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Abstract

For a hungry fruit fly, locating and landing on a fermenting fruit where it can feed,

find mates, and lay eggs, is an essential and difficult task requiring the integration

of both olfactory and visual cues. Understanding how flies accomplish this will help

provide a comprehensive ethological context for the expanding knowledge of their

neural circuits involved in processing olfaction and vision, as well as inspire novel

engineering solutions for control and estimation in computationally limited robotic

applications. In this thesis, I use novel high throughput methods to develop a detailed

overview of how flies track odor plumes, land, and regulate flight speed. Finally, I

provide an example of how these insights can be applied to robotic applications to

simplify complicated estimation problems. To localize an odor source, flies exhibit

three iterative, reflex-driven behaviors. Upon encountering an attractive plume, flies

increase their flight speed and turn upwind using visual cues. After losing the plume,

flies begin zigzagging crosswind, again using visual cues to control their heading.

After sensing an attractive odor, flies become more attracted to small visual features,

which increases their chances of finding the plume source. Their changes in heading

are largely controlled by open-loop maneuvers called saccades, which they direct

towards and away from visual features. If a fly decides to land on an object, it

begins to decelerate so as to maintain a stereotypical ratio of expansion to retinal

size. Once they reach a stereotypical distance from the target, flies extend their legs

in preparation for touchdown. Although it is unclear what cues they use to trigger

this behavior, previous studies have indicated that it is likely under visual control. In

Chapter 3, I use a nonlinear control theoretic analysis and robotic testbed to propose

a novel and putative mechanism for how a fly might visually estimate distance by
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actively decelerating according to a visual control law. Throughout these behaviors, a

common theme is the visual control of flight speed. Using genetic tools I show that the

neuromodulator octopamine plays an important role in regulating flight speed, and

propose a neural circuit for how this controller might be implemented in the flies brain.

Two general biological and engineering principles are evident across my experiments:

(1) complex behaviors, such as foraging, can emerge from the interactions of simple

independent sensory-motor modules; (2) flies control their behavior in such a way

that simplifies complex estimation problems.
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Chapter 1

Introduction

For thousands of years, since before Plato’s time, humans have wondered how our

brains work. Where do our thoughts come from? How are we able to perceive the

world? Why do we behave the we do? And for nearly as long, we have dreamed

of building automated “robots,” capable of performing tasks as complex as we can

ourselves. At present, our best attempts do not even come close to the elegance and

robustness of behaviors exhibited by any animal, let alone a human being. Our best

hope of building such machines is to further our understanding of how our own brains

function. The research presented in this thesis represents a (very) small step forward

towards realizing both of these dreams.

Understanding the human brain is a daunting task. Today, we know that our brain

consists of approximately 100 billion neurons, connected to one another in a complex

network with over 1000 trillion connections. Understanding how sophisticated be-

haviors emerge from this complicated network of neurons is only now beginning to

come within reach thanks to advances in genetic manipulations that make it possible

to dissect neural circuits. Attempting to do so within the human brain, however,

raises not only ethical issues, but would be an insurmountable task given the sheer

size of the brain. Fortunately, pioneering comparative studies across a wide range

of model organisms ranging from worms (C Elegans), to sea slugs (Aplysia), fruit

flies (Drosophila melanogaster), mice, and monkeys, have found that the majority of

the underlying principles that govern neural interactions are conserved across species.

Thus, research efforts to understand any organism will build valuable knowledge to-
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wards understanding how our own brains function.

In order to understand how interactions between groups of neurons can give

rise to the behaviors we observe, first requires a comprehensive and quantitative in-

put/output understanding of these behaviors. Konrad Lorenz (1903-1989) and Niko

Tinbergen (1907-1988) are credited with establishing this field, called neuroethology:

the study of the neural basis for behavior. We are now in a golden age where it

is finally possible to study behavior, and simultaneously “listen” to neurons in vivo.

As a result, we have been able to identify the neural circuits that control individual

behaviors. There is, however, a large gap between understanding individual reflexive

behaviors, and how these reflexes interact with one another to give rise to more com-

plex behaviors. Moving forward requires that we develop a more comprehensive, and

quantitative, understanding of animals’ behavioral repertoires. This means studying

animals while they perform complex behaviors with as much freedom as possible,

while still controlling their sensory inputs.

To address these research goals, the fruit fly, Drosophila melanogaster, has emerged

as an ideal model system for neuroethologists thanks to its reliable laboratory behav-

ior and the wealth of genetic tools that have made it possible to begin dissecting their

neural circuits. Despite having a brain no larger than a poppy seed, which consists of

only 100,000 neurons, flies are capable of an impressive array of behaviors including

rapid aerial acrobatics, tracking odor plumes in flight, and complex courting rituals.

