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Zusammenfassung

Die stetig wachsende Nachfrage nach höherer Bandbreiten-Effizienz, Reichweite und Zu-

verlässigkeit sowie höheren Übertragungsraten in der dritten Generation (3G) und in zukünf-

tigen Generationen von drahtlosen Kommunikationssystemen hat zu intensiver Forschung

auf dem Gebiet der Mehr-Antennen-Kommunikation geführt. Des Weiteren hat sich kürzlich

Orthogonal Frequency-Division Multiplexing (OFDM) als vorteilhafter Kandidat für zu-

künftige Mobilfunksysteme herauskristallisiert. Grund hierfür sind vorteilhafte Eigenschaf-

ten von ODFM, wie z.B., eine effiziente Nutzung der Bandbreite, eine Kanalentzerrung,

sowie Robustheit gegenüber Mehrwegeausbreitung. Aufgrund dieser Tatsachen sind Multi-

ple-Input-Multiple-Output (MIMO) Systeme in Verbindung mit ODFM viel versprechende

Verfahren, die bereits in viele neue Mobilfunkstandards wie Long Term Evolution (LTE)

und Worldwide interoperability for Microwave Access (WiMAX) aufgenommen wurden.

Space-Time Coding (STC) Verfahren sind in der Lage, die räumliche Diversität auszu-

nutzen, die Mehr-Antennen-Systemen mit sich bringen. STC-Verfahren wurden außer-

dem mit MIMO-OFDM-Mobilfunksystemen kombiniert, um die Zuverlässigkeit und die

Übertragungsrate gegenüber Einzel-Antennen-Systemen zu erhöhen. Insbesondere stellen

die sogenannten Orthogonal Space-Time Block Codes (OSTBCs) eine beliebte Klasse von

STC-Verfahren dar. Sie sind dafür bekannt, nicht nur den räumlichen Diversitäts-Gewinn

zu maximieren, sondern auch einfache Dekodier-Verfahren zuzulassen. In den Genuss der

von der Theorie versprochenen Vorzüge von orthogonal kodierten MIMO-OFDM-Systemen
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kommt man jedoch nur, wenn akkurate Kanalzustandsinformation (CSI) am Empfänger

vorausgesetzt werden können. Ein Mangel an CSI am Emfpänger geht mit erheblichen

Einbußen der Leistungsfähigkeit der MIMO-OFDM Systeme einher.

In der Praxis werden die Kenntnisse über den Übertragungskanal gewöhnlicherweise

mit Hilfe übertragener Pilotsymbole erlangt, welche auf Kosten einer reduzierten Band-

breiteneffizienz und einer höheren Leistungsaufnahme der Nachrichtenübertragung beigefügt

werden. Blinde Kanalschätzmethoden sind insbesondere deshalb von großem Interesse, da

sie die zuvor genannten Nachteile vermeiden.

Der Schwerpunkt dieser Arbeit liegt auf der Entwicklung von Algorithmen zur blinden

Kanalschätzung für orthogonal kodierte MIMO- und MIMO-OFDM Systeme.

Zunächst stellen wir ein neues Modell für orthogonal kodierte Einträger-MIMO-Systeme

vor. Auf diesem Modell basierend beweisen wir eine spezielle Unterraumeigenschaft der

vektorisierten Übertragungsfunktion des Kanals für Einträger-Systeme. Wir begründen

damit eine blinde Kanalschätzmethode mit analytisch geschlossener Darstellung, welche sich

direkt auf die einzelnen Subträger eines MIMO-OFDM Systems anwenden lässt. Zudem

schlagen wir zwei Methode vor, mit der sich Mehrdeutigkeiten bei der Kanalschätzung

vermeiden lassen.

Als nächstes verallgemeinern wir die spezielle Unterraumeigenschaft der vektorisierten

Übertragungsfunktion für Einträger-Systeme auf Mehrträger-Systeme und schlagen für or-

thogonal raum-zeit-kodierte MIMO-OFDM Systeme einen blinden Kanalschätzer vor, der

eine analytisch geschlossene Darstellung besitzt. Zudem leiten wir Bedingungen her, unter

denen eine eindeutige Kanalschätzung möglich ist.

Danach entwickeln wir einen neuartigen Algorithmus für MIMO-OFDM Systeme mit

OSTBCs, basierend auf semi-definiter Relaxierung (SDR). Wir zeigen, dass sich das nicht-

konvexe Kanalschätzungsproblem als ein konvexes semi-definites Programm (SDP) app-

roximieren lässt. Hierdurch kann das Kanalschätzungsproblem mit den modernen Methoden
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der konvexen Optimierung gelöst werden.

Schließlich entwickeln wir Algorithmen mit analytisch geschlossener Darstellung für die

blinde Kanalschätzung, die auf den relaxierten Maximum Likelihood Empfänger und den

Capon Empfänger basieren. Im Vergleich zu dem Algorithmus der auf der SDR-Technik

basiert, weisen die beiden Algorithmen einen unterschiedlichen Kompromiss zwischen Leis-

tungsfähigkeit und Komplexität auf.

Unter der Annahme einer zeitlichen Aufspreizung des Funkkanals unterhalb der Dauer

eines OSTBC-OFDM Symbols ist es im Zeitbereich möglich, die Parameter aller Subträger

zusammen zu schätzen. Dies erleichtert eine kohärente Datenverarbeitung über alle Sub-

träger hinweg im Vergleich zu traditionellen Schätzmethoden, in denen die Subträger ge-

trennt voneinander verarbeitet werden. Die vorgeschlagenen Kanalschätzmethoden bieten

nicht nur einen erheblich reduzierten Rechenaufwand, sondern verbessern zudem auch noch

die Genauigkeit der Schätzung.
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Abstract

The ever growing interest for higher transmission rates, bandwidth efficiency, coverage, and

reliability in the third generation (3G) of wireless communication systems and beyond,

has initiated an intensive research in the field of multi-antenna communications. More-

over, orthogonal frequency-division multiplexing (OFDM) has recently emerged as a favor-

able candidate for future generation of wireless communication systems due to its efficient

utilization of bandwidth, simplicity of equalization, and robustness to multipath fading.

Motivated by these facts, multiple-input multiple-output (MIMO) systems in association

with the OFDM transmission are promising schemes widely adopted in recent wireless net-

work standards such as Long Term Evolution (LTE) and Worldwide interoperability for

Microwave Access (WiMAX).

Space-time coding (STC) techniques are capable of exploiting the spatial diversity of-

fered by multi-antenna systems. STC techniques have also been combined with MIMO-

OFDM wireless communication systems to both improve reliability and to increase higher

transmission rates compared to single-antenna systems. In particular, the so-called orthog-

onal space-time block codes (OSTBCs) represent a popular class of STC techniques which

are known to not only maximize the spatial diversity gain, but also offer simple decoding

schemes. However, to obtain the theoretical promises of orthogonally coded MIMO-OFDM

systems, accurate channel state information (CSI) is required at the receiver. The lack of

CSI at the receiver is associated with a severe performance degradation of the MIMO-OFDM
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system.

In practice, the CSI is commonly acquired from known pilot symbols inserted in the

transmission at the expense of a reduced bandwidth efficiency and power consumption.

Therefore, blind channel estimation methods are of great interest as they avoid the afore-

mentioned penalties. In this thesis, we focus on developing blind channel estimation algo-

rithms for orthogonally coded MIMO and MIMO-OFDM systems.

First, we introduce a novel model for orthogonally coded single-carrier MIMO systems.

Based on this model, we derive a special subspace property of the channel frequency response

(CFR) vector. We then justify a closed-form blind channel estimation method that is also

directly applicable to each individual subcarrier of a MIMO-OFDM system. Moreover, we

propose two strategies to eliminate channel estimation ambiguities.

Next, we generalize the special subspace property of the CFR vector derived for single-

carrier systems to the multi-carrier case and propose a new closed-form blind channel esti-

mator for orthogonally space-time coded MIMO-OFDM systems. Moreover, we derive the

condition under which unique channel estimates can be obtained.

Then, we develop a novel blind channel estimation algorithm for MIMO-OFDM systems

under OSTBCs based on the semi-definite relaxation (SDR) technique. We show that the

non-convex channel estimation problem can be approximated by a convex semi-definite

programming (SDP) problem. Therefore, the channel estimation problem can be solved

using modern convex optimization methods.

Finally, based on the Relaxed Maximum Likelihood (RML) and the Capon receiver,

respectively, we develop blind channel estimators which have closed-form solutions. Both

of these algorithms exhibit different performance-complexity trade-offs compared to the

SDR-based approach.

Assuming a finite delay spread over the wireless channel that falls below the duration

of the OSTBC-OFDM symbol in MIMO-OFDM systems allows us to estimate the channel

x



parameters in the time-domain jointly for all subcarriers. This facilitates coherent data

processing across all the subcarriers compared to the traditional subcarrier-wise channel

estimation methods. The proposed channel estimation methods not only offer a considerable

reduced computational complexity, but also result in improved estimation accuracy.
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Chapter 1

Introduction

Both multi-antenna and multi-carrier communication systems have been an intensive topic

of recent research. This thesis aims at developing advanced blind channel estimation al-

gorithms for single- and multi-carrier orthogonally coded MIMO systems and at studying

various aspects to exploit potential promises of these systems. In this introductory chapter,

we formulate the context and the motivation of the presented work, provide a literature

survey on the channel estimation in wireless communication systems, and outline the con-

tributions of the thesis.

1.1 Multi-antenna and multi-carrier communication systems

Multi-antenna communication systems attract significant interest of both academic re-

searchers and practitioners as these systems enable high capacities, and also dramatically

increase range and reliability of wireless communication systems without additional con-

sumption of the available radio spectrum; see e.g., references [AH04], [DASC04], [FG98],

[GS05], [LS03], [PGNB04], [PNG03], [PP97], [STTEP02], and [Tel99]. For instance, mul-

tiple antennas have been already deployed at the receiver side of wireless communication

systems to improve signal reception at base stations (BSs) in the Global System for Mobile

communications (GSM) since early 1990’s. Also, multiple antennas have been considered

both at the transmitters (multiple-input) and at the receivers (multiple-output) in third

1
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generation (3G) wireless communication systems and beyond to benefit from spatial filter-

ing and diversity.

Space-time coding (STC) techniques used in multiple-input multiple-output (MIMO)

wireless communication systems are known to offer significantly improved transmission rates

and immunity to channel fading effects, compared to single-antenna systems; see [GS05],

[GSSSN03], [LS03], [PNG03], and [TSC98]. To mitigate the effects of fading, different

types of diversity techniques are widely proposed and applied in wireless communications.

The key concept of diversity is to transmit a same signal through different independent

diversity branches to receive independent signal replicas [TV05]. These diversity branches

can be time, frequency, space, and polarization. For instance, the frequency diversity can

be exploited in multi-carrier communications where the same information is transmitted

in different frequency bands. Also in MIMO systems, spatial diversity, which employs

multi-antennas, can be used specifically to combat fading as different received signals cor-

responding to different antennas may undergo independent fading [GS05], [Jaf05], [LS03],

and [PNG03]. Among different STC schemes developed to the date, orthogonal space-time

block codes (OSTBCs) [Ala98], [Jaf05], [TJC99] represent an attractive choice because these

codes achieve full spatial diversity gain while maintaining a low decoding complexity. It

should be noted that full spatial diversity gain is defined by the number of transmit antennas

times the number of receive antennas [TV05].

Space-time coded MIMO systems can also be combined with the orthogonal frequency-

division multiplexing (OFDM) scheme [GSSSN03], [STTEP02]. This enables integrating the

advantages of the multi-carrier and multi-antenna schemes such as high data rate, trans-

mit and receive diversity, high spectral efficiency, and reduced system complexity [BGP02],

[Li02], [LSA98]. Particularly, this combination facilitates the use of space-time codes in the

frequency-selective fading channels as use of the OFDM converts the frequency-selective fad-

ing channel into a number of parallel flat fading channels [LS03], [WG00]. Also, since the

number of equalizers increases proportionally with the number of receive antennas, imple-

mentation of the OFDM considerably simplifies equalization at the receiver. Motivated by

these facts, MIMO-OFDM schemes are widely adopted in recent wireless network standards
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such as Long Term Evolution (LTE), IEEE802.16a (WiMAX) and in the upcoming future

fourth generation (4G) wireless communication systems [CS00]. Further, MIMO-OFDM

schemes have been created tremendous surge of research related to their various aspects;

see [AD07], [BGP02], [BHP02], [BLM03], [CB11], [CMC08], [CT07b], [DASC02], [GN07],

[GZNN08], [LGBS01], [Li05], [LSA98], [LSA99], [LSL03], [Ma07], [MVDC06], [MYG05],

[SGM05], [SHP07], [SHP08], [SL02], [SRHFGB11], [STTEP02], [TC10], [UAG01], [VS08a],

[VTP97], [WZS08], [WZS11], [Yan05], [ZLN06], [ZM05], [ZMG02] and references therein.

1.2 Channel estimation

The performance of coherent MIMO communication systems, in which it can be safely as-

sumed that channel state information (CSI) being known at the receiver, severely rely upon

the quality of CSI available at the receiver [Yan05]. Even though pilot-based schemes are

practically used for channel estimation in multi-antenna systems in modern cellular com-

munication standards; see [ABL09], [BG06], [BLM03], [BT02], [CB08], [CT07a], [HH03],

[Li02], [MYG05], [SDWL06], [SLL04], and [SRHFGB11], these schemes are associated with

power consumption overhead and bandwidth inefficiency. This fact is particularly chal-

lenging in scenarios when severe power constraints apply at the transmitter or when the

channel coefficients need to be updated more frequently due to fast fading. The former

scenario applies, e.g., in the uplink transmission of mobile handsets, and the latter one

occurs, e.g., in high mobility scenarios. Hence, in fading environments with channels that

are time-, frequency-, and even space-selective, the pilot symbols power and bandwidth

overheads can be substantial because of a relatively large number of pilots required in the

time, frequency, and space planes, respectively. In such scenarios, noncoherent detection

approaches represent a class of attractive solutions in which either the CSI is bypassed in

the detection procedure or can be estimated by the aid of the received data.

Within the former category of noncoherent detection schemes for MIMO systems, differ-

ential space-time coding techniques can be considered as appropriate solutions to circumvent

pilot symbols overheads; see [DASC02], [GS02], [HS00], [Hug00], [JT01], [Li05], [MTL05],
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and [TJ00] for more details. In general, differential techniques encode the transmitted infor-

mation based on differences between two consecutive transmitted symbols blocks. However,

for differential techniques, a 3 dB signal-to-noise ratio (SNR) penalty in performance com-

pared to their coherent counterparts is inevitable. This SNR penalty can be explained by

the fact that in the detection process, the noise power of the current symbol adds to the

noise power in the previous symbol. Similarly, the unitary space-time modulation technique

proposed in [HM00] and [HMRSU00], refers to noncoherent detection scheme for MIMO sys-

tems which can be used in the absence of CSI at the receiver. However, the computational

complexity of corresponding Maximum Likelihood (ML) receiver increases exponentially

with size of the multi-dimensional space-time constellation. Moreover, there is a 2-4 dB

SNR performance penalty compared to the coherent ML receiver [HM00].

To avoid the aforementioned penalties, another promising alternative is to estimate

the wireless channel only based on the received data payload using blind or semi-blind

techniques; see e.g., references [AD06], [AD07], [BHJZ02], [BHP02], [CHMC10], [CMC08],

[CMHC09], [CT07b], [GN07], [GN08], [GZNN08], [LGBS01], [Li05], [LSA99], [LSL03],

[Ma07], [MVDC06], [PK10], [SGM05], [SHP07], [SHP08], [SL02], [TC10], [UAG01], [VS08a],

[VS08b], [VSPV09], [VTP97], [WZS08], [WZS11], [ZD10], [ZLN06], [ZM05], and [ZMG02].

Several blind MIMO channel estimation or symbol detection methods have been de-

veloped exclusively for frequency flat fading wireless channels; see, e.g., [AD06], [AD07],

[BA07], [CHMC10], [CT07b], [LPMY07], [LSL03], [Ma07], [MVDC06], [PK10], [SG03],

[SGM05], [VS08a], [VS08b], [ZD10] and references therein. In [CHMC10], [LPMY07] and

[MVDC06], different blind symbol detectors specifically devised for OSTBCs have been

proposed. However, these approaches are applicable only to the particular case of sym-

bol constellations, e.g., binary phase-shift keying (BPSK) or quadrature phase-shift keying

(QPSK) constellations in [MVDC06]. Also, the computational complexity of these methods

is rather high as each new received data block requires a new detection process. More-

over, since the proposed approaches in [CHMC10] and [MVDC06] are based on a convex

approximation technique known as semi-definite relaxation (SDR), their performance can

be far from that of the optimal matched filter (MF) receiver. Note that the SDR technique



CHAPTER 1. INTRODUCTION 5

is a computationally efficient approximation of a non-convex optimization problem by a

convex problem, that is easier to solve, through replacing the non-convex constraints by

semi-definite constraints [LMSYZ10].

In [LSL03] and [SG03], two blind space-time decoding approaches based on joint channel

estimation and symbol detection have been proposed. To solve the blind estimation problem,

an iterative minimization of the ML function with respect to the channel matrix and the data

symbols has been proposed. As a result, these approaches do not provide any closed-form

solution for the channel estimates. Also, since these approaches require proper initialization

of either the channel estimate or the symbol decisions, their respective global convergence

can not be guaranteed.

The issue of blind channel identifiability under OSTBCs is investigated in [AD06],

[AD07], [Ma07], and [VS08a]. The notion of blind channel identifiability is closely re-

lated to the fact that whether the CSI can be recovered, up to an arbitrary real scalar, only

based on the second order statistics (SOSs) of the received data or not; see [VS08a] for more

details. The numerical and analytical results provided in these works illustrate that most

of the existing OSTBCs suffer from channel non-identifiability in two practical cases. These

cases comprise the systems using the rotatable OSTBCs [Ma07]; see Section 2.3.1, that

are also incorporated in the LTE standard and systems with multiple-input single-output

(MISO) configuration like in downlink transmission to single-antenna users. Hence, most

of the already existing blind channel estimation methods for orthogonally coded MIMO

systems experience such non-identifiability problem. Although in [SGM05] and [VS08b],

specific methods have been proposed to eliminate such non-identifiability problem, still the

necessary and sufficient conditions under which this issue can be resolved remains unclear.

Most of the cited approaches exhibit acceptable estimation performance particularly under

the assumption that the wireless channel remains invariant over many transmitted data

blocks. However, this assumption can be violated in certain wireless environments in which

the channel coherence time is smaller than or comparable to the length of transmitted data

block.

It should be noted that in frequency-selective fading wireless channels, all the previously
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mentioned blind methods developed for frequency flat fading channels can be straightfor-

wardly implemented in MIMO-OFDM systems in a so-called subcarrier-wise fashion. In

the subcarrier-wise approaches, the problem of estimating the frequency-selective fading

channel is transformed to that of independently estimating the frequency flat channels of

multiple subcarriers [UAG01], [ZM05]. In these approaches, the subcarriers are not pro-

cessed coherently. In this sense, the subcarrier-wise approaches neglect the fact that the

wireless channel gains at each subcarrier are given by the Fourier transform of a smaller

set of MIMO channel impulse response (CIR) coefficients in the time-domain. According

to the parsimony principle [SS89], it is more advantageous from performance viewpoint

to estimate CIR coefficients first and thereafter transform them to the frequency-domain,

instead of estimating the frequency-domain propagation coefficients directly for each sub-

carrier [LSA99]. Furthermore, the subcarrier-wise approaches suffer from an excessively

high computational complexity when the number of subcarriers is large [CB11].

There are also several blind and semi-blind methods for estimating frequency-selective

fading MIMO channels; see e.g., [BHP02], [GN07], [GZNN08], [LGBS01], [SHP07], [SHP08],

[SL02], [TC10], [VTP97], [WZS08], [WZS11], [ZMG02] and references therein. In a signif-

icant part of these methods, no assumption on space-time coded transmissions is used

as in [BHP02], [GN07], [GZNN08], [SHP07], [SHP08], [TC10], [VTP97], [WZS08], and

[WZS11]. Hence, these methods are not able to take advantage of the specific structure

of the space-time code. The approach of [GN07] estimates the channel parameters in the

frequency-domain. It does not take advantage of subcarriers correlations and is associated

with a high computational complexity. The techniques of [BHP02], [GZNN08], [SHP07],

[SHP08], [VTP97], [WZS08], and [ZMG02] make use of extra information, such as the

cyclic prefix (CP), channel precoding at the transmitter, or virtual subcarriers, to war-

rant the identifiability of the resulting channel estimates. However, these methods impose

specific requirements, e.g., on the CP length or on the precoding matrix, and, therefore,

require additional resources that may dramatically limit the bandwidth efficiency. Further,

a drawback associated with these methods is that the use of side information increases the

overall system complexity.
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In [LGBS01], [SL02], and [ZMG02], the structural properties of the space-time block

codes (STBC) have been exploited to identify the channel. However, these approaches can

not be extended to the scenarios with arbitrary numbers of receive and transmit anten-

nas. Moreover, all these techniques require relatively long data records which translates to

rather restrictive conditions on the coherence time of the wireless channel and makes these

techniques inapplicable in fast fading scenarios.

Recently, two novel approaches for blind symbol detection and channel estimation in

OSTBC-based MIMO-OFDM systems have been developed in [CMC08] and [VSPV09],

respectively, that require only a small number of measurements to achieve acceptable ac-

curacy. These approaches exploit inter-subcarrier relationships among channel coefficients

and utilize the OSTBC structure. However, the applicability of the approach of [CMC08]

is limited to the high computational complexity associated with this scheme. To reduce the

complexity, the subchannel grouping technique of [CHMC10] has been deployed in combina-

tion with the approach of [CMC08]. This technique however degrades the quality of signal

detection, and, therefore, the cyclic ML approach of [LSL03] has been proposed in [CMC08]

to enhance the overall performance of the modified method. Nevertheless, the computa-

tional cost of the modified method still remains significantly high in the cases when either

the number of subcarriers or the size of data block is large. Furthermore, the algorithm of

[CMC08] requires block-wise processing and does not benefit from averaging over successive

blocks of received OSTBC-OFDM data that can improve the estimation performance in

case of slowly fading channels. Moreover, this algorithm is only applicable to the case of

BPSK and QPSK constellations.

The approach proposed in [VSPV09] uses relaxation idea to convert the original complex

blind ML channel estimation problem into a simple eigenvalue problem. This approach

generally results in biased channel estimates for the finite sample case and under which

unique channel estimates are obtained have not been provided in this work. Moreover, this

approach fails to eliminate the ambiguities associated with the channel estimation as, e.g.,

in the case of rotatable OSTBCs [Ma07] including the popular Alamouti code [Ala98] or

particular codes in the MISO system configurations [VS08a].
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1.3 Thesis overview and contributions

In this thesis, we develop advanced techniques for blind channel estimation in orthogonally

coded MIMO and MIMO-OFDM systems. The proposed techniques are free of most of the

aforementioned shortcomings of the existing blind receivers. The outline and contributions

of the thesis are as follows:

Chapter 2: Background

In this chapter, a brief overview of the wireless channel characteristics, the system model

under consideration, the concepts of STBC and OSTBCs are provided. Also, the properties

of rotatable OSTBCs are discussed. Further, the blind ML channel estimator is introduced

and the structure of the optimal receiver is derived. In this context, we discuss in detail

the issue of problem non-identifiability and ambiguities in the channel estimates that mark

a major challenge in blind channel estimation.

Chapter 3: Blind channel estimation in orthogonally coded MIMO-OFDM

systems: Single-carrier analysis

We propose a novel virtual snapshot model for orthogonally coded single-carrier MIMO

systems in this chapter. We prove that the true channel frequency response (CFR) vector is

the scaled version of the principal eigenvector of the received data covariance matrix. Two

new weighting strategies are devised to eliminate the ambiguities associated with the blind

channel estimates in two cases: the systems exploiting rotatable OSTBCs and the systems

involving a single-receive antenna. This chapter is based on the following publications:

• N. Sarmadi and M. Pesavento, “Closed-form blind MIMO channel estimation for OS-

TBCs: Resolving ambiguities in rotatable codes,” in Proc. European Signal Processing

Conference (EUSIPCO), Barcelona, Spain, 2011, pp. 644-648.

• N. Sarmadi and M. Pesavento, “Closed-form blind channel estimation in orthogonally

coded MIMO-OFDM systems: A simple strategy to resolve non-scalar ambiguities,”

in Proc. IEEE International Workshop on Signal Processing Advances in Wireless

Communications (SPAWC), San Francisco, California, USA, 2011, pp. 301-305.
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Chapter 4: Blind channel estimation in orthogonally coded MIMO-OFDM

systems: Multi-carrier analysis

In this chapter a novel closed-form subspace-based blind channel estimation method

for MIMO-OFDM systems based on the virtual snapshot model, devised in the previous

chapter, is proposed. Taking into account subcarriers correlations in the case of finite delay

spread of the wireless channel, we estimate a small number of channel parameters in the

time-domain. Moreover, uniqueness conditions for unambiguous channel estimation are

derived. This chapter is based on the following publications:

• N. Sarmadi, M. Pesavento, and A. B. Gershman, “Closed-form blind channel estima-

tion in orthogonally coded MIMO-OFDM systems,” in preparation.

• N. Sarmadi, M. Pesavento, and A. B. Gershman, “Closed-form blind channel esti-

mation for orthogonally coded MIMO-OFDM systems: An algorithm and uniqueness

study,” in Proc. International ITG Workshop on Smart Antennas (WSA), Aachen,

Germany, 2011, pp. 1-6.

Chapter 5: Blind channel estimation in orthogonally coded MIMO-OFDM

systems: Alternative approaches

First, based on per-subcarrier channel norm constraint together with SDR technique,

a new blind channel estimation approach for orthogonally coded MIMO-OFDM systems

is proposed in this chapter. Next, based on aggregate channel norm constraint over all

subcarriers along with the Relaxed ML (RML) criterion, we derive a blind channel estimator

which benefits from lower computational complexity compared to the SDR-based estimator.

Then, Capon criterion is adopted to develop another channel estimator with improved

accuracy compared to the RML-based approach. The results of this chapter have been

published in the following papers:

• N. Sarmadi, S. Shahbazpanahi, and A. B. Gershman, “Blind channel estimation in or-

thogonally coded MIMO-OFDM systems: A semidefinite relaxation approach,” IEEE

Trans. Signal Process., vol. 57, pp. 2354-2364, June 2009.
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• N. Sarmadi, A. B. Gershman, and S. Shahbazpanahi, “Blind channel estimation

in MIMO-OFDM systems using semi-definite relaxation,” in Proc. IEEE Interna-

tional Conference on Acoustics, Speech, and Signal Processing (ICASSP), Las Vegas,

Nevada, USA, 2008, pp. 2381-2384.

• N. Sarmadi, A. B. Gershman, and S. Shahbazpanahi, “Closed-form blind channel es-

timation in orthogonally coded MIMO-OFDM systems,” in Proc. IEEE International

Conference on Acoustics, Speech, and Signal Processing (ICASSP), Dallas, Texas,

USA, 2010, pp. 3306-3309.

Chapter 6: Conclusions and future work

Concluding remarks are summarized in this chapter. We also propose some future works

to further improve or extend the results of this thesis. Some of these ideas associated with

the proposed methods and the model developed in this thesis have been addressed in the

following papers:

• F. Römer, N. Sarmadi, B. Song, M. Haardt, M. Pesavento, and A. B. Gershman,

“Tensor-based semi-blind channel estimation for MIMO OSTBC-coded systems,” in

Proc. Asilomar Conference on Signals, Systems and Computers, Pacific Grove, Cali-

fornia, USA, 2011.

• J. Vinogradova, N. Sarmadi, and M. Pesavento, “Subspace-based semiblind channel

estimation method for fast fading orthogonally coded MIMO-OFDM systems,” in

Proc. International Workshop on Computational Advances in Multi-Sensor Adaptive

Processing (CAMSAP), San Juan, Puerto Rico, 2011, pp. 149-152.

• J. Vinogradova, N. Sarmadi, and M. Pesavento, “Iterative semiblind channel esti-

mation method for fast fading orthogonally coded MIMO-OFDM systems,” to be

submitted.



