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Abstract

A complete Riemannian manifold X with negative curvature sat-
isfying −b2 ≤ KX ≤ −a2 < 0 for some constants a, b, is naturally
mapped in the space of probability measures on the ideal boundary
∂X by assigning the Poisson kernels. We show that this map is em-
bedding and the pull-back metric of the Fisher information metric by
this embedding coincides with the original metric of X up to con-
stant provided X is a rank one symmetric space of noncompact type.
Furthermore, we give a geometric meaning of the embedding.
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1. Introduction

A Poisson kernel appears in the classical theory of Dirichlet problem
for the Euclidean space. As is well known, the Poisson kernel for the n-
dimensional unit ball Bn ⊂ Rn is given by

Φ(x, θ) =
1− |x|2
|x− θ|n , x ∈ Bn, θ ∈ ∂Bn
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and the Dirichlet problem for the ordinary Laplacian

∆ = −
n∑

i=1

(
∂

∂xi

)2

on Bn is solved by using the Poisson integral formula as

u(x) =

∫

∂Bn

Φ(x, θ)ψ(θ) dθ,

where ψ is a given function on ∂Bn as a boundary condition data. Refer to
[5] for the Dirichlet problem and the Poisson kernel in the Euclidean space.

Now, let X be a simply connected, complete n-dimensional Riemannian
manifold with sectional curvature KX satisfying −b2 ≤ KX ≤ −a2 < 0 for
constants a, b.

Then, X is equipped with the ideal boundary ∂X, the space of all ori-
ented geodesic rays up to asymptotic equivalence, which is identified with
the space of unit vectors tangent to X at a reference point xo. So ∂X is
identified with an (n− 1)-dimensional sphere. We can therefore consider the
Dirichlet problem for this ideal boundary. Like the Euclidean space case, on
X a Poisson kernel Φ(x, θ) can be defined and moreover any solution of the
Dirichlet problem can be written in terms of the Poisson integral. See the
detailed argument given by Schoen and Yau in [15].

It is a fundamental and important fact that the Poisson kernels Φ(x, θ)
are regarded as probability density functions on ∂X, that is,

Φ(x, θ) > 0,∫

∂X

Φ(x, θ)dθ = 1

for any fixed x ∈ X. This implies that there is an embedding from the space
of Poisson kernels to the space P(∂X) of probability measures with positive
density function on ∂X.

Consider a compact, connected oriented Riemannian manifold M . The
space P(M) of probability measures whose density function is positive on M
has a structure of infinite dimensional manifold. See for this [17] and [19].
On this manifold P(M) a Riemannian metric g which we call the Fisher
information metric is defined as

g(σ1, σ2) =

∫

M

dσ1

dµ

dσ2

dµ
dµ, σi ∈ TµP , i = 1, 2, µ ∈ P(M).
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Even though P(M) is infinite dimensional, this metric g possesses fine ge-
ometric properties. For instance, any orientation preserving diffeomorphism
of M induces an isometry of (P(M), g) and moreover g is a metric of positive
constant sectional curvature.

The Fisher information metric is a natural extension of the Fisher infor-
mation matrix. The notion of Fisher information matrix is derived from the
theory of statistical inference. The Fisher information matrix determines a
Riemannian structure on a parametrized space P of probability measures.
Study of geometry of P with the Riemannian structure, which we call in-
formation geometry, contributes greatly to statistical inference. See [1] for
details of information geometry.

We are now able to define a map ϕ from X to P(∂X) in terms of the
Poisson kernels:

ϕ : X −→ P(∂X); x 7−→ ϕ(x) = Φ(x, θ)dθ.

Remark that Douady and Earle defined the same map for real hyperbolic
spaces and discussed the barycenter map associated with this map. See [6]
for the detail. Also Besson et al defined in [3] a similar map to the space of
L2-functions on ∂X in order to develop their studies.

The aim of this paper is to investigate geometry of the pull-back metric
ϕ∗g of the Fisher information metric g by this map ϕ.

When X is a rank one symmetric space of noncompact type, the map ϕ
turns out to be an embedding, since the Poisson kernels are expressed as an
exponential function of the Busemann functions (see the detailed argument
in section 3). We can then make use of an induced action of isometries of X
on P(∂X) which plays an important role in our investigation.

