efficiently. Bayesian optimisation can be a vehi-
cle to realise such an informed search stochastically. 

2.1. Counterfactual Explanations Desiderata 
The BayCon optimisation pipeline is designed to produce 
contrastive explanations of the highest quality, both with re-
spect to their technical and social properties. To this end, our 
method adheres to the latest guidelines prescribing how to 
generate desirable counterfactuals [Keane et al., 2021]. 

What’s Plausible? BayCon optimises for plausibility by 
minimising the distance to the explained instance in addition 
to automatically extracting feature constraints from the un-
derlying training dataset. Moreover, our method allows the 
user to specify immutable features such as age, and indicate 
attribute values that are invalid, e.g., fractional number of 
rooms in a house. All these restrictions are used to guide 
quasi-random feature sampling (explained in Section 3.4). 

The Shape of Sparsity. Counterfactuals should strive to 
tweak the smallest possible number of features to make the 
explanations parsimonious, hence appealing to humans 
[Keane et al., 2021]. However, the desired level of sparsity 
may depend on the user and the dataset, therefore we incor-
porate the number of altered feature values into the optimisa-
tion function used by BayCon. Additionally, the user can 
specify the maximum number of altered features. 

Covering Coverage. Counterfactuals should be feasible 
and actionable [Poyiadzi et al., 2020]. In particular, out-of-

distribution counterfactuals – which can amount to 36% of all 
the generated explanations for some methods – should be 
avoided [Laugel et al., 2019]. BayCon uses Local Outlier 
Factor (LOF) to prevent such counterfactuals from being pre-
sented to the explainee.  

Comparative Testing. BayCon is compared to state-of-the-
art counterfactual explainers on six publicly available da-
tasets using well-defined evaluation metrics. 

 
2.2. Optimisation Objective 
To assess the quality of generated counterfactual explana-
tions, we designed a suitable objective function. It captures: 
(1) the distance in the feature space, (2) the distance in the 
output space, and (3) the number of altered features, all scaled 
to the [0, 1] range. Figure 1 shows example optimisation 
scores for the Bike dataset (cf. Table 1). Each point in the plot 
is a candidate counterfactual. The x-axis represents the output 
of the ML model for which we are generating counterfactu-
als; the y-axis shows the Gower distance between each coun-
terfactual and the explained instance; the z-axis captures the 
number of changed features; and the marker colour indicates 
the optimisation score calculated with Equation 1 (higher is 
better). In this example, the explained instance is predicted as 
3141 (rented bikes), and the desired output range (provided 
by the explainee) is set to [4500, 5000]. The figure shows 
that: (i) the optimisation scores for counterfactuals whose 
predictions (y-axis) are outside of the user-specified range are 
close to 0 and increase as the model’s output approaches the 
desired range; (ii) the optimisation scores decrease as the 
Gower distance increases; and (iii) the optimisation scores 
are higher for counterfactuals that require a lower number of 
features to be changed. 
 

F(𝑐,$ 𝑥̅) = 𝑆! ∗ 	𝑆" 	 ∗ 	𝑆# (1) 
  

 Similarity in the feature space (𝑆!). Gower distance is a 
distance metric used for mixed feature spaces. For categori-
cal attributes, it checks whether the two features have an 
identical value – the distance component is 0 if the features 

 

Figure 1. Example BayCon optimisation scores. 
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are the same and 1 otherwise. For numerical features, it cal-
culates the absolute value of the difference between the at-
tributes, divided by the numerical range of the feature. All of 
these individual components are then added up and divided 
by the number of attributes, which places the distance in the 
[0, 1] range. Next, we integrate this metric – the Gower dis-
tance between the explained instance 𝑥̅ and a counterfactual 
candidate	𝑐$  – into our optimisation function (𝑆! in Equation 
2) by subtracting it from 1: 
 

𝑆!(𝑐,$ 𝑥̅) = 1 − 𝑑$%&'( (2) 

