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Abstract. The TREC Precision Medicine and the previous CDS track
have produced a variety of approaches on document retrieval to support
clinical decisions. To the best of our knowledge, the top-performing ap-
proaches always relied on traditional information retrieval solutions, such
as BM25 with query expansion, to find the biomedical articles relevant
to the given topics. Although deep learning solutions have been tried,
these struggle to reach the top scores on this particular task.
To further explore and assess the effectiveness of deep learning meth-
ods in the PM retrieval task, we reformulate this relevance problem of
evidence finding as a question-answering problem, where a query is for-
mulated with the topic information and a neural information retrieval
model generates a ranked list of documents. More precisely, we adopted
a two-stage retrieval pipeline, where we first reduce the searching space
using BM25 with gene name expansion and then apply a lightweight neu-
ral IR model, with only 620 trainable parameters, that was previously
trained and tested on the BioASQ challenge.
In terms of overall performance, in phase 1 we achieved the overall best
score of 0.5325 nDCG, ten percentage points above the reported median.
In phase 2 we achieved a best score of 0.3289 nDCG@30, four percentage
points above the reported median. Our source code is available from
https://github.com/T-Almeida/TREC-PM-2020.

Keywords: Deep Learning · Neural Networks · Information Retrieval ·
BM25 · Lightweight Neural Model.

1 Introduction

This paper describes the participation, for the first time, of the Biomedical In-
formatics and Technologies (BIT) group from the University of Aveiro, Portugal,
in the TREC Precision Medicine track.

The precision medicine track has an already extensive literature describing
a wide variety of solutions, where the great majority of top-performing runs
are usually based on traditional information retrieval solutions, like BM25 with
query expansions, being even capable of outperforming a majority of deep learn-
ing (DL) solutions. Although DL approaches are currently less effective in this
track, some groups have presented interesting results [5,6].

In our approach, we tried to adopt a deep learning solution by reformulat-
ing the TREC-PM problem as a well studied DL task, i.e, we reformulate the

https://github.com/T-Almeida/TREC-PM-2020
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problem of finding evidence as a question-answering problem. More precisely,
we followed a two-stage pipeline, where, following the literature, we adopted
BM25 [8] with query expansion for creating strong baselines as our first-stage
step. Next, we employed a lightweight shallow interaction-based neural network
[1], with only 620 trainable parameters, to act as a question-answering reranker,
hoping to improve the rank of our strong baseline.

In the remainder of the paper, we describe our methodology for the construc-
tion of the submitted runs, then address the results that were obtained, followed
by a conclusion section.

2 Methodology

Figure 1 presents an overview of our employed system architecture. As already
mentioned, we first construct a strong baseline using the BM25 [8] ranking func-
tion combined with a list of gene synonyms. Then we reformulate the topic as
a natural language question to be fed to our neural interaction model further
refining the previous ranking order. Moreover, our neural model was pretrained
on the BioASQ [9] training data, with the intuition of exploring some domain
similarity between the two tasks, since BioASQ is a biomedical challenge over the
same Pubmed/MEDLINE corpus. Through this section, we describe the most
important steps that comprise our submissions.

Fig. 1: General system architecture.

2.1 Synonyms

Given the success of employing synonyms described in the literature, we also
adopted this solution building a synonyms list for the genes and other for drugs,
with the second one being related to the treatment field on the topics.
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Human gene names and synonyms were obtained from HUGO Gene Nomen-
clature Committee (HGNC), and expanded with other gene and protein syn-
onyms from Enseml, UniProt and NCBI. Additionally, ortholog gene names were
also included to increase recall.

In a final step we ended up discarding the synonyms list for the drugs since
it did not match any drug present on the treatment topic field.

2.2 Question formulation

This is our key step to change into a question-answering alike problem. The
objective is to use the information need described on the topic and transforming
it into a natural language question that can be understood by a neural retrieval
model.

Due to time constraints, we were unable to explore this procedure exhaus-
tively and followed a heuristic approach to build a template question that all the
topics would be converted to. For that, we looked at the types of question present
on the BioASQ data and noticed the following frequent pattern: “Is treatment
effective for treatment of disease?”, e.g., “Is dasatinib effective for treatment of
glioblastoma?”. We then decided to use this as our base for the template since
it encodes two of the fields present on the topics and it is a template that the
model sees during training.

