
Abstract

When clothing manufacturer Benetton announced in March 2003 that 
it was considering the use of Radio Frequency Identification (RFID) 
chips in its garments in order to streamline its supply chain, an unex­
pected storm of protest followed in the media that ultimately forced 
the company to withdraw its plans only a few weeks later. Ever since, 
RFID technology has become one of the most debated ubiquitous com­
puting technologies, and public fears of its alleged capability for com­
prehensive surveillance have prompted a flurry of research trying to 
alleviate such concerns. The following article aims at introducing and 
briefly evaluating the range of proposed RFID privacy solutions so 
far.

Introduction1

RFID tags represent a significant privacy problem – at least in princi­
ple – due to their enhanced means for identification. While propo­
nents of this technology often like to compare RFID to the ubiquitous, 
yet by no means threatening bar codes, RFID does differ from them in 
two important respects: 

1. Level of Detail: While special two­dimensional versions 
might carry up to 1000 bytes at the expense of larger print 
areas and lower reliability during scanning, the majority of 
today’s barcodes feature only about a dozen digits. RFID 
tags in contrast store usually hundreds bits, and are already 
designed to carry not only a class­identification (e.g., a 
manufacturer­id and product­id) but rather item­level­
identification (i.e., a serial number). Some types of RFID 
tags can even be rewritten. 

Technical mechanisms for RFID 
privacy
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2. Unobtrusiveness: Reading a barcode requires a line­of­sight 
between the reader and the tag. This means not only that 
the scanning process itself can hardly go unnoticed, but also 
that the tags must be easily visible. RFID­Labels in contrast 
are read from (or written to) through an electromagnetic 
field, which can easily penetrate plastic, fabrics, or paper. 
Thus, both the fact that a tag is present, as well as the act of 
reading out such an RFID­tag can be concealed. 

Work on technical privacy­protection tools for RFID­tags has there­
fore focused on reducing the amount of detail reported by such tags, 
e.g., by replacing the stored serial number with a generic manufac­
turer code or even a completely arbitrary number, and on preventing 
any unnoticed read­outs of such tags. Due to the envisioned wide­
spread usage of such tags, the former method might only be a partial 
solution: Even if the level of detail provided by such tags is signifi­
cantly reduced, the specific combination of tags carried by an individ­
ual, socalled “constellations” [1], might still allow for the 
identification of a person. Existing technical solutions in the field of 
RFID privacy can be divided into anonymizing and pseudonymizing 
methods. Both can either be achieved by deleting or altering the data 
on the tag itself, or by controlling read access to it. Especially the lat­
ter is critical, since RFID readers must also provide the energy to 
power the battery­less tags, resulting in reader­to­tag communication 
that stretches much further than the corresponding return channel 
from the tag back to the reader. 

The RFID kill­command

Long before the Benetton incident triggered a public controversy over 
the use of RFID tags in consumer articles, the 2002 Auto­ID specifica­

tion2 contained the requirement of a “kill”­command [2]. The basic 
idea is simple: Before selling a tagged item to the consumer, the 
embedded tag is permanently deactivated at checkout. This renders 
the tag inaccessible to subsequent reader commands and thus pre­
vents any tracking or profiling beyond the point of sale. 

The current Auto­ID/EPC global specification3 requires for all confor­
mal tags an 8­bit­password to be set on the tag during or right after 



production in order to prevent unauthorized deactivation of the tags 
through this kill­command, e.g., while still on the shelves. After 
receiving the correct password, the specification requires the tag to 
stop responding to all subsequent reader commands in any way [3]. 
How this functionality is actually implemented on the tag is left up to 
the manufacturer, though due to cost efficiency, most solutions are 
currently software­based, which would allow – at least in principle – 
a later reactivation of the tag through direct contact (as the over­the­
air interface is deactivated). 