Chapter 2

Background

In the first section of this chapter, the characteristics of the wireless channel are briefly

reviewed. The MIMO and MIMO-OFDM system models under consideration are described

in the second section. Then, we provide the background on the OSTBCs and introduce

the rotatable OSTBCs and their properties in the third section. Next, we discuss the blind

ML channel estimator. In this context, we address the issue of problem identifiability that

is important for designing unique estimation procedures. Finally, we conclude the chapter

with the optimal receiver structure for OSTBCs.

2.1 Wireless channel

The performance of wireless communication systems and associated fundamental limita-

tions for data transmission heavily depend on the characteristics of the wireless channel.

In general, wireless channels are random in nature which do not offer simple analysis as

compared to the wired channels that are relatively deterministic and predictable. Modeling

the wireless channels has been one of the most demanding parts of the wireless communi-

cation systems analysis and typically done in a statistical manner based on measurements.

Depending on the surrounding environment, a transmitted signal usually propagates in the

wireless channel through several different paths before it reaches the received antenna. This

phenomenon is often referred to as multipath propagation. Hence, the transmitted signal

received by the receiver antenna consists of the superposition of the various multipaths.

11
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In the wireless channels, the received signal strength variations are generally described by

both the large-scale and the small-scale propagation models. The former model describes

the average received signal strength for an arbitrary large distance between transmitter

and receiver and explains the path loss effects. The latter model characterizes the rapid

fluctuations of the received signal strength over remarkable short distances or time intervals

due to channel fading, i.e., the constructive or destructive combination of multipath signal

components in the received signal. Actually, fading is a phenomenon corresponding to the

wireless channel that results from multipath propagation due to scattering and from relative

motion of transmitter, receiver, and scatterers. Next, we discuss fading in the multipath

wireless channels from the physical perspective before we introduce a statistical model de-

scription for fading wireless channels. The delay spread due to the difference among the

arrival times of different copies of the transmitted signal over different propagation paths

results in and is proportional to the time-dispersiveness or the frequency-selectivity of the

wireless channel. The Doppler spread, which is independent from delay spread, results from

different Doppler shifts that are induced by the relative motion. Doppler spread results in

and is proportional to the frequency-dispersiveness or the time-selectivity of the wireless

channel [Rap02]. Similarly, the angular spread of the antenna elements in combination

with multipath propagation results in spatial-selectivity of the wireless channel. Different

types of fading can be distinguished that depend both on the transmitted signal nature

and the wireless channel features. In other words, the characteristics of the signals and

the choice of signal parameters only define the implications that fading channels have on

the communication system. In the following, we explain in more detail four different types

of fading and their corresponding circumstances related to frequency- or time-selectivity of

the wireless channel [Rap02].

2.1.1 Time dispersive fading

If the transmitted symbol bandwidth is much smaller than the coherence bandwidth of the

wireless channel, that is inversely proportional to the wireless channel delay spread, channel
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can be modeled as constant gain over the entire frequency band. This case is referred to

frequency flat fading. Defining TS as the symbol duration, that is inversely proportional to

the transmitted symbol bandwidth BS, and BC and στ as the wireless channel coherence

bandwidth and the wireless channel delay spread, respectively, condition for frequency flat

fading can be summarized as

TS ≫ στ or BS ≪ BC .

In flat fading scenarios, the wireless channel has a constant gain with linear phase response

over the transmitted symbol bandwidth which preserves the spectral characteristics of the

transmitted symbol at the receiver. However, due to the multipath propagations in com-

bination with relative motion of transmitter, receiver and scatterers, the received signal

strength generally varies with time. If the transmitted symbol duration is smaller than or

comparable to the delay spread of channel, the transmitted symbol experiences frequency-

selective fading, i.e., when

TS < στ or BS > BC .

In this case, the wireless channel acts as a finite impulse response (FIR) filter and the

received symbol comprises multiple attenuated and time-delayed versions of the transmitted

symbol. This, in turn, causes the time dispersion of the received signal due to the inter-

symbol interference (ISI). In other words, different frequency components in the transmitted

symbol spectrum experience different gains in the frequency-domain. As a result, costly

received symbol equalization is required in frequency-selective channels.

2.1.2 Frequency dispersive fading

The rate of variations of the transmitted baseband symbols in comparison with the rate of

change of the wireless channel determines whether the channel is time-selective, i.e., fast, or

time non-selective, i.e., slow, fading. The rate of change of the wireless channel depends on

the velocity of scattering objects presented in the channel and the relative velocity of the

transmitter and receiver to each other and to the scatterers. If the channel coherence time
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is smaller than or comparable to the transmitted symbol duration, the transmitted symbol

undergoes fast fading. Hence, in fast fading wireless channel we have

TS > TC or BS < BD,

where TC stands for the channel coherence time and BD represents the Doppler spread. Note

that TC is proportional to the inverse of the wireless channel Doppler spread. Fast fading

results in frequency dispersion and increases with increasing Doppler spread in comparison

with the bandwidth of the transmitted symbol. If the channel coherence time is much larger

than the transmitted symbol duration or the Doppler spread of the wireless channel is much

smaller than the transmitted symbol bandwidth, i.e.,

TS ≪ TC or BS ≫ BD,

the transmitted symbol undergoes slow fading. In this case, the CIR changes at a rate much

lower than the transmitted symbol rate. Therefore, it can be assumed to be invariant over

one symbol duration or even several symbol durations that make a transmission block. In

the latter case, the wireless channel is quasi-static and is called block-fading channel as it

remains invariant during the transmission of a block of symbols and varies independently

in the next block.

It is noteworthy to mention that throughout this thesis, unless otherwise stated, the

wireless channel is assumed to be block-fading. It should be also stressed that, an equivalent

baseband model of a communication system is considered to simplify the analysis. This

means that the modulated signal is represented by a complex-valued equivalent baseband

signal and an equivalent baseband channel model is taken the place of radio frequency

(RF) channel model in which the frequency response of channel is shifted to the baseband

frequencies. This implies that the RF processing at the transmitter and at the receiver which

in general comprises digital to analog (D/A) and analog to digital (A/D) conversion, up and

down conversion to intermediate frequency (IF), pulse shaping, filtering, RF modulation and

demodulation is not reflected in our modeling. Moreover, the discrete-time representation

has been adopted throughout the thesis because it is assumed that all signals are band-

limited and Nyquist-Shannon sampling criterion has been satisfied.
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2.2 MIMO and MIMO-OFDM system models

It is known that the behavior of the wireless channel can be fully characterized by the

channel impulse response [TV05]. Consequently, the wireless channel can be modeled as

a time varying impulse response linear filter [Rap02]. The input-output relationship for a

single-input single-output (SISO) wireless system with quasi-static or block-fading channel

can be modeled as the discrete-time complex-valued baseband representation. For this

representation, we recognize two different cases of frequency flat and frequency-selective

fading. For the case of frequency-selective wireless channels, the input-output relation can

be written as

y(t) =
L∑

l=0

hl x(t− l) + v(t), (2.1)

where y(t) denotes the received signal, hl stands for the lth tap of the complex baseband

CIR with L as the effective channel length (hence, the total number of channel taps is L+1),

x(t) is the transmitted signal, v(t) represents the additive noise, and t is the discrete time

index. For the case of frequency flat wireless channel, the relation (2.1) can be simplified as

y(t) = h x(t) + v(t). (2.2)

2.2.1 MIMO system model

Taking into account (2.2) for SISO systems, the input-output relationship corresponding to

the frequency flat MIMO system using the standard complex-valued baseband representa-

tion for narrow-band signals can be written in matrix-algebraic form. To this aim, consider

a point-to-point MIMO system with N transmit and M receive antennas. Assume that

the complex-valued encoded signals
{
x1(t), . . . , xN (t)

}
are transmitted by the N transmit

antennas at a certain time instant t. Then, the received signal at the mth antenna can be

expressed as [LS03]

ym(t) =

N∑

n=1

hn,m xn(t) + vm(t) , m = 1, . . . ,M (2.3)

where hn,m is the complex baseband channel gain between the nth transmit and the mth

receive antennas and vm(t) models the receiver noise. Let us stack individual received
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signals at different antennas in a 1×M row vector as

y(t) ,
[
y1(t), . . . , yM (t)

]
. (2.4)

Taking into account (2.4) equation (2.3) can be expressed as [LS03]

y(t) = x(t)H+ v(t), (2.5)

where x(t) ,
[
x1(t), . . . , xN (t)

]
, v(t) ,

[
v1(t), . . . , vM (t)

]
and H is the following complex

channel gain matrix [LS03]

H ,




h1,1 . . . h1,M
...

. . .
...

hN,1 . . . hN,M


 ∈ C

N×M . (2.6)

If we assume that the wireless channel is block-faded which is invariant during the transmis-

sion of T consecutive vectors
{
x(1), . . . ,x(T )

}
, the corresponding received signal vectors

in (2.5), the transmit signal vectors, and the noise vectors can be arranged in matrices,

respectively, as follows:

Y ,




y(1)
...

y(T )


 ∈ C

T×M , X ,




x(1)
...

x(T )


 ∈ C

T×N , V ,




v(1)
...

v(T )


 ∈ C

T×M . (2.7)

Then, the input-output relation using (2.6) and (2.7) can be expressed in a compact matrix

form as [LS03]

Y = X H+V, (2.8)

in which X represents the so-called STBC matrix containing the information symbols.

Generally, STBC can be seen as a unique way of mapping a set of K information symbols
{
s1, . . . , sK

}
onto a matrix X which may in principle take on any form, e.g., linear or

nonlinear. The focus in this thesis is on subclass of linear STBCs which exhibits appealing

properties from both performance and implementation point of view. In linear STBCs, the

transmitted code matrix is linear in the real and imaginary parts of the data symbols, or

equivalently, in the symbols and their complex conjugates. The rate of an STBC measures
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on average how many symbols per time slot it transmits, hence, using mapping X in (2.7)

is equal to r = K/T . According to (2.7), each column of matrix X represents transmission

over different time slots from specific transmit antenna, i.e., space dimension, and each row

represents transmission of symbols from different transmit antennas at specific time slot,

i.e., time dimension. Therefore, the matrix X is capable to exploit space, i.e., multiple

transmit antenna, and time dimensions as two independent diversity branches to transmit

different signal replicas which may undergo independent fading. Although it should be

emphasized that in construction of an STBC, three conflicting goals of maximizing diversity,

i.e., maximizing the error performance, maximizing the transmission rate, and minimizing

decoding complexity should be considered simultaneously.

In this thesis, the vectors
{
v(t)

}T
t=1

in (2.7) are modeled as additive white circular

Gaussian noise (AWGN), i.e.,

v(t) ∼ NC(0, σ
2 IM). (2.9)

A Gaussian distribution of the noise term is quite common as it can be justified often by the

central limit theorem [LS03]. Also, note that choosing Gaussian distribution usually results

in enhanced mathematical tractability of the model and its corresponding derivations. We

further assume that the noise is temporally white, hence, the noise realizations at differ-

ent time instances are independent. As a conclusion, we assume that the set of complex

Gaussian vectors
{
v(t)

}T
t=1

has the following statistical properties:

E
{
v(t)Hv(t′)

}
= δt,t′ σ2IM , (2.10)

E
{
v(t)Tv(t′)

}
= 0, ∀ t, t′, (2.11)

where (2.10) reflects spatially and temporally white assumption and (2.11) shows circularity

property.

So far, we have characterized the fading channel through a linear impulse response model

by the aid of physical parameters such as the delay spread and the Doppler spread. In the

case of frequency flat or frequency-selective fading, the channel can be approximated by

one tap or multiple taps CIRs, respectively. The statistical models of the wireless channel

are such that the amplitudes of these channel taps are random. In this sense, coherence
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time, i.e., TC , is a statistical measure of the time duration over which the CIR is essen-

tially invariant, and quantifies the similarity of the channel response at different times. In

other words, coherence time is the time duration over which two received signals have a

strong potential for amplitude correlation. Also, coherence bandwidth, i.e., BC , is actually

a statistical measure of the range of frequencies over which two frequency components of

the received signal have a strong potential for amplitude correlation [Rap02]. Further, to

characterize the random time and frequency varying nature of the received signal, some sta-

tistical distributions are commonly used. These statistical characterizations of the fading

channels are based on the assumptions that multiple independent scattered paths with ran-

dom magnitudes are present and the phases of these paths are independent and uniformly

distributed [TV05]. The latter hypothesis results from another assumption that the carrier

wavelength is much smaller than the distance traveled by the paths. Based on the afore-

mentioned assumptions, the channel can be modeled as, e.g., Rayleigh or Rician fading. In

the former one, we assume that the entries of MIMO channel matrix at each tap are com-

plex zero mean Gaussian random variables. Equivalently, their corresponding magnitudes

have a Rayleigh distribution, hence, it is referred to by Rayleigh fading. Rayleigh fading

assumption models fading induced by the local scatterers in the absence of a line-of-sight

(LOS). The latter one is applicable in the presence of a LOS in which channel matrix entries

in (2.6) can be modeled by a Gaussian distribution with a non-zero mean. Also, several

other models have been suggested to explain the statistical behavior of a fading channel

[Cla68], [Oss64], [SA00], [SOZ11], [Stü01]. These models are of eminent importance for the

purpose of evaluating and predicting the performance of a wireless communication system.

2.2.2 MIMO-OFDM system model

It is known [LS03], [WG00] that inverse Fourier transformation at the transmitter together

with Fourier transformation of the received data make the frequency-selective channel act

as several flat fading channels. This property has been exploited via implementation of

the inverse Fourier Transform at the transmitter and the Fast Fourier Transform (FFT) at
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the receiver in the OFDM schemes to obtain multiple flat fading subchannels as so-called

subcarriers. According to the expression (2.8), the input-output relation for a point-to-point

MIMO-OFDM system with the aforementioned number of transmit and receive antennas

introduced in Subsection 2.2.1 and N0 subcarriers can be expressed in the frequency-domain

as [LS03]

Yi(p) = Xi(p) Hi +Vi(p) , i = 0, . . . , N0 − 1 (2.12)

where p denotes data block index and i represents subcarrier index. Note that for fixed

subcarrier index i, the frequency-domain input-output relationship of (2.12) translates to

the input-output relationship of (2.8). Referring to the matrix model presented in (2.8)

for flat fading MIMO systems and using definitions in (2.6) and (2.7), we conclude that

Yi(p) ∈ C
T×M and Xi(p) ∈ C

T×N are the pth received data matrix and the pth transmitted

code matrix, respectively. The matrix Hi ∈ C
N×M contains the complex-valued MIMO

channel coefficients corresponding to the ith flat block-fading subchannel andVi(p) ∈ C
T×M

is the matrix containing the additive receiver noise at the ith subcarrier. The noise matrix

at each subcarrier assumed to have the same characteristics as the noise matrix in (2.8).

In (2.12), it is also assumed that the inter-block-interference (IBI) is eliminated due to the

use of CP and the data received during the CP interval of OFDM scheme are discarded

at each receiver antenna. This can be achieved by proper selection of CP length which

must exceed the channel length. It is noteworthy to stress that besides using as guard

interval, the main interesting feature of the CP is that the linear convolution induced by the

propagation channel is transformed into a circular convolution which corresponds exactly to

a multiplication in the frequency-domain [LS03]. Further, in (2.12), the channel is assumed

to be constant during at least one OSTBC-OFDM block, i.e., the channel coherence time is

assumed to be significantly larger than the OSTBC-OFDM data block length. Extending

the time-domain input-output relationship in (2.1) for the SISO case to the MIMO channel

case, we obtain the following time-domain model corresponding to (2.12) as [LS03]

Z(n) =

L∑

l=0

Ω(n− l) Gl +E(n), (2.13)
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where (L + 1) stands for the number of effective channel taps as in (2.1) and Z(n), Ω(n),

Gl, and E(n) are the time-domain counterparts of Yi(p), Xi(p), Hi, and Vi(p) in (2.12),

respectively, i.e.,

Yi(p) =
1√
N0

N0−1∑

n=0

Z(n) exp

(
−j

2π

N0
ni

)
, (2.14)

Xi(p) =
1√
N0

N0−1∑

n=0

Ω(n) exp

(
−j

2π

N0
ni

)
, (2.15)

Hi =
L∑

l=0

Gl exp

(
−j

2π

N0
li

)
, (2.16)

with j ,
√
−1. Let us stack, respectively, all channel matrices for different taps and

subcarriers on top of each other and define

G′ ,
[
GT

0 , . . . ,G
T
L ,0

T
N×M , . . . ,0TN×M

]T ∈ C
N0N×M , (2.17)

H′ ,
[
HT

0 , . . . ,H
T
N0−1

]T ∈ C
N0N×M . (2.18)

Note that the finite delay spread assumption over the wireless channel in (2.13) is reflected

in the definition (2.17). Using the N0-point normalized Discrete Fourier Transform (DFT)

matrix F ∈ C
N0×N0 with the associated (i+ 1)-th row fi and the (k, l)-th entry equal to

[F]k,l =
1√
N0

exp

(
−j2π

(k − 1)(l − 1)

N0

)
,

along with (2.17) and (2.18), we obtain the following expression

H′ =
√

N0 (F⊗ IN )G′, (2.19)

which represents (2.16) and ⊗ stands for the Kronecker matrix product. Expression (2.19)

provides a compact linear relation between the CFR and the CIR matrices.

2.3 The OSTBCs properties

To explain the transmit encoding procedure in the aforementioned MIMO-OFDM system

of (2.12), assume that the transmitted symbol sequence, s(·), has the length of KN0 in the
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pth frame of the data block where K stands for the number of symbols prior to encoding

of each STBC. We obtain K parallel data streams,
{
si1(p)

}N0−1

i=0
, . . . ,

{
siK(p)

}N0−1

i=0
, each

of length N0, after the serial-to-parallel conversion at the transmitter side. Using the same

block code for the sake of simplicity, these symbol streams are then encoded by mapping

them onto a set of T ×N matrices
{
Xi(p)

}
as

{
si1(p), . . . , siK(p)

}
→
{
Xi(p)

}
, i = 0, . . . , N0 − 1. (2.20)

Next, the sequence of code matrices
{
Xi(p)

}N0−1

i=0
are inverse Fourier-transformed to obtain

N0 code matrices
{
Ω(n)

}N0−1

n=0
, according to

Ω(n) =
1√
N0

N0−1∑

m=0

Xm(p) exp

(
j
2π

N0
nm

)
, n = 0, . . . , N0 − 1

which reflects (2.15). Then, transmission can be done through successive bursts after in-

serting proper CP and performing pulse-shaping [LS03]. Note that the encoding procedure

for the frequency flat MIMO system of (2.8) can be also explained in a same way by assum-

ing N0 = 1 in the previous transmit encoding procedure explained for the MIMO-OFDM

system.

Consider the obtained K complex information symbols in (2.20) of the pth data block

prior to encoding at the ith subcarrier and define the vector si(p) ,
[
si1(p), . . . , siK(p)

]T
.

Essentially, these symbols are transmitted in T consecutive OFDM symbols during which

the channel is assumed to be invariant. Further, if we consider that in (2.12), each code

matrix Xi(p) , X
(
si(p)

)
is an OSTBC matrix we have [SGM05], [TJC99]

XH
i (p)Xi(p) = ‖si(p)‖2 IN . (2.21)

It should be noted that OSTBCs are subclass of linear STBCs which satisfy (2.21) by

definition. Hence, all entries of X
(
si(p)

)
are the linear functions of the K complex variables

{sik(p)}Kk=1 and their complex conjugates and the ratio K/T defines the rate of an OSTBC.

Further, the OSTBC matrix X
(
si(p)

)
can be expressed as [GG05], [HH02], [SGM05]

Xi(p) =

K∑

k=1

(
CkRe

(
sik(p)

)
+Ck+KIm

(
sik(p)

))
, (2.22)
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where Ck, for k = 1, . . . , 2K, are defined as [SGG08]

Ck ,





X(ek) , for 1 ≤ k ≤ K

X(jek−K) , for K + 1 ≤ k ≤ 2K

, (2.23)

with ek stands for the K× 1 vector equal to the kth column of the identity matrix IK . The
{
Ck

}2K
k=1

∈ C
T×N are the so-called OSTBC “basis” matrices and are entirely determined

by the OSTBC matrix, hence, they are known at the receiver side. Moreover, the OSTBC

basis matrices exhibit the following property [LS03], [SGM05]

CH
k Cl =





IN , if k = l

−CH
l Ck , if k 6= l

. (2.24)

Next we discuss about an important notion corresponding to the STBCs. We call an

STBC identifiable or observable if, in noise free case of model (2.12), two distinct transmitted

codewords

Xi(p) = X
(
si(p)

)
∈ C

T×N , X̆i(p) = X
(
s̆i(p)

)
∈ C

T×N ,

result in two distinct received codewords as long as the channel matrix Hi has at least one

nonzero entry [LS03]. This implies that an STBC is identifiable if it is observable for all

receive antennas, i.e., Xi(p)[Hi]m 6= X̆i(p)[Hi]m for m = 1, . . . ,M where [Hi]m stands for

themth column of the matrix Hi associated to themth receiver. It is worth mentioning that

an STBC is identifiable when it provides maximal diversity which means that its codeword

differences should have maximum rank [LS03], i.e.,

Xi(p)[Hi]m 6= X̆i(p)[Hi]m ∀[Hi]m 6= 0 ⇔ det
((

Xi(p)− X̆i(p)
)H(

Xi(p)− X̆i(p)
))

6= 0.

(2.25)

To see this, note first that if
((

Xi(p) − X̆i(p)
)H(

Xi(p) − X̆i(p)
))

is nonsingular, then
(
Xi(p)− X̆i(p)

)
is full rank and Xi(p)[Hi]m 6= X̆i(p)[Hi]m for all [Hi]m 6= 0 and hence the

code is identifiable. Conversely, if
((

Xi(p)− X̆i(p)
)H(

Xi(p)− X̆i(p)
))

is singular then for

any vector [Hi]m 6= 0 in the null space of this matrix we have Xi(p)[Hi]m = X̆i(p)[Hi]m

and the code is not identifiable. Due to the fact that all OSTBCs offer a maximum diversity
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order of MN , we conclude that OSTBCs are identifiable. Blind identifiability issue will be

discussed later in Section 2.4.

Expression (2.22) explicitly shows that OSTBCs are linear in the real and imaginary

parts of the information symbols. In order to exploit this linearity property, we transform

the complex-valued signal model to an equivalent real-valued one. This transformation

enables us to analyze the effect of the real and imaginary parts of the symbol on the channel

estimation, independently. This issue is clarified more when we present different weighting

strategies in Section 3.3. Let us introduce the following operators for any complex-valued

matrix B [SSG09]

B , Re(B) ⊗


 1 0

0 1


+ Im(B) ⊗


 0 −1

1 0


 , (2.26)

B ,

[
vec
{
Re(B)

}T
, vec

{
Im(B)

}T ]T , (2.27)

where Re(·), Im(·), and vec{·} represent the real part, the imaginary part, and the column-

wise vectorization operator, respectively. Taking into account (2.27), we define the equiva-

lent CIR vector for each channel tap and the equivalent CFR vector for each subcarrier as

[SSG09]

gl , Gl ∈ R
2MN×1, l = 0, . . . , L (2.28)

hi , Hi ∈ R
2MN×1, i = 0, . . . , N0 − 1. (2.29)

Taking into account (2.26)-(2.29), we can rewrite (2.19) to establish the following compact

linear relationships among the channel parameters in the frequency and the time domains

[SSG09]

hi =
√

N0

(
fi ⊗ IMN

)
g′ = Fi g

′, (2.30)

h′ =
√

N0

(
F⊗ IMN

)
g′ = Fg′, (2.31)
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where

g′ ,
[
gT
0 , . . . ,g

T
L ,0

T
2MN×1, . . . ,0

T
2MN×1

]T ∈ R
2MNN0×1, (2.32)

h′ ,
[
hT
0 , . . . ,h

T
N0−1

]T ∈ R
2MNN0×1, (2.33)

Fi ,
√

N0

(
fi ⊗ IMN

)
∈ R

2MN×2MNN0 , (2.34)

F ,
√

N0

(
F⊗ IMN

)
∈ R

2MNN0×2MNN0 . (2.35)

Using (2.22) and (2.27), we rewrite the model (2.12) in the following vectorized form

[SGM05]

yi(p) = A(hi)si(p) + vi(p) , i = 0, . . . , N0 − 1 (2.36)

where i denotes the subcarrier index, yi(p) , Yi(p), vi(p) , Vi(p), and the 2MT × 2K

real matrix A(hi) is defined as [SGM05]

A(hi) ,
[
a1(hi), . . . ,a2K(hi)

]
=
[
C1Hi, . . . ,C2KHi

]
. (2.37)

It should be emphasized that the matrix A(hi) in the model (2.36) captures both the

effects of the wireless channel and the exploited OSTBC. It can be proved, see Appendix A,

that the columns of A(hi) in (2.37) are orthogonal to each other and have the same norm

regardless of the values of channel entries [GG05], [SGM05], i.e.,

A(hi)
TA(hi) = ‖hi‖2I2K . (2.38)

The relation (2.38) is the so-called “orthogonality” property of the matrix A(hi) which

is extensively exploited to develop our blind MIMO channel estimators in the following

chapters. Consider the following Kronecker matrix product property [Bre78]

vec{MNP} = (PT ⊗M) vec{N}, (2.39)

for any arbitrary conformable matrices M,N and P and the definition (2.27), we obtain

Q , MNP ⇒ Q =


 Re

(
PT ⊗M

)
−Im

(
PT ⊗M

)

Im
(
PT ⊗M

)
Re
(
PT ⊗M

)


N. (2.40)
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Using (2.29) along with (2.37) and (2.40), we acquire [SGS10]

ak(hi) = Φkhi, k = 1, . . . , 2K (2.41)

with

Φk ,


 Re(IM ⊗Ck) −Im(IM ⊗Ck)

Im(IM ⊗Ck) Re(IM ⊗Ck)


 . (2.42)

Taking into account (2.37) together with (2.41) shows that A(hi) is linear with respect to

hi. Also, (2.42) shows that the real matrices Φk ∈ R
2MT×2MN , k = 1, . . . , 2K, only depend

on the code basis matrices
{
Ck

}2K
k=1

, therefore, they are OSTBC-specific and known to the

receiver. Making use of (2.37) and (2.41), we obtain [SGM05]

vec{A(hi)} = Φhi, i = 0, . . . , N0 − 1 (2.43)

with the unique 4KMT × 2MN matrix Φ defined as

Φ ,

[
ΦT

1 ,Φ
T
2 , . . . ,Φ

T
2K

]T
. (2.44)

Moreover, the OSTBC-specific matrices
{
Φk

}2K
k=1

, defined in (2.42), satisfy [BSK06]

ΦT
kΦl =





I2MN , if k = l

−ΦT
l Φk , if k 6= l

. (2.45)

See Appendix B for the proof of (2.45).