Possibly the most difficult, and important, of these is finding food. For flies, locating

food is not only required for nourishment, but all other aspects of its life cycle as

well including mating and oviposition, which also occur on food sources. Surpris-

ingly, despite the ubiquity of Drosophila in laboratories, kitchens, and fruit stands,

many questions regarding how they accomplish this critical task–from initial plume

detection to landing–remain unanswered.

In this thesis, I describe in comprehensive detail the algorithm flies use in order

to track an odor plume to its source (Chapter 2), and safely land on it while avoiding

obstacles (Chapter 3). The final stage in landing requires a fly to extend its legs

at an appropriate distance, yet flies are unable to directly measure distance using
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their sensory system. In Chapter 4, I describe a bio-plausible, testable, and novel

mechanism for actively estimating distance. All of the behaviors in Chapter 2-4 rely

on a fly’s ability to control and maintain an appropriate flight speed. In Chapter 5, I

describe the role of the neuromodulator octopamine in the flight control system, and

use a control theoretic framework to propose a putative neural circuit for the flight

speed regulator. Together, the models presented in Chapters 2-4 describe a com-

plete algorithm for how a fly locates, and lands on, a food source. Surprisingly, this

seemingly complex behavior emerges from a set of just six simple, and independent,

sensory-motor modules.

The idea that complex behavior can arise through simpler behavioral modules

is not new. As early as 1911, researchers have recognized that complex limb ma-

neuvers are accomplished through combinations of modular reflexes [25], for a more

recent review see [12]. In 1959, French zoologist Pierre-Paul Grassé combined this

principle with Tinbergen’s concept of sign-stimulus triggered fixed-action-patterns to

describe how behaviors which change the environment (and thus an animal’s sensory

perception) could be used to trigger subsequent behaviors, ultimately leading to a

seemingly coordinated behavioral cascade. To describe this principle, Grassé intro-

duced the term stigmergy, derived from the Greek words stigma (meaning “mark” or

“sign”) and ergon (meaning “work” or “action”). Grassé used this principle to explain

how a group of termites could collectively build a complex nest structure without the

need for an internal blueprint or direct communication between individuals [68]. Al-

though the term was initially introduced in the context of social insects, the principle

is far more general. Perhaps the most elegant example of stigmergy can be found in

the nest building behavior of the solitary mud wasp [132]. In a series of elegant exper-

iments, Smith showed that the wasps built their nests in a series of five distinct steps.

By altering their structures at key points in the building cycle, he showed that the

wasps do not use a blueprint of the final structure, but rather, that their actions are

cued by specific aspects of the structure. In its most basic form, stigmergy describes

how complex, coherent, and seemingly intelligent behavior can emerge from the iter-

ation of simple independent sensory-motor modules. The key insight is that previous
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actions will determine future actions by changing the environment, and therefore an

animal’s sensory perception, creating a closed-loop cycle. This interplay provides a

mechanism for indirect communication between sensory-motor modules both within

a single animal, and between multiple animals. In this way, complex sequences can

be indirectly “programmed” without explicitly wiring the sequences together within

the brain, resulting in a robust and "evolvable" architecture.

A natural extension of stigmergy is to relax the requirement that actions must

physically change the environment, and instead allow for the possibility that actions

can change an animals’ perception of the environment simply by moving through

it. These new perceptions can trigger new behavioral actions, ultimately leading to

complex behavioral cascades similar to those that allow wasps and termites to build

elaborate nests, but in this case, the cascades result in the construction of behav-

ioral trajectories. The generalization from physical changes to perceived changes has

intriguing consequences, because an animal can actively move so as to simplify, and

even enrich, its sensory perception, a principle that I will refer to as idiokinemetry.

Although similar to “Active Sensing,” the distinction is important. This mode of sen-

sory simplification (or enrichment) requires that the animal move, physically changing

its position (or more generally, its sensors position) within the environment accord-

ing to some sensory feedback regulator, thus sampling from an entirely new point of

view. This is in contrast to active sensing (for a review, see [129]), such as the classic

examples of echolocation in bats and marine mammals [146], electrolocation in fish

[156], and active eye movements observed in mammals [99, 104], in which the sensors

do not change position (only orientation).

The principle of idiokinemetry has been formalized in control theory under the

name of nonlinear observability, which draws on Lie algebraic tools to describe how

aspects of control can help expand sensory perception, an idea that I elaborate on

in Chapter 4. However, these tools only provide a measure of which controls must

be actuated, not how. Studying biological systems can give us inspiration as to how

controls can be actuated to make estimation problems easier. To gain an intuitive

understanding of this principle, imagine trying to run upwind by holding a windsock
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while running in an open field. To construct a traditional control law to regulate

this behavior, you would need a measurement of the wind direction relative to your

direction of travel. If you stand still, determining the direction the wind is blowing is

easy - just look at the windsock. While running, however, the apparent wind created

by your motion will confound this measurement, and you can no longer determine the

wind direction by looking at the angle of the windsock. One thing you can be certain

of, however, is that if the windsock is not aligned with your direction of travel, you are

not headed upwind. This observation implies a simple solution: while running, slowly

turn until the sock is aligned with your direction of travel. Following this algorithm

will result in you heading directly upwind. Note that running downwind faster than

the wind speed would also result in the windsock being aligned with your direction

of travel. This solution, however, is unstable given a simple proportional controller.