Apart from this potentially incomplete tag destruction, two additional 
aspects significantly affect the efficiency of this method from a pri­
vacy point of view. For one, deactivating the tags at checkout would 
still allow for detailed tracking of consumers inside stores, as well as 
associating consumer data and shopping information right at the 
point of sale (e.g., through the use of a credit or consumer card when 
paying). Additionally, the process of deactivation itself is for the con­
sumer difficult to verify, as no visible cues would be present. The fact 
that all known deactivation methods are software­based, even though 
a permanent electro­magnetic deactivation similar to today’s anti­
theft labels would in principle be equally possible, is seen by critics as 
further proof that a later reactivation is left as a possibility – a suspi­
cion that seems to have been already vindicated by some fielded pro­
totypes: during a visit to Metro’s Future­Store by RFID­activist 
Catherine Albrecht, a detailed inspection of the supposedly killed tag 
revealed that only Metro’s own product number had been deleted, 
while the tag’s hardware serial number was still left intact due to 
“technical reasons” [4]. 

Others point out that equipping all existing point of sales with “kill 
stations” is widely unrealistic [5], since small businesses such as 
kiosks would never be able to afford the corresponding equipment, 
even though they would inevitably sell tagged merchandise (e.g., soda 
cans or razor blades). Today’s prototypes for tag deactivation are also 
not yet capable of handling multiple tags at once: not least due to the 
password­protection mechanism, customers must laboriously silence 
each individual tag manually – a nuisance that might prompt many 
customers to abstain from bothering with the deactivation. 



Permanently deactivating tags of course also prevents any secondary 
use of such identifiers, e.g., as part of the often­cited intelligent 
fridge or other smart household appliances; for providing follow­up 
services such as automatically recommending matching accessories 
for tagged clothing; and to improve product life­cycle services such as 
repairs, returns, and recycling. A comprehensive use of RFID even 
after the point of sale would benefit not only manufacturers and 
retailers in the form of an increased consumption through countless 
smart fridges, but also consumers, who might appreciate being told of 
expiring produce, or to be able to simply return a defective product 
without having to worry about keeping the receipt (since the 
product’s RFID tag stored all relevant data for the return). 

Hash locks and metaIDs

As an alternative to the “all or nothing” approach of the kill com­
mand, a number of proposals favor protecting the RFID­tag payload 
(i.e., the tag ID or, alternatively, the stored electronic product code) 
from unauthorized reading. As soon as a product changes into the 
hands of the consumer, a key­based access protocol would allow him 
or her to control who would be allowed to subsequently read out the 
stored tag information. 

The basic principle was already proposed in 2002 by Sarma et al. [6]
and is based on mathematical one­way­functions, so called “one­way 
hashes.” In order to “lock” an RFID­tag, an RFID­reader device would 
choose an arbitrary key k, compute a hash value h = H(k) from it 
using a reasonably secure one­way hash function, and store this hash 
value (called the “MetaID”) in a specially reserved area on the RFID­
tag. In order to facilitate unlocking the tag at a later time, the owner 
(or better: his or her tag­reader) would also file the random key k 
under its MetaID h in a database under the owner’s control. Once a 
tag has a stored MetaID, it replies to all read requests with only this 
MetaID, never with its “true” ID or any other data payload it might 
carry (e.g., its Electronic Product Code (EPC) – a standardized identi­
fier that not only carries a manufacturer and product ID, but also a 
product’s serial number). If the tag owner later wants to access the 
original data again, he or she simply queries the tag for its MetaID h 
(which is the only information accessible from the tag, anyway) and 



looks up the corresponding key k that was originally chosen by the 
reader to lock the tag, using the database of key­MetaID pairs. Once 
this key k is sent to the tag in question, the tag will itself perform the 
computation of H(k) and verify if it matches its stored MetaID. Should 
this be the case, it deletes the stored MetaID and is thus effectively 
unlocked again. 

An access­control scheme using one­way hashes as keys has several 
advantages. Even though it does not offer absolute security in the 
mathematical sense, computing the original unlock value k from the 
stored hash value h requires such a substantial effort that for all 
practical purposes, being able to read out the MetaID h will not allow 
an unauthorized reader to deduce the original value k for unlocking 
the tag. Also, providing RFID­tags with the ability to compute a hash­
value (for verifying that the reader­sent unlock value k does indeed 
form the basis for the stored MetaID h = H(k)) is relatively cheap to 
implement [1], and would thus also be an option for ultra­cheap 
RFID­tags – an important advantage over more complex (and there­
fore potentially more secure) solutions that use symmetrical or asym­
metrical cryptography, which are only an option for relatively 
expensive goods that can “afford” an expensive tag. 