2.3.1 Rotatable OSTBCs

The OSTBC matrix Xi(p) = X
(
si(p)

)
in (2.21) is called rotatable, if there exists a matrix

Q ∈ C
N×N such that [Ma07]

X
(
si(p)

)
Q = X

(
s̆i(p)

)
, (2.46)

for any si(p) ∈ si ,
{
s
(l)
i (p)

}I
l=1

and some s̆i(p) ∈ si with s̆i(p) 6= ±si(p) where I stands

for the number of all possible symbol vectors within constellation set at each subcarrier.
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Otherwise, the code matrix X
(
si(p)

)
is non-rotatable. Taking into account (2.21) and

(2.46), it can be easily verified that the code rotation matrix Q, if it exists, is unitary, i.e.,

QHQ = QQH = IN . (2.47)

A necessary and sufficient condition for the OSTBC to be rotatable is that the code rotation

matrix Q in (2.46) satisfies [Ma07]

CkQ = dkCnk
, k = 1, . . . , 2K (2.48)

with dk ∈ {±1}, and nk ∈ {1, . . . , 2K} is an index with nk 6= k and nk 6= nl for k 6= l. �

As a result, for a particular choice of Q in (2.48), there exists a specific one-to-one

mapping such that
[
n1, n2, . . . , n2K

]T
= P1

[
1, 2, . . . , 2K

]T
, (2.49)

where P1 ∈ {0, 1}2K×2K stands for the associated permutation matrix. Taking into account

(2.24) and (2.48) we have

CkQ = dkCnk
⇒ CH

k CkQ = dkC
H
k Cnk

⇒ Q = dkC
H
k Cnk

, (2.50)

hence,

QH = dkC
H
nk
Ck = −dkC

H
k Cnk

= −Q. (2.51)

So, the code rotation matrix Q, if it exists, is skew-hermitian. Consider both the skew-

hermitian and the unitary properties of the code rotation matrix along with the relation

(2.48), we have

CkQ = dkCnk
⇒ Cnk

Q = −dkCk, (2.52)

which shows that by applying code rotation matrix Q, not only Ck transforms to Cnk
,

but also the reverse transformation is valid, i.e., Cnk
transforms to Ck. Therefore, relation

(2.52) implies that the permutation matrix P1 in (2.49) is symmetric. Let us introduce

Q̆ ,


 Re(IM ⊗Q) −Im(IM ⊗Q)

Im(IM ⊗Q) Re(IM ⊗Q)


 , (2.53)
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where

Q̆T Q̆ = Q̆Q̆T = I2MN (2.54)

follows from the unitary property of Q in (2.47). Taking into account (2.42), (2.48) and

(2.53), we obtain

ΦkQ̆ =


 Re(IM ⊗Ck) −Im(IM ⊗Ck)

Im(IM ⊗Ck) Re(IM ⊗Ck)




 Re(IM ⊗Q) −Im(IM ⊗Q)

Im(IM ⊗Q) Re(IM ⊗Q)




=


 Re(IM ⊗CkQ) −Im(IM ⊗CkQ)

Im(IM ⊗CkQ) Re(IM ⊗CkQ)


 = dkΦnk

, k = 1, . . . , 2K (2.55)

where dk ∈ {±1}, and nk ∈ {1, . . . , 2K} is an index with nk 6= k and nk 6= nl for k 6= l. The

expression (2.55) shows that the rotation of the code basis matrices {Ck}2Kk=1 by the matrix

Q in (2.48) can be viewed as the permutation of indices among OSTBC-specific matrices

{Φk}2Kk=1 combined with a possible sign change according to the value of dk. Considering

(2.37) and (2.41), this in turn results in changing the order of the columns of A(hi). This

interpretation provides an insight towards a practically important ambiguity characteristic

of the blind ML estimator in the case of rotatable OSTBCs presented in the next section.

If the code rotation matrix Q exists, the properties (2.45) and (2.55) imply that

ΦkQ̆ = dkΦnk
⇒ ΦT

kΦkQ̆ = dkΦ
T
kΦnk

⇒ Q̆ = dkΦ
T
kΦnk

, (2.56)

for k = 1, . . . , 2K, nk 6= k, nk 6= nl for k 6= l. Hence, Q̆ belongs to each of the following

sets

Q̆ ∈ C1 ,
{
±ΦT

1Φ2, ±ΦT
1Φ3, . . . , ±ΦT

1 Φ2K

}
,

Q̆ ∈ C2 ,
{
±ΦT

2Φ1, ±ΦT
2Φ3, . . . , ±ΦT

2 Φ2K

}
,

...

Q̆ ∈ C2K ,

{
±ΦT

2KΦ1, ±ΦT
2KΦ2, . . . , ±ΦT

2KΦ2K−1

}
. (2.57)

Also, from (2.45) and (2.56) we conclude that

Q̆T = −Q̆, (2.58)

which reflects skew-symmetric property of Q̆.
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2.4 Blind ML estimation or detection

Prior to devising blind MIMO channel estimators, it is noteworthy to investigate in more

detail different probable types of ambiguities associated with channel estimates that may

result from assumptions based on which we devise an estimator or from parameterization

model under consideration. The former case is discussed in the present section and the

latter case is analyzed in the next section. In the blind estimation or detection problem

where neither the CSI at each subcarrier nor any pilot symbol is available at the receiver,

the entries of channel matrix and the transmitted symbols should be estimated jointly. We

consider the parametric model of (2.36) and assume a quasi-static MIMO channel which

remains invariant during the transmission of P consecutive OSTBC-OFDM data blocks.

Further, in ML approach we assume that the entries of CFR vector and the transmitted

symbols at the ith subcarrier are unknown deterministic parameters. Then, the joint blind

ML estimates of the CFR vector hi and the symbol vectors si(p), for p = 1, . . . , P , are

obtained as their values for which the log-likelihood function is maximized, i.e., [LSL02],

[LSL03], [SGM05], [TVP96]

{
ĥi,ML, Ŝi,ML

}
= arg max

S̃i∈Si, h̃i

log f
(
yi(1), . . . ,yi(P ) |hi,Si

)
, (2.59)

where Si ,
[
si(1), si(2), . . . , si(P )

]
∈ Si stacks all the available information symbol vectors

corresponding to the ith subcarrier and Si ,
{
S
(l)
i

}IP
l=1

is the set of all possible values of

Si. It should be reminded that I stands for the number of all possible symbol vectors si(p)

within constellation set at each subcarrier. Since it is very difficult to solve (2.59) as its

computational complexity grows exponentially in P , we simplify (2.59) by relaxing the finite

alphabet constraint of S̃i ∈ Si and by replacing it with S̃i ∈ R
2K×P . Therefore, we rewrite

(2.59) as [SGM05]

{
ĥi,RML, Ŝi,RML

}
= arg max

S̃i, h̃i

log f
(
yi(1), . . . ,yi(P ) |hi,Si

)
, (2.60)

where RML stands for the relaxed ML. Assume that the characteristics of the noise vectors

in the model (2.36), for p = 1, . . . , P , are according to (2.9)-(2.11). Then, the conditional
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probability density function (pdf) of each yi(p) can be written as [SGM05]

f
(
yi(p) |hi, si(p)

)
=

1

(πσ2)MT
exp

(
−
∥∥yi(p)−A(hi)si(p)

∥∥2

σ2

)
, p = 1, . . . , P. (2.61)

As it is assumed that all received data vectors at the ith subcarrier yi(p), for p = 1, . . . , P ,

are independent random vectors, we obtain [SGM05]

f
(
yi(1), . . . ,yi(P ) |hi,Si

)
=

P∏

p=1

f
(
yi(p) |hi, si(p)

)
. (2.62)

Taking into account (2.61) together with (2.62), we reformulate (2.60) as [SGM05]

{
ĥi,RML, Ŝi,RML

}
= arg min

S̃i, h̃i

P∑

p=1

∥∥yi(p)−A(h̃i)s̃i(p)
∥∥2, (2.63)

which represents the joint RML estimator for the CFR vector and the transmitted sym-

bol vectors at the ith subcarrier. From the linearity property of A(hi) in (2.43), it

can be concluded that if the pair
{
ĥi,RML, Ŝi,RML

}
is the solution of (2.63), the pair{

−α ĥi,RML,−1/α Ŝi,RML

}
with arbitrary scalar α is also the solution of (2.63). Hence,

the blind RML estimator (2.63) suffers from scalar ambiguity (including sign ambiguity)

[CMC08], [SGM05], which is in fact resulted from relaxation of the finite alphabet constraint

over the transmitted symbols in (2.60). The aforementioned ambiguity translates to norm

ambiguity in CFR vector estimation and reflects the effect of assumption under which we

develop an estimator. This norm ambiguity can be resolved using a few pilot symbols or by

the aid of other methods mentioned in [CMC08], [SGM05], [TVP96]. The implementation

simplicity of estimator (2.63) [LSL03], [MVDC06], [SG03], [SGM05] motivates us to study

further corresponding blind identifiability aspects. Next, we discuss another kind of am-

biguity associated with the estimator (2.63) that is inherited from parameterization model

(2.36) when special type of codes are used.

2.4.1 Blind identifiability

For the sake of notational simplicity, suppose that the true channel vector hi and the data

matrix Si are the solution of (2.63). The solution pair
{
hi,Si

}
is unique up to some scalar
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only when another solution pair
{
h̆i, S̆i

}
for (2.63) can not be obtained such that

A(hi)si(p) = A(h̆i)s̆i(p), p = 1, . . . , P (2.64)

for some h̆i 6= ±α hi and s̆i(p) 6= ±1/α si(p) with arbitrary scalar α. Equivalently, the

parameter set
{
hi,Si

}
for the model (2.36) is unique up to scalar when two parameter sets

for (2.36) can not be found which satisfy

A(hi)si(p) + vi(p) = A(h̆i)s̆i(p) + vi(p), p = 1, . . . , P (2.65)

for some h̆i 6= ±α hi and s̆i(p) 6= ±1/α si(p). In the case of rotatable OSTBCs, we prove

that channel-code ambiguity equation (2.64) is satisfied for each code rotation matrix Q,

any si(p) ∈ si, and some s̆i(p) 6=
(
± 1/α si(p)

)
∈ si. In this case, it can be concluded

that the rotatable OSTBCs are inherently susceptible to the non-scalar ambiguities in the

blind estimation scenario. In fact, such ambiguities are resulted from the non-uniqueness of

parameter set of model (2.36) and imply that equation (2.65) holds true. To prove (2.64)

for the rotatable codes, the following equivalent statement to (2.48) [Ma07] needs to be

proved first:

The code rotation matrix Q satisfies

X
(
si(p)

)
Q = X

(
PWsi(p)

)
, (2.66)

where P ∈ {0, 1}K×K is a permutation matrix with diag(P) = 0, and W is a diagonal

matrix with diag(W) ∈ {±1}K . �

To prove the equivalence of (2.48) and (2.66), first we assume that (2.48) holds true and

conclude (2.66) and, then, we prove that assuming (2.66) results in (2.48). To show the

first part, we have

X
(
si(p)

)
Q =

2K∑

k=1

CkQsik(p) =

2K∑

k=1

dkCnk
sik(p) = X

(
PWsi(p)

)
, (2.67)

where the first equality comes from (2.22) and the second equality results from (2.48).

To clarify the last equality in (2.67), note that
∑2K

k=1 dkCnk
sik(p) can be obtained from

∑2K
k=1Cksik(p) = X

(
si(p)

)
by reordering the entries sik(p) of si(p) and weighting them with
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±1. The weighting with ±1 is represented by the diagonal matrix W and the reordering

is expressed by the permutation matrix P in (2.66). Since the statement (2.48) enforces

nk 6= k, for k = 1, . . . , 2K, it follows that the diagonal entries of P have to be zero. To

present the second part of the proof, notice that

2K∑

k=1

CkQsik(p) = X
(
si(p)

)
Q = X

(
PWsi(p)

)
=

2K∑

k=1

dkCnk
sik(p), (2.68)

where again the first and the second equalities result from (2.22) and (2.66), respectively.

Thus, we have
∑2K

k=1CkQsik(p) =
∑2K

k=1 dkCnk
sik(p) for nk 6= k, k = 1, . . . , 2K as (2.66)

enforces the diagonal entries of P to be zero. Since this has to be valid for all the possible

values of si(p), we obtain CkQ = dkCnk
, for k = 1, . . . , 2K, and, therefore, we conclude

(2.48). Taking into account both (2.67) and (2.68), the equivalence of (2.48) and (2.66) can

be deduced.

Consider the definitions of P and W in (2.66), we obtain

A(hi)si(p) = A(hi)
(
WTPT ⊗ I2

)
(PW ⊗ I2) si(p) = Ă(hi) s̆i(p), (2.69)

where s̆i(p) = (PW ⊗ I2) si(p) is deduced from the comparison of (2.46) with (2.66) and

Ă(hi) , A(hi)
(
WTPT ⊗ I2

)
. Actually, the matrix Ă(hi) can be formed by changing the

order (and probably the sign) of columns of the matrix A(hi). Taking into account (2.53),

we define

h̆ ,


 Re

(
IM ⊗QH

)
−Im

(
IM ⊗QH

)

Im
(
IM ⊗QH

)
Re
(
IM ⊗QH

)


h = Q̆Th. (2.70)

Using the definition of Ă(hi) together with (2.54), (2.55), (2.70), and the equivalence of

(2.48) and (2.66), we have

Ă(hi) =
[
Φn1

hi,Φn2
hi, . . . ,Φn2K

hi

]

=
[
Φn1

Q̆Q̆Thi,Φn2
Q̆Q̆Thi, . . . ,Φn2K

Q̆Q̆Thi

]

=
[
Φ1h̆i,Φ2h̆i, . . . ,Φ2Kh̆i

]
= A(h̆i). (2.71)

Finally, by comparison of (2.69) and (2.71) we conclude channel-code ambiguity equation

(2.64) which implies that a certain transformation of the symbol vector si(p) and the equiv-

alent CFR vector hi is blindly unresolvable. In other words, even if an arbitrary number of
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noise-free observations corresponding to the model (2.36) are available at the receiver, blind

joint estimation of the channel and the symbol vectors suffers from non-scalar ambiguity for

the case of rotatable OSTBCs. To resolve such cases either few pilot symbols, if available,

can be exploited or some prior knowledge or characteristics regarding transmitted symbols

can be utilized. This issue is discussed in more detail in Section 3 from another viewpoint

where we propose how to utilize prior knowledge about the transmitted symbols and devise

a strategy to resolve such non-scalar ambiguities.

2.5 Optimal receiver

In this section we introduce the optimal receiver structure for the case when the channel

matrix of each subcarrier is available at the receiver. The CSI may be obtained, e.g., from

blind estimation methods introduced in the following chapters. In this case, the optimal,

from ML sense, symbol decoder is a simple nearest neighbor detector. This decoder uses the

obtained CSI to find the closest point to all the vectors belonging to the set Yi ,
{
y
(l)
i (p)

}I
l=1

[TJC99]. Hence, as derived in (2.59)-(2.63) under Gaussian noise assumption, it computes

lopt = arg min
l∈{1,...,I}

∥∥yi(p)− y
(l)
i (p)

∥∥, (2.72)

where y
(l)
i (p) is the vectorized version of the noise-free received data matrix corresponding

to the symbol vector s
(l)
i (p), and I stands for the number of all possible symbol vectors at

each subcarrier. The so-obtained lopt is then used to decode the data symbols.

In the OSTBC case, the ML decoder in (2.72) can also be viewed as the MF [LSL02]

receiver whose output SNR is maximized [GS01]. Using such a receiver and the linear model

(2.36) along with the orthogonality property (2.38), the ML estimate, which is also the least

square estimate, of si can be computed as [GG05], [SGM05]

ŝi(p) =
(
A(hi)

TA(hi)
)−1

A(hi)
Tyi(p) =

1

‖hi‖2
A(hi)

Tyi(p). (2.73)

Then, the final estimate of si(p) is obtained from ŝi(p) = [IK , jIK ] ŝi(p) followed by the

symbol-by-symbol nearest neighbor detector. For all numerical results presented in this

thesis, the optimal receiver (2.73) is implemented to decode the transmitted symbols.



Chapter 3

Blind channel estimation in

orthogonally coded MIMO-OFDM

systems: Single-carrier analysis

3.1 Introduction

In this chapter, first a novel virtual snapshot model for single-carrier of orthogonally coded

MIMO-OFDM systems is introduced. The virtual snapshot model exploits redundancies

contained in the OSTBC to augment the received data. This model is then used to de-

velop a blind channel estimation method that is implemented in a subcarrier-wise manner.

Based on the properties of the OSTBCs, we show that a low-rank subspace mode applies

to the weighted covariance matrix of the available virtual snapshots. Also, we prove that

the vector of true CFR parameters is the principal eigenvector of the obtained covariance

matrix at each subcarrier. Moreover, we propose two weighting strategies for the virtual

snapshot model in the weighted covariance matrix and prove that the principal eigenvalue

of this matrix is unique. We further show that with the proposed weighting strategies,

all non-scalar ambiguities inherent to blind channel estimation techniques in specific cases

can be eliminated. These cases include respectively the systems involving rotatable codes

such as the popular Alamouti code that is, e.g., used in the LTE and the systems involv-

ing single-antenna receivers like in downlink transmission for mobile handsets. Based on

33
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our analysis, we also show that the linear precoding method of [SGM05] and the correla-

tion matching method of [VS08b] satisfy partly the proposed uniqueness conditions of the

weighted covariance matrix principal eigenvalue. The necessary conditions to obtain unique

channel estimates have not been introduced before and the methods of [SGM05] and [VS08b]

just provide special cases of proper weighting coefficients. Finally, the performance of the

proposed strategies is illustrated by means of extensive numerical examples.

3.2 Virtual snapshot model

It should be noted that the proposed model and the suggested weighting strategies in this

chapter correspond to the case of frequency flat fading channels. However, we have adopted

the subcarrier MIMO-OFDM model for the sake of notational consistency with the next

chapters throughout our derivations. The main idea behind developing a new model is

to exploit the structural properties of the OSTBCs presented in Section 2.3 to generate

a set of virtual snapshots. Then, we form the respective weighted covariance matrix at

each subcarrier which corresponds to a low-rank subspace model. This is of particular

importance in fast fading scenarios, when the low number of available snapshots leads to

severe degradation in the performance of subspace estimates. Making use of (2.45) along

with the relations (2.36), (2.37) and (2.41), the 2K virtual snapshots can be defined as

ỹi(k, p) ,ΦT
k yi(p) = Ãk(hi)si(p) +ΦT

k vi(p) , k = 1, . . . , 2K (3.1)

where

Ã1(hi) , ΦT
1 A(hi) =

[
hi,Φ

T
1 Φ2hi, . . . ,Φ

T
1 Φ2Khi

]
,

Ã2(hi) , ΦT
2 A(hi) =

[
ΦT

2Φ1hi,hi, . . . ,Φ
T
2 Φ2Khi

]
,

...
...

Ã2K(hi) ,ΦT
2KA(hi)=

[
ΦT

2KΦ1hi,Φ
T
2KΦ2hi, . . . ,hi

]
, (3.2)

stand for the virtual signal matrices corresponding to the respective virtual snapshots. It

can be observed from (3.2) that the signal component hi is contained in all virtual snapshots
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of (3.1). Further, this signal component is orthogonal to the remaining signal components

in each of the matrices Ãk(hi) for k = 1, . . . , 2K, i.e., hi ⊥ ΦT
kΦlhi for k 6= l. To show

this, consider the skew-symmetry property (2.45), we obtain

hT
i Φ

T
kΦlhi =

(
hT
i Φ

T
kΦlhi

)T
= hT

i Φ
T
l Φkhi = −hT

i Φ
T
kΦlhi = 0, k 6= l. (3.3)

Consider that all transmitted symbols sik(p) for k = 1, . . . , 2K, are mutually independent

and independent of the sensor noise at the ith subcarrier. Next, we define the weighted

covariance matrix at the ith subcarrier obtained from the respective 2K virtual snapshots

in (3.1) by using (3.2) as

Xi(γ),E
{ 2K∑

k=1

γk ỹi(k, p)ỹi(k, p)
T
}

=
2K∑

k=1

γk

(
Ãk(hi)E

{
si si

T
}
Ãk(hi)

T
)
+

2K∑

k=1

γkσ
2

2
I2MN

=

2K∑

k=1

γkE
{
|sik|2

}
hih

T
i

︸ ︷︷ ︸
desired component

+

2K∑

k=1

γkσ
2

2
I2MN

︸ ︷︷ ︸
noise contribution

+

2K∑

k=1

2K∑

l=1; l 6=k

γkE
{
|sil|2

}
ΦT

kΦlhih
T
i Φ

T
l Φk

︸ ︷︷ ︸
orthogonal to the desired component

,

(3.4)

where the vector γ , [γ1, . . . , γ2K ]T includes the positive real weighting coefficients. Taking

into account (3.3), it can be readily verified from (3.4) that

ui ,
hi

‖hi‖
, (3.5)

is the normalized eigenvector of Xi(γ) associated with the eigenvalue

λui
,

2K∑

k=1

γk E
{
|sik|2

}
‖hi‖2 +

2K∑

k=1

γkσ
2

2
. (3.6)

Next, we prove that for uniform weighting γ = γu , γ [1, . . . , 1]T in (3.4) with arbitrary

real γ > 0, ui is the principal eigenvector of Xi(γ). This property has also been derived in

[SGM05], however, from a different perspective. Here, we perform the proof in an entirely

novel way that sheds further light on how we eliminate the principal eigenvalue multiplicity
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of Xi(γu) in the weighted covariance approach of the next section. Towards this goal we

reformulate (3.4) as

Xi(γ)=

2K∑

k=1

2K∑

l=1

γk E
{
|sil|2

}
ΦT

kΦlhih
T
i Φ

T
l Φk+

2K∑

k=1

γkσ
2

2
I2MN

=

2K∑

l=1

E
{
|sil|2

}
Uil(γ) +

2K∑

k=1

γkσ
2

2
I2MN , (3.7)

where

Uil(γ) ,

2K∑

k=1

γkΦ
T
kΦlhih

T
i Φ

T
l Φk. (3.8)

Then, taking into account (3.7) together with the result of Appendix C, we obtain

λmax

(
Xi(γ)

)
= λmax

(
2K∑

l=1

E
{
|sil|2

}
Uil(γ) +

2K∑

k=1

γkσ
2

2
I2MN

)

≤ ‖hi‖2
2K∑

l=1

E
{
|sil|2

}
λmax(Γ) +

2K∑

k=1

γkσ
2

2

= max{γ}‖hi‖2
2K∑

l=1

E
{
|sil|2

}
+

2K∑

k=1

γkσ
2

2
, (3.9)

where λmax(·) stands for the principal eigenvalue of an arbitrary matrix and Γ , diag(γ).

Comparing (3.6) and (3.9), it can be directly verified that for the uniform weighting γ = γu,

λmax

(
Xi(γ)

)
= λui

and the single-carrier normalized true CFR vector ui is the principal

eigenvector of Xi(γu). Therefore, when the respective principal eigenvalue is unique, the ith

single-carrier CFR vector can be estimated up to an arbitrary scalar ambiguity. Otherwise,

there exist a set of linearly independent principal eigenvectors that span the subspace in

which the true ith single-carrier CFR vector is located. In this case, blind channel estimation

methods based on finding the principal eigenvector of Xi(γu) are not capable to estimate

the CFR vector at the ith subcarrier up to a scaling factor. Unfortunately, the latter

case occurs in two practically interesting scenarios: the systems comprising single-antenna

receivers and the systems deploying rotatable codes [Ma07] such as the celebrated Alamouti

[Ala98] code. In particular, we show analytically that in the case of rotatable codes, the

principal eigenvalue of Xi(γu) exhibits multiplicity. Consider the definition of subcarrier
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weighted covariance matrix in (3.4) and take into account (2.55) together with (3.1). We

observe that multiplying Xi(γu) from left and right, respectively, by Q̆T and Q̆ defined in

(2.53), only changes the order in which the summation in (3.4) is performed, i.e.,

Q̆TXi(γu)Q̆ = Q̆T E
{ 2K∑

k=1

γ ỹi(k, p)ỹi(k, p)
T
}
Q̆ = E

{ 2K∑

k=1

γ Q̆TΦT
k yi(p)yi(p)

TΦkQ̆
}

= E
{ 2K∑

k=1

γ d2k Φ
T
nk
yi(p)yi(p)

TΦnk

}
= E

{ 2K∑

k=1

γ ỹi(nk, p)ỹi(nk, p)
T
}
.(3.10)

Hence, this multiplication does not change the individual components of the summation

in (3.4) and the result of the summation as well. Therefore, the following permutation

invariance property for the rotatable OSTBCs holds

Q̆TXi(γu)Q̆ = Xi(γu). (3.11)

Using (2.54) and (3.11), we obtain

Xi(γu) hi = λmax

(
Xi(γu)

)
hi

⇒ Xi(γu)Q̆Q̆Thi = λmax

(
Xi(γu)

)
hi

⇒ Q̆TXi(γu)Q̆Q̆Thi = λmax

(
Xi(γu)

)
Q̆Thi

⇒ Xi(γu)h̆i = λmax

(
Xi(γu)

)
h̆i, (3.12)

where h̆i , Q̆Thi is also the principal eigenvector of Xi(γu). As a conclusion, for each code

rotation matrixQ satisfying (2.46), or the associated real-valued rotation matrix Q̆ in (2.53),

both the normalized true CFR vector ui and its transformed version ŭi , h̆i/‖h̆i‖ are the

principal eigenvectors of Xi(γu). This holds true even if different information symbols that

form si(p) in (3.4) have different powers. In this case, the blind channel estimation method

based on finding the principal eigenvector of Xi(γu) suffers from non-scalar ambiguities

which precludes unambiguous blind channel recovery. This has already been addressed in

expression (2.64) of Subsection 2.4.1 where we discussed the issue of blind identifiability. It

should also be noted that although having different symbol powers in (3.4) does not resolve

non-scalar ambiguities by itself, but it provides the means to resolve such ambiguities which

is discussed in the next section.
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It is also reasonable to further investigate the principal eigenvalue multiplicity order

of Xi(γu) for non-rotatable codes with different system configurations, and constellations.

Table 3.1 [SGM05], [VS08a] in the next page, summarizes numerical inspection regarding

the mentioned issue for different OSTBCs proposed based on the amicable designs [LS03]

as well as generalized orthogonal designs [TJC99]. To check rotatability, the fast numerical

inspection based on (2.50) is used while for checking principal eigenvalue multiplicity order,

an exhaustive inspection is performed. In Table 3.1, it is assumed that all symbols are

drawn from the same BPSK (QPSK) constellations in the real (complex) OSTBC case. As

mentioned in Section 2.3.1, for rotatable OSTBCs, i.e., code indices 1-4, relation (2.46)

holds true for every symbol vector si(p) in the constellation set. Among non-rotatable

codes, there are some codes which are called strictly non-rotatable [Ma07] in which relation

(2.46) does not satisfy even for one single symbol vector si(p) in the constellation set, e.g.,

code indices 5, 6, 8, 10, 13, and 14. Further, there are some non-rotatable codes in Table 3.1,

e.g., code indices 7 and 9, for which relation (2.46) satisfies for some symbol vectors in the

constellation set [Ma07]. It should be also noted that each particular value of multiplicity

order in Table 3.1 is computed for multiple independently generated zero-mean Gaussian

CFR vectors hi. However, this value is observed to be independent of the CFR vector

realization and depends only on the type of OSTBC and the number of receive antennas,

i.e., M [SGM05]. From Table 3.1, it can be observed that in the rotatable OSTBCs case or

most of the MISO system configurations, principal eigenvalue multiplicity order of Xi(γu)

is greater than one. In the next section, we propose two strategies in choosing the weighting

coefficients γk, k = 1, . . . , 2K, in (3.4) to resolve non-scalar ambiguities.