 
 Similarity in the output space (𝑆"). For classification tasks, 
𝑆" is 1 if the ML model predicts the candidate counterfactual 
as requested by the user, and 0 otherwise. For regression 
problems, we define 𝑆" as: 
 

𝑆" = /
1, 𝑖𝑓	𝑦) ∈ [𝑦*+,	,	𝑦*/0	]						

	1 −	 |"!2	3|
|""2	3|4	5

,			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	  , where 
(3) 

 
 
 

 

𝑑 = = 𝑦678, 𝑖𝑓	
|𝑦) − 𝑦678| < |𝑦) − 𝑦69!|

	𝑦69! , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																			
. (4) 

 
In Equation 3,	𝑦! is the output of the ML model for the ex-
plained instance; 𝑦) is the output of the ML model for the 
candidate counterfactual; and [𝑦*+,	, 𝑦*/0	] is the target out-
put range specified by the user. If 𝑦) is in the desired range, 
𝑆" = 1 (the maximum value). Otherwise, 𝑆𝑦 captures the 
closeness of 𝑦) to the borders (calculated via 𝑑) of the desired 
range. 𝑆𝑦	is designed to be within the [0, 1] interval. 
 Proportion of tweaked features (𝑆#). This objective counts 
the number of features in the candidate counterfactual that are 
different when compared to the explained instance. This 
score is also in the [0, 1] range – see Equation 5. 
 
𝑆!(𝑐,% 𝑥̅) = 	

#	$!	%&!!'(')*	!'+*,('-	.'*/'')	0	̅+)%		2̅	
34'(+55	#	$!	!'+*,('-

 (5) 

 
For comparison, MOC formalises counterfactual search as 

a multi-objective optimisation problem solved with Nondom-
inated Sorting Genetic Algorithm II (NSGA-II). The objec-
tives used by MOC are: (i) prediction closeness to the desired 
goal, (ii) closeness to the initial instance in the feature space, 
(iii) number of changed features, and (iv) plausibility of 
counterfactual candidates based on the probability distribu-
tion over the feature values. BayCon mirrors objectives (i), 
(ii) and (iii) with the aforementioned scores: 𝑆", 𝑆!, and 𝑆#	re-
spectively. Objective (iv) is addressed implicitly by the LOF 
filtering.  

3 Methodology 
Bayesian optimisation allows utilising prior beliefs about a 
problem to help navigate the sampling. This is achieved by 
following a simplified version of the Bayes’ theorem: the 
posterior probability of a function F given data D (or evi-
dence) is proportional to the likelihood of D (given F) and the 
prior probability of F: 
 

𝑃(𝐹|𝐷) ∝  	𝑃(𝐷|𝐹)	𝑃(𝐹)	. (6) 
 
In our case, 𝐷 consists of n observed counterfactuals and their 
black-box prediction: D = {(𝑐:,EEE 𝐹(𝑐;,EEE 𝑥̅)), … , (𝑐8,EEEE 𝐹(𝑐8,EEEE 𝑥̅))}.  

3.1 Surrogate Model 
To estimate the posterior of our objective function (Equation 
6), we employ a surrogate model. It is an ML model typically 
learnt with regression algorithms based on a Gaussian Pro-
cess (GP) because such a model provides access to the full 
probability distribution [Snoek et al., 2015, Rasmussen et al., 
2006]. By exploiting the mean and the standard deviation of 
the output distribution, one can balance the exploitation 
(higher mean) and exploration (higher standard deviation) 
trade-off. Since GPs are computationally expensive – 𝑂(𝑛<) 
complexity – ensemble regression models such as Random 
Forests can be used instead [Hutter et al., 2011]. In such a 
case, the mean and variance are calculated based on the pre-
dictions of all the individual models within the ensemble. In 
our case, the input of the surrogate model is defined as: 
 

 
In this equation ∆𝑘7 represents the distance between 𝑐̅ and 
𝑥	$ 	for feature 𝑖; 𝑐𝑜𝑢𝑛𝑡(∆𝑘) is the number of features changed 
in 𝑐̅ as compared to 𝑥	$ ; and the last input is the Gower dis-
tance between	𝑐$ and 𝑥̅. Therefore, for any given input the sur-
rogate model outputs an estimation of our optimisation score. 