An improvement of such static MetaIDs is the use of so­called “ran­
domized hash­locks” [7]. Their goal is to prevent the creation of 
detailed tracking records by repeatedly accessing a fixed MetaID 
using several different reader devices. For this, tags do not reply with 
a fixed MetaID anymore, but instead generate their MetaID anew 
upon each read request from a tag­reader. An integrated random 
number generator on the tag generates a random value ri, which is 
appended to the “real” ID of the tag and thus forms the basis for a 
temporary MetaID hi = H(ID||ri). A reader receives both the tempo­
rary hi as well as the used random number ri. In order to deduce the 
real ID of the tag, the reader needs a list of all possible IDs – a 
requirement that seems feasible for individuals with a small number 
of tagged items (as opposed to large supermarkets with hundreds of 
thousands of tagged items in store). Using this list of known items, 
the reader device then simply computes hj = H(IDj ||ri) for all its 
known IDs, until it finds an hj that matches the hi it read from the 
tag. With this, it implicitly knows the ID of the tag and does not even 



have to explicitly unlock the tag (which would work analogous to the 
fixed MetaID scheme). Only if an item would be returned or trans­
ferred to a different individual, the reader would send the found 
“true” tag­ID IDj and thus unlock the tag again. 

Access control

A different approach to authenticating legitimate reader devices is 
put forward by Fishkin and Roy [8]: Based on the principle distance 
implies distrust, Fishkin and Roy propose tags that return more or 
less information based on the distance to the reader devices that 
poses the query. As an example, they list five possible levels of disclo­
sure: At level zero, the tag only announces its presence. At level one, 
it replies with generic attributes (e.g., a shirt would reply with its 
color and fabric). Only at the highest level of four, personally identifi­
able information such as the location and time of purchase would be 
released. 

While the basic principle of their approach is rather simple, the prac­
tical implementation is not. At the outset, the signal strength of a 
reader device at a tag depends heavily on the tag’s orientation – as 
soon as it changes from its “optimal” position, the reader will appear 
much further away than it really is. While this might be tolerable 
from a privacy point of view (after all, more distance implies less 
data transfer), it would make reliable application design almost 

impossible4. Additional, both metallic substances and water5 signifi­
cantly influence the energy field of an antenna, which makes reliable 
measurements outside laboratory settings difficult. While the authors 
hope to increase reliability by combining the different approaches, 
and by putting more complex antennas on the tags, the difficult “user 
interface” of such a solution, as well as its increased cost, will most 
likely appeal neither to customers nor to service providers. That is 
because even with a reliable distance measurement, consumers would 
be unable to judge the actual information exchanged in everyday 
operations, where, in theory, leaning too close to a (potentially 
unknown) reader could accidentally disclose detailed information. 
This also prompts the question whether the hierarchical organization 
of tag­data is always useful or even possible. 



Eavesdrop­resistant anti­collision protocols

Due to the power asymmetry between reader and tag, information 
sent from reader devices would be subject to eavesdropping, even if 
using one of the above authorization methods, where only “friendly” 
reader­devices would get access to the information stored on the tags. 
This is because of the energy field of the reader, which not only trans­
mits the information from the reader to the tags, but is also used to 
power them, and thus typically has a much larger range than the sig­
nal that is reflected back from the tag. This allows third parties to 
“listen in” on the signal sent from the reader, even from a considera­
ble distance. 

This is especially critical if the tag’s ID is among the information sent 
from the reader to the tag. While this might sound unlikely at first 
(after all, it is the reader that is interested in the tag ID, not the other 
way around), it is quite common practice in binary­tree­based anti­
collision protocols [9]. As tags typically have no way of detecting the 
presence of other tags, their replies to a reader’s signal might conflict 
with the signals from other tags in the vicinity, thus creating a “colli­
sion,” an interference that prevents the reader from decoding the IDs 
of all of the involved tags. 