So, this step produces a natural question following the template: “Is T ef-
fective for treatment of D G?”, where T is the treatment, D is the disease and
G is the gene specification of the disease.

2.3 First-Stage: BM25 with synonyms

We relied on the BM25 implementation in ElasticSearch, which also offers a
mechanism to perform query expansion with synonyms. More precisely, we added
a Synonyms Token Filter1 to the ElasticSearch “english” tokenizer.

Moreover, we also finetuned the BM25 hyper-parameters using the TREC-
PM 2019 test data, despite addressing slightly different problems.

2.4 Second-Stage: Neural reranking model

The adopted neural model was original proposed in [2], and further improved in
[1]. Figure 2 describes the overall architecture, where we employed an interaction
network to learn and pool relevant signals and an aggregation network to weigh
all the evidence found on different document passages.

In a more detailed way, each document is split into sentences that are fur-
ther combined with the query to build interaction matrices. Then, taking these
matrices in the interaction network, 3-by-3 convolutions are adopted to learn

1 https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-
synonym-tokenfilter.html
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Fig. 2: Lightweight neural model data and operation flow.

n-gram patterns that are then extracted by pooling operations, lastly, the re-
sulting feature vector is linearly combined with a trainable vector to compute a
sentence relevant signal, with 0 for irrelevant and 1 for relevant. Next, the job
of the aggregation network is to weigh the importance of each sentence in order
to produce the final document score. For that, we follow the heuristic to first
weigh each sentence by the importance of each query term, as suggested in [4],
where this importance is learned by taking into consideration the embedding
representation of the query term.

More importantly, this model inner-working follows some of the best-reported
ideas from shallow interaction-based models resulting in a completely transform-
free architecture. As intuition, it was designed to weigh the importance of the
document sentences by taking into consideration the context where the exact
match with the query terms occurs. In other words, this model produces a more
refined judgment of the previously exact match signal considered in the first
stage of the pipeline.

Data preparation. We built a regex-based tokenizer and trained 200 dimension
word embeddings for the produced vocabulary. The tokenizer consisted of filter-
ing off non-alphanumeric characters with the exception of the hyphen character
since in this biomedical domain this character composes more complex words like
chemical compositions. We ran this tokenizer over the PubMed/Medline docu-
ments collection and the development and test topics, resulting in a vocabulary
with approximately 4 million tokens.

We used the word2vec skip-gram algorithm from the Gensim [7] library to
obtain the word embeddings. Specifically, we adopted the default configuration
present on the Gensim library for training with word2vec skip-gram.
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2.5 Training and hardware

The neural model was pretrained using a pairwise cross-entropy loss on the
BioASQ training collection. We also tried to further train on the TREC 2019
test data. The model architecture parameters were the same as used in [1], so
we redirect the reader for further information or details.

Additionally, our experiments ran on a machine with Intel(R) Xeon(R) CPU
E5-2670 v3 @ 2.30GHz and 192GB of RAM, highlighting that the neural model
only ran on the CPU not requiring a GPU.

2.6 Runs identification

The TREC Precision Medicine track allowed five submissions that we utilized
in the following way:

– baseline: Corresponds to the first-stage ranking order, produced with the
BM25 with gene synonyms and the all the topic fields concatenated.

– nnrun1: Corresponds to the full pipeline presented.
– nnrun2: Similar to nnrun1, but uses a different checkpoint of the trained

neural model.
– nnrun3: Similar to nnrun1, but training the model also on the TREC 2019

test data.
– rrf : Reciprocal rank fusion [3] of the previous four runs.

3 Results and discussion

In this section, we will address the results obtained in phase 1, precision medicine
assessment, and phase 2, evidence assessment.

3.1 Phase 1

First, we present the results of phase 1 of our runs and compare it to the median,
as summarized in Table 1.

Table 1: Summary of our runs results for the phase 1 comparatively to the TREC average of the
median.

Submissions nDCG P@10 R-prec

baseline 0.5325 0.5516 0.4207
nnrun1 0.5145 0.5097 0.4027
nnrun2 0.5071 0.5161 0.4029
nnrun3 0.4652 0.4903 0.3604

rrf 0.5245 0.5161 0.4107

Median 0.4316 0.4645 0.3259
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In general, all of our submissions were able to achieve scores higher than the
presented median. However, when looking with more detail it was our baseline
run that achieved the higher scores in all the metrics, which means that our
current neural solution injures the original rank instead of improving its results.
Nevertheless, the produced ordering stayed above the median which is a good
indication since we believe that the neural model could be further improved.
Only regarding the neural submissions, the nnrun1 was the best in terms of
nDCG@10 losing to the nnrun2 on the remaining two metrics.