In fact, the action of I(X), the isometry group of X, on ∂X is natu-
rally defined by the fact that the asymptotical relation on geodesic rays is
preserved under the isometric action. Further, we get an action of I(X) on
P(∂X) by using Bourdon’s argument about the Jacobian of the isometric
action on the ideal boundary, given in [4], as

µ = m(θ)dθ 7−→ γ(µ) = m(γ−1(θ))Φ(γ(xo), θ)dθ,

where γ ∈ I(X) and xo is the reference point of X.
Therefore we obtain in Proposition 4.2 in section 4 that the ϕ is equiv-

ariant with respect to the actions of I(X) on X and on P(∂X), namely

γ(ϕ(x)) = ϕ(γ(x)), x ∈ X, γ ∈ I(X)
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Another important fact is that the action of I(X) on P(∂X) is isometric
with respect to the Fisher information metric, as given in Proposition 4.3.

By making use of these facts together with the homogenuity of our man-
ifold X we obtain the following

Theorem A. Let (X, h) be an n-dimensional rank one symmetric space of
noncompact type. Let ϕ∗g be the pull-back metric of the Fisher information
metric via the embedding ϕ.

Then ϕ∗g is proportional to the metric h. More explicitly,

ϕ∗g =
ρ2

n
h,

where ρ is a constant called the volume entropy of X, the increasing degree
of the geodesic volume.

This means that the embedding ϕ is isometric up to constant factor. Note
that ρ2h is invariant even if we change conformally the metric h into λh by
a constant λ. The following theorem asserts that this isometric embedding
is minimal.

Theorem B. Suppose that (X, h) be a rank one symmetric space of non-
compact type. Then, the mean curvature vector of the submanifold ϕ(X) in
P(∂X) vanishes identically, that is, the ϕ is minimal.

The facts upon which this theorem depends crucially are that the Levi-
Civita connection of the Fisher information metric has an explicit form as
is seen in section 2 and also that the Poisson kernels of rank one symmetric
space of noncompact type are in exponential form with exponent of the Buse-
mann functions. Therefore, we consider, conversely, whether this exponential
expression of the Poisson kernels characterizes rank one symmetric spaces of
noncompact type. We have, in fact, by using the argument of Besson et
al given in [3], the following characterization, though under an additional
assumption.

Theorem C. Let (X, h) be a simply connected, complete, n-dimensional
Riemannian manifold with sectional curvature satisfying −b2 ≤ KX ≤ −a2 <
0 for some constants a, b. Suppose n ≥ 3 and that (X, h) admits a compact
quotient.
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If the Poisson kernels Φ(x, θ) for X are given by

Φ(x, θ) = exp(−cBθ(x))

in terms of the Busemann functions Bθ(x) and a constant c, then, (X, h)
must be a rank one symmetric space of noncompact type and the c is the
volume entropy of (X, h).

It is still an interesting, open question whether the above theorem holds
without a compact quotient assumption.

As Proposition 3.5 in section 3 indicates, we can characterize the exponen-
tial expression of the Poisson kernels Φ(x, θ) given as Φ(x, θ) = exp(−cBθ(x)),
by means of the mean curvature of horospheres in X geometrically. We have
then

Corollary D. Let (X, h) be a simply connected, complete, n-dimensional
Riemannian manifold with sectional curvature satisfying −b2 ≤ KX ≤ −a2 <
0 for some constants a, b. Suppose that n ≥ 3 and (X, h) has a compact
quotient. If the mean curvature of every horosphere of X is constant c and
this constant c takes the same value for all horospheres, then (X, h) is a rank
one symmetric space of noncompact type.

In section 2, we consider the space of probability measures and define
the Fisher information metric. In section 3, we give the Poisson kernels on
each manifold with negative curvature and characterize a rank one symmetric
space in terms of Poisson kernels (Theorem C and Corollary D). We show,
in section 4, that the space of probability measures carries the action of the
isometry group of X.

The second author is grateful to Professor Takashi Kurose and Professor
Hiroshi Matsuzoe for their valuable suggestions and encouragement. The
authors would also like to thank to a referee for useful comments.