A popular variant of such a protocol uses ID prefixes sent from the 
reader to determine which tags (i.e., only those with a common pre­
fix) should reply. As long as the reader detects a collision (i.e., if two 
or more tags with the same prefix as indicated by the reader are 
within range), the reader increases the length of the prefix (e.g., by 
adding a “1” to it) until a single tag ID can be “singularized.” It then 
replaces the bit it added last with its inverse and continues – should 
more collisions occur – to increase the length of the prefix. This 
explicit partitioning allows the individual selection of an arbitrary 
number of tags. However, the above asymmetric transmission power 
would allow a third party to log the sent­out prefixes, potentially 
learning the individual tag IDs should a collision occur at the very last 
bit position. 

Weis et al. [7] propose that instead of sending a whole prefix, readers 
would only send the command “transmit next bit” to the tags. As long 
as their corresponding bit positions are identical, no collision would 



occur6 and the reader would be able to note the common bit prefix 
incrementally. Once two tags would differ at position i, the reader 
would just as before use a “select” command to pick a subtree, but 
instead of sending the complete prefix to the tags (i.e., sending bits 1 
through i, with either “1” or “0” at position i), it would simply XOR 
Biti−1 with its chosen Biti and send the resulting value. Tags in turn 
would XOR the received bit with their own Biti−1 (which must be 
identical to the reader’s Biti−1) and compare the resulting value to 
their corresponding Biti. In case of a match, a tag would be selected 
and reply with its Biti+1. An attacker who could only listen to the for­
ward channel (i.e., who could “hear” the commands of the reader, but 
not the replies from the tags) would not be able to observe the bits of 
collision­free prefixes (since the reader only sends a “Send next 
Bit”­command and the replies from the tags are too weak to be 
detected over long distance). Similarly, such an attacker would be 
unable to deduce any bit­values in case of collisions, as the XOR with 
an unknown value (Biti−1) also hides the reader­selected subtree­bit 

at position i7. However, in order to “remember” the current bit posi­
tion, tags would need to carry (expensive) dynamic memory. 

An alternative anti­collision method can potentially work without 
sending out any information on the forward channel: In protocols 
based on the Aloha­Model, tags reply individually with a random 
delay to the reader signal [10]. Depending on the (reader­set) time 
allocated for tag­replies, tag transmissions distribute themselves ran­
domly and can ideally be read collision­free. However, in order to 
increase the performance of such protocols, some variants explicitly 
“silence” tags that have been correctly identified, in order to lessen 
the number of tags that need to be read if only a few collisions occur. 
Unless special care is taken, such a selection mechanism would of 
course allow a distant attacker to log the IDs of such silenced tags. 

The current EPCglobal tag specification [3] contains a requirement 
for a random­number generator on the tag, both for reasons of effi­
ciency and security. Instead of its “true” ID (typically the EPC), the 
specification requires tags to reply with a random number that is gen­
erated for each read cycle anew. In order to “silence” a tag under this 
protocol version, the reader uses this random number. Once all tags 



have been identified using their momentarily chosen temporary IDs, 
readers can then use these numbers to request the “real” ID from 
each tag. This not only prevents attackers from “listening in,” but also 
increases the speed of the anti­collision protocol as the temporary ID 
uses fewer bits (12) than the globally unique EPC (96) and thus pro­

vides for shorter transmission times8. 

The blocker­tag

Probably the simplest proposed access control method for RFID­tags 
is based on the above described binary­tree­based singularization 
protocol and follows a denial of service approach [11]. Juels and 
Pappu propose that consumers carry a so­called blocker­tag with 
them, which replies to any read request with a self­induced collision 
(using two antennas that reply with two conflicting IDs). Using the 
above mentioned binary­tree­ based anti­collision protocols, readers 
would thus begin the task of singulating individual tags from the 
apparently large population of tags. However, for any prefix sent 
from the reader device, the blocker­tag would create a collision, 
therefore forcing the reader to traverse the entire tree of all possible 
ID combinations – when using a 96­bit EPC, it would have the size of 
several billions of tags. Even if a reader would be able to read several 
thousand tags per second, the presence of such a blocker­tag would 
effectively stall any read attempt indefinitely (or until the reader 

device would give up)9. 