Our weakest submission was nnrun3, which shows that training with the
TREC 2019 test data ended up injuring the model. On the other hand, the
other neural runs were capable of staying closer to the already strong baseline.
This also demonstrates that training with the BioASQ data seemed to be more
effective than training with last year’s TREC data, which may be due to this
year’s task being slightly different.

Per topic analysis. We now present two visualizations to look with more detail
at the individual query performance of our submitted runs.

Fig. 3: nDCG of all the submitted runs in comparison to the official median.

In Figure 3 we show the performance in terms of normalized discounted cu-
mulative gain per each topic for all the submitted runs comparatively to the
official TREC median. It is observable that for a majority of topics our sub-
missions were able to match the official median, and for topics 18 and 33 our
baseline run clearly outperforms the median and also our remaining runs.

We also compare, in Figure 4, our best run with the official median and
best values, in terms of nDCG, where we achieved the same scores as the best
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Fig. 4: nDCG of our best run against the official median and best values for each topic.

reported for topics 7 and 27, while being close for a great part of the remaining
topics.

In Appendix A we also present the same visualization for the other available
evaluation metrics, namely P@10 and R-prec.

3.2 Phase 2

Regarding phase 2, we present the results of our runs on Table 2, in comparison
to the median.

Table 2: Summary of our runs results for the phase 2 comparatively to the TREC average of the
median.

Submissions nDCG@30 nDCG@5

baseline 0.3092 0.2720
nnrun1 0.3266 0.2964
nnrun2 0.3214 0.2944
nnrun3 0.3030 0.2683

rrf 0.3289 0.2911

Median 0.2857 0.2529

Similarly to phase 1, in phase 2 all of our submissions achieved scores higher
than the presented median, for both metrics. More interestingly, the neural
reranking runs were able to outperform the baseline run, except for the nnrun3.
This observation reinforces our hypothesis of converting the problem of finding
evidence to the more well-studied question-answering problem.
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Fig. 5: nDCG@30 of all the submitted runs in comparison to the official median.

Per topic analysis. In Figure 5 we show the performance in terms of nDCG@30
per each topic for all the submitted runs comparatively to the official TREC
median. In phase 2, the results were closer to the median, comparatively to
phase 1, being only the topics 24, 34 and 39 where our system considerably
outperforms the median.

Similarly to the previous phase, we also compare, in Figure 6, our best run
with the official median and the best values, in terms of nDCG@30, where we
achieved close to the best reported score for topic 39, while being superior to
the median for a great part of the remaining topics.

In Appendix A we present the same visualization for the other available
evaluation metrics, namely nDCG@5.

4 Conclusion

We proposed a two-stage retrieval pipeline to address the Precision Medicine
challenge, where we demonstrate a strong baseline comparatively to the TREC
best and median scores, which will be extremely useful as a starting point for
future work, leaving more time to focus on the reranking portion of our system,
which failed to achieve the expected improvements.

We also demonstrate a successful naive neural approach to extract evidence
by reformulating this as a question-answering problem.

In future work, we aim to improve the question formulation step and explore
transform models, like BERT, for the reranking stage.
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Fig. 6: nDCG of our best run against the official median and best values for each topic.
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Fig. B1: Phase 1: P@10 of all the submitted runs comparable to the official median.

Fig. B2: Phase 1: R-prec of all the submitted runs comparable to the official median.
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Fig. B3: Phase 1: P@10 of our best run against the official median and best values for each topic.

Fig. B4: Phase 1: R-prec of our best run against the official median and best values for each topic.
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Fig. B5: nDCG of our best neural run against the official median and best values for each topic.

Fig. B6: Phase 1: P@10 of our best neural run against the official median and best values for each
topic.
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Fig. B7: Phase 1: R-prec of our best neural run against the official median and best values for each
topic.

Fig. B8: Phase 2: nDCG@5 of all the submitted runs comparable to the official median.
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Fig. B9: Phase 2: nDCG@30 of our best neural run against the official median and best values for
each topic.

Fig. B10: Phase 2: nDCG@5 of our best neural run against the official median and best values for
each topic.
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