2. Probability measures of positive density function
and the Fisher information metric

Let M be a compact, oriented, n-dimensional Riemannian manifold and
let dv be the canonical Riemannian volume element of unit volume. Over M
we consider the space P(M) of smooth probability measures whose density
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function is everywhere positive ;

P(M) =

{
µ = fdv

∣∣∣∣∣ f ∈ C∞(M), f > 0,

∫

M

µ = 1

}
. (1)

It space P(M) has a C∞ manifold structure modeled on a Frechét space [17].
We define the Fisher information metric g on P(M) by

g(σ1, σ2) =

∫

M

dσ1

dµ

dσ2

dµ
µ (2)

at µ ∈ P(M), for σ1, σ2 ∈ TµP(M), where dσi/dµ denotes the density func-
tion of σi with respect to µ (i = 1, 2). Remark that the tangent space at
µ ∈ P(M) is the space of smooth measures whose total measure over M is
0;

TµP(M) =

{
σ =

dσ

dµ
µ

∣∣∣∣∣
dσ

dµ
∈ C∞(M),

∫

M

σ = 0

}
. (3)

The metric g is positive definite, because any density function is positive
everywhere.

On P(M) the Levi-Civita connection ∇ for the Fisher information metric
g at µ ∈ P(M) is given by

(∇τ1τ2)(µ) = −1

2

(
dτ1

dµ

dτ2

dµ
−

∫

M

dτ1

dµ

dτ2

dµ
µ

)
µ, (4)

for two vector fields τ1, τ2. Refer to [8] for this formula.
For geometrically interesting facts concerning the Fisher information met-

ric, refer to [8, 18, 19]. For example, T. Friedrich showed in [8] that the
Riemannian manifold (P(M), g) is a space of positive constant curvature.
Furthermore, an orientation preserving diffeomorphism on M acts on P(M)
by pull-back. Then the action is isometric with respect to the Fisher infor-
mation metric. This fact plays an important role in studying the space of
probability measures.
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3. Poisson kernels for a complete manifold with nega-
tive curvature

Let X be a simply connected, complete, n-dimensional Riemannian man-
ifold with sectional curvature satisfying −b2 ≤ KX ≤ −a2 < 0 for constants
a, b.

The ideal boundary ∂X is defined as equivalent classes of geodesics.
Here two geodesics of unit speed c1 and c2 are asymptotic equivalent if
d(c1(t), c2(t)) is a bounded function in t, t ≥ 0, where d is the Rieman-
nian distance function on X. Fixing x0 ∈ X, we can identify ∂X with the
unit sphere of Tx0X. Therefore the ideal boundary ∂X is regarded as the
standard sphere Sn−1. A natural topology called the cone topology is defined
on X = X ∪ ∂X. This topology gives a compactification of X. See [2, 15]
for details about the ideal boundary.

Let ∆ be the Laplace-Beltrami operator of X. Now we consider the
Dirichlet problem for X with respect to ∂X. The existence and uniqueness
of a solution to this problem is given in the following theorem;

Theorem 3.1. ([2, 15]). Let X be a simply connected, complete, Rieman-
nian manifold whose sectional curvature satisfies −b2 ≤ KX ≤ −a2 < 0. For
any ψ ∈ C0(∂X), there exists a unique function u ∈ C∞(X) ∩ C0(X) such
that

∆u = 0 in X, u
∣∣
∂X

= ψ. (5)

Fix x0 ∈ X as a base point. Let dθ be the normalized Riemannian volume
form on ∂X = Sn−1 defined by

dθ =
1

Vol(Sn−1)
dθ1 ∧ · · · ∧ dθn−1,

where {dθi} is a local orthonormal frame for the cotangent bundle T ∗(Sn−1).

Definition 3.2. ([2, 15]). Let θ be an element of ∂X. A continuous function
Φθ : X \ θ → R ; x 7→ Φθ(x) is called the Poisson kernel normalized at x0

for θ ∈ ∂X if it is harmonic in X and satisfies the following properties ;

1. Φθ(x) > 0 for all x ∈ X,
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2. Φθ(x0) = 1,

3. lim
x→θ

Φθ(x) = +∞,

4. θ′ ∈ ∂X, θ′ 6= θ ⇒ lim
x→θ′

Φθ(x) = 0.

Conventionally we write Φθ(x) as Φ(x, θ).
According to [2, 15], the solution of the Dirichlet problem for X can be

written as the Poisson integral formula

u(x) =

∫

∂X

Φ(x, θ)ψ(θ) dθ. (6)

We remark here that for every point x ∈ X the Poisson kernel Φ(x, θ) is
a probability density function on ∂X = Sn−1. In fact, assuming ψ = 1 on
∂X we have from (5) and (6)

∫

∂X

Φ(x, θ) dθ = 1, (7)

So we can define naturally a map from X to the space of probability measures
with positive density function on ∂X = Sn−1 ;

ϕ : X −→ P(∂X); x 7−→ ϕ(x) = Φ(x, θ) dθ.