The biggest advantage of the blocker­tag approach is certainly the 
minimal infrastructure that is needed: existing tags (at least those 
with rewritable memory) could be used unchanged, and reader 
devices would only need minimal software updates to cope with pri­
vacy zone announcements. On the other hand stands the rather poor 
reliability of such a method: by implementing blocker­tags cheaply as 
a passive RFID­tag, a slight misalignment could easily cut power to 
the blocker­tag and thus expose the formerly hidden tag population. 
Using cheaper, non­writable tags would keep costs further down, yet 
would greatly increase the interferences between blocker­tags and 
legitimate read operations: A neighbor helping with the shopping 
bags prevents my smart fridge to detect half of my groceries, and my 
smart laundry machine is unable to detect the proper program due to 



the blocker­tag I left in the pocket of my jeans. Equally possible seem 
advancements in reader technology that would allow readers to dif­
ferentiate between “real” collisions and those that are simulated with 
a blocker­tag. 

Summary

RFID is probably one of the most prominent ubiquitous computing 
technologies today, owing to its widespread use (or planned use) in 
industry and its direct effect on consumers. The traditional, security­
only based privacy solutions presented in this section often fail to be 
practically viable: Fishkin and Roy’s distance­based authentication 
principle [8] seems appealing due to its intuitive simplicity (“distance 
implies distrust”), though it is most likely infeasible to realize techni­
cally, let alone reliably controllable for the consumer. Blocker­tags 
[11] are equally unreliable, as a slight misalignment of the blocker tag 
can quickly reveal the entire protected tag population. 

More reliable and robust are the proposed hash­lock and MetaID 
mechanisms [6], which make involuntary data disclosures unlikely as 
the “real” ID of an item is never revealed. However, MetaID solutions 
require not only a more complicated infrastructure setup, but are also 
not able to prevent tracking attacks using “constellations” of tags. 
Variable MetaIDs [7] remedy this by providing a different number on 
every read, yet greatly increase overall system complexity, as all ID 
changes need to be tracked in a database. Also, users will need to 
engage in detailed tag management in order to properly register or 
unlock tags for the various applications they are allowed to work in 
(e.g., groceries stored in a smart fridge, clothes washed in a public 
laundry, or goods returned to a department store for exchange). 

While the general idea of the kill­feature at first looks much simpler, 
it also requires a substantial management overhead due to its pass­
word­protection requirement (i.e., preventing unwanted silencing of 
tags, e.g., in a supermarket) that will most likely be impractical in 
many situations. A manual removal of the tag, e.g., by placing it on a 
removable label, is much simpler to implement and substantially 
more user­friendly, as it does not require specialized hardware and 
can be visually verified. This, however, prohibits value­added services 
after checkout. 
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1  This work is based on an earlier article (in German) by the same 
author: Marc Langheinrich „Die Privatsphäre im Ubiquitous 
Computing – Datenschutzaspekte der RFID­Technologie.“ In: Elgar 
Fleisch, Friedemann Mattern (Eds.): Das Internet der Dinge – 
Ubiquitous Computing und RFID in der Praxis, Springer­Verlag, 2005. 

2  The Auto­ID center was founded in 1999 to develop both RFID tags 
and standards for identifying everyday things, especially in the 
supply chain. 

3  Since the Auto­ID center’s scheduled close in October 2003, the 
commercialization and further development of the Auto­ID 
technology is done by EPCglobal – a joint venture between the 
Uniform Code Council and EAN International. 

4  A good example are today’s RFID­based, contactless ski passes: In 
order to prevent readers from picking up the pass of someone 
further down behind, the reading distances must be kept rather 
short. This inevitably forces skiers to rub their jackets containing 
their passes in a number of different positions against the reader 
until the RFID­tag is properly detected by the gate. 

5  As humans contain 45­60% of water, the presence of a only single 
user already “interferes” with the RFID­system. 

6  A collision only occurs if two tags send a different bit value. 



7  As an example, consider the three tags 00101, 00001 and 00110. 
The only reader commands an attacker would hear would be: 
GetNext, GetNext, GetNext (Collision between Tag1, Tag3, and Tag2), 
Select(1) (Collision between Tag1 and Tag3), Select(0) (Tag1 
identified), Select(1) (Tag3 identified), Select(0), GetNext (Tag2 
identified). 

8  This obviously only holds for large tag populations, as otherwise 
the overhead of reading out the EPC separately is too large. 

9  Even an address space of only 64 bits would keep a reader capable 
of reading 100’000 tags per second busy for over four billion years. 