3.3 Weighting strategy

First, we introduce a weighting strategy which exploits the rotatable OSTBCs specific

properties presented in Subsection 2.3.1 to select the coefficients {γk}2Kk=1 in (3.4) in or-

der to eliminate the types of multiplicity satisfying (3.12). To develop this strategy, we

rely on the assumption that the transmitted symbols have non-uniform powers such that
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Number of Number of Multiplicity Multiplicity
Code Rate Constellation transmit symbols Design Rotatable order order
index (K/T ) antennas per block approach (M = 1) (M > 1)

(N) (K) MISO MIMO

↓ ↓

1 1 real 2 2 Alamouti Yes 2 2

2 1 real 4 4 Gen. ort. Yes 4 4

3 1 complex 2 2 Alamouti Yes 4 4

4 1/2 complex 4 4 Gen. ort. Yes 4 4

↓

5 1 real 3 4 Gen. ort. No 2 1

6 1 real 5 8 Gen. ort. No 2 1

7 1 real 6 8 Gen. ort. No 2 1

8 1 real 7 8 Gen. ort. No 2 1

9 1 real 8 8 Gen. ort. No 2 1

10 1 real 9 16 Gen. ort. No 2 1

11 1 real 10 16 Gen. ort. No 2 1

12 1/2 complex 3 4 Gen. ort. No 2 1

13 1/2 complex 5 8 Gen. ort. No 2 1

14 1/2 complex 6 8 Gen. ort. No 2 1

15 1/2 complex 7 8 Gen. ort. No 2 1

16 1/2 complex 8 8 Gen. ort. No 2 1

17 3/4 complex 3 3 Amicable No 2 1

18 3/4 complex 4 3 Amicable No 2 1

19 1/2 complex 5 4 Amicable No 1 1

20 1/2 complex 6 4 Amicable No 1 1

21 1/2 complex 7 4 Amicable No 1 1

22 1/2 complex 8 4 Amicable No 1 1

Table 3.1: The principal eigenvalue multiplicity order of Xi(γu) for different OSTBCs
[SGM05], [VS08a].
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E
{
|sik|2

}
6= E

{
|sink

|2
}
, for at least one k ∈ {1, . . . , 2K} corresponding to the mapping

(2.49). It is noteworthy to emphasize that this assumption embraces two important cases

as its special example. First, when there is only one complex transmitted symbol that its

real or imaginary part has unique power level among all the others and second, when the

real and imaginary parts of all complex transmitted symbols have distinct power levels. The

latter assumption is considered in the proposed precoding technique of [SGM05]. With no

loss of generality, assume that the symbol powers are ordered in non-increasing manner as

E
{
|si1|2

}
≥E
{
|si2|2

}
≥· · ·≥E

{
|si2K |2

}
; E

{
|sik|2

}
6=E
{
|sink

|2
}
, (3.13)

for some k ∈ {1, . . . , 2K}. Also, the weight vector entries {γk}2Kk=1 in (3.4) are selected in

accordance with the symbol powers in (3.13), i.e.,

γ1 ≥ γ2 ≥ · · · ≥ γ2K > 0 ; γk 6= γnk
, (3.14)

for the same k ∈ {1, . . . , 2K} where E
{
|sik|2

}
6= E

{
|sink

|2
}
. The proposed weighting

strategy is stated in the following lemma:

Lemma 3.1: At the ith subcarrier, the principal eigenvalue multiplicity of Xi(γ) shown

in (3.12) for signal powers E
{
|sik|2

}2K
k=1

arranged as in (3.13) and the weighting coefficients

{γk}2Kk=1 in (3.4) chosen according to (3.14), is equal to one. �

The proof of the previous lemma relies on the properties of the rotatable OSTBC and

the specific relation between (3.13) and (3.14). Considering the skew-symmetric property

of Q̆ in (2.58), we have that the vector h̆i = Q̆Thi is orthogonal to the vector hi as

h̆T
i hi = hT

i Q̆hi =
(
hT
i Q̆hi

)T
= hT

i Q̆
Thi = hT

i (−Q̆)hi = −hT
i Q̆hi = 0. (3.15)

Moreover, from comparison of (3.2) and (2.57), we also conclude that h̆i is a column of each

matrix Ãk(hi), k = 1, . . . , 2K in (3.2). Specifically, using (2.56) we obtain

Q̆ = ±ΦT
1 Φn1

= ±ΦT
2 Φn2

= · · · = ±ΦT
2KΦn2K

, (3.16)

with n1 6= n2 6= · · · 6= n2K . Therefore, h̆i appears at a different column position in each of
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the virtual signal matrices Ãk(hi) in (3.2). In addition, using (2.58) we infer that

h̆T
i Φ

T
kΦlhi = hT

i Q̆ΦT
kΦlhi = hT

i

(
− Q̆T

)
ΦT

kΦlhi = −hT
i

(
ΦkQ̆

)T
Φlhi = −hT

i Φ
T
nk
Φlhi = 0,

(3.17)

for nk 6= l. In other words, taking into account (2.57) and (3.15)-(3.17), we conclude that

the vector h̆i is the nkth column (up to a sign) of the matrix Ãk(hi), k = 1, . . . , 2K, for

some nk 6= k with nk 6= nl when k 6= l and is orthogonal to the remaining columns in

Ãk(hi). To reveal an important property of the vector h̆i, we reformulate (3.4) as

Xi(γ) =

2K∑

k=1

γk E
{
|sink

|2
}
h̆ih̆

T
i +

2K∑

k=1

γkσ
2

2
I2MN +

2K∑

k=1

2K∑

l=1; l 6=nk

γk E
{
|sil|2

}
ΦT

kΦlhih
T
i Φ

T
l Φk.

(3.18)

Taking into account (3.15) along with (3.17) and multiplying (3.18) from right by h̆i, we

conclude that h̆i is the eigenvector of Xi(γ) in (3.18) even in the case of non-uniform

weighting and its respective eigenvalue is given by

λŭi
= ‖h̆i‖2

2K∑

k=1

γk E
{
|sink

|2
}
+

2K∑

k=1

γk
σ2

2
. (3.19)

As a result, both vectors hi and h̆i are the eigenvectors of Xi(γ) and the respective eigen-

values are given by (3.6) and (3.19), respectively. Let us have a closer look at the eigenvalue

expressions corresponding to the vectors hi and h̆i in (3.6) and (3.19), respectively. Next,

we aim to prove that
2K∑

k=1

γk E
{
|sik|2

}
>

2K∑

k=1

γk E
{
|sink

|2
}
, (3.20)

provided that (3.13) and (3.14) are fulfilled.

Each pair term
(
γk E

{
|sik|2

}
+ γnk

E
{
|sink

|2
})

in the left-hand side of the inequality

(3.20) has respective counterpart term of
(
γk E

{
|sink

|2
}
+ γnk

E
{
|sik|2

})
in the right-

hand side of the inequality (3.20) since the permutation matrix P1 in (2.49) is symmetric.

The latter term is obtained from exchanging the signal power components in the former

term. We show that such an exchange, either does not change or does decrease the total

value of the former term provided that different symbol powers satisfy (3.13) and weighting
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coefficients are chosen in agreement with (3.14). To do this, let us present the following

inequality
(
(γk − γnk

) E
{
|sik|2

})
≥
(
(γk − γnk

) E
{
|sink

|2
})

. (3.21)

The inequality in (3.21) is valid in all the possible cases of E
{
|sik|2

}
> E

{
|sink

|2
}
, or

E
{
|sik|2

}
< E

{
|sink

|2
}
, or E

{
|sik|2

}
= E

{
|sink

|2
}
. This is due to the condition (3.14) as

we have γk > γnk
> 0, or 0 < γk < γnk

, or γk = γnk
, respectively, for all the previous

cases. Therefore, taking into account (3.21) and performing a re-arrangement of the terms,

we obtain

(
γk E

{
|sik|2

}
+ γnk

E
{
|sink

|2
})

≥
(
γk E

{
|sink

|2
}
+ γnk

E
{
|sik|2

})
. (3.22)

Hence, any exchange of the signal power components in the left-hand side of (3.22) which

yields the right-hand side of (3.22) results in reduction or no change of the corresponding

value, and, therefore, we conclude (3.20). Also, from the orthogonality property of the

matrix Q̆ in (2.54) and the definition of the vector h̆i = Q̆Thi we have that

‖h̆i‖2 = h̆T
i h̆i = hT

i Q̆Q̆Thi = hT
i hi = ‖hi‖2. (3.23)

Taking into account (3.23) along with (3.6), (3.19), and (3.20), we conclude that

2K∑

k=1

γk E
{
|sik|2

}
>

2K∑

k=1

γk E
{
|sink

|2
}
⇒ ‖hi‖2

2K∑

k=1

γk E
{
|sik|2

}
> ‖h̆i‖2

2K∑

k=1

γk E
{
|sink

|2
}

⇒ ‖hi‖2
2K∑

k=1

γk E
{
|sik|2

}
+

2K∑

k=1

γkσ
2

2
> ‖h̆i‖2

2K∑

k=1

γk E
{
|sink

|2
}
+

2K∑

k=1

γkσ
2

2
⇒ λui

> λŭi
.

(3.24)

Therefore, the principal eigenvalue multiplicity results from using the rotatable codes, e.g.,

corresponding to the code indices 1-4 in Table 3.1, can be resolved by the aid of proper

weighting coefficients.

Next, we introduce another weighting strategy and prove its corresponding capability

to resolve the weighted covariance matrix principal eigenvalue multiplicity of Xi(γ). This

second weighting strategy resolves non-scalar ambiguity not only for the case of the rotatable



CHAPTER 3. Blind channel estimation: Single-carrier analysis 43

OSTBCs, but also for some non-rotatable OSTBCs in the MISO system configuration which

according to the Table I in both [SGM05] and [VS08a], we confront such ambiguities, e.g.,

corresponding to the code indices 5-18 in Table 3.1. The proposed strategy is based on

both, the assumption that there exists a particular real-valued symbol among {sik}2Kk=1

with a higher power level than all other ones, and the equivalence of λmax

(
Xi(γ)

)
with

λui
obtained from (3.6) and (3.9) in the case of γ = γu. Without loss of generality, the

aforementioned assumption over symbol powers can be presented as

E
{
|si1|2

}
> E

{
|si2|2

}
≥ · · · ≥ E

{
|si2K |2

}
, (3.25)

since labeling the transmitted symbols is immaterial. Based on (3.25), we suggest to choose

non-uniform γ as

γ = γn , [γ +∆γ, γ, . . . , γ]T . (3.26)

Taking into account (3.26) and γu = [γ, . . . , γ]T , we obtain

γn = γu + γb , (3.27)

where γb ,
[
∆γ, 0, . . . , 0

]T
stands for the boosting weight vector. Using (3.27) and the fact

that Xi(γ) is linear with respect to γ according to (3.4), it can be directly verified that the

weighted covariance matrix Xi(γn) partitions as

Xi(γn) = Xi(γu) + Xi(γb). (3.28)

Further, according to (3.4) and the definition of γb, we obtain

Xi(γb) = ∆γ

(
Ã1(hi)E

{
si si

T
}
Ã1(hi)

T +
σ2

2
I2MN

)

= ∆γ E
{
|si1|2

}
hih

T
i︸ ︷︷ ︸

desired component

+
∆γσ2

2
I2MN

︸ ︷︷ ︸
noise contribution

+

2K∑

l=2

∆γ E
{
|sil|2

}
ΦT

1 Φlhih
T
i Φ

T
l Φ1

︸ ︷︷ ︸
orthogonal to the desired component

.

(3.29)

Taking into account (3.3), it can be verified from (3.29) that ui = hi/‖hi‖ is the normalized

eigenvector of Xi(γb) associated with the eigenvalue
(
∆γ E

{
|si1|2

}
‖hi‖2 + (∆γ σ2)/2

)
.
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Let θ ,

[
E
{
|si1|2

}
, . . . ,E

{
|si2K |2

}]T
be a vector containing powers of the real and imag-

inary parts of the transmitted symbols at the ith subcarrier and Θ , diag(θ). Next, we

reformulate (3.29) by using (3.8) to obtain

Xi(γb) =

2K∑

l=1

∆γ E
{
|sil|2

}
ΦT

1 Φlhih
T
i Φ

T
l Φ1 +

∆γσ2

2
I2MN

= ∆γ Ui1(θ) +
∆γσ2

2
I2MN . (3.30)

Then, taking into account (3.30) together with the result of Appendix C, we obtain

λmax

(
Xi(γb)

)
= λmax

(
∆γ Ui1(θ) +

∆γσ2

2
I2MN

)

≤ ∆γ‖hi‖2λmax(Θ) +
∆γσ2

2

= ∆γ ‖hi‖2 E
{
|si1|2

}
+

∆γσ2

2
, (3.31)

where the last equality in (3.31) follows from (3.25). Comparing (3.31) and the eigenvalue

associated to the vector ui, we conclude that the vector ui is the unique normalized principal

eigenvector of Xi(γb) with associated eigenvalue

λmax

(
Xi(γb)

)
= ∆γ E

{
|si1|2

}
‖hi‖2 +

∆γ σ2

2
.

Consider (3.28), it can be deduced that ui is the unique normalized principal eigenvector

of Xi(γn) as it is the unique normalized principal eigenvector of Xi(γb) and the principal

eigenvector of Xi(γu). Therefore, the proposed weighting strategy of (3.26) eliminates any

non-scalar ambiguity corresponding to the principal eigenvalue multiplicity of Xi(γ) by

boosting the desired signal component hi provided that (3.25) holds.

It is noteworthy to mention that the necessary condition (3.13) over symbol powers and

the respective weighting strategy introduced earlier in this section are more general than

the assumption and the corresponding weighting method presented in (3.25) and (3.26),

respectively. However, the associated proofs reveal that the latter weighting strategy is able

to resolve more general cases of the non-scalar ambiguities including the ones which are

guaranteed to be eliminated by the former strategy. In fact, we have proved that (3.13)
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along with (3.14) can resolve the principal eigenvalue multiplicities reflected in Table 3.1

corresponding to the code indices 1-4 while (3.25) together with (3.26) are able to resolve all

principal eigenvalue multiplicities illustrated in Table 3.1. It should be further emphasized

that we have not optimized the selection of weighting coefficients for instance to minimize

the SER or to improve other performance index and provided weighting strategies only

guarantee elimination of the non-scalar ambiguities.

In the following, we show that the correlation matching approaches of [VS08b] can be

considered as a particular choices of weight coefficients that satisfy the conditions of (3.14)

and which are not sufficient to resolve non-scalar ambiguity without (3.13). Hence, as

the necessary conditions of (3.13) for the non-scalar ambiguity elimination have not been

provided in [VS08b], the corresponding methods may not be successful and the conditions

under which we can get unique channel estimates are not presented in this work. We also

observe that the same statement holds true for the precoding approach of [SGM05]. It

should be noted that only a special case of (3.13), i.e., the case where the symbols exhibit

distinct real and imaginary part powers, has been addressed in [SGM05]. Therefore, the

proposed weighting strategy with the respective necessary condition over symbol powers

explained in Lemma 3.1 provides theoretical basis for simulation results in [SGM05] and

[VS08b].

3.3.1 The Euclidean correlation matching criterion

Taking into account that the symbol streams are mutually independent and independent of

the sensor noise along with the model (2.36), we obtain the following covariance matrix of

the received data vector at the ith subcarrier [SGM05]

Ri , E
{
yiyi

T
}
= A(hi)ΛsiA(hi)

T +
σ2

2
I2MT , (3.32)

where Λsi , E
{
si si

T
}

is the covariance matrix of the transmitted real vector si. Each

diagonal entry of Λsi represents the average power of the real or imaginary parts of the

corresponding data symbol and depends only on the shape of constellation of that particular

symbol, hence, it is known at the receiver. Multiplying (3.32) from the right by A(hi)/‖hi‖
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and using (2.38), we have [SGM05]

Ri
A(hi)

‖hi‖
=

A(hi)

‖hi‖

(
Λsi‖hi‖2 +

σ2

2
I2K

)
. (3.33)

Since A(hi)/‖hi‖ has orthonormal columns, according to (2.38), and Λsi is diagonal in the

case of mutually uncorrelated transmitted symbols, (3.33) can be viewed as the characteris-

tic equation for Ri and
(
Λsi‖hi‖2 + (σ2/2) I2K

)
contains the 2K largest eigenvalues of Ri.

Therefore, the signal subspace eigenvalues of Ri depend only on the norm of CFR vector

hi and not its spatial signature. It is shown that this statement is also valid even if Λsi is

not a diagonal matrix; see Appendix D. In practice, Ri can be estimated as [SGM05]

R̂i =
1

P

P∑

p=1

yi(p)yi(p)
T , (3.34)

where P represents the total number of data blocks that are used to estimate Ri. It is

important to mention that the estimator in (3.34) is a consistent estimator of the received

data covariance matrix Ri [SGM05].

The key idea of the Euclidean correlation matching (ECM) approach is to estimate

the CFR vector hi, by minimizing the norm of difference between the true and sample

covariance matrices as [VS08b]

ĥi,ECM = argmin
h̃i

∥∥R̂i −R(h̃i)
∥∥2, (3.35)

where the dependency of the true covariance matrix, according to (3.32), to the CFR is

explicitly emphasized by adopting the notation R(h̃i). To further simplify (3.35), we drop

the term in (3.35) that is independent of the optimization variable. Also, we take into

account that both R̂i and Ri(h̃i) are symmetric matrices along with the matrix identity

tr(XY) = tr(YX) for any arbitrary conformable matrices X and Y to obtain

ĥi,ECM = argmin
h̃i

∥∥R̂i −R(h̃i)
∥∥2 = argmax

h̃i

{
2 tr
(
R̂iR(h̃i)

)
−
∥∥R(h̃i)

∥∥2
}
. (3.36)

Using the orthogonality property (2.38) together with (3.32), we can rewrite the both terms

in the right-hand side of (3.36) as

tr
(
R̂iR(h̃i)

)
= tr

(
A(h̃i)

T R̂iA(h̃i)Λsi

)
+

σ2

2
tr
(
R̂i

)

∥∥R(h̃i)
∥∥2 = ‖h̃i‖4‖Λsi‖2 + σ2‖h̃i‖2tr(Λsi) +

MTσ4

2
.
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Using these two equations and dropping the terms which do not depend on h̃i, (3.36) can

be expressed as

ĥi,ECM = argmax
h̃i

{
2 tr
(
A(h̃i)

T R̂iA(h̃i)Λsi

)
− ‖h̃i‖4‖Λsi‖2 − σ2‖h̃i‖2tr(Λsi)

}
. (3.37)

It is noteworthy to stress that the main issue in the blind channel estimation algorithm

is the estimation of the channel vector spatial signature while estimation of the channel

norm corresponds to a proper scaling and can be performed, e.g., as in [SGM05]. Hence, by

assuming the norm constraint on the optimization variable in (3.37) such as ‖h̃i‖ = ‖hi‖,
the terms

(
‖h̃i‖4‖Λsi‖2

)
and

(
σ2‖h̃i‖2tr(Λsi)

)
become constants and, therefore, they can

be dropped. It can be shown [SGM05] that using (2.43), the problem (3.37) becomes

equivalent to

ĥi,ECM = arg max
h̃i

h̃T
i Φ

T (Λsi ⊗ R̂i) Φ h̃i, (3.38)

together with ‖h̃i‖ = ‖hi‖. Taking into account the definition (2.44) along with the equa-

tions (3.4), and (3.34), we define

X̂i(γECM) , ΦT (Λsi ⊗ R̂i) Φ

=

2K∑

k=1

E
{
|sik|2

}
ΦT

k R̂i Φk =
1

P

2K∑

k=1

P∑

p=1

E
{
|sik|2

}
ỹi(k, p)ỹi(k, p)

T , (3.39)

γECM ,

[
E
{
|si1|2

}
, E
{
|si2|2

}
, . . . , E

{
|si2K |2

}]T
, (3.40)

to obtain

ĥi,ECM = arg max
h̃i

h̃T
i X̂i(γECM) h̃i. (3.41)

If the proposed necessary condition (3.13) over the transmitted signal powers holds true,

then the comparison of (3.40) and (3.14) reveals that the ECM approach of [VS08b] provides

the particular selection for the proposed weighting strategy.

3.3.2 The Kullback correlation matching criterion

The main idea of the Kullback correlation matching (KCM) is to minimize the divergence

between the true and sample covariance matrices of the received data based on the Kullback-

Leibler divergence. Applying this measure to the model (2.36) along with corresponding
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assumptions results in the following optimization problem to estimate the CFR vector at

the ith subcarrier as [VS08b]

ĥi,KCM = argmin
h̃i

{
tr
(
R−1(h̃i) R̂i − I2MT

)
− log det

(
R−1(h̃i) R̂i

)}

= argmin
h̃i

{
tr
(
R−1(h̃i) R̂i

)
+ log det

(
R(h̃i)

)}
, (3.42)

where we have dropped the terms which do not depend on the optimization variable in the

last equality of (3.42). It should be noted that the optimization problem (3.42) reduces

to the joint ML estimator for channel parameters and symbols based on Gaussian source

assumption [Jaf88]. To simplify the first term in (3.42), let us apply the Woodbury identity

[Mey00] to the true covariance matrix in (3.32) to obtain

R−1(h̃i) =
1

σ2/2
I2MT − 1

(σ2/2)2
A(h̃i)Λsi

(
I2K +

‖h̃i‖2
(σ2/2)

Λsi

)−1

A(h̃i)
T . (3.43)

Substituting (3.43) in (3.42) and dropping the term which does not depend on the vector

h̃i, we obtain

ĥi,KCM=argmax
h̃i



tr


A(h̃i)Λsi

(
I2K +

‖h̃i‖2
(σ2/2)

Λsi

)−1

A(h̃i)
T R̂


− log det

(
R(h̃i)

)


 .

(3.44)

The
(
log det

(
R(h̃i)

))
term in (3.44) depends on the product of eigenvalues of the true

covariance matrix which in turn depends on the norm of CFR vector and not its spatial

signature. Hence, this term becomes constant and can be dropped if we again consider the

norm constraint such as in (3.38). Hence, using (2.43), we have that (3.44) is equivalent to

ĥi,KCM = argmax
h̃i

h̃T
i Φ

T


Λsi

(
I2K +

‖h̃i‖2
(σ2/2)

Λsi

)−1

⊗ R̂i


Φ h̃i, (3.45)
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with ‖h̃i‖ = ‖hi‖. Considering the Kronecker matrix product property, (2.44), (3.4) and

(3.34), we define

X̂i(γKCM) , ΦT


Λsi

(
I2K +

‖h̃i‖2
(σ2/2)

Λsi

)−1

⊗ R̂i


Φ

=
1

P

2K∑

k=1

P∑

p=1

E
{
|sik|2

}

1 + E
{
|sik|2

}
‖h̃i‖2/(σ2/2)

ỹi(k, p)ỹi(k, p)
T , (3.46)

[
γKCM

]
k

,
E
{
|sik|2

}

1 + E
{
|sik|2

}
‖h̃i‖2/(σ2/2)

, k = 1, . . . , 2K (3.47)

to obtain

ĥi,KCM = argmax
h̃i

h̃T
i X̂i(γKCM) h̃i. (3.48)

Similarly as in (3.40), if the necessary condition (3.13) holds, the comparison of (3.47) and

(3.14) shows that the specific selection for the proposed weighting strategy is offered by the

KCM approach of [VS08b].

Remark 3.1: It is noteworthy to mention that the proposed channel estimation method

based on finding the principal eigenvector of virtual snapshot weighted covariance matrix,

e.g., (3.41) or (3.48), suffers from the sign ambiguity even if all non-scalar ambiguities are

removed by the help of a proper weighting coefficients introduced in Section 3.3. Neverthe-

less, the former ambiguity is common in many blind detectors; see, e.g., [CMC08], [SGM05],

[VSPV09], and can be resolved by appropriate decoding of each symbol sequence [TVP96].

Also, pilot symbols can be exploited to resolve the sign ambiguity.

3.4 Simulations

In this section, we compare the performance of the weighting strategies proposed in this

chapter with that of the technique of [SGM05] both with and without the linear precoding

and the ECM and the KCMmethods of [VS08b] in the Rayleigh fading frequency flat MIMO
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channel scenario. In fact, almost similar results can be expected for the frequency-selective

fading channel scenario when the OFDM encoding is implemented and the aforementioned

techniques are applied in the frequency-domain subcarrier-wise. In each simulation run,

the entries of hi are independently drawn from a Gaussian distribution with zero mean and

variance of σ2
hi

and kept fixed for this run. In other words, the channel remains invariant

over the number of data blocks, i.e., P , that are used to compute the sample covariance

matrix. All curves are averaged over 200 Monte-Carlo channel realizations and the SNR is

defined as σ2
hi
/σ2 [SL02]. The bias of the estimates, computed for a fixed CFR vector hi as

the norm of averaged channel estimation errors

Bias =

∥∥∥∥∥
1

Nruns

Nruns∑

m=1

ĥ
(m)
i∥∥ĥ(m)
i

∥∥ − hi

‖hi‖

∥∥∥∥∥ , (3.49)

where Nruns is the number of Monte-Carlo runs and ĥ
(m)
i is the estimate of hi in the mth

run for the methods tested versus SNRs is shown in figures. Also, for different channel

realizations, the root mean square estimation error (RMSE), i.e.,

RMSE =

√√√√ 1

Nruns

Nruns∑

m=1

∥∥∥∥∥
ĥ
(m)
i∥∥ĥ(m)
i

∥∥ − h
(m)
i∥∥h(m)
i

∥∥

∥∥∥∥∥

2

, (3.50)

where h
(m)
i is the channel realization in the mth run for the methods tested versus SNRs is

also displayed in figures. Moreover, the symbol error rates (SERs) versus the SNR for the

methods tested combined with the ML decoder of (2.73) are depicted in figures. Addition-

ally, the results for the informed ML decoder are shown in figures which is assumed to know

the channel exactly. This decoder is used just as a benchmark to illustrate performance

losses of the blind techniques with respect to the informed receiver case.

In the first set of numerical results, the full rate Alamouti OSTBC [Ala98], i.e.,

X(si) =


 si1 si2

−s∗i2 s∗i1


 , (3.51)

with N = K = T = 2, and QPSK symbols are used for encoding. Note that this code is

rotatable and its blind identifiability is not guaranteed in Rayleigh fading channels according
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Figure 3.1: Bias versus SNR, first example, Alamouti code.

to [Ma07] and [VS08a], respectively. Further, the principal eigenvalue of Xi(γu) shows

multiplicity of order four either in the case of M = 1 or for the cases when M > 1 according

to Table 3.1, the code index 3. The number of data blocks that are used to estimate

the covariance matrix according to (3.34) is set to P = 50. In the current numerical

example, it is assumed that the transmit covariance matrix in (3.32) is selected as Λsi =

2K
15 diag

(
[5, 5, 4, 1]

)
that guarantees tr(Λsi) = 2K, i.e., the average transmit power per

symbol is equal to that with equi-power source. Further, this selection of Λsi satisfies the

necessary condition provided in (3.13). The vector γ associated with the proposed weighting

strategy in Lemma 3.1 is also selected as γ = [4, 4, 3, 2] which is in accordance with (3.14).

In addition, γECM and γKCM are chosen according to (3.40) and (3.47), respectively, and

the linear precoding matrix in [SGM05] is selected as a diagonal matrix with the square

root of entries of Λsi on its main diagonal.

It can be seen from Fig.3.1-Fig.3.3 that for the aforementioned particular choice of

the transmitted covariance matrix and the weight vector γ the approach of [SGM05] with
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Figure 3.2: RMSE versus SNR, first example, Alamouti code.

uniform weighting is not able to resolve the ambiguity corresponding to use of the rotatable

OSTBC while the other methods resolve the ambiguities. This is due to the fact that not

only the necessary condition of (3.13) over the transmitted symbol powers holds true, but

also the choices of weight vectors in all the methods tested satisfy the sufficient condition

(3.14). Moreover, the performance of all methods that satisfy conditions of Lemma 3.1 is

comparable and the corresponding SER performances closely achieve that of the informed

ML detector.

In the second set of numerical results, the 3/4-rate OSTBC [LS03, Equation (7.4.10)]

corresponding to the code index 18 in Table 3.1, i.e.,

X(si) =




si1 0 −s∗i2 s∗i3

0 si1 −si3 −si2

si2 s∗i3 s∗i1 0

−si3 s∗i2 0 s∗i1



, (3.52)

with N = 4,K = 3, T = 4, and QPSK symbols are used for encoding. It should be noted
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Figure 3.3: SER versus SNR, first example, Alamouti code.

that this code is not rotatable and the principal eigenvalue of Xi(γu) shows multiplicity of

order two when M = 1 and one when M > 1 according to Table 3.1 for the code index

18. The transmit covariance matrix is selected as Λsi = 2K
8 diag

(
[5, 1, 1, 1]

)
. This choice

again guarantees tr(Λsi) = 2K and satisfies the necessary condition provided in (3.25). The

vector γ associated with the proposed weighting strategy is also selected as γ = [3, 1, 1, 1],

which is in accordance with (3.26) and it is assumed that P = 50. Further, the selection of

weight coefficients for ECM, KCM, and the precoding method of [SGM05] is same as the

first simulation setup.

Fig.3.4-Fig.3.6 illustrate performance of the methods tested when M = 1. It can be

observed from these figures that the method of [SGM05] with equal weighting can not

resolve non-scalar ambiguity as expected before hand. Moreover, although the estimation

bias and RMSE corresponding to the KCM method of [VS08b] are higher than that of all

the other methods which are able to resolve non-scalar ambiguity, the SER performance of

all blind methods are almost similar and very close to that of the informed receiver.
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Figure 3.4: Bias versus SNR, second example, M = 1.
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Figure 3.5: RMSE versus SNR, second example, M = 1.
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Figure 3.6: SER versus SNR, second example, M = 1.
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Figure 3.7: Bias versus SNR, second example, M = 2.
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Figure 3.8: RMSE versus SNR, second example, M = 2.

Fig.3.7-Fig.3.9 depict the performance of the methods tested forM = 2 receive antennas.

All the other parameters are same as the previous example. In this case according to Table

3.1 for the code index 18, the principal eigenvalue of Xi(γu) does not show multiplicity and

essentially there is no need to assume that the covariance matrix of the transmitted symbols

is not a scaled version of the identity matrix. This assumption is only considered to show the

performance differences among different methods. It can be seen from Fig.3.7 and Fig.3.8

that as there is no non-scalar ambiguity, all methods are capable to estimate the true CFR.