When X is a rank one symmetric space of noncompact type, we have the
following relation between the Poisson kernel and the Busemann function ;

Φ(x, θ) = exp(−ρBθ(x)), (8)

where ρ = n + dimR(F) − 2 and F is the field corresponding to X (see
[3, 10, 14]).

Here, the Busemann function Bθ is defined by

Bθ(x) = lim
t→∞

(d(c(t), x)− t), x ∈ X, (9)

for a point θ of the ideal boundary ∂X, where c(t) is the normalized geodesic
such that c(0) = x0, limt→∞ c(t) = θ. For the Busemann function Bθ,
the level hypersurfaces B−1

θ (k) are called horospheres. A horosphere can be
regarded as a distance sphere centered at a point of ∂X (See [16], p.232).

We can easily show that the Busemann function Bθ(x) satisfies the fol-
lowing ;
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1. Bθ(x0) = 0,

2. lim
x→θ

Bθ(x) = −∞,

3. lim
x→θ′

Bθ(x) = +∞, θ 6= θ′.

Moreover it is known that the Busemann function is C2 in X (see [11]).
If X is a rank one symmetric space of noncompact type, we have the

realizations of X by the Poincaré models. For example, when X is a real
hyperbolic space Hn(R) or a complex hyperbolic space Hn(C), we have

Hn(R) =

(
Dn(R), hHn(R) =

4

(1− |x|2)2
dx2

)
,

Hn(C) =

(
Dn(C), hHn(C) =

4dzdz̄

1− |z|2 +
n∑

i,j=1

4z̄izjdzidz̄j

(1− |z|2)2

)
,

where Dn is the unit disk in the Euclidean space centered at the origin.
The Poisson kernels for a real hyperbolic space or a complex hyperbolic

space are given by

Φ(x, θ) =

(
1− |x|2
|x− θ|2

)n−1

, X = Hn(R),

Φ(x, θ) =

(
1− |x|2
|1− x · θ|2

)n

, X = Hn(C),

where | | is the norm defined by the canonical inner product in R or C
and · is the canonical Hermitian inner product in Cn. We refer to [13] for
the Poisson kernels for the hyperbolic plane and also to [9] for the complex
hyperbolic space.

From the properties of the Busemann functions together with (8), it is
clear that the above map ϕ is injective. Therefore we obtain

Lemma 3.3. When X is a rank one symmetric space of noncompact type,
the map ϕ is an embedding.

Now, we characterize a rank one symmetric space of non-compact type
by Poisson kernels. To obtain our theorem we make use of a fact which is
showed by G. Besson, G. Courtois and S. Gallot;
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Theorem 3.4.([3]) Let X be a compact manifold with negative curvature and
X̃ be the universal covering of X. Suppose that X̃ is asymptotic harmonic,
i.e., the mean curvature of any horosphere in X̃ is constant. Then X̃ is a
rank one symmetric space.

Proof of Theorem C. Let e1, · · · , en be a orthonormal basis for TxX such
that ∇ei

ej = 0 for any i, j at x ∈ X. Now, we calculate the Laplacian of the
function x 7→ Φ(x, θ). Then we have from the assumption of the theorem

∆Φ(x, θ) = −
n∑

i=1

∇ei
∇ei

Φ(x, θ)

= −c{∆Bθ(x) + c‖gradBθ(x)‖2}Φ(x, θ).

Since ‖gradBθ(x)‖ = 1 (see [16]), we obtain

∆Φ(x, θ) = −c{∆Bθ(x) + c}Φ(x, θ). (10)

Since the Poisson kernel is a harmonic function, we have ∆Bθ(x) = −c.
The gradient vector −gradBθ(x) is a unit inward normal vector on the

horosphere including θ and x. Remark that the second fundamental form
Π(V,W ) with respect to the normal vector −gradBθ(x) of a horosphere in
X is given by

Π(V, W ) = −〈∇V (gradBθ(x)),W 〉
= −Hess Bθ(x)(V, W ),

(11)

where 〈 , 〉 is the Riemannian metric on X and ∇ is the Levi-Civita connec-
tion of X (see [7]). Thus, ∆Bθ(x) = −c implies that the mean curvature of
any horosphere in X is constant c/n. Therefore X is a rank one symmetric
space of non-compact type by Theorem 3.4. Moreover, from the uniqueness
theorem of the Poisson kernel (Theorem 2.8 in [15]), the constant c is the
volume entropy. 2

We obtain naturally the following result from the caluculation in the
above proof.