3.3 Acquisition Function  
The mean µ(𝑆)$ )	and variance 𝜎(𝑆)$ )	calculated on the output 
of the surrogate model are used as input to an acquisition 
function, which is responsible for selecting the most promis-
ing counterfactuals. This function optimises the conditional 
probability of the feature space to identify regions with prom-
ising counterfactuals. BayCon uses Expected Improvement as 
its acquisition function [Močkus, 1974]. In our experiments, 
the constant that controls the trade-off between global search 
and local optimisation (i.e., exploration/exploitation) is set to 
ξ = 0.01 [Lizotte et al. 2008, Brochu et al., 2010]. Intuitively, 
this acquisition function checks the improvement that each 
candidate counterfactual	brings with respect to the maximum 
known value 𝑆=, i.e., µ(𝑆)$ ) − 𝑆=, and scales this improve-
ment with respect to the uncertainty given by 𝜎(𝑆)$ ). If two 
counterfactuals have a similar mean value, the one with 
higher uncertainty is preferred by the acquisition function.  

𝑖𝑛𝑝𝑢𝑡 = [Δ𝑘:	, … , Δ𝑘8	, 𝑐𝑜𝑢𝑛𝑡(∆𝑘), 𝑑$%&'(].     (7) 
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3.4 Generating Candidate Counterfactuals  
Initial Neighbourhood Generation. Given the assumption 
that good counterfactuals should be close to the explained in-
stance, our search is focused on its neighbourhood. To gen-
erate this space, for each feature we sample values at random 
with replacements from a truncated (based on the feature 
ranges) normal distribution centred around the initial in-
stance. Categorical attributes are sampled uniformly over the 
set of possible values. 

Exploring Best Counterfactual Neighbourhoods. Since 
good counterfactuals should come from dense regions, we ex-
plore neighbourhoods of explanations with best scores. We 
reuse the generation procedure applied to the initial instance, 
this time centred around the best counterfactuals. 

Random Feature Sampling. To enable a higher degree of 
exploration, we sample values of numerical features uni-
formly at random from within their ranges. Categorical attrib-
utes are sampled uniformly over the set of possible values. 

Rounding. To avoid indistinguishable counterfactuals that 
only differ beyond an nth decimal place for numerical fea-
tures, we perform k-bins discretisation with equal-width bins.  
We used k = 100 for our experiments, which provides the 
minimum difference of 1% relative to the attribute range. 

Selecting Features to Be Tweaked. To increase sparsity, 
i.e., change the fewest possible features per counterfactual, 
we randomly select attributes to update based on a skewed 
distribution where the probability of changing n features is 
double that of changing n+1. Only the selected features are 
then updated using the procedure described in the previous 
steps (neighbourhood generation or random sampling). 

Filtering. BayCon is an iterative algorithm. At each step, 
we prune candidate counterfactuals whose score is below the 
current best. Also, prior to outputting the explanations, we 
remove out-of-distribution counterfactuals with LOF, which 
measures the local density deviation of each explanation with 
respect to its neighbourhood determined by the training da-
taset. Explanations that have a substantially lower density 
than their neighbours are therefore removed. For this pur-
pose, we use scikit-learn’s LOF implementation with default 
parameters [Breunig et al., 2000]. Algorithm 1 captures our 
implementation of BayCon in more detail. The maximum 
number of iterations was set to 100. 

4 Experiments 
We compare BayCon against other counterfactual generation 
methods on six real-life datasets. Our method is implemented 
in Python 3.6 and relies heavily on scikit-learn [Pedregosa et 
al., 2011]. All the experiments were run on a 3.70GHz Intel 
Core i9 CPU with 128GB of RAM. We imposed a 15-minute 
runtime limit for each execution. BayCon implementation 
and the experimentation code, including processed datasets 
and analysis of the results, are freely available on GitHub3. 