At low SNRs, the performance of the method of [SGM05] with equal weighting and the KCM

method of [VS08b] is worse than that of the others while at high SNRs, it is the other way

around. In Fig.3.9 the SER performance of all methods are shown to be comparable to that

of the informed ML receiver. It is noteworthy to stress that the presented numerical results

correspond to the particular choices of the transmitted covariance matrices and the weight

vectors although nearly the same relative performances can be expected for a different set

of choices as shown by to our extensive simulations not displayed in this thesis.
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Figure 3.9: SER versus SNR, second example, M = 2.

3.5 Chapter summary

We have introduced a novel virtual snapshot model in which the redundancies embedded

in the OSTBCs are exploited. Specific properties of the OSTBCs have been used to com-

pose the weighted covariance matrix of the received data vector for each single-carrier that

exhibits the desired signal subspace characteristics. Further, we have proved that the vec-

tor of true CFR parameters is a scaled version of the normalized principal eigenvector of

the obtained virtual snapshot covariance matrix. It has been shown both numerically and

analytically that this matrix exhibits the principal eigenvalue multiplicity in two practi-

cally important cases: systems employing the rotatable OSTBCs like the popular Alamouti

code as in the LTE and systems with single-antenna receivers as in the downlink transmis-

sion to mobile handsets. For these scenarios, two weighting strategies have been devised,

respectively. Also, their ability in resolving the problem of non-scalar ambiguities of chan-

nel estimates associated with the aforementioned multiplicity of the principal eigenvalue,
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provided that specific conditions on the weighting coefficients and the symbol powers are

satisfied, have been proved. The proposed weighting strategies comprise the linear precod-

ing scheme of [SGM05], and the correlation matching method of [VS08b] as their particular

cases. Simulation results have demonstrated the ability of the proposed methods to elimi-

nate non-scalar ambiguities inherent to existing blind MIMO channel estimation techniques.



Chapter 4

Blind channel estimation in

orthogonally coded MIMO-OFDM

systems: Multi-carrier analysis

4.1 Introduction

In this chapter, a new closed-form blind channel estimation approach for orthogonally space-

time coded MIMO-OFDM systems is developed. We use the previously devised virtual

snapshot model along with a novel normalization method to preserve the desired property

of the subcarrier CFR vector introduced in Chapter 3 for all subcarriers. Then, we exploit

the finite delay spread assumption of the wireless channel to estimate a lower number of

channel parameters in the time-domain rather than in the frequency-domain. As a con-

sequence, increased parsimony of the channel parametric model and coherent processing

among different subcarriers compared to the conventional subcarrier-wise channel estima-

tion methods is achieved.

These advantages not only offer a substantially reduced computational complexity, but

also result in improved estimation accuracy. Moreover, they guarantee uniqueness of the

59
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channel estimates under certain conditions. In contrast to the technique of [CMC08], the

proposed method is applicable to more than one OSTBC-OFDM data block, and its asso-

ciated complexity is independent of the symbol constellation size. At the same time, un-

like many existing blind and semi-blind MIMO-OFDM symbol detection techniques (such

as, e.g., [BHP02], [LGBS01], [LSL03], [MVDC06], [SGM05], [SL02], [VTP97], [WZS08],

[ZMG02]), the proposed method does not require the channel to be static over many data

blocks, i.e., it works sufficiently well with only a few blocks.

Moreover, the proposed technique has no limitations on the numbers of receive or trans-

mit antennas observed in many other methods. Numerical examples demonstrate perfor-

mance advantages of the proposed approach as compared to some state-of-the-art blind

MIMO-OFDM channel estimation methods.

4.2 Coherent processing

In Chapter 3, it is proved that the true CFR vector lies in the subspace spanned by the

principal eigenvector (or eigenvectors in the case of the principal eigenvalue multiplicity)

of the virtual snapshots covariance matrix at each subcarrier. Since any probable principal

eigenvalue multiplicity of Xi(γ) can be eliminated by applying weighting strategies proposed

in the previous chapter, we assume that the true CFR vector at each subcarrier lies in the

subspace spanned by the unique principal eigenvector of Xi(γ). The approach introduced

in the previous chapter can be used to estimate the CFR vector for each subcarrier inde-

pendently. However, independent processing of the subcarriers does not take into account

any correlations among subcarriers that exists if the coherence bandwidth of the channel is

larger than the subcarrier spacing.

To keep the aforementioned principal eigenvector properties of the single-carrier weighted

covariance matrices and to exploit the correlation among subcarriers of the MIMO-OFDM

system, we generalize the covariance model introduced in (3.4). To this aim, we define the

block diagonal extended covariance matrix X ′(γ, ξ) as
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X ′(γ, ξ) ,




X0(γ)
ξ0

0 · · · 0

0 X1(γ)
ξ1

0
...

. . .
...

0 · · · 0
XN0−1(γ)

ξN0−1



, (4.1)

where ξ ,
[
ξ0, . . . , ξN0−1

]T
and {ξi}N0−1

i=0 are arbitrary positive real scalars. It should

be noted that in (4.1), the N0 scalars {ξi}N0−1
i=0 are exploited as normalization coefficients

for corresponding subcarrier covariance matrices. The effect of normalization coefficients

choices on channel estimator will become more clear when we select different {ξi}N0−1
i=0 and

discuss corresponding implications in the current and next chapters. First, let us choose

ξ = ξλmax
,

[
λmax

(
X0(γ)

)
, . . . , λmax

(
XN0−1(γ)

)]T
, (4.2)

i.e., ξi = λmax

(
Xi(γ)

)
for i = 0, . . . , N0 − 1. It can be readily verified that X ′

(
γ, ξλmax

)

has N0 identical principal eigenvalues equal to one as each subcarrier covariance matrix in

(4.1) is normalized by its respective principal eigenvalue. Moreover, its associated principal

eigenvectors can be, e.g., represented as

ũ0 ,

[
uT
0 ,01×2MN , . . . ,01×2MN

]T
=

[
hT
0

‖h0‖
,01×2MN , . . . ,01×2MN

]T
,

ũ1 ,

[
01×2MN ,uT

1 , . . . ,01×2MN

]T
=

[
01×2MN ,

hT
1

‖h1‖
, . . . ,01×2MN

]T
,

...
...

ũN0−1 ,

[
01×2MN , . . . ,01×2MN ,uT

N0−1

]T
=

[
01×2MN , . . . ,01×2MN ,

hT
N0−1

‖hN0−1‖

]T
. (4.3)

To show this, first we observe that all vectors {ũi}N0−1
i=0 are orthogonal to each other and

each of them satisfies the corresponding characteristic equation, i.e.,

X ′
(
γ, ξλmax

)
ũi =

[
01×2MN , . . . ,

Xi(γ)

λmax

(
Xi(γ)

) ui, . . . ,01×2MN

]T

=
[
01×2MN , . . . ,ui, . . . ,01×2MN

]T
= λmax

(
X ′
(
γ, ξλmax

))
ũi = ũi. (4.4)

As a result, any arbitrary linear combination of the principal eigenvectors in (4.3) as

h̊ , α0ũ0 + α1ũ1 + · · ·+ αN0−1ũN0−1 = Ũα, (4.5)
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in which α , [α0, . . . , αN0−1]
T and Ũ , [ũ0, . . . , ũN0−1], is a principal eigenvector of

X ′
(
γ, ξλmax

)
with respective eigenvalue λmax

(
X ′
(
γ, ξλmax

))
= 1, i.e.,

X ′
(
γ, ξλmax

)
h̊ = λmax

(
X ′
(
γ, ξλmax

))
h̊ = h̊. (4.6)

As a special case of (4.5), the true overall CFR vector defined in (2.33), which can be written

as

h′ = ‖h0‖ũ0 + ‖h1‖ũ1 + · · ·+ ‖hN0−1‖ũN0−1,

is the principal eigenvector of the extended covariance matrix in (4.1) with the corresponding

eigenvalue λmax

(
X ′
(
γ, ξλmax

))
= 1, i.e.,

X ′
(
γ, ξλmax

)
h′ = λmax

(
X ′
(
γ, ξλmax

))
h′ = h′. (4.7)

It can be directly observed from (4.3)-(4.6) that the principal eigenvectors of the extended

covariance matrix X ′
(
γ, ξλmax

)
are formed from the principal eigenvectors of the subcarrier

covariance matrices Xi(γ) which are the CFRs at each subcarrier, i.e., the vectors ui for

i = 0, . . . , N0 − 1 in (3.5). This important property results from the fact that subcarrier

covariance matrices in (4.1) are normalized by their respective principal eigenvalues. This

property is still valid when the true subcarrier covariance matrices in (4.1) are replaced by

their corresponding finite sample estimates

X̂i(γ) ,
1

P

2K∑

k=1

P∑

p=1

γk ỹi(k, p)ỹi(k, p)
T , i = 0, . . . , N0 − 1 (4.8)

where P stands for the total number of available snapshots as in (3.34). It should be noted

that due to the block diagonal structure of X ′
(
γ, ξλmax

)
, there is no coherent processing

among different subcarriers in estimation of h′.

Taking into account the linear relation among the CFRs and the CIRs in (2.31) and

also the orthogonality property of the DFT matrix F defined in (2.35), equation (4.7) can

be expressed as

FTX ′
(
γ, ξλmax

)
Fg′ = λmax

(
X ′
(
γ, ξλmax

))
FTFg′ = λmax

(
X ′
(
γ, ξλmax

))
N0 g′. (4.9)
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Therefore, the true overall CIR vector g′ defined as (2.32) is proportional to the nor-

malized principal eigenvector of FTX ′
(
γ, ξλmax

)
F with the respective principal eigenvalue(

λmax

(
X ′
(
γ, ξλmax

))
N0

)
of multiplicity order N0. In fact, we have shown that making

use of virtual snapshot model (3.1) and definition (4.1) along with the specific choice of

normalization coefficients in (4.2), the true overall CIR vector g′ satisfies the following

characteristic equation

(
FTX ′

(
γ, ξλmax

)
F
)
g̃ =

(
λmax

(
X ′
(
γ, ξλmax

))
N0

)
g̃, (4.10)

with

g̃ ,

[
g̃T
0 , . . . , g̃

T
N0−1

]T
, (4.11)

as the 2MNN0 × 1 vector of the time-domain variables. To reduce the solution set of the

principal eigenvectors in (4.10), we exploit correlations among subcarriers that exist if the

coherence bandwidth of the channel is larger than the subcarrier spacing. To do this, we

enforce the finite delay spread assumption in (2.32) by introducing the equations

g̃N0−(L′+1) = · · · = g̃N0−1 = 02MN×1, (4.12)

for L′ ≥ L where L′ denotes the assumed channel length upper bound at the receiver. To

find the true overall CIR vector by solving the characteristic equation (4.10) together with

equations (4.12), we can equivalently solve the following optimization problem

g̊ , arg max
g̃

g̃TFTX ′
(
γ, ξλmax

)
F g̃

s.t. g̃N0−(L′+1) = · · · = g̃N0−1 = 02MN×1

‖g̃‖2 = ‖g′‖2, (4.13)

since g′ also resides in the solution set of (4.13). It should be emphasized again that the

solution of (4.13) is not unique since the principal eigenvalue of FTX ′
(
γ, ξλmax

)
F has mul-

tiplicity order of N0. The corresponding conditions for uniqueness of the vector satisfying

both (4.10) and (4.12) or for the solution uniqueness of their counterpart optimization

problem (4.13) will be derived in the next section.
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4.3 Uniqueness condition

To derive the uniqueness condition for the proposed blind channel estimation method of

(4.13), we assume that the true CFR vector at each subcarrier lies in the subspace spanned

by the unique principal eigenvector of Xi(γ) since any probable principal eigenvalue mul-

tiplicity of Xi(γ) can be resolved by applying weighting strategies proposed in Section 3.3.

Using (2.31) along with (4.6) we obtain

(
FTX ′

(
γ, ξλmax

)
F
)
g̊ =

(
λmax

(
X ′
(
γ, ξλmax

))
N0

)
g̊,

and, therefore, making use of (4.5), any vector satisfying (4.10) or any solution of (4.13)

including the true overall CIR vector g′ can be expressed as

g̊ = FT Ũα. (4.14)

Let us define 2MNN0 × 2MN selection matrix Ji as

Ji ,

[
02MN | · · ·

(i+1)−th block︷ ︸︸ ︷
|I2MN | · · · |02MN

]T
, i = 0, . . . , N0 − 1 (4.15)

which is a block matrix made of N0 blocks of dimensions 2MN × 2MN whose (i + 1)-th

block is identity matrix and the rest are zero. Also, using (4.15) we define the following

2MNN0 × 2MN
(
N0 − (L′ + 1)

)
selection matrix as

J L′+1 ,

[
JL′+1, . . . ,JN0−1

]
. (4.16)

Making use of (4.14) and (4.16), the equations in (4.12) can be rewritten as

J
T
L′+1 g̊ = J

T
L′+1FT Ũα = 02MN(N0−(L′+1))×1, (4.17)

in which J T
L′+1 selects the last 2MN

(
N0 − (L′ + 1)

)
entries of g̊ that are equal to zero.

Due to the fact that the matrix J T
L′+1FT Ũ in (4.17) has 2MN

(
N0 − (L′ + 1)

)
rows and

N0 columns, it can be deduced that if (L′ + 1) > N0(2MN − 1)/(2MN), the homogeneous

system of linear equations (4.17) becomes underdetermined. As a result, there may exist
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more than one vector α, that solves the characteristic equation for the principal eigenvalue

and also satisfies the conditions. On the contrary, if

(L′ + 1) ≤ N0(2MN − 1)/(2MN), (4.18)

the matrix J T
L′+1FT Ũ is full-rank with probability one in the case of randomly fading

channels, hence, there exist a unique solution for α. Thus, under the condition (4.18),

adding the constraints (4.17) to the principal eigenvalue problem (4.9) eliminates the afore-

mentioned multiplicity of the principal eigenvector and makes the true overall CIR vector

g′ corresponding unique principal eigenvector.

It should be added that considering the finite delay spread of the wireless channel by

augmenting the equations (4.17) to (4.9) results in considerable problem dimension reduc-

tion. To show this, let us introduce the following 2MNN0 × 2MN(L′ +1) selection matrix

J̃ L′+1 ,

[
J0, . . . ,JL′

]
, (4.19)

and

g̃L′+1 , J̃
T
L′+1g̃, (4.20)

which is formed by elimination of the last 2MN
(
N0− (L′+1)

)
entries of g̃ in (4.11). Using

(4.12), (4.19), and (4.20), for L′ ≥ L, we obtain

g̃ =
[
g̃T
L′+1,0

T
2MN(N0−(L′+1))×1

]T
= J̃ L′+1g̃L′+1. (4.21)

By inserting (4.21) into (4.13), we have the following eigenproblem

ĝ′
L′+1 = arg max

g̃L′+1

g̃T
L′+1

(
J̃

T
L′+1FTX ′

(
γ, ξλmax

)
FJ̃ L′+1

)
g̃L′+1

s.t. ‖g̃L′+1‖2 = ‖g′‖2, (4.22)

in which the constraints of (4.12) are essentially considered. So, it can be concluded that

under condition (4.18) and for L′ ≥ L, the reduced size true overall CIR vector, i.e.,

g′
L+1 , J̃

T
L+1g

′, can be obtained by scaling the unique normalized principal eigenvec-

tor of
(
J̃

T
L′+1FTX ′

(
γ, ξλmax

)
FJ̃ L′+1

)
. It should be highlighted that utilizing the finite
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delay spread assumption over the wireless channel in problem formulation (4.22) not only

warrants the uniqueness of the solution as shown before, but also results in reducing prob-

lem dimension and in turn the computational complexity of the proposed method. This also

eliminates part of the noise in the time-domain which exceeds the assumed upper bound on

the wireless channel delay spread L′ at the receiver side.

Remark 4.3.1: It is noteworthy to stress that the need for implementation of a precise

channel order estimation method prior to the channel estimation scheme is lessened in the

proposed method. This is due to the fact that in the proposed method, only an upper bound

on the effective channel length at the receiver, L′, instead of the respective true value, L, is

required. However, there is a trade-off between performance and model mismatch, i.e., over-

or under-estimation of the effective channel length degrades the performance and yields a

bias; see Figs 4.10-4.15 in Section 4.5.

Remark 4.3.2: As mentioned in Remark 3.1, the proposed channel estimation method of

(4.22) suffers from the sign ambiguity. To eliminate the sign ambiguity, a few pilot symbols

can be exploited in some or even only one of subcarriers and the other subcarriers benefit

from these pilots due to coherent processing ability of the proposed method. This is in

contrast to the subcarrier-wise approach in which each subcarrier is unable to take advantage

of the pilot symbols in other subcarriers. This feature can be exploited further to eliminate

non-scalar ambiguities by the aid of the proposed weighting strategies of Section 3.3; see

Figs 4.16-4.18 in Section 4.5. To do this, a proper weighting coefficients can be applied to

some (even one) of the subcarriers and the other subcarriers benefit from them. Obviously,

this is another favorable feature of the proposed method compared to the subcarrier-wise

schemes in which such pilot symbols or weighting coefficients have to be applied at each

subcarrier.

Remark 4.3.3: As the norm of the true overall CIR vector g′ is unknown, corresponding

estimated version should be used in the proposed estimator (4.22). First, by using the

property of the received data covariance matrix Ri presented in (3.32), it follows that
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tr (Ri) = tr
(
‖hi‖2Λsi

)
+ tr

(
σ2

2
I2MT

)

= ‖hi‖2tr(Λsi) + σ2MT, (4.23)

and, therefore, ‖hi‖ for i = 0, . . . , N0 − 1 can be obtained as

‖hi‖ =
√(

tr(Ri)−MTσ2
)
/tr(Λsi). (4.24)

Again, it should be noted that Λsi in (4.24) is assumed to be known as the symbol con-

stellations are assumed to be known at the receiver. Then, taking into account the linear

relation of (2.31) and based on the subcarrier CFR vector norm (4.24), the norm of g′ can

be directly computed as

‖g′‖ =

√√√√ 1

N0

N0−1∑

i=0

‖hi‖2. (4.25)

In practice, the following estimates of (4.24) and (4.25)

‖̂hi‖ =
√(

tr(R̂i)−MTσ̂2
)
/tr(Λ̂si), (4.26)

‖̂g′‖ =

√√√√ 1

N0

N0−1∑

i=0

‖̂hi‖
2
, (4.27)

can be used, respectively. Then, the true overall CIR vector g′ can be estimated from

(4.22) and (4.27). This procedure amounts to solving the principal eigenvector problem in

(4.22) and to subsequent rescaling the obtained principal eigenvector to guarantee that the

respective norm is equal to ‖̂g′‖ computed in (4.27).

Remark 4.3.4: It is worth noting that if the constant modulus constellations, like PSK,

are used for each of the encoded symbols, the channel vector norm is immaterial for the

signal detection. This fact follows from the structural property of the linear receiver (2.73)

and linearity of A(hi) with respect to hi according to (2.41). Hence, the norm constraint

can be dropped in (4.22) or in general from eigenvalue problem in this case.

Remark 4.3.5: To compute the channel vector norm according to (4.24), we have con-

sidered that the noise power is known at the receiver. If constant modulus constellations

are used for symbol encoding, according to Remark 4.3.4, knowledge of the noise power is
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not required. Otherwise, this knowledge is required and can be approximated by averaging

over the (2MT − 2K) smallest eigenvalues of the sample covariance matrix R̂i provided

that the total number of the data blocks used to compute the sample covariance matrix is

large enough. The obtained estimate of the noise power can be used in (4.24) instead of σ2

as in (4.26).

Remark 4.3.6: In current wireless communication standards such as LTE and WiMAX,

pilot symbols are inserted in the data frame structure for various reasons. Regarding the

proposed method in (4.22), a question is how to exploit these already available pilot symbols

systematically to further improve channel estimates quality. The maximum eigenvalue

problem estimates blindly the subspace which contains the true channel vector, irrespective

of whether pilot symbols exist in the received data blocks or not. The rank of this subspace

is or can be made, in the case of rotatable codes and some codes in the MISO scenario

according to Table 3.1, equal to one. This can be done, e.g., by the aid of weighting

coefficients discussed in Section 3.3 or by utilizing pilot symbols already available in the

data frame structure. In the latter case, a modified semi-blind version of the proposed

method can be devised. This semi-blind modification can be performed in two ways. In the

first way, pilot symbols can be used to obtain a preliminary estimate of the channel vector

and then, using the idea similar to that used in robust beamforming [CY92], [FG94], the

so-obtained preliminary channel estimate can be improved by projecting it onto the blind

subspace estimate achieved by the maximum eigenvalue problem. In the second way, the

whole received data symbols, either pilots or non-pilots, can be used to obtain subspace

containing the channel vector in a blind fashion and then pilots can be exploited to extract

CSI from the attained subspace; see [SGG06] for more detail.

4.4 Normalization schemes comparison

In this section, the proposed normalization of the individual subcarrier covariance matrices

introduced in (4.2) and the normalization scheme devised in [VSPV09] are compared. In

the former approach, each subcarrier covariance matrix is normalized by the corresponding
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principal eigenvalue λmax

(
Xi(γ)

)
, i = 0, . . . , N0−1. Doing this guarantees that the principal

eigenvectors of the extended covariance matrix X ′
(
γ, ξλmax

)
are made of the subcarrier

covariance matrices principal eigenvectors, i.e., the vectors ui, for i = 0, . . . , N0 − 1, as can

be observed from (4.3). The mentioned property still holds true even if the finite sample

estimates of subcarrier covariance matrices are replaced in (4.1). This important property

does not necessarily hold true for different normalization strategies which generally result

in a bias of the channel estimates. In the estimation method of [VSPV09], the signal

subspace energy of the received data covariance matrix at the ith subcarrier is used as the

normalization factor to normalize corresponding subcarrier covariance matrix.

To illustrate the difference in the various normalization schemes, we consider the spe-

cial case of P = 1, i.e., single-snapshot, and prove that the aforementioned normalization

schemes are not necessarily identical. For the single-snapshot scenario in which only one

received data sample is used to estimate the ith subcarrier covariance matrix, the normaliza-

tion factor in the proposed method of (4.22) for uniform weighting coefficients {γk}2Kk=1 = 1

using (2.43) and (2.44) is given by

ξi = λmax

(
X̂i(γ)

)
= P{X̂i(γ)}T

(
2K∑

k=1

ΦT
k yi(1)yi(1)

TΦk

)
P{X̂i(γ)}

= P{X̂i(γ)}T
(
ΦT
(
I2K ⊗ yi(1)yi(1)

T
)
Φ
)
P{X̂i(γ)}

= tr
(
AT
(
P{X̂i(γ)}

)
yi(1)yi(1)

T A
(
P{X̂i(γ)}

))

= tr

(
Π

A
(
P{X̂i(γ)}

) yi(1)yi(1)
T

)

=
(
A(hi)si(1)

)T
Π

A
(
P{X̂i(γ)}

) (A(hi)si(1)
)

+ 2
(
A(hi)si(1)

)T
Π

A
(
P{X̂i(γ)}

)vi(1) + vi(1)
TΠ

A
(
P{X̂i(γ)}

)vi(1). (4.28)

The signal subspace energy of the received data covariance matrix at the ith subcarrier which

is equal to summation over the corresponding eigenvalues is used as the normalization factor

in [VSPV09]. For the single-snapshot scenario due to the fact that the rank-one covariance

matrix in (3.34), i.e., R̂i = yi(1)yi(1)
T , has only one non-zero eigenvalue equal to ‖yi(1)‖2,



70 CHAPTER 4. Blind channel estimation: Multi-carrier analysis

the ith normalization factor, i.e., ξi in (4.1), for i = 0, . . . , N0 − 1, is equal to

ξi = ‖yi(1)‖2 = yi(1)
Tyi(1), i = 0, . . . , N0 − 1

=
(
A(hi)si(1)

)T (
A(hi)si(1)

)
+ 2

(
A(hi)si(1)

)T
vi(1) + vi(1)

Tvi(1). (4.29)

This can be explained by considering the following characteristics equation

R̂i yi(1) =
(
yi(1)yi(1)

T
)
yi(1) = ‖yi(1)‖2 yi(1), (4.30)

which holds true in this case. Comparing the expressions (4.28) and (4.29) reveals that

in general the corresponding normalization factors are not equal. Also, it can be deduced

from our extensive numerical examples that the same statement remains valid in the case

of multiple snapshots. It should be noted that only for the asymptotic cases of perfect

covariance matrices estimates, when X̂i(γ) = Xi(γ) or in the absence of noise, the normal-

ization factors of the proposed method (4.22) and that of the method of [VSPV09] become

identical.

4.5 Simulations

In this section, we present the performance of the proposed blind channel estimator (4.22) in

both the identifiable and non-identifiable [VS08a] scenarios. We compare the performance

of the proposed estimator to that of the blind symbol detection method of [CMC08], the

subcarrier-wise method of [SGM05], and the generalized eigenvalue estimator of [VSPV09]

for Rayleigh fading frequency-selective channels. In the simulations, the entries of the

vectors {gl}Ll=0 defined in (2.28) are assumed to be independent and identically distributed

(i.i.d.) random variables that are drawn from a Gaussian distribution with zero mean

and variance σ2
gl
, and are assumed to be invariant during each simulation run. The SNR is

defined as σ2
hi
/σ2 [SL02] and all curves are averaged over 200 Monte Carlo realizations. The

estimation bias and the RMSE, which are defined in (3.49) and (3.50), respectively, and

the SERs (or the BERs) are selected as measures to evaluate the estimation performance.
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These measures are averaged over all subcarriers, e.g., the relation in (3.49) is modified as

Bias =
1

N0

N0−1∑

i=0

∥∥∥∥∥
1

Nruns

Nruns∑

m=1

ĥ
(m)
i∥∥ĥ(m)
i

∥∥ − hi

‖hi‖

∥∥∥∥∥ .

For the first set of simulation results including the first and the second examples, the full

rate OSTBC of [TJC99, Equation (27)], the code index 5 in Table 3.1, i.e.,

X(si) =




si1 si2 si3

−si2 si1 −si4

−si3 si4 si1

−si4 −si3 si2



, (4.31)

with N = 3, K = T = 4, and BPSK symbols are used for encoding.

In the first example, it is assumed that the number of receivers, the number of data

blocks that are used to estimate covariance matrix according to (3.34), the effective channel

length, and the number of subcarriers are set to M = 2, P = 2, L = L′ = 5, and N0 = 64,

respectively. It should be noted that, the code (4.31) is not rotatable [Ma07] and its

blind identifiability is guaranteed in Rayleigh fading channels [VS08a]. In other words,

the principal eigenvalue of Xi(γu) does not exhibit multiplicity for the selected setup; see

Table 3.1 the for code index 5. As a result, we use uniform weighting with γ = γu in our

simulations. It should also be noted that for all presented simulations in this thesis, the CP

length is set properly, i.e., CPlength ≥ (L+ 1), to avoid IBI.

Fig. 4.1 and Fig. 4.2 display the estimation bias and RMSE, respectively, for all the

methods tested versus SNR. As the method of [CMC08] is applicable only to a single

OSTBC-OFDM block, we average the respective channel estimates over P = 2 blocks

before evaluating the performance. It can be observed from Fig. 4.1 that in this setup

the subcarrier-wise approach of [SGM05] shows the highest estimation bias for all SNR

values. Further, while the method of [VSPV09] shows a larger estimation bias, the method

of [CMC08] exhibits lower estimation bias compared to the proposed estimator in (4.22).

It should be mentioned that the aforementioned lower estimation bias is achieved at the

cost of higher computational burden since the complexity of the method of [CMC08] is

linear with respect to N0 and P . We further emphasize that according to the extensive
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Figure 4.1: Bias versus SNR, first example.

simulation results for higher SNR values or by increasing P the difference between the

biases of the proposed estimator in (4.22) and the method of [VSPV09] is less pronounced.

This corresponds well to the fact mentioned earlier in Section 4.4 that in the asymptotic

cases of large SNRs or a large number of available snapshots, i.e., for X̂i = Xi, both the latter

methods become identical. Further, all methods outperform the subcarrier-wise approach

of [SGM05].