Proposition 3.5. Let X be a simply connected, complete, n-dimensional
Riemannian manifold whose sectional curvature satisfies −b2 ≤ KX ≤ −a2 <
0 for some constants a, b. If all the horospheres in X have same constant
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mean curvature, then the Poisson kernels of X can be written as exponential
functions whose exponents are the Busemann functions.

Proof. Let c/n be constant mean curvature of horospheres in X. Then, we
have ∆Bθ(x) = −c from (11). Define Φ(x, θ) by Φ(x, θ) = exp(−cBθ(x)).
Since the function Φ(x, θ) satisfies the equation (10), Φ(x, θ) is harmonic in
X.

We can see easily that Φ(x, θ) is continuous in X \ {θ} and also satisfies
the conditions of Definition 3.2 because of the properties of the Busemann
function. The uniqueness theorem of the Poisson kernels implies that

Φ(x, θ) = exp(−cBθ(x))

is a Poisson kernel for X. 2

It is also interesting to consider the following problem ; how do the
mappings {ϕi : Xi → P(∂Xi)} behave in the case of supXi

KXi
→ 0 or

infXi
KXi

→ −∞ ?

4. Isometries of X and the space of probability mea-
sures on ∂X

Let ϕ : X → P(∂X) be the embedding. Since the space P(∂X) carries
the Fisher information metric g, we are interested in geometry of the pull-
back metric ϕ∗g of the metric g via ϕ.

In order to investigate the metric ϕ∗g, we rely on the equivariant property
of the map ϕ.

We denote by I(X) the group of isometries of a Riemannian manifold
(X, h). Let γ ∈ I(X). Then γ induces naturally an action on the space ∂X.
The following proposition shows that the Jacobian of the action of γ ∈ I(X)
on ∂X yields the Poisson kernel.

Proposition 4.1 ([3, 4]). The pull-back of the normalized Riemannian
volume form dθ ∈ P(∂X) by γ ∈ I(X) is

γ∗(dθ) = Φ(γ−1(x0), θ) dθ (12)

where x0 is a base point of X.
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The action of I(X) on ∂X induces naturally an action on the space P(∂X)
which we denote by the same symbol γ as

γ(µ) = m(γ−1(θ))Φ(γ(x0), θ) dθ (13)

for µ = m(θ)dθ ∈ P(∂X). Notice that γ(dθ) = (γ−1)∗(dθ). Proposition
4.1 asserts that γ(µ) ∈ P(∂X) for an arbitrary γ ∈ I(X) and µ ∈ P(∂X).
Furthermore, we obtain the transition formula of the Poisson kernels ;

Φ(γ(x), θ) = Φ(x, γ−1(θ))Φ(γ(x0), θ) (14)

Proposition 4.2. The embedding ϕ is I(X)-equivariant, namely for all
γ ∈ I(X)

ϕ(γ(x)) = γ(ϕ(x)). (15)

Proof. Since ϕ(x) = Φ(x, θ)dθ, we have

γ(ϕ(x)) = γ(Φ(x, θ)dθ)

which reduces from (13) to Φ(x, γ−1(θ))Φ(γ(x0), θ)dθ. This coincides from
the transition formula (14) with Φ(γ(x), θ)dθ = ϕ(γ(x)). 2

Remark. In [3] Besson, Courtois and Gallot use systematically the notion
of Γ-equivariant immersion of a rank-one symmetric space Y of non-compact
type into the unit sphere in the L2-space L2(∂Y ) over the ideal boundary ∂Y ,
where Γ is the discrete subgroup of I(Y ). By applying such immersions they
obtained characterizations of a rank one symmetric spaces of non-compact
type in terms of the volume entropy. It is not vague to point out that the
framework of our study is similar to theirs, whereas they use the L2-metric,
not Fisher information metric.

Now we consider the Fisher information metric g on P(∂X), and we will
show that the action of I(X) on P(∂X) preserves g.