 
3 https://github.com/piotromashov/baycon 

4.1 Experimental Setting  
We compare our proposed method to a brute-force exhaus-
tive counterfactual search implemented in FAT Forensics 
[Sokol et al. 2020] and MOC based on its official implemen-
tation. FAT Forensics only yielded explanations for the Dia-
betes dataset given the imposed 15-minute time limit, hence 
it is not featured in our comparison. MOC, on the other hand, 
generated explanations for all the datasets but the House 
Sales (likely due to the size of its training set) as it is a state-
of-the-art method. 

For the comparison we used three classification (Cls) and 
three regression (Reg) datasets (see Table 1 and Appendix A 
for more information). All the datasets are available online; 
the Bike dataset can be downloaded from the UCI repository 
and the other datasets are available through the OpenML re-
pository [Vanschoren et al. 2014]. 

For each classification dataset we selected 10 random in-
stances to be explained, generating their counterfactual ex-
planations 3 times to account for randomness (i.e., 30 runs 
per dataset). For each regression dataset, we selected 3 initial 
instances, one for each percentile of the output variable: the 
median as well as the 25th (𝑦;> in Equation 7) and the 75th 

Algorithm 1 BayCon. 
Input: black-box-model f, instance to be explained x*, 
desired prediction p, training data 𝑋?. 
Output: counterfactuals CFs. 
1: X = generate neighbourhood (x*) 
2: y = f (X) # predict neighbourhood 
3: 𝑆@ = objective function (X, y, p) # calculate scores 
4: 𝑋A , 𝑦A = update known instances (X, y) 
5: g = RandomForest (𝑋A, 𝑆@)  # train surrogate 
model 
6: 
7: while continue search do 
8:  CF = select counterfactuals (𝑋A, 𝑦A) 
9:  𝐶𝐹=, 𝑆= = select best (CF, 𝑆@) 
10:  X = generate neighbourhood (𝐶𝐹=) 
11:  𝑋B = update promising instances (X) 
12:  X += random generation (𝑆=) 
13:  µ, 𝜎 = g (X) 
14:  𝑋C = acquisition function rank (X, µ, 𝜎) 
15:  y = f (𝑋C)  # get black-box predictions 
16:  𝑆@ += objective function (𝑋C, y, p) 
17:  𝑋A = update known instances (𝑋C, y) 
18:  g.retrain (𝑋A, 𝑆@)  # update surrogate model 
19:  end while 
20: 
21:  y = f (𝑋B)  # get black-box predictions 
22:  CFs += update with counterfactuals from (𝑋B, y) 
23:  CFs = LOF filter (CFs, 𝑋?) 
24:  return CFs 
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percentiles. Next, we generated explanations for 4 desired 
target ranges – to increase, to decrease, to be in an interval 
above (𝑦! + 𝑎, 𝑦! + 𝑏) and to be in an interval below (𝑦! −
𝑏, 𝑦! − 𝑎) the prediction of the explained instance, with a and 
b defined in Equation 8. Each experiment was repeated 3 
times (i.e., 36 runs per dataset). 

 
a = 0. 5 ∗ 𝑦;>; 	𝑏 = 		0.75 ∗ 𝑦;> (8) 

  
We explained predictions of two black-box models: a Ran-

dom Forest (RF) and a Support Vector Machine (SVM). The 
models were trained with all the data, excluding the explained 
instances. Since SVMs can be sensitive to feature scaling and 
model parameterisation, we applied min–max normalisation 
to the input features and tuned the model parameters using 3-
fold cross-validation on the training data.  

4.2 Experimental Results 
Table 2 compares BayCon and MOC with respect to the total 
compute time, the time to first solution and the number of 
generated counterfactuals (all times given in seconds). The 
time to first solution for MOC was calculated as the total time 
divided by the number of generated explanations. While such 

a strategy gives MOC an advantage, BayCon outperformed it 
across the board. Additionally, the House Sales dataset 
caused MOC to timeout, which is likely due to the size of the 
training dataset. 