Fig. 4.2 illustrates the estimation RMSE of all the methods tested versus the SNR. A

similar relationship among these methods, as previously noted for the estimation bias can

also be observed for the estimation RMSEs. However, the estimation RMSE difference

between the proposed method in (4.22) and the method of [VSPV09] is less pronounced

than for the estimation bias in Fig. 4.1. The same statement holds true for the proposed

method and the method of [CMC08].

To detect the symbols in the proposed method, the technique of [SGM05], and the

method of [VSPV09], the ML decoder of (2.73) is used in the presented simulations. For
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Figure 4.2: RMSE versus SNR, first example.
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Figure 4.3: BER versus SNR, first example.
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the method of [CMC08], when P = 1, the symbols should be estimated using Boolean

quadratic programming, as recommended in [CMC08]. Hence, as the original method of

[CMC08] can only exploit a single OSTBC-OFDM block for symbol detection, the case of

P = 2 for this method corresponds to decoding the symbols by means of the ML detector

(2.73) using the resulting channel estimates. It should be also noted that the full OSTBC-

OFDM (FOO) version of the algorithm [CMC08] is implemented in the simulations which

exhibits significantly improved performance as compared to its corresponding subchannel

grouping OSTBC-OFDM (SGOO) version. The informed ML receiver is also included in

Fig. 4.3. As mentioned in Section 3.4, this receiver is implemented here just as a benchmark

to illustrate performance losses of the blind techniques with respect to the informed receiver

case.

From Fig. 4.3, it can be seen that in terms of the BER, the proposed approach performs

much better than the method of [SGM05], slightly better than the method of [VSPV09],

and only a little worse than the method of [CMC08]. Moreover, all methods substantially

outperform the subcarrier-wise approach of [SGM05]. This fact is the result of the coherent

processing over all subcarriers as well as parsimonious channel parameterization used in the

proposed method and in the methods of [CMC08] and [VSPV09].

Note that since the sample covariance matrix defined in (4.8) is a consistent estimate of

the true covariance matrix, the proposed estimator in (4.22) is also consistent. Hence, when

the channel can be assumed invariant over many OSTBC-OFDM blocks which is equal to

increasing P in the simulation setup, we expect performance improvement for the proposed

method. The same statement also holds true for the methods of [SGM05] and [VSPV09] due

to the fact that both of these methods are based on the SOS of the received data. Further,

as the method of [CMC08] originally is proposed in a block-wise manner, it can not benefit

from averaging over successive blocks during which the channel is invariant. For the sake

of brevity, we have not provide the simulation results associated with the different values

of P . It is also noteworthy to mention that by increasing the number of subcarriers, all the

methods tested, except the subcarrier-wise method of [SGM05], which benefit from coherent

processing across the subcarriers experience performance improvement. In this case, nearly
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the same relative conclusions as Figs. 4.1-4.3 can be expected, but the improvements of all

methods over the method of [SGM05] become more pronounced. However, as mentioned

above, the computational complexity of the approach of [CMC08] tends to grow dramatically

by increasing the number of subcarriers or the number of OSTBC-OFDM blocks.

To investigate the effect of increasing N0, in the second example, the case of N0 = 256

subcarriers is considered. All the other parameters are the same as in the first example.

As the approach of [CMC08] has an enormously high complexity for N0 = 256, we only

compare the proposed approach with the technique of [SGM05] and [VSPV09]. Figs. 4.4,

4.5, and 4.6 display, respectively, the channel estimation bias, the estimation RMSE, and

the BER performances of the methods tested versus SNR. It can be seen from these figures

that the performance of the proposed method is substantially improved as compared to the

first example (where N0 = 64), and is much better than that of the method of [SGM05].

In particular, from Fig. 4.6 it can be seen that the performance of the proposed technique

in (4.22) is very close to that of the informed ML decoder. It worth mentioning that the

difference between the performance of the proposed technique in (4.22) and that of the

informed ML decoder in Fig. 4.6 is notably less than that of differential schemes which in

comparison typically suffer from 3 dB performance penalty.

To investigate the performance of the proposed method under different OSTBC, for

the third example, the 3/4-rate OSTBC expressed in (3.52) [LS03, Equation (7.4.10)] with

N = 4,K = 3, T = 4 and QPSK symbols are used for encoding. All the other parameters

are the same as in the first example. Note that the principal eigenvalue of Xi(γu) does not

exhibit multiplicity for the selected code and setup; see Table 3.1 for the code index 18, and

its blind identifiability is guaranteed in Rayleigh fading channels [VS08a]. It can be seen

from Fig. 4.7 that the subcarrier-wise approach of [SGM05] exhibits the highest estimation

bias for all SNR values which is even worse than the corresponding performance displayed

in Fig. 4.1. Moreover, while the method of [VSPV09] exhibits higher estimation bias, the

method of [CMC08] shows lower estimation bias compared to the proposed estimator in

(4.22). The difference among estimation biases of all methods tested, excluding the method

of [SGM05], is less pronounced in high SNRs.
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Figure 4.4: Bias versus SNR, second example.
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Figure 4.5: RMSE versus SNR, second example.
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Figure 4.6: BER versus SNR, second example.

A quite similar relationship among the estimation RMSEs can be observed for the meth-

ods tested in Fig. 4.8 as the estimation biases in Fig. 4.7. However, the estimation RMSE

performances of the proposed method and the method of [VSPV09] are nearly similar. Also,

it can be deduced from Fig. 4.9 that the SER values of the proposed approach of (4.22) are

much better than that of the method of [SGM05], slightly better than that of the method

of [CMC08], and almost same as that of the method of [VSPV09]. It should be emphasized

that according to our extensive numerical examples for different OSTBCs, channel condi-

tions, and number of subcarriers, almost the same performances are observed which are not

illustrated for the sake of brevity.

In the fourth and the fifth numerical example, the parameter P and the SNR are set

to 2 and 0 dB, respectively, and the assumed upper limit for the channel length, i.e., L′,

is varied. All the other parameters are the same as in the first example. In the fourth

example, the true channel length is fixed at L = 5, and in the fifth example, L = L′ and

both values are varied from 5 to 20.
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Figure 4.7: Bias versus SNR, third example.
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Figure 4.8: RMSE versus SNR, third example.
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Figure 4.9: SER versus SNR, third example.
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Figure 4.10: Bias versus L′, fourth example, L = 5.
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Figure 4.11: RMSE versus L′, fourth example, L = 5.
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Figure 4.12: BER versus L′, fourth example, L = 5.
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Fig. 4.10 and Fig. 4.13 show the estimation bias for all the methods tested versus L′

for the both latter numerical examples. It can be observed from Fig. 4.10 and Fig. 4.13

that the proposed approach of (4.22) results in a lowest estimation bias compared to the

other methods tested. Further, it can be seen from Fig. 4.10 that in all methods, excluding

the subcarrier-wise method of [SGM05], the best estimation performance is obtained for

L = L′. This is due to the fact that according to the parsimony principle, the number of

parameters, that should be estimated, increases with L′, and, hence, increasing L′ results in

a performance degradation. In addition, in Fig. 4.13, we see that the best performance for

all the methods tested, excluding the method of [SGM05], corresponds to the case when the

wireless channel is less frequency-selective or L is minimum. Increasing the delay spread

while keeping the number of subcarriers fixed results in a performance degradation. In

other words, the performance of all the methods tested, excluding the method of [SGM05],

improves by increasing the numbers of subcarriers due to the coherent processing across the

subcarriers as long as the true effective channel length is still smaller than its corresponding

assumed one, i.e., L′.

Figs. 4.11 and 4.14 show the channel estimation RMSE performances of the methods

tested versus L′. These figures lead to nearly the same conclusions as Figs. 4.10 and 4.13, but

improvement of the proposed method over the other methods is become more pronounced.

Further, the performance of the subcarrier-wise method of [SGM05] is insensitive to the

true channel length or respective upper bound, i.e., L or L′, respectively.

Figs. 4.12 and 4.15 illustrate BERs of the methods tested versus L′. It can be seen from

these figures that the proposed approach of (4.22) has the best symbol decoding performance

compared to the other methods tested. Moreover, according to Fig. 4.12 and Fig. 4.15, all

methods, excluding the method of [SGM05], have the best decoding performance for L = L′

or minimum L, respectively. Also, it can be observed that the symbol decoding performance

of the subcarrier-wise method of [SGM05] and the informed ML receiver are invariant with

respect to L′.

Next, to numerically verify the ability of the proposed method of (4.22) expressed in

Remark 4.3.2 of Section 4.3, in the sixth example, we adopt the same simulation setup as



82 CHAPTER 4. Blind channel estimation: Multi-carrier analysis

5 10 15 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Method of [SGM05]

Method of [VSPV09]
Method of [CMC08]

Proposed method of (4.22)

B
ia
s

Assumed upper limit for the channel length

Figure 4.13: Bias versus L′, fifth example, L = L′.
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Figure 4.14: RMSE versus L′, fifth example, L = L′.
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Figure 4.15: BER versus L′, fifth example, L = L′.
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Figure 4.16: Bias versus SNR, sixth example.
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Figure 4.17: RMSE versus SNR, sixth example.
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Figure 4.18: BER versus SNR, sixth example.
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in the first example, but for single-antenna receiver, i.e., M = 1. According to Table 3.1 for

the code index 5, the principal eigenvalue of Xi(γu) shows multiplicity of order two for the

selected setup. Hence, we use non-uniform weighting strategy of (3.26), i.e., γ = γn, in the

first ten subcarriers. The covariance matrices of the transmitted symbols in the first ten

subcarriers are selected as {Λsi}9i=0 = K
6 diag

(
[3, 1, 1, 1]

)
that guarantee tr(Λsi) = K and

satisfy the necessary condition provided in (3.25). The weight vector γ corresponding to

the proposed weighting strategy of (3.26) is selected as γ = [2, 1, 1, 1] for the first ten sub-

carriers. For the remaining subcarriers, the covariance matrices of the transmitted symbols

are proportional to the identity matrix and the uniform weight vectors, i.e., γ = γu, are

used. It can be seen from Figs. 4.16-4.18 that the subcarrier-wise method of [SGM05] is not

able to resolve non-scalar ambiguities while the other methods tested have resolved such

ambiguities. This shows that implementing the proposed weighting strategies of Chapter

3 in a few subcarriers along with coherent processing across all subcarriers allows to re-

solve non-scalar ambiguities in the non-identifiable cases. Moreover, comparing the symbol

decoding performance of all the methods tested in Fig. 4.3 and Fig. 4.18, excluding that

of the subcarrier-wise method of [SGM05], reveals that applying such weighting strategy

results in a lower decoding performance. This can be explained by the fact that the min-

imum Euclidean distance among constellation points is decreased by applying such linear

precoding.

4.6 Chapter summary

A novel closed-form blind channel estimation approach for orthogonally coded MIMO-

OFDM wireless communication systems has been proposed. We have exploited virtual

snapshot model introduced in Chapter 3 and proposed a new normalization scheme to

generalize the property of the received data covariance matrix principal eigenvector for

multi-carriers. Furthermore, assuming a given delay spread over a wireless channel, we

have estimated the FIR channel parameters in the time-domain jointly for all subcarriers.
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This has been demonstrated to result in coherent processing across all subcarriers. Associ-

ated with this procedure is an inherent denoising effect and a lower computation complexity.

Simulation results have demonstrated performance advantages of the proposed method as

compared to other state-of-the-art blind MIMO-OFDM channel estimation techniques.



Chapter 5

Blind channel estimation in

orthogonally coded MIMO-OFDM

systems: Alternative approaches

for multi-carrier analysis

5.1 Introduction

In this chapter, different approaches for blind channel estimation in orthogonally space-

time coded MIMO-OFDM systems, that show different performance-complexity trade-offs

in contrast to each other and to the proposed method in Chapter 4, are developed. Like the

proposed method in (4.22), these approaches take advantage of the structural properties of

the OSTBCs and of parsimonious channel parameterization in the time-domain and enjoy

coherent processing across all subcarriers. First, we propose a new approach to formulate

the blind channel estimation problem which results in different normalization coefficients

compared to that of the method presented in Chapter 4 defined in (4.2). As a result, this

method alleviates the need for finding the per subcarrier principal eigenvalue in the method

presented in Chapter 4 and replaces them by corresponding individual CFR vector norm

constraints. Then, in the context of semi-definite programming (SDP), a SDR technique is

used to convert the underlying non-convex blind channel estimation problem to a convex

form. Next, to further simplify the proposed technique and to reduce the computational

87
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burden, we propose another blind channel estimation approach based on the finite alphabet

constraint relaxation over the transmitted symbols and aggregate CFR vector norm con-

straint. This RML-based technique also uses a special case of extended covariance matrix in

(4.1) with uniform normalization coefficients instead of the ones in (4.2). Then, we consider

the channel estimation problem at hand from a different perspective and exploit the popular

Capon technique to introduce a new approach for blind channel estimation. Corresponding

performances are illustrated by means of extensive numerical examples which demonstrate

performance of new approaches with respect to the one introduced in the previous chapter

and several other state-of-the-art MIMO-OFDM channel estimation techniques.

5.2 Semi-definite relaxation-based approach

Exploiting the subspace structure of observations in different subcarriers of MIMO-OFDM

systems and using a lemma in linear algebra, it is shown in Appendix E that the true overall

CFR vector for all subcarriers, i.e., h′, can be estimated from the following optimization

problem as

ĥ′ = arg max
h̃

h̃T X̂ ′
(
γ, ξ‖h‖

)
h̃

s.t. h̃TJiJ
T
i h̃ = ‖hi‖2, i = 0, . . . , N0 − 1, (5.1)

where X̂ ′
(
γ, ξ‖h‖

)
is defined according to (4.1), ξ‖h‖ ,

[
‖h0‖2, . . . , ‖hN0−1‖2

]
, and Ji

represents a selection matrix according to (4.15). Since the problem (5.1) is developed in

the frequency-domain, the number of the optimization variables linearly grows in the number

of subcarriers and, therefore, for a large number of subcarriers, it is extremely large as well.

To reduce the problem dimension and in consequence the computational complexity of the

proposed method, we exploit the finite delay spread assumption over the wireless channel

presented in (2.32) in the same way of Section 4.3. As a result, we reformulate (5.1) in

the time-domain where the number of variables is independent of the number of subcarriers

and, hence, remains small even for remarkably large subcarrier numbers. To this aim, using

the linear relationship among the frequency and time-domain variables in (2.30) along with
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(4.11), (4.12), (4.19)-(4.21), we can rewrite (5.1) in the time-domain as

ĝ′
L′+1 = arg max

g̃L′+1

g̃T
L′+1

(
J̃

T
L′+1FT X̂ ′

(
γ, ξ‖h‖

)
FJ̃ L′+1

)
g̃L′+1

s.t. g̃T
L′+1

(
J̃

T
L′+1FTJiJ

T
i FJ̃ L′+1

)
g̃L′+1 = ‖hi‖2, i = 0, . . . , N0 − 1. (5.2)

Equivalently, we rewrite (5.2) as

ĝ′
L′+1 = arg min

g̃L′+1

−g̃T
L′+1 Pt g̃L′+1

s.t. g̃T
L′+1T

t
i g̃L′+1 = ‖hi‖2, i = 0, . . . , N0 − 1 (5.3)

where

Pt ,

(
J̃

T
L′+1FT X̂ ′

(
γ, ξ‖h‖

)
FJ̃ L′+1

)
� 0 ∈ R

2MN(L′+1)×2MN(L′+1),

Tt
i ,

(
J̃

T
L′+1FTJiJ

T
i FJ̃ L′+1

)
� 0 ∈ R

2MN(L′+1)×2MN(L′+1), (5.4)

and the superscript “t” refers to the time-domain. Since the matrix (−Pt) in (5.3) is not

positive semi-definite, this problem is not convex. Also, because the equality constraints in

(5.3) are quadratic, this problem belongs to the set of problems which generally referred to

as non-convex quadratically constrained quadratic problems (QCQPs) [BV04]. To transform

the non-convex problem (5.3) to a convex one, we exploit the SDR approach [BV04]. Let

us introduce a new matrix variable

G̃L′+1 , g̃L′+1g̃
T
L′+1 ∈ R

2MN(L′+1)×2MN(L′+1),

and consider the properties

g̃T
L′+1P

t g̃L′+1 = tr
(
G̃L′+1P

t
)

and g̃T
L′+1T

t
i g̃L′+1 = tr

(
G̃L′+1T

t
i

)
.

Then, the equation (5.3) can be rewritten in terms of the new matrix variable G̃L′+1 as

Ĝ′
L′+1 = arg min

G̃L′+1

−tr
(
G̃L′+1P

t
)

s.t. tr
(
G̃L′+1T

t
i

)
= ‖hi‖2, i = 0, . . . , N0 − 1

G̃T
L′+1 = G̃L′+1, rank{G̃L′+1} = 1. (5.5)
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To follow the idea of SDR technique, we drop the non-convex constraint in (5.5), i.e.,

rank{G̃L′+1} = 1, and replace it by its associated semi-definite counterpart G̃L′+1 � 0. As

a result, we obtain the following convex SDP problem

Ĝ′
L′+1 = arg min

G̃L′+1

−tr
(
G̃L′+1P

t
)

s.t. tr
(
G̃L′+1T

t
i

)
= ‖hi‖2, i = 0, . . . , N0 − 1

G̃T
L′+1 = G̃L′+1, G̃L′+1 � 0, (5.6)

which can be solved in polynomial time [GW95], [Nes98], [Zha00] using, e.g., CVX [GB11], a

package for specifying and solving convex programs, or SeDuMi [Stu99] toolboxes. We have

derived the SDP problem in (5.6) by dropping the non-convex rank-one constraint in (5.5)

and relaxing this constraint to its respective semi-definite counterpart. It is shown [BV04]

that, in fact, the resulting problem (5.6) is the Lagrange bidual of the primal problem (5.3).

It should be mentioned that bidual problems are frequently used and exploiting them is a

powerful tool to convexify original non-convex problems [BV04].

Remark 5.2.1: In general, solving (5.6) results in a solution matrix G̃∗
L′+1 from which we

should recover a solution vector g̃∗
L′+1 to the primal optimization problem (5.3). Following

from our extensive numerical results, it should be noted that for different types of OSTBCs,

real or complex constellations, and the numbers of receive antennas, the rank of the solution

matrix G̃∗
L′+1 for (5.6) is in exact agreement with the results presented in Table 3.1, Tables

II and III of [Ma07], Table I of [SGM05], and Table I of [VS08a]. These tables summarize

numerical or analytical results on the blind channel identifiability for different types of

OSTBCs and different number of receive antennas. Therefore, in identifiable cases [VS08a]

when non-rotatable OSTBCs [Ma07] are used with M > 1 receive antennas, G̃∗
L′+1 is always

rank-one. So, converting (5.5) to (5.6) does not involve any approximation and is exact in

these cases, and, therefore, g̃∗
L′+1 is the principal component of G̃∗

L′+1.

Remark 5.2.2: If the OSTBC is rotatable or for some non-rotatable OSTBCs in the

MISO system configuration, when the rank of G̃∗
L′+1 is higher than one, the weighting
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strategies proposed in Section 3 can be implemented to warrant rank-one solution. More-

over, there are several techniques such as odd-even subchannel grouping [CMC08], non-

intersecting subspace code generation [Ma07], linear precoding [SGM05], and rate reduction

[VS08a] that can be used to cope with non-rank-one solution case. Also, one can exploit

randomization techniques [GW95] to obtain g̃∗
L′+1 from G̃∗

L′+1 in this case. The randomiza-

tion techniques in general use G̃∗
L′+1 to randomly generate a set of candidate vectors from

which the best solution is then selected as g̃∗
L′+1; see [SDL06].

Remark 5.2.3: Note that the proposed method in (5.6) suffers from the sign ambiguity.

However, such ambiguity is quite common for many blind approaches known so far, e.g.,

see the method proposed in Chapter 4, and that of [CMC08], [SGM05] and [VSPV09]. To

eliminate this type of ambiguity, we refer the reader to Remark 4.3.2 in Chapter 4.

Remark 5.2.4: It should be emphasized that in comparison to the method of (4.22)

developed in Chapter 4, the proposed method in (5.6) alleviates the need for per-subcarrier

principal eigenvalue calculation, i.e., ξλmax
in (4.2) along with (4.1), and replace it by

the need for per-subcarrier CFR vector norm calculation, i.e., ξ‖h‖ in (5.1). Hence, only

regarding this issue, the latter approach benefits from slight computational complexity

reduction. However, the latter approach, which is based on solving SDP problem, has

higher computational cost, and does not offer closed-form solution compared to the former

method, that is based on solving eigenvalue problem, and provides closed-form solution.

Also, note that the complexity of the approach in (5.6) is typically lower than that of the

approach of [CMC08] although both approaches are based on solving SDP problems. To

explain this, it should be reminded that the SDP step dominates the complexity of whole

algorithm [MVDC06] in the both latter approaches. It is known that the computational cost

of SDP problem is O(x3.5) with x stands for the size of problem. In [CMC08], the size of the

SDP problem depends both on the size of each data block prior to encoding and the number

of subcarriers. For the full OSTBC-OFDM (FOO) algorithm [CMC08], the complexity is

O
(
(N0K)3.5

)
as we have x = N0K. For the subchannel grouping OSTBC-OFDM (SGOO)

scheme [CHMC10], that is developed to reduce the complexity at the cost of performance,

(N0/Ng) separate optimization problems (Ng is the number of subcarriers in each group)
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should be solved with the complexity of O
(
(NgK)3.5

)
for each. Hence, at best when Ng = 1,

the complexity is O(N0K
3.5) and at worse when Ng = N0, the complexity is equal to that

of the FOO algorithm. This implies that in both cases, complexity order depends on both

K and N0 which is comparable to the subchannel-wise method of [SGM05] complexity. In

contrast to the methods of [CHMC10] and [CMC08], in the proposed approach of (5.6),

the size of the SDP problem only depends on the numbers of antennas and the upper

bound on number of CIR effective taps, i.e., the time-domain channel parameters, hence,

the corresponding complexity is given by O
((

(L′ + 1)MN
)3.5)

. It should be added that

in both of the aforementioned SDP-based methods, the number of constraints depends on

the number of subcarriers and this is the reason why we only compared the size of the SDP

objective functions.

Remark 5.2.5: Last but not the least, when the wireless channel is invariant over several

OSTBC-OFDM blocks, that is P > 1, any blind detection approach requires to be repeated

for each data block. In other words, the approach of [CMC08] needs to solve P separate

SDP problems, whereas the proposed method in (5.6) requires to solve only one problem

for any value of P . Consequently, the complexity of blind detection approaches such as

that of [CMC08] become prohibitively high in the cases when P is large while the proposed

approach offers a computational attractive alternative to the former methods in the quasi

static channel scenarios.

Next, we develop a blind channel estimation technique based on both relaxation of the

finite alphabet constraint over the transmitted symbols and aggregate over all subcarriers

CFR vector norm constraint instead of per-subcarrier CFR vector norm constraints used in

(5.6). As a result, unlike the blind approach of (5.6), the new technique finds the channel

estimate in closed form. Also, the latter technique offers remarkable reduced computa-

tional complexity compared to the SDR-based method of (5.6) at the cost of performance

degradation.
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5.3 Relaxed ML-based approach

It is shown in Appendix F that making use of definition (3.4), the blind RML channel

estimator at the ith subcarrier reduces to the following estimate for the CFR vector hi in

the Gaussian noise case

ĥi,RML = arg max
‖h̃i‖=‖hi‖

h̃T
i X̂i(γRML) h̃i, i = 0, . . . , N0 − 1 (5.7)

with γRML ,
[
1, . . . , 1

]T
. Next, to enable coherent processing among different subcarriers of

the MIMO-OFDM system, we propose to combine subcarrier covariance matrices X̂i(γRML)

in (5.7) with equal gains to obtain the following estimate of the true overall CFR vector h′

introduced in (2.33) as

ĥ′ = arg max
h̃

N0−1∑

i=0

h̃T
i X̂i(γRML) h̃i, (5.8)

where the norm constraints ‖h̃i‖ = ‖hi‖, i = 0, . . . , N0−1, should be taken into account and

h̃ ,
[
h̃T
0 , . . . , h̃

T
N0−1

]T ∈ R
2MNN0×1 stands for the vector of optimization variables in the

frequency-domain. This is equivalent to choose uniform normalization scalars {ξi}N0−1
i=0 = 1

in (4.1) or

ξ = ξu ,
[
1, . . . , 1

]T
, (5.9)

and to estimate h′ as

ĥ′ = arg max
h̃

h̃T X̂ ′(γRML, ξu) h̃, (5.10)

with the norm constraints ‖h̃i‖ = ‖hi‖, i = 0, . . . , N0 − 1 due to the block-diagonal struc-

ture of X̂ ′(γRML, ξu). Since (5.10) is formulated in the frequency-domain, the number of

optimization variables increases with the number of subcarriers and, hence, the problem

dimension of (5.10) can be extremely large for a large number of subcarriers. To reduce the

dimension and the computational cost, it is convenient to exploit the finite delay spread

assumption of (2.32), as we did in Section 4.3, and to reformulate (5.10) in the time-domain.

Using the linear relationship among the frequency and time-domain variables in (2.30) along

with (4.11), (4.12), (4.19)-(4.21), we can rewrite (5.10) in the time-domain as

ĝ′
L′+1 = arg max

g̃L′+1

g̃T
L′+1

(
J̃

T
L′+1FT X̂ ′

(
γRML, ξu

)
FJ̃ L′+1

)
g̃L′+1, (5.11)
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where the norm constraints in (5.10) take the form ‖Fig̃‖ = ‖hi‖, i = 0, . . . , N0 − 1 with

h̃i , Fig̃. It can be observed that the problem formulation in (5.11) exploits all available

received data within the whole frequency band by performing coherent processing among

all subcarriers. Meanwhile, it has advantage of estimating less number of parameters as

compared to the problem formulation in (5.10) which is preferable from the performance

viewpoint. To come up with a closed-from estimator in contrast to the proposed method

in Section 5.2, we relax N0 individual norm constraints in (5.11) and replace them by one

aggregate constraint to approximate the estimator (5.11) as

ĝ′
L′+1 = arg max

g̃L′+1

g̃T
L′+1

(
J̃

T
L′+1FT X̂ ′

(
γRML, ξu

)
FJ̃ L′+1

)
g̃L′+1

s.t. ‖g̃L′+1‖ = ‖g′‖, (5.12)

where instead of the original subcarrier norm constraints, corresponding relaxed version

‖g̃L′+1‖ = ‖g′‖ is replaced. It is known that the solution to (5.12) belongs to the subspace

spanned by the principal eigenvector of the matrix
(
J̃

T
L′+1FTX ′

(
γRML, ξu

)
FJ̃ L′+1

)
(or

several principal eigenvectors in the case of eigenvalue multiplicity). Since the value of

objective function in (5.12) can increase arbitrarily if ‖g̃L′+1‖ → ∞, we consider norm

bounded variable g̃L′+1 to avoid such a trivial solution for (5.12). In essence, for any norm

bounded variable g̃L′+1, the spatial signature of the estimated equivalent CIR vector ĝ′
L′+1

can be obtained from (5.12) which is parallel to the true overall CIR vector in asymptotic

scenarios, when X̂ ′
(
γRML, ξu

)
= X ′

(
γRML, ξu

)
, and, then, a proper scaling factor should

be applied to its norm. Hence, the channel can be blindly recovered up to a real scalar

ambiguity by solving (5.12) for any norm-bounded vector of optimization variable.

Remark 5.3.1: It should be noted that each term in (5.7) contributes to (5.8) with equal

gains, i.e., ξ = ξu. This is in contrast to the methods of (4.22), (5.6), and [VSPV09] which

combine subcarrier SOSs with unequal gains. These gains or normalization coefficients

are the principal eigenvalue of the virtual snapshots covariance matrix per-subcarrier, i.e.,

ξ = ξλmax
, the subcarrier CFR vector norm, i.e., ξ = ξ‖h‖, and the signal subspace energy

at each subcarrier, respectively. As a result, the proposed method of (5.10) alleviates the

need and the corresponding computational cost to obtain these normalization coefficients.
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However, it is not guaranteed anymore, on the contrary to the method of (4.22), that the

property of the subcarrier covariance matrix principal eigenvector is still kept by performing

coherent processing among different subcarriers. It can be observed from numerical results

in Section 5.5 that although in low SNRs, this equal gain combining together with norm

relaxation in (5.12) lead to negligible performance losses, the respective impact is reasonable

for high SNRs.