Let Ω(∂X) be the space of smooth (n − 1)-forms on ∂X. We define the
action of γ ∈ I(X) on Ω(∂X) by

γ(σ) = f(γ−1(θ))Φ(γ(x0), θ)dθ (16)
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for σ = f(θ)dθ ∈ Ω(∂X). This action is a natural extension of the action of
γ ∈ I(X) on P(∂X) ⊂ Ω(∂X).

Proposition 4.3. The action of I(X) on P(∂X) is isometric with respect
to the Fisher information metric, that is, any γ ∈ I(X) satisfies

g(dγ(σ1), dγ(σ2))γ(µ) = g(σ1, σ2)µ, (17)

at any µ ∈ P(∂X) and for any σ1, σ2 ∈ Tµ(P(∂X)).

Proof. Write µ = m(θ)dθ ∈ P(∂X) and let σi = fi(θ)µ ∈ TµP(∂X) (i =
1, 2) be two tangent vectors. Let γ ∈ I(X). Since the differential map of γ
is given by (16), we have

dγ(σi) = γ(σi) = fi(γ
−1(θ))m(γ−1(θ))Φ(γ(x0), θ)dθ

= fi(γ
−1(θ))γ(µ).

Therefore we have

g(dγ(σ1), dγ(σ2))γ(µ) =

∫

∂X

d(γ(σ1))

d(γ(µ))

d(γ(σ2))

d(γ(µ))
γ(µ)

=

∫

∂X

f1(γ
−1(θ)) f2(γ

−1(θ)) m(γ−1(θ)) Φ(γ(x0), θ) dθ.

From (12), Φ(γ(x0), θ)dθ = (γ−1)∗(dθ). So, the above reduces to
∫

∂X

f1(γ
−1(θ)) f2(γ

−1(θ)) m(γ−1(θ)) (γ−1)∗(dθ).

We put θ′ = γ−1(θ). Then, this integration is
∫

∂X
f1(θ

′) f2(θ
′) m(θ′) dθ′ and

thus coincides with g(σ1, σ2)µ. 2

5. Proofs of Theorems

Let (X, h) be a rank one symmetric space of noncompact type of dimen-
sion n, and x0 be the origin of X. X is two-point homogeneous so that
I(X)x0 acts transitively on the unit sphere Ux0X in Tx0X (see [12] p355),
where I(X)x0 = {γ ∈ I(X) | γx0 = x0} be the isotropy subgroup of I(X)
at x0. Therefore, from Propositions 4.2 and 4.3 it is sufficient to consider at
the single point x0 = 0 ∈ X,
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Proof of Theorem A.
Let u ∈ T0X be an unit vector with respect to the original metric h.

From Φ(x, θ) = exp(−ρBθ(x)), the formula of the differential map of the
embedding ϕ is given by

dϕ(u) = −ρ dBθ(u) dθ.

Then we have

ϕ∗g(u, u) = ρ2

∫

∂X

(dBθ(u))2dθ

= ρ2

∫

∂X

(
h(u, c′(0))dBθ(c

′(0))

)2

dθ,

where c(t) is the normalized geodesic passing through 0 and θ. In fact, the
differential at 0 of the Busemann function vanishes except the direction of
c′(0).

Remark that dBθ(c
′(0)) = −1. For any unit vector u ∈ T0X, we can take

an orthonormal basis e1, · · · , en such that u = e1, then we have

ϕ∗g(u, u) = ρ2

∫

∂X

(h(u, c′(0)))2dθ

= ρ2

∫

w∈∂X=Sn−1

h(u,w)2dw

= ρ2

∫

w∈∂X=Sn−1

(w1)
2dw

=
ρ2

n
=

ρ2

n
h(u, u). 2

Proof of Theorem B
Let e1, · · · , en be the basis for T0X. Since dϕ(u) = −ρ dBθ(u) dθ, we have

dϕ0(ei) = −ρ θidθ.
By the formula (4) of the Levi-Civita connection of the Fisher information

metric g we obtain

∇dϕ0(ei)dϕ0(ej) = −1

2

(
ρ2θiθj − ρ2

∫

Sn−1

θiθj dθ

)
dθ.
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Then one can easily see that

n∑
i=1

∇dϕ0(ei)dϕ0(ei) = 0.

Since the trace of normal part of ∇dϕ0(ei)dϕ0(ej) vanishes, we complete the
proof of Theorem B. 2
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