Table 3 outlines the experimental comparison between 
BayCon and MOC using the three evaluation scores – 𝑆", 𝑆#, 
𝑆! – proposed in Section 2. It presents the mean and standard 
deviation for each score and the accompanying result of the 
Mann–Whitney U rank test. The sample size, which depends 
on the number of counterfactuals generated in each experi-
mental run, is also shown – a sample size of 833 indicates that 
for this experiment we compared the scores of 833 explana-
tions generated by MOC with the same number of explana-
tions generated by BayCon. Since the methods could gener-
ate a different number of explanations, we only took the top 
n counterfactuals (ranked by the evaluation score) with n de-
termined by the smallest number of explanations generated 
for a given experimental setup across the two methods. 
Bolded p-values highlight the experiments in which BayCon 
outperformed MOC with statistical significance (p<0.05). 
This happened in most of the experiments, except for the Bike 
and the Tecator datasets predicted with an SVM, but only 
when measured by the 𝑆" score. In these specific experi-
ments, MOC found better counterfactuals in the output space 
(𝑆"), however BayCon found better counterfactuals in the 
feature space (𝑆# and 𝑆!). Notably, BayCon offered counter-
factuals with a smaller number of changed features and 
smaller Gower distance across all experiments. 

5 Conclusions and Future Work 
Our experiments demonstrated that, compared to state-of-
the-art methods, BayCon is more time-efficient and generates 
larger and more diverse sets of counterfactuals (see Table 2). 
Furthermore, the explanations output by our algorithm are of 
better quality: they are placed closer to the explained instance 
and require fewer feature tweaks, thus making them more 
similar to it. In future work, we will address the counterfac-
tual multiplicity by exploring various filtering, pruning and 
selection methods. We will also investigate visualisation 
techniques to help the users better navigate the output expla-
nations and select them based on (possibly implicit) user pref-
erences. Moreover, we will conduct user studies to analyse 
the perceived quality and benefit of BayCon’s counterfactu-
als to avoid “neglecting the users” [Keane et al., 2021]. 

Appendices 

A. Datasets  
Diabetes: https://www.openml.org/d/37 
KC2: https://www.openml.org/d/1063 
Biodeg: https://openml.org/d/1494 
Bike: http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset 
House: https://www.openml.org/d/42731 
Tecator: https://www.openml.org/d/505 

Dataset Features 
(Num/Cat) 

Type Samples 

Diabetes 8/0 Cls 768 
Kc2 22/0 Cls 522 
Biodeg 41/0 Cls 1055 
Bike 7/3 Reg 730 
House Sales 19/2 Reg 21613 
Tecator 125/0 Reg 240 
   

Table 1: Datasets used for experimental evaluation. 
 
 
 
 

 Method Total t t to 1st CF #CFs 
Diabetes BC 3.5(1) 0.1(0) 398(173) 

 MOC 80.7(40) 1.6(1) 58(28) 
Kc2 BC 9.0(5) 0.4(1) 2529(1437) 

 MOC 192.1(133) 8.5(21) 45(19) 
Biodeg BC 13.2(9) 0.3(0) 1138(755) 

 MOC 302.7(167) 4.5(8) 100(49) 
Bike BC 4.7(2) 0.0(0) 1446(493) 

 MOC 47.6(27) 1.1(2) 78(56) 
H. Sales BC 26.2(4) 0.2(0) 1723(674) 

 MOC / / / 

Tecator BC 83.3(34) 0.1(1) 42949(20154) 
 MOC 429.1(98) 155.5(52) 3(1) 

Average BC 23.3(9.2) .18(.33) 8363(3947) 

 MOC 210.4(93) 3.16(17) 47(25) 

 
 Table 2. Experiment runtimes and numbers of generated 

counterfactuals given as: mean (standard deviation). 
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