Remark 5.3.2: Since performance of the decoder (2.73) is insensitive to rescaling the

channel estimate by any real factor in constant modulus constellation case, there is no need

even for the estimation of the overall channel vector norm in (5.12). Therefore, finding the

normalized principal eigenvector of
(
J̃

T
L′+1FTX ′

(
γRML, ξu

)
FJ̃ L′+1

)
would be sufficient

which results in further computation savings.

Remark 5.3.3: The idea of relaxing individual channel norm constraints per-subcarrier

and replacing them by aggregated one, that is exploited in (5.12), can be also used along

with the approach of Section 5.2 to avoid solving the SDP problem in (5.6). In other words,

the subcarrier terms of (F.6) can be normalized by their respective CFR vector norms

first, and then, contribute to (5.10). The provided simulation results in Section 5.5 reveal

that such unequal-gain combination of the per-subcarrier SOSs generally results in better

channel estimation and symbol detection performances.

Remark 5.3.4: Also, we can combine per-subcarrier ECM estimator of (3.41) for all

subcarriers and follow the same steps of (5.7)-(5.12) to obtain

ĝ′
L′+1,ECM = arg max

g̃L′+1

g̃T
L′+1

(
J̃

T
L′+1FT X̂ ′

(
γECM, ξu

)
FJ̃ L′+1

)
g̃L′+1

s.t. ‖g̃L′+1‖ = ‖g′‖. (5.13)

In (5.13), the individual norm constraints per-subcarrier are relaxed and replaced by the

aggregated one as in (5.12). Repeating the same steps for the subcarrier KCM estimator of

(3.48) results in

ĝ′
L′+1,KCM = arg max

g̃L′+1

g̃T
L′+1

(
J̃

T
L′+1FT X̂ ′

(
γKCM, ξu

)
FJ̃ L′+1

)
g̃L′+1

s.t. ‖g̃L′+1‖ = ‖g′‖. (5.14)



96 CHAPTER 5. Blind channel estimation: Alternative approaches (multi-carrier)

Both (5.13) and (5.14) can be considered as the generalization of (5.12) if the covariance

matrices of the transmitted symbols in different subcarriers differ from a scaled version

of the identity matrix due to, for example, power imbalance among different information

symbols [VS08b].

Next, we develop a novel blind channel estimator and derive respective optimization

problem from different perspective. The resulting approach enjoys from all benefits of the

one introduced in Section 5.3 and at the same time exhibits an improved performance at

the cost of higher computational complexity.

5.4 Capon-based approach

The key idea is to develop an estimator inspired from the generalized Capon method to

obtain the CIR vectors gl, l = 0, . . . , L, in a blind fashion. To this end, we design a filter at

the receiver side which passes the transmitted symbols corresponding to a specific column of

the matrix A(h̃i) without distortion while maximally suppresses all the symbols associated

with the other columns of this matrix and noise components at the ith subcarrier. Therefore,

we solve the following optimization problem [SGG06]

min
wk,i

wT
k,iRiwk,i s.t. wT

k,i ak(h̃i) = 1, (5.15)

where the solution vector passes the symbols corresponding to ak(h̃i) as the kth column of

the matrix A(h̃i) defined in (2.37). It can be shown that the solution to (5.15) is given by

[SGG06]

wk,i(h̃i) =
1

ak(h̃i)TR
−1
i ak(h̃i)

R−1
i ak(h̃i), (5.16)

where the solution vector depends on the CFR vector at the ith subcarrier, which is explic-

itly emphasized by adopting the notation wk,i(h̃i). As a result and according to (5.16), a

separate weight vector should be applied for each entry of the transmitted symbol vector

si. Then, we define the Capon spectrum for any CFR vector h̃i and any kth entry of si as

Sk,i(h̃i) , wT
k,i(h̃i)Riwk,i(h̃i) =

1

ak(h̃i)TR
−1
i ak(h̃i)

, (5.17)
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which indicates the kth Capon receiver output power. If the vector variable h̃i, stands for

a channel vector at the ith subcarrier, was not norm-bounded, then Sk,i(h̃i) → 0 when

‖h̃i‖ → ∞. However, considering norm constraints ‖h̃i‖ = ‖hi‖ over the vector variable h̃i,

as in (F.6), the Capon spectrum of (5.17) has its maximum value at h̃i = hi.

While we can exploit any of the Capon spectra Sk,i(h̃i), k = 1, . . . , 2K, defined in (5.17),

to estimate the CFR vector at the ith subcarrier, we combine them to enhance this estimate

by using (2.41) and (2.44) as [SGG06]

Ti(h̃i) ,

2K∑

k=1

1

Sk,i(h̃i)
=

2K∑

k=1

ak(h̃i)
TR−1

i ak(h̃i)

= h̃T
i

(
2K∑

k=1

ΦT
kR

−1
i Φk

)
h̃i

= h̃T
i Φ

T
(
I2K ⊗R−1

i

)
Φh̃i. (5.18)

Taking into account (4.11) together with h̃i = Fig̃, we can rewrite (5.18) in the time-domain

as

Ti(g̃) = g̃TFT
i Φ

T
(
I2K ⊗R−1

i

)
ΦFig̃. (5.19)

Using (2.30), (2.31), along with (E.2), (E.5), and (E.8), the subcarrier spectrum expressed

in (5.19) can be combined together for all subcarriers to benefit from joint processing as

T (g̃) =

N0−1∑

i=0

Ti(g̃) =
N0−1∑

i=0

g̃TFT
i Φ

T
(
I2K ⊗R−1

i

)
ΦFig̃

= g̃TFTΨT
(
I2KN0

⊗R−1
)
ΨF g̃. (5.20)

Since the Capon spectrum in (5.17) has its maximum value for h̃i = hi when norm constraint

‖h̃i‖ = ‖hi‖ is assumed, Ti(h̃i) in (5.18) is expected to have its minimum under the same

condition and so does T (g̃) in (5.20) for g̃ = g′ with norm constraints ‖Fig̃‖ = ‖hi‖,
i = 0, . . . , N0 − 1. Next, we consider the finite delay spread assumption of (2.32) to reduce

the number of optimization variables and use (4.19) along with (4.20) to rewrite (5.20) as

T (g̃L′+1) = g̃T
L′+1

(
J̃

T
L′+1FTΨT

(
I2KN0

⊗R−1
)
ΨFJ̃ L′+1

)
g̃L′+1, (5.21)

with minimum value for g̃L′+1 =
[
gT
0 , . . . g

T
L′

]T
under the same norm constraints as for

(5.20).
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To come up with a closed-form estimation approach, we relax the latter individual norm

constraints and replace them, as we did before in (5.12), by one aggregate norm constraint.

Hence, the proposed Capon-based blind estimator (5.21) can be approximated as

ĝ′
L′+1,Capon = arg min

g̃L′+1

g̃T
L′+1

(
J̃

T
L′+1FTΨT

(
I2KN0

⊗ R̂−1
)
ΨFJ̃ L+1

)
g̃L′+1

s.t. ‖g̃L′+1‖ = ‖g′‖, (5.22)

where the sample covariance matrix R̂ is used instead of the true covariance matrix R.

It is known that the solution to (5.22) belongs to the subspace spanned by the minor

eigenvector (or eigenvectors, in the case of smallest eigenvalue multiplicity) of the matrix(
J̃

T
L′+1FTΨT

(
I2KN0

⊗ R̂−1
)
ΨFJ̃ L′+1

)
.

Remark 5.4.1: Note that each Capon spectra defined in (5.17) or respective combined

version introduced in (5.18) can be used to estimate CFR vector per-subcarrier indepen-

dently. Hence, the proposed approach can be also considered as an alternative candidate for

the estimator, introduced in Chapter 3, to perform blind channel estimation in single-carrier

scenario.

Remark 5.4.2: It is worth noting that diagonal loaded sample estimate covariance ma-

trix, R̂dl , R̂+αI, in which α is the loading factor, can be used to improve the robustness

of estimator (5.22) against the finite sample effect [Van02].

Remark 5.4.3: As compared to the proposed method presented in (5.12), the Capon-

based approach of (5.22) exhibits more computational complexity since the inverse of re-

ceived data covariance matrix has to be calculated. However, simulation results presented

in Section 5.5 demonstrate performance advantages of the Capon-based approach.

Remark 5.4.4: Note that each subcarrier combined Capon spectra in (5.18) contributes

to (5.20) with equal gains. This leads to an extra estimation bias due to the coherent pro-

cessing among different subcarriers same as for the RML-based method of (5.12) mentioned

in Remark 5.3.1. To prevent this, it is also possible to follow the proposed idea of coher-

ent processing introduced in Section 4.2 to combine different Capon spectra in (5.18) for all

subcarriers. Since the CFR vector at each subcarrier is the minor eigenvector corresponding

to the smallest eigenvalue of
(
ΦT

(
I2K ⊗R−1

i

)
Φ
)
according to (5.18), this subcarrier CFR
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vector also corresponds to the smallest eigenvalue equal to one in all subcarriers if we utilize

proper normalization factor of λmin

(
ΦT

(
I2K ⊗R−1

i

)
Φ
)
as we did in (4.1). Then, it can

be guaranteed that the true overall CFR vector in (2.33) can be formed from the subcarrier

minor eigenvectors even in the finite sample cases. As a result, the coherent processing

among different subcarriers does not introduce extra bias to the estimation of the overall

CFR. According to our extensive simulations, following the mentioned idea of normaliza-

tion by the per-subcarrier smallest eigenvalue, provides us the blind channel estimator with

corresponding performance nearly similar to that of the method of (4.22).

Remark 5.4.5: It can be shown that, e.g., in the cases when the OSTBC is rotat-

able in which (2.64) holds true as discussed in Subsection 2.4.1, the smallest eigenvalue

of
(
J̃

T
L′+1FTΨT

(
I2KN0

⊗ R̂−1
)
ΨFJ̃ L′+1

)
exhibits multiplicity; see [SGG06] for more

detail. To resolve such a multiplicity problem, the weighting strategies discussed in Section

3.3 can be implemented. However, when necessary conditions of (3.13) and (3.25) are not

satisfied, pilot symbols, if they exist, can be also exploited instead.

5.5 Simulations

In this section, we compare the performance of the proposed blind channel estimators

(5.6), (5.12), and (5.22) with that of the method of [CMC08], the subcarrier-wise technique

of [SGM05], the method of [VSPV09], and the previously proposed method of (4.22) in

the Rayleigh fading frequency-selective channel cases. However, the performance of the

last four methods are compared with each other in Section 4.5. We present again their

associated performances in this section just to illustrate and compare the performance of

the blind channel estimators proposed in this chapter with them. In the presented numerical

examples, the channel conditions and all the other simulation parameters are identical to the

counterpart examples in Section 4.5. Further, we adopt the same definitions for the SNR,

the estimation bias, the estimation RMSE, and SERs or BERs as in Section 4.5. Diagonal

loading with the factor of α = 5σ2 is used to implement the Capon-based method of (5.22)

in all the numerical results; see Remark 5.4.2. Note that in the beamforming community,
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Figure 5.1: Bias versus SNR, first example, P = 2.

this is quite a popular ad hoc choice of the diagonal loading factor [Ger03]. Throughout

all numerical examples, subcarrier CFR vector norms are estimated from (4.26). As in this

case, equality constraints in (5.6) may make this estimator sensitive to CFR vector norm

estimation errors, we have replaced them by inequality constraints, as mentioned in Section

5.2.

Hence, in the first and second examples, the real rate-one OSTBC of (4.31), in which

N = 3, K = T = 4, with BPSK symbols are implemented. Fig. 5.1 and Fig. 5.2 show the

estimation bias and RMSE for all the methods tested versus the SNR, respectively. It can

be seen from Fig. 5.1 that in this setup, the estimation bias of the SDR-based method of

(5.6) is lower than that of all the other methods and nearly similar to that of the method of

[CMC08] in high SNRs. Note that this lower estimation bias is achieved at the cost of solving

SDP problem with N0 constraints and no closed-form solution in (5.6). The proposed RML-

based method of (5.12) performs quite better compared to the method of [SGM05] in low

SNRs while shows highest estimation bias among all the methods tested in high SNRs. This
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Figure 5.2: RMSE versus SNR, first example, P = 2.
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Figure 5.3: BER versus SNR, first example, P = 2.
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observation verifies well the fact which explained in Remark 5.3.1. Note that as the constant

modulus constellation is used in the first and second examples, referring to Remark 5.3.2,

there is no need for the estimation of the overall channel vector norm in (5.12). This results

in reduced computational cost compared to the methods of (5.6), (4.22), and [VSPV09].

The Capon-based method of (5.22) performs better compared to the RML-based method

at the cost of higher computational cost; see Remark 5.4.3. All the proposed estimators in

this chapter are capable to benefit from coherent processing over subcarriers to outperform

the subcarrier-wise approach of [SGM05]. However, the methods of (5.12) and (5.22),

exhibit extra estimation bias in high SNRs referring to Remark 5.3.1 and Remark 5.4.4.

We further elaborate this issue in the second setup of the first numerical example. Also

note that the performance of the proposed estimators in this thesis substantially improves

when the channel can be assumed invariant over many OSTBC-OFDM blocks. The same

statement, as mentioned in Section 4.5, also holds true for the methods of [SGM05] and

[VSPV09]. Moreover, since the method of [CMC08] originally is proposed in a block-wise

manner, it can not benefit from increasing P . However, by increasing P , the computational

complexity of the method of [CMC08] dramatically increases compared to all the other

methods tested.

Fig. 5.2 shows the RMSE of all the methods tested versus the SNR. It can be seen that

the difference in the estimation RMSE among the proposed method in (5.6) and the methods

of (4.22), [CMC08], and [VSPV09] is less pronounced than the corresponding estimation

bias in Fig. 5.1. Also, quite similar relationships among the proposed estimators of (5.12)

and (5.22) with all the other methods as in Fig. 5.1 for the estimation biases can be noticed.

Fig. 5.3 illustrates BERs of all the methods tested versus the SNR. In Fig. 5.3, to

detect the symbols in all the proposed methods of this chapter, the ML decoder of (2.73) is

exploited. The informed ML receiver is also included, as a benchmark, in Fig. 5.3. It can be

seen that the proposed approach of (5.6) performs considerably better than the method of

[SGM05], slightly better than the method of [VSPV09], and quite similar as the methods of

(4.22) and [CMC08]. Also, the performance of the method of (5.12) is slightly better than

that of the method of [SGM05] in low SNRs while it is the worst among performances of all



CHAPTER 5. Blind channel estimation: Alternative approaches (multi-carrier) 103

−10 −5 0 5 10 15 20
10

−2

10
−1

10
0

 

 

Method of [SGM05]

Method of [VSPV09]

Method of [CMC08]

Proposed method of (4.22)

Proposed method of (5.12)
Proposed method of (5.22)

Proposed method of (5.6)

B
ia
s

SNR (dB)

Figure 5.4: Bias versus SNR, first example, P = 1.

the other methods tested in high SNRs. Further, BERs performance of the Capon-based

method of (5.22) is better than that of the both methods of (5.12) and [SGM05], and is

worse than that of the others.

It should be added that to reduce the estimation bias resulted from coherent process-

ing especially in the finite sample case and to enhance the performance of the methods

of (5.12) and (5.22), the approaches in Remark 5.3.3 and Remark 5.4.4 can be applied.

However, this results in higher computational burden corresponding to the calculation of

per-subcarrier CFR vector norm or smallest eigenvalue of the modified covariance matrix at

each subcarrier, respectively. Furthermore, according to our extensive simulations, applying

such modifications does not result in methods which perform better than the method of

(4.22). It is noteworthy to mention that from practical viewpoint, there is an interesting

scenario in which the extra estimation bias, comes from coherent processing due to equal-

gain combination in (5.12) and (5.22), is not significant. This scenario occurs when only

one OSTBC-OFDM symbol is available at the receiver to form sample covariance matrix,
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Figure 5.5: RMSE versus SNR, first example, P = 1.
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Figure 5.6: BER versus SNR, first example, P = 1.
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Figure 5.7: Bias versus SNR, second example.

i.e., P = 1. In this case, the sample covariance matrix at each subcarrier, i.e., R̂i, has only

one non-zero eigenvalue with associated principal eigenvector (or minor eigenvector of R̂−1
i

in the Capon-based method) that forms one out of N0 principal eigenvectors of R̂ (or minor

eigenvectors of R̂−1 in the Capon-based method) as in (4.3).

To investigate the performance of the proposed methods in this recent scenario, we

set P = 1 in the first numerical example and keep all the other parameters unchanged.

Comparing Figs. 5.4-5.6 with their counterparts Figs. 5.1-5.3 reveals that performance dif-

ferences among the methods of (5.12) and (5.22) with that of the methods of (4.22), (5.6),

[CMC08], and [VSPV09] are substantially decreased. Also, performances of the meth-

ods (5.12) and (5.22) experience considerable improvement in comparison with that of the

method of [SGM05]. Furthermore, it can be generally observed that all illustrated perfor-

mance measures in Figs. 5.4-5.6 deteriorate compared to the associated ones in Figs. 5.1-5.3

as P is decreased.
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Figure 5.8: RMSE versus SNR, second example.
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Figure 5.9: BER versus SNR, second example.
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Note that all the methods tested, except the subcarrier-wise method of [SGM05], expe-

rience performance enhancement by increasing the number of subcarriers. However, quite

the same relative performances such as Figs. 5.1-5.3 can be inferred while the enhancements

of all methods over the subcarrier-wise method of [SGM05] become more noticeable. To

verify this, we set N0 = 256 in the second simulation setup as in Section 4.5. All the other

parameters are the same as in the first example. It should be noted again that since the

approach of [CMC08] has excessively high computational complexity in this case, it is not

included in the second example. Figs. 5.7, 5.8, and 5.9 show, respectively, the channel es-

timation bias, the channel estimation RMSE, and the BER performances of the proposed

methods in this chapter together with that of the ones presented in the second example of

Section 4.5 versus the SNR. It can be observed from these figures that according to our

expectation, performance of the proposed methods of (5.6), (5.12), and (5.22) are consid-

erably enhanced compared to that of the same estimators in the first example. Also, both

blind estimators of (5.12) and (5.22) exhibit performance improvements compared to the

subcarrier-wise method of [SGM05]. In particular, performance of the proposed method of

(5.6) is much better than that of the method of [SGM05] and is very close to that of the

informed ML decoder in Fig. 5.9. Note that obtained BERs performance of the method

(5.6) compared to that of the differential schemes [DASC02], [Li05], [MTL05] which suffer

from 3 dB performance penalty with respect to the informed ML decoder is promising.

In the third example, same as its counterpart in Section 4.5, we investigate the perfor-

mance of the proposed methods in this chapter under different OSTBC. So, the 3/4-rate

OSTBC of (3.52) with N = 4,K = 3, T = 4, and QPSK symbols are used for encoding.

All other parameters are the same as in the first example. It should be noted that the

blind identifiability of this code under the mentioned setup in Rayleigh fading channels is

guaranteed [VS08a]. It can be observed from Fig. 5.10 that the subcarrier-wise approach

of [SGM05] exhibits the highest estimation bias and the proposed method of (5.6) shows

the lowest estimation bias values for all SNRs. Furthermore, both of the proposed methods

of (5.12), and (5.22) perform better than the subcarrier-wise approach of [SGM05] due to

the coherent processing ability and worse than the proposed methods of (4.22), and (5.6)
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Figure 5.10: Bias versus SNR, third example.
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Figure 5.11: RMSE versus SNR, third example.
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Figure 5.12: SER versus SNR, third example.

because of the extra coherent processing estimation bias corresponding to the equal-gain

combination described in Remark 5.3.1 and Remark 5.4.4. A quite similar relationships for

the estimation RMSE can be observed among the methods tested in Fig. 5.11 as the estima-

tion bias in Fig. 5.10. Also, it can be observed from Fig. 5.12 that the SER performance of

the proposed estimator of (5.6) is the best among all the methods tested. In particular, the

SER performance of the proposed estimator of (5.6) is almost same as that of the methods

of (4.22) and [CMC08], about 1 dB better than that of the method of [VSPV09] and much

better than that of the method of [SGM05].

Same as the corresponding numerical examples in Section 4.5, the SNR and the pa-

rameter P are set to 0 dB and 2, respectively, and L′ is varied in the fourth and the fifth

numerical examples in this section. All other parameters are the same as in the first exam-

ple. In the fourth example, we set L = 5, and in the fifth example, L = L′ and is varied

from 5 to 20.

Fig. 5.13 and Fig. 5.16 illustrate the estimation bias for all the methods tested versus
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Figure 5.13: Bias versus L′, fourth example, L = 5.
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Figure 5.14: RMSE versus L′, fourth example, L = 5.
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Figure 5.15: BER versus L′, fourth example, L = 5.
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Figure 5.16: Bias versus L′, fifth example, L = L′.
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Figure 5.17: RMSE versus L′, fifth example, L = L′.

5 10 15 20
10

−2

10
−1

10
0

 

 

Method of [SGM05]

Method of [VSPV09]

Method of [CMC08]

Proposed method of (4.22)

Proposed method of (5.12)
Proposed method of (5.22)

Proposed method of (5.6)

Informed ML decoder

B
E
R

Assumed upper limit for the channel length

Figure 5.18: BER versus L′, fifth example, L = L′.



CHAPTER 5. Blind channel estimation: Alternative approaches (multi-carrier) 113

L′ for the the fourth and the fifth numerical examples. It can be seen from Fig. 5.13 and

Fig. 5.16 that the proposed method of (5.6) results in the lowest estimation bias compared

to the other methods tested. Also, for all values of L′, the proposed method of (5.6) exhibits

substantially lower estimation bias compared to the method of [SGM05]. Moreover, both

estimators of (5.12) and (5.22) perform better than the method of [SGM05] when L′ is close

to L, i.e., L′ < 14 and L′ < 19, respectively. Furthermore in Fig. 5.13, all methods tested,

excluding the subcarrier-wise method of [SGM05], exhibit the best estimation performance

for L = L′ due to the fact that the number of parameters to be estimated increases with L′.

Also, the best performance for all the methods tested, excluding the method of [SGM05],

correspond to the case when L is minimum, i.e., L = 5. Figs. 5.14 and 5.17 present the

channel estimation RMSE performances of the methods tested versus L′. These figures

result in quite the same conclusions as Figs. 5.10 and 5.13. Finally, Figs. 5.15 and 5.18

show BERs of the methods tested versus L′. It can be seen from these figures that the

performance of the method of [SGM05] and the informed ML receiver are insensitive to L′.

Also, the proposed method of (5.6) shows the best BERs performance among all the other

methods which deteriorates by increasing L′.

All the methods proposed in this chapter suffer from blind channel non-identifiability

either in the case of rotatable codes or the MISO system configuration for most of the

OSTBCs; see Table 3.1. To show another benefit of the coherent processing mentioned

in Remark 4.3.2 of Section 4.3, we set M = 1 in the sixth numerical example. All the

other parameters are same as the first example. The principal eigenvalue of Xi(γu) exhibits

multiplicity of order two for the selected setup according to Table 3.1 for the code index 5.

We exploit the non-uniform weighting strategy of (3.26) in the first ten subcarriers and the

uniform weighting strategy for all the other subcarriers. Also, the covariance matrices of the

transmitted symbols in the first ten subcarriers are chosen as {Λsi}9i=0 =
K
6 diag([3, 1, 1, 1])

which guarantee tr(Λsi) = K and fulfill the necessary condition of (3.25). The covariance

matrices of the transmitted symbols for the rest of subcarriers are proportional to the

identity matrix. The weight vector corresponding to the proposed weighting strategy of

(3.26) is selected as γn = [2, 1, 1, 1] for the first ten subcarriers.



114 CHAPTER 5. Blind channel estimation: Alternative approaches (multi-carrier)

−10 −5 0 5 10 15 20
10

−2

10
−1

10
0

 

 

Method of [SGM05]

Method of [VSPV09]

Method of [CMC08]

Proposed method of (4.22)

Proposed method of (5.12)
Proposed method of (5.22)

Proposed method of (5.6)

B
ia
s

SNR (dB)

Figure 5.19: Bias versus SNR, sixth example.
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Figure 5.20: RMSE versus SNR, sixth example.
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Figure 5.21: BER versus SNR, sixth example.

It can be observed from Figs. 5.19-5.21 that although the method of [SGM05] is not

able to resolve non-scalar ambiguities, all the other methods proposed in this chapter have

resolved such ambiguities. Among these methods, the SDR-based method of (5.6) shows

the best performance which is very close to that of the method of [CMC08] and noticeably

better than that of the methods of (4.22) and [VSPV09]. Finally, comparing the symbol

decoding performance of all methods tested in Fig. 5.3 and Fig. 5.21, excluding that of the

method of [SGM05], reveals that implementing such weighting strategy results in a worse

decoding performance.

5.6 Chapter summary

Three new blind channel estimation approach for orthogonally coded MIMO-OFDM wire-

less communication systems that exhibit different performance-complexity trade-offs have

been proposed. The key idea of the presented techniques is to exploit specific properties of



116 CHAPTER 5. Blind channel estimation: Alternative approaches (multi-carrier)

the OSTBCs and the finite delay spread assumption over the wireless channel to estimate

the FIR channel parameters in the time-domain jointly for all subcarriers. This has been

shown to result in a considerable improved parsimony of the channel parametric model and,

hence, lower computational complexity as compared to the direct subcarrier-wise channel

estimation methods. This also allows to perform coherent processing across all the sub-

carriers. First, we developed an optimization problem to estimate the true overall CFR

vector that exhibits a close relationship with that of the Chapter 4 for particular choice of

normalization vector ξ in (4.1). It has been shown that using the SDR approach, the devel-

oped channel estimation problem can be converted to a convex SDP problem which can be

solved using modern convex optimization toolboxes. Then, it is shown that relaxing finite

alphabet constraint over the transmitted symbols dramatically simplifies the joint blind ML

symbol detection and channel estimation problem which provided an opportunity to develop

the second estimator. By performing per subcarrier CFR norm relaxation, this RML-based

technique is interpreted as a special case of the extended covariance matrix defined in Chap-

ter 4 with uniform normalization coefficients. Finally, we have proposed another estimator

based on well-known Capon receiver which corresponding performance outperforms that of

the RML-based estimator. We also applied some sort of norm relaxation to devise closed-

from version of Capon approach. Provided simulations have demonstrated performance

advantages of the proposed methods as compared to several current state-of-the-art blind

MIMO-OFDM channel estimation and symbol detection techniques.



Chapter 6

Conclusions and future works

In recent years, the need for high rate reliable transmission over the wireless channels has

increased extremely. Multi-antenna and multi-carrier communication systems are known to

provide both theoretically attractive and technically feasible solutions that fulfill the afore-

mentioned requirements. However, to achieve the promises of these systems, an accurate

channel state information is demanded at the receiver most of the time.

In this thesis, we have proposed several new algorithms for blind channel estimation in

orthogonally coded MIMO systems which exhibit different performance-complexity trade-

offs. Further, we have studied different respective aspects regarding blind identifiability and

uniqueness of estimates taking into account practically notable scenarios.

6.1 Conclusions

In Chapter 2, after presenting signal model considered throughout the thesis and discussing

the OSTBCs properties, we studied the special class of the OSTBCs known as the rotatable

codes. Then, we went through blind identifiability issue of the wireless channel and proved

that in the case of rotatable OSTBCs including well-known Alamouti code, blind channel

estimates show non-scalar ambiguity in addition to inherent scalar ambiguity. Finally, we

presented the structure of an optimal receiver for orthogonally space-time coded MIMO

117
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systems.

In Chapter 3, we developed a novel virtual snapshot model for orthogonally space-

time coded frequency flat MIMO, and, hence, for a single-carrier of orthogonally coded

MIMO-OFDM systems. Next, this model was exploited to devise a blind channel estima-

tion method which can be implemented in a single-carrier basis. Further, we proposed two

weighting strategies of different virtual snapshots and proved respective abilities to resolve

any principal eigenvalue multiplicity of the weighted covariance matrix of the aforemen-

tioned virtual snapshots. These weighting strategies correspond to two important practical

scenarios: systems involving the rotatable codes like the celebrated Alamouti code that also

adopted in the LTE standard and systems involving the single-antenna receivers as in the

downlink transmission for mobile handsets. We proved that these two weighting strategies

are capable to resolve all non-scalar ambiguities inherent to blind channel estimation if the

weighting coefficients and symbol powers satisfy specific conditions. We further showed that

the linear precoding method of [SGM05] and the correlation matching method of [VS08b]

are special cases of the proposed strategies which particularly satisfy the sufficient part of

provided uniqueness conditions. The necessary parts of these conditions have not been in-

troduced before and the latter methods only suggest special cases of appropriate weighting

coefficients. Computer simulations verified provided analytical results and showed the per-

formance of devised blind channel estimator along with the proposed weighting strategies.

Next, a novel closed-form blind channel estimation approach for orthogonally space-time

coded MIMO-OFDM systems was developed in Chapter 4. We used the virtual snapshot

model, devised in Chapter 3, and proposed a new normalization method to retain the

desired property of virtual snapshot covariance matrix principal eigenvector for all subcar-

riers. Then, the finite delay spread assumption of the wireless channel was used to estimate

a lower number of parameters in the time-domain rather than the frequency-domain. As a

result, the capability of coherent processing among different subcarriers and improved par-

simony of the channel parametric model in contrast to the habitual subcarrier-wise chan-

nel estimation methods were obtained. These benefits resulted in a considerable reduced

computational complexity and improved estimation accuracy. In addition, we derived the
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condition which guarantees the uniqueness of the channel estimates. Provided numerical

results demonstrated performance advantages of the proposed approach in comparison with

other state-of-the-art blind MIMO-OFDM channel estimation or symbol detection methods.

Finally in Chapter 5, three blind MIMO channel estimators for frequency-selective wire-

less systems, which exploit OSTBCs along with OFDM, were developed. In all these meth-

ods, the finite delay spread assumption over the wireless channel together with the properties

of the OSTBC were used to estimate the CIR parameters. Like the method presented in

Chapter 4, all methods benefit from coherent processing across all the subcarriers which

improves estimation quality. For the first approach, we showed that the MIMO-OFDM

channel estimation problem exploits a special case of the extended covariance matrix de-

fined in Chapter 4 and can be converted to a convex SDP problem, using the SDR technique,

and solved by the aid of current convex optimization toolboxes. In the second approach, we

considerably simplified the joint blind ML symbol detection and channel estimation prob-

lem by using finite alphabet constraint relaxation over the transmitted symbols. Then, we

approximated the corresponding optimization problem by relaxing individual channel norm

constraints per-subcarrier and replacing them by one aggregated norm constraint and came

up with a closed-form channel estimator. It is also showed that this estimator exploits a

special case of the extended covariance matrix defined in Chapter 4. In the third approach,

we exploited Capon receiver to develop MIMO-OFDM channel estimator. Coherently com-

bining different subcarrier Capon spectra together with relaxation of the respective CFR

norm constraints resulted in another closed-formed blind channel estimator with outper-

formed performance in contrast to that of the RML-based estimator. All of the proposed

methods exhibited different performance-complexity trade-offs which were reflected partly

in numerical results. Also, computer simulations demonstrated performance advantages of

the proposed methods as compared to other current state-of-the-art blind MIMO-OFDM

channel estimation and symbol detection techniques.
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6.2 Future works

In Chapter 3, we developed a closed-form blind channel estimator based on novel virtual

snapshot model and then proposed two weighting strategies which can deal with the prob-

lem of non-scalar ambiguities of channel estimates in two important practical scenarios.

Since assuming power imbalance among the transmitted symbols (by applying, e.g., linear

precoding of [SGM05]), which is necessary to implement the proposed weighting strategies,

results in a minimum distance reduction of the symbol constellations, it would be interesting

to evaluate the performance losses of these strategies by the help of an experimental setup

in addition to computer simulations such as what has been done in [HSGG08]. It would

be also attractive to investigate the impact of choosing different weighting sets that sat-

isfy the sufficient conditions of (3.14) and (3.26) on the final symbol decoding performance

and to adopt a proper measure, e.g., the SER to derive the optimal weighting coefficients.

Moreover, nearly the same idea to that of in Chapter 3 can be exploited to devise a blind

symbol detection method for frequency flat extremely fast fading scenarios in which the

wireless channel varies even during the transmission of one data block. In this case, by

a slight modification of signal model, it can be proved that the vector of the transmitted

symbols can be estimated as the principal eigenvector of the oversampled received data

vector covariance matrix during one data block. Furthermore, although the tensor-based

extension of the blind estimator presented in Chapter 3 has been proposed in [RSSHPG11],

developing the tensor-based joint estimator for MIMO channel and carrier frequency offset

(CFO) is still interesting and deserves further study.

In Chapter 4, we proposed a novel closed-form blind channel estimator for orthogonally

space-time coded MIMO-OFDM systems that estimates the subspace which contains the

true channel vector irrespective of whether pilots are available or not. Since pilots are

already inserted in the data frame structure of modern standards which adopted MIMO-

OFDM such as the LTE, how to exploit these pilots in order to further enhance the quality

of fully blind channel estimates and to devise a semi-blind estimation method compatible

to practical standards can be the subject of a study. One way of doing this is to exploit
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available pilots to extract CSI from the subspace attained blindly by the use of the method

proposed in Chapter 4. The latter idea and its iterative version have been developed in

the sequel of this thesis; see [VSP11a] and [VSP11b], respectively, for more details. The

other attractive way which deserves further study could be to use pilots available in the

frame structure of standards to obtain a preliminary estimate of the channel vector and then

enhance corresponding quality by projecting this estimate onto the blind subspace achieved

by the application of the method of Chapter 4. This is subject of an ongoing research

project of the thesis author. Also, the tensor-based blind MIMO approach of [RSSHPG11]

could be proposed for the frequency-selective fading channel using nearly the same coherent

processing idea of Chapter 4.

As we have assumed that the multipath delays, the position of channel taps, are known

at the receiver, the performance of the proposed channel estimators in Chapters 4 and 5

could be evaluated in conjunction with any practical method that estimates the multipath

delays. Doing this enables us to investigate the robustness of the proposed approaches

against multipath delays mismatches.

Further, the key ideas of the proposed methods in this thesis can be extended to the

general case of space-time codes, e.g., the quasi-orthogonal space-time codes [Jaf01] or the

distributed space-time codes [JH06]. Also, an extension of the proposed channel estimators

to orthogonal and quasi-orthogonal designs in one-way or two-way non-regenerative (amplify

and forward) wireless relay networks [JJ07] that use OFDM encoding is also interesting and

corresponding performance could be investigated. Finally, the proposed approaches can be

extended for joint MIMO channel and CFO estimation in such distributed systems.
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Chapter 7

Appendices

Appendix A

To prove (2.38), we consider the definition in (2.37) together with (2.40). The (k, l)th entry

of the matrix multiplication in (2.38) can be written as
[
A(hi)

TA(hi)
]
kl
= ak(hi)

T al(hi).

This entry can be extended to obtain

ak(hi)
T al(hi) = hT

i


 Re(IM ⊗CT

k ) Im(IM ⊗CT
k )

−Im(IM ⊗CT
k ) Re(IM ⊗CT

k )




Re(IM ⊗Cl) −Im(IM ⊗Cl)

Im(IM ⊗Cl) Re(IM ⊗Cl)


hi.

(A.1)

Taking into account that

Re(IM ⊗CT
k ) = Re(IM ⊗CH

k ), k = 1, . . . , 2K

Im(IM ⊗CT
k ) = −Im(IM ⊗CH

k ), k = 1, . . . , 2K (A.2)

expression (A.1) is equal to

ak(hi)
T al(hi) = hT

i


Re(IM ⊗CH

k Cl) −Im(IM ⊗CH
k Cl)

Im(IM ⊗CH
k Cl) Re(IM ⊗CH

k Cl)


hi = hT

i C hi, k, l = 1, . . . , 2K

(A.3)

where

C ,


Re(IM ⊗CH

k Cl) −Im(IM ⊗CH
k Cl)

Im(IM ⊗CH
k Cl) Re(IM ⊗CH

k Cl)


 .
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According to the property of the OSTBCs basis matrices in (2.24), we distinguish two

different cases of k = l and k 6= l. Since CH
k Ck = IN , we conclude that

ak(hi)
T ak(hi) = hT

i


Re(IMN ) −Im(IMN )

Im(IMN ) Re(IMN )


hi = hT

i I2MNhi = ‖hi‖2, k = 1, . . . , 2K.

(A.4)

For the case of k 6= l, we exploit the skew-hermitian property of CH
k Cl = −CH

l Ck to show

that

C=


Re(IM ⊗CH

k Cl) −Im(IM ⊗CH
k Cl)

Im(IM ⊗CH
k Cl) Re(IM ⊗CH

k Cl)


=


−Re(IM ⊗CH

l Ck) Im(IM ⊗CH
l Ck)

−Im(IM ⊗CH
l Ck) −Re(IM ⊗CH

l Ck)


 .

(A.5)

Using (A.5), we have that CT = − C, i.e., C is skew-symmetric. Therefore, according to

(A.3), we obtain

ak(hi)
T al(hi) = hT

i C hi = hT
i C

T hi = −hT
i C hi = 0, k 6= l, k = 1, . . . , 2K (A.6)

Properties (A.4) and (A.6) complete the proof of (2.38). �

Appendix B

To prove (2.45) [BSK06], definition (2.37), the orthogonality property (2.38), and expression

(2.41) can be used which imply that for any channel vector hi, we obtain

ak(hi)
T ak(hi) = hT

i Φ
T
kΦkhi = hT

i hi. (B.1)

As (B.1) holds true for any hi and since (ΦT
kΦk) is a symmetric matrix, we conclude the

first part of (2.45). To prove the second part of (2.45), we use the fact that according to

(2.38), different columns of A(hi) are orthogonal to each other and conclude

ak(hi)
T al(hi) = hT

i Φ
T
kΦlhi = 0 (B.2)

al(hi)
T ak(hi) = hT

i Φ
T
l Φkhi = 0. (B.3)

Adding (B.2) and (B.3) side-by-side results

hT
i

(
ΦT

kΦl +ΦT
l Φk

)
hi = 0. (B.4)



CHAPTER 7. Appendices 125

Since (B.4) holds true for any vector hi and as
(
ΦT

kΦl +ΦT
l Φk

)
is a symmetric matrix,

we conclude that
(
ΦT

kΦl +ΦT
l Φk

)
= 0. This completes the proof of (2.45). It should be

stressed that (2.45) can be also deduced from (2.24) together with (2.42).

Appendix C

The result of this appendix, which is based on the following lemma and proposition from

linear algebra, is used to prove (3.9) and to conclude property of (3.29) in the thesis.

Lemma C.1: Let matrices M,N ∈ R
2MT×2MT be symmetric. Assume that N is positive

semi-definite and λn(·) shows the nth largest eigenvalue of a matrix. Then [HJ85],

λn (M) ≤ λn(M+N), n = 1, . . . , 2MT.

�

Proposition C.1: For any arbitrary matrices M and N with conformable dimensions we

have

λn(MN) = λn(NM). (C.1)

�

Due to the fact that T ≥ N for any arbitrary OSTBC and from (2.45), we deduce that

{Ξl}2Kl=1 , ΦlΦ
T
l and {I−Ξl}2Kl=1 are all diagonal matrices with ones and zeros on their main

diagonal. Let θ , [θ1, . . . , θ2K ]T be a vector of non-negative coefficients and Θ , diag(θ).

Making use of (2.38), (2.41), (2.45), (3.8), and (C.1) we obtain

λn

(
Uil(θ)

)
= λn

(
2K∑

k=1

θk ΦT
l Φkhih

T
i Φ

T
kΦl

)
= λn

(
ΦT

l

( 2K∑

k=1

θk Φkhih
T
i Φ

T
k

)
Φl

)

= λn

(
ΦT

l A(hi) ΘA(hi)
TΦl

)
= λn

(
Θ1/2A(hi)

TΦlΦ
T
l A(hi)Θ

1/2
)

= λn

(
Θ1/2A(hi)

TΞlA(hi)Θ
1/2
)

≤ λn

(
Θ1/2A(hi)

TΞlA(hi)Θ
1/2 + Θ1/2A(hi)

T (I−Ξl)A(hi)Θ
1/2
)

= λn

(
Θ1/2A(hi)

TA(hi)Θ
1/2
)
= ‖hi‖2λn(Θ), (C.2)

in which the inequality in (C.2) follows from Lemma C.1.
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Appendix D

If the transmitted symbols covariance matrix Λsi is not diagonal, we apply eigenvalue

decomposition to obtain Λsi = Q Λ̊siQT where Λ̊si is a diagonal matrix and QTQ =

QQT = I2K . Replacing the previous eigenvalue decomposition in (3.32) yields

Ri = A(hi)Q Λ̊siQTA(hi)
T +

σ2

2
I2MT . (D.1)

Let us define Å(hi) , A(hi)Q with the property

Å(hi)
T Å(hi) = QTA(hi)

TA(hi)Q = ‖hi‖2.

Multiplying (D.1) from the right by the orthonormal matrix Å(hi)/‖hi‖ we obtain

Ri
Å(hi)

‖hi‖
=

Å(hi)

‖hi‖

(
Λ̊si‖hi‖2 +

σ2

2
I2K

)
. (D.2)

As Λ̊si is a diagonal matrix, (D.2) can be viewed as the characteristic equation for the

matrix Ri and its 2K largest eigenvalues depend only on the norm of the CFR vector hi

and not its respective spatial signature.

Appendix E

In this appendix, making use of a lemma from linear algebra, we derive an optimization

problem to estimate the true overall CFR vector for all subcarriers, i.e., h′, which has a

close connection with characteristic equation (4.7) for particular choice of normalization

vector ξ used in (4.1). Using (2.33), the multiple input-output relationships (2.36) in the

frequency-domain for a certain data block, i.e., fixed index p, can be also represented in the

compact form of

y′ = A
(
h0, . . . ,hN0−1

)
s′ + v′ = A (h′) s′ + v′, (E.1)

where block-diagonal matrix A (h′) is defined as

A (h′) ,




A(h0) 0 · · · 0

0 A(h1) 0
...

. . .
...

0 · · · 0 A(hN0−1)



∈ R

2MTN0×2KN0 , (E.2)
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and

y′ ,




y0

...

yN0−1


 ∈ R

2MTN0×1, s′ ,




s0
...

sN0−1


 ∈ R

2KN0×1, v′ ,




v0

...

vN0−1


 ∈ R

2MTN0×1,

(E.3)

as the real-valued vectors which combine the received data, the transmitted data, and the

noise, respectively, for all subcarriers. From (2.38), the following generalized version of

orthogonality property for A (h′) can be deduced

A(h′)T A (h′) = D2, (E.4)

with D ,

(
diag

([
‖h0‖, . . . , ‖hN0−1‖

])
⊗ I2K

)
∈ R

2KN0×2KN0 . Also, it can be concluded

from block-diagonal structure of A (h′) in (E.2) along with linearity of A(hi) with respect

to hi, for i = 0, . . . , N0 − 1, according to (2.43) that A (h′) is linear with respect to h′ and

there exist an OSTBC-specific matrix Ψ, such that

vec{A (h′)} =




f0(Φ) 0 · · · 0

0 f1(Φ) 0
...

. . .
...

0 · · · 0 fN0−1(Φ)




h′ = Ψh′, (E.5)

where each {fi(Φ)}N0−1
i=0 ∈ R

4KMTN0×2MN . Performing similar steps as in the derivation of

(3.32) and (3.33) for the covariance matrix R , E
{
y′y′T

}
and taking into account (E.1)

along with the assumption that the symbol streams and noise are mutually uncorrelated at

each subcarrier, we obtain

R = A (h′)Λs′A(h′)T +
σ2

2
I2MTN0

, (E.6)

where Λs′ , E
{
s′s′T

}
. Then, we multiply (E.6), as the generalization of (3.32), from the

right by A (h′)D−1 and apply (E.4) to obtain the generalization of (3.33) as

RA (h′)D−1 = A (h′)D−1Λ, (E.7)

with Λ ,

(
Λs′D

2 + σ2

2 I2KN0

)
. Due to the property that the matrix A (h′)D−1 has or-

thonormal columns and both D2 and Λs′ (since the entries of s
′ are mutually uncorrelated)



128 CHAPTER 7. Appendices

are diagonal, (E.7) can be viewed as the characteristic equation for R. Hence, the diagonal

entries of Λ contain the associated 2KN0 largest eigenvalues with corresponding eigenvec-

tors equal to the columns of A (h′)D−1. Further, since the entries of s′ are assumed to

be mutually uncorrelated and using (E.2) and (E.6), it can be concluded that R has the

following block-diagonal structure

R =




R0 0 · · · 0

0 R1 0
...

. . .
...

0 · · · 0 RN0−1



∈ R

2MTN0×2MTN0 . (E.8)

Next, we present the following lemma [Man02] which is used later to develop our blind

channel estimator.

Lemma E.1: Let M be an m×q arbitrary real matrix with q ≤ m. Then, for any m×m

real symmetric matrix N, the solution to the following optimization problem

max
M

tr
(
MTNM

)

s.t. MTM = Iq, (E.9)

is given by any matrix M∗ whose column space is the same as the subspace spanned by the

q principal eigenvectors that correspond to the q largest eigenvalues of N. For such M∗, we

have

tr
(
MT

∗ NM∗

)
=

q∑

l=1

νl, (E.10)

where νl’s for l = 1, . . . , q are the q largest eigenvalues of N. �

We set q = 2KN0 and replace arbitrary symmetric matrix N by the covariance matrix

R in (E.9) to obtain the following optimization problem

max
M

tr
(
MTRM

)

s.t. MTM = I2KN0
. (E.11)

Taking into account characteristic equation (E.7) and Lemma E.1, since the diagonal en-

tries of Λ contain the associated q = 2KN0 largest eigenvalues of R with corresponding
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eigenvectors equal to the columns of A (h′), we conclude that the solution to (E.11) is given

by any matrix M∗ which satisfies

range{M∗} = range{A (h′)},

tr
(
MT

∗ RM∗

)
= tr (Λ) . (E.12)

Then, we use (E.4) and replace the matrix M in (E.11) by the structured matrix A (h̃)D̃−1

where

h̃ ,
[
h̃T
0 , . . . , h̃

T
N0−1

]T
, (E.13)

stands for the vector of optimization variables in the frequency-domain and

D̃ , diag
(([

‖h̃0‖, . . . , ‖h̃N0−1‖
])

⊗ I2K

)
∈ R

2KN0×2KN0 , (E.14)

to rewrite the corresponding constraint of (E.11) as

MTM = D̃−1A(h̃)T A (h̃)D̃−1 = I2KN0
. (E.15)

Since the constraint of (E.11), i.e., MTM = I2KN0
, is satisfied for any arbitrary vector h̃

as can be seen from (E.15), it is redundant and can be dropped. This leads to the following

unconstrained optimization problem

max
h̃

tr
(
D̃−1A(h̃)T RA (h̃)D̃−1

)
. (E.16)

Due to the fact that the matrixM which is represented by the matrixA(h̃)D̃−1 in (E.16) has

a particular structure while it is unstructured in (E.11), these problems are not equivalent

to each other. As a result, the sets of optimal matrices M∗ for (E.11) and (E.16) may result

in different sets of solutions and the maximum of the objective function in (E.16) can not

exceed that of (E.11) in general. Taking into account (E.4) and (E.6), we obtain

tr
(
D̃−1A(h̃)T RA (h̃)D̃−1

) ∣∣∣
h̃=h′

= tr(Λ). (E.17)

Therefore, the set of solutions to (E.16) is a subset of the set of solutions to (E.11) since

the maxima of the objective functions in both problems coincide as can be observed from
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comparison of (E.12) and (E.17). Moreover, the true overall CFR vector in the frequency-

domain h′ belongs to the subspace spanned by all vectors which maximize (E.16). The

objective function in (E.16) can be rewritten as

tr
(
D̃−1A(h̃)T RA (h̃)D̃−1

)
= vec{A (h̃)D̃−1}T (I2KN0

⊗R)vec{A (h̃)D̃−1}. (E.18)

Further, using (2.39) and (E.5), we have

vec{A (h̃)D̃−1} =
(
D̃−1 ⊗ I2MTN0

)
vec{A (h̃)} =

(
D̃−1 ⊗ I2MTN0

)
Ψh̃. (E.19)

Inserting (E.19) in (E.18) results in

tr
(
D̃−1A(h̃)T RA (h̃)D̃−1

)
= h̃TΨT

(
D̃−1 ⊗ I2MTN0

)
(I2KN0

⊗R)
(
D̃−1 ⊗ I2MTN0

)
Ψh̃

= h̃TΨT
(
D̃−2 ⊗R

)
Ψh̃,

and, therefore, the problem (E.16) is equivalent to

max
h̃

h̃TΨT
(
D̃−2 ⊗R

)
Ψh̃. (E.20)

Making use of the block-diagonal structures in (E.5) and (E.8) along with the definition

(E.14), the optimization problem (E.20) can be reformulated in terms of the variables

defined in Chapter 4 as

max
h̃

h̃TX ′
(
γ, ξ‖h̃‖

)
h̃, (E.21)

where

ξ = ξ‖h̃‖ ,
[
‖h̃0‖2, . . . , ‖h̃N0−1‖2

]
. (E.22)

Taking into account (E.14), we conclude that D̃−2 = (1/‖h̃‖2)I2K in the special case of

single-carriers. It is immediate to show that the optimization problem (E.21) reduces to

the problem of finding the principal eigenvector of the virtual snapshots covariance matrix

Xi(γ) introduced in Chapter 3 and that of [SGM05]. Next, we propose a novel approach to

solve (E.21) in the multi-carrier case which is able to take advantage of correlations among

subcarriers. To this aim, we assume that the CFR vector norm ‖hi‖, i = 0, . . . , N0 − 1, at

each subcarrier is known in (E.21), for instance, by the use of (4.24) in Chapter 4. This

assumption implies that

ξ‖h̃‖ = ξ‖h‖ ,
[
‖h0‖2, . . . , ‖hN0−1‖2

]
, (E.23)
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or, equivalently,

h̃TJiJ
T
i h̃ = ‖hi‖2, i = 0, . . . , N0 − 1 (E.24)

where Ji is the selection matrix defined in (4.15) that obtains the (i + 1)-th optimization

vector h̃i as a subvector of the long optimization vector h̃, i.e., h̃i = JT
i h̃. To integrate

the aforementioned assumption in (E.21), we replace ξ‖h̃‖ by ξ‖h‖ and augment (E.24) as

constraint to the resulting problem to obtain

max
h̃

h̃TX ′
(
γ, ξ‖h‖

)
h̃

s.t. h̃TJiJ
T
i h̃ = ‖hi‖2, i = 0, . . . , N0 − 1. (E.25)

It is worth noting that replacement of the equality constraints in (E.25) by corresponding

inequalities, i.e., h̃TJiJ
T
i h̃ ≤ ‖hi‖2, i = 0, . . . , N0 − 1, does not change the solution of

(E.25). This is due to the fact that this inequality constraints are forced to be satisfied

with equality by the nature of the objective function in (E.25). This observation, however,

can be exploited in practical cases when CFR vector norm is estimated according to (4.26);

see Section 5.5. Also as mentioned before in Subsections 3.3.1 or 4.2, in practice, the

true covariance matrix X ′
(
γ, ξ‖h‖

)
is unavailable and, therefore, its corresponding sample

estimate X̂ ′
(
γ, ξ‖h‖

)
should be implemented using (4.8). As a result, instead of (E.25), the

following optimization problem should be considered

max
h̃

h̃T X̂ ′
(
γ, ξ‖h‖

)
h̃

s.t. h̃TJiJ
T
i h̃ = ‖hi‖2, i = 0, . . . , N0 − 1. (E.26)

Appendix F

In this appendix, we show that the proposed blind channel estimator in Chapter 3 based

on eigenvalue problem can be viewed as the RML channel estimator in the Gaussian noise

case. Let us consider again the joint blind RML estimator (2.63) for transmitted symbol

vectors si(p), for p = 1, . . . , P , and the CFR vector hi at the ith subcarrier as

{
ĥi,RML, Ŝi,RML

}
= arg min

S̃i, h̃i

P∑

p=1

∥∥yi(p)−A(h̃i)s̃i(p)
∥∥2. (F.1)
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Considering orthogonality property (2.38), A(h̃i) has full column rank, and, therefore,

s̃i(p) =
(
A(h̃i)

TA(h̃i)
)−1

A(h̃i)
Tyi(p), (F.2)

minimizes each individual term in (F.1). Let us define Yi ,

[
yi(1),yi(2), . . . ,yi(P )

]
that

contains all available received data vectors at the ith subcarrier and insert (F.2) into (F.1)

and recall that tr
(
XTX

)
= ‖X‖2 for any arbitrary matrix X. Then, the RML estimator of

CFR vector hi can be written as

ĥi,RML = argmin
h̃i

P∑

p=1

∥∥yi(p)−A(h̃i)
(
A(h̃i)

TA(h̃i)
)−1

A(h̃i)
Tyi(p)

∥∥2

= argmin
h̃i

∥∥Yi −A(h̃i)
(
A(h̃i)

TA(h̃i)
)−1

A(h̃i)
T
Yi

∥∥2

= argmin
h̃i

tr
(
Y
T
i Yi − Y

T
i ΠA(h̃i)

Yi

)

= argmin
h̃i

{
‖Yi‖2 − tr

(
Y
T
i ΠA(h̃i)

Yi

)}
, (F.3)

where Π
A(h̃i)

, A(h̃i)
(
A(h̃i)

TA(h̃i)
)−1

A(h̃i)
T stands for the orthogonal projector onto

the column space of A(h̃i) with the property Π
A(h̃i)

Π
A(h̃i)

= Π
A(h̃i)

. Dropping the term
(
‖Yi‖2

)
in (F.3) which is independent of the optimization variable and considering the

identity tr (XY) = tr (YX) along with (3.34) yields

ĥi,RML= argmax
h̃i

tr
(
Y
T
i ΠA(h̃i)

Yi

)
= argmax

h̃i

tr
(
Π

A(h̃i)
R̂i

)
. (F.4)

Therefore, this estimator can be considered as a subspace method that maximizes the energy

of projection of the received data at the ith subcarrier onto the parameter-dependent signal

subspace defined by the equivalent code-channel matrix A(h̃i). As a result, the criterion

in (F.4) is maximized by the true CFR vector hi. Using the orthogonality property (2.38)

allows us to obtain the following alternative expression for (F.4)

ĥi,RML = argmax
h̃i

tr
(
A(h̃i)

T R̂iA(h̃i)
)
/‖h̃i‖2. (F.5)

It should be again stressed that relaxation of the finite alphabet constraint over the trans-

mitted symbols in (2.60) which in turn is reflected in (F.1) results in the norm ambiguity
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associated with channel estimates in (F.5). To avoid this, we consider a norm constraint

over the optimization variable in (F.5) to have

ĥi,RML = arg max
‖h̃i‖=‖hi‖

tr
(
A(h̃i)

T R̂iA(h̃i)
)
. (F.6)

This norm constraint is also necessary to preclude the trivial solution of ‖h̃i‖ → ∞ for

(F.6). Clearly, in practice, the true norm used in (F.6) should be replaced by its estimated

version of (4.26). To simplify the objective function in (F.6), we have

tr
(
A(h̃i)

T R̂iA(h̃i)
)
= vec{A(h̃i)}T (I2K ⊗ R̂i)vec{A(h̃i)}. (F.7)

Using (2.43) and (F.7), the problem (F.6) becomes equivalent to

ĥi,RML = arg max
‖h̃i‖=‖hi‖

h̃T
i Φ

T (I2K ⊗ R̂i) Φ h̃i. (F.8)

Taking into account the definition (2.44) along with the equations (3.4), and (3.34), we

define

X̂i(γRML) , ΦT (I2K ⊗ R̂i) Φ

=

2K∑

k=1

ΦT
k R̂i Φk =

1

P

2K∑

k=1

P∑

p=1

ỹi(k, p)ỹi(k, p)
T , (F.9)

γRML ,
[
1, . . . , 1

]T
, (F.10)

to obtain

ĥi,RML = arg max
‖h̃i‖=‖hi‖

h̃T
i X̂i(γRML) h̃i. (F.11)

It is noteworthy to mention that when formulating our proposed approach in Chapter 3,

we do not exploit any assumption on the noise pdf, while the RML approach of (F.1) is

entirely based on Gaussian noise assumption.
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