In Chapters 2-4, I describe three instances of how flies may use this principle to

simplify the task of tracking an odor plume, and landing on it. The first example,

similar to the windsock problem, explains how flies are able to find the upwind and

crosswind directions during plume tracking by using visual feedback (an idea that

was first proposed for mosquitoes, under the name visual anemotaxis, by Kennedy

[82]). The second example, is a detailed description of the body saccades flies make,

which simplifies their visual experience by removing the rotational components of

optic flow except for brief moments in time (where vision appears to be ignored [9]).

Finally, I describe an example of how flies’ visual control of flight speed can allow

them to measure absolute distance to a target in order to trigger leg extension at the

appropriate time. This principle of idiokinemetry is likely general throughout biology,

but its importance has not been strongly recognized thus far. The lessons we learn

about what sensory-motor reflexes animals, such as flies, use may help design simple

yet robust control algorithms for resource limited robots.
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Chapter 2

Plume tracking behavior of flying

Drosophila emerges from a set of

distinct sensory-motor reflexes
1

2.1 Abstract

For a hungry fruit fly, locating fermenting fruit where it can feed, find mates, and lay

eggs, is an essential and difficult task requiring the integration of both olfactory and

visual cues. Here, I develop an approach to correlate flies’ free flight behavior with

their olfactory experience under different wind and visual conditions, yielding new

insight into plume tracking based on over 70 hours of data. To localize an odor source,

flies exhibit three iterative, reflex-driven behaviors, which remain constant through

repeated encounters of the same stimuli: (1) 270 ms after encountering a plume,

flies increase their flight speed and turn upwind, using visual cues to determine wind

direction. Due to this substantial response delay, flies pass through the plume quickly

after entering it. (2) 640 ms after losing the plume, flies initiate a series of vertical and

horizontal casts, using visual cues to maintain a crosswind heading. (3) After sensing

an attractive odor, flies exhibit an enhanced attraction to small visual features, which

increases their probability of finding the plume’s source. A fly’s own flight dynamics,

which are dominated by sensory-motor delays, play a larger role in determining the

time history of its olfactory experience than does plume structure. As a consequence,
1As of Nov. 1st 2013, the material presented in this chapter is currently under review at Current

Biology.
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delays in the onset of crosswind casting and the increased attraction to visual features

are necessary behavioral components for successfully locating an odor source. These

results provide a quantitative behavioral background for elucidating the neural basis

of plume tracking using genetic and physiological approaches.

2.2 Introduction

Finding food is perhaps the most important task a motile animal faces on a routine

basis, which has driven the evolution of efficient strategies that rely on spatial and

temporal integration of multiple sensory modalities such as olfaction and vision. The

fruit fly, Drosophila melanogaster, is a convenient organism in which to study foraging

behavior thanks to its reliable laboratory behavior and the wealth of genetic tools that

have made it possible to begin dissecting the neural circuits encoding both olfaction

and vision [58, 128, 153]. However, our knowledge of their free flight responses to

attractive odor plumes remains limited due to the challenges associated with corre-

lating individual behaviors with the invisible odor plumes [59]. Understanding how

flies use their sensory information to guide flight behaviors during foraging would

provide a comprehensive ethological context for the expanding literature on cellular

and molecular mechanisms.

Fruit flies feed on fermenting fruit, which emit a cocktail of odors including alco-

hols, acids, and CO2 [168]. In their natural habitat, such odors are carried by wind

through fields and orchards in turbulent plumes resulting in a complex odor landscape

consisting of clean air interspersed with packets of high odor concentration. Due to

the importance of advection relative to diffusion, this intermittent plume structure

can persist for great distances downwind before dispersing below detectable levels

[110, 122]. Plumes of this nature present both an opportunity and a challenge, as

odors can be detected from far away, yet the chaotic spatial distribution means there

are no smooth concentration gradients or continuous plume segment that the insects

could follow to the source [109].

Over a century ago, Barrows [6] observed that the plume tracking behavior of
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fruit flies, Drosophila ampelophila, consists of a simple algorithm consisting of two

distinct behaviors: surging upwind and zigzagging (casting) crosswind. Subsequent

studies of plume tracking behavior in insects have focused on pheromone tracking

of male moths, which exhibit similar behavior [4, 3, 29, 41, 81, 89]. The emerging

model is that upon encountering an attractive plume, moths surge upwind by visual

anemotaxis, and at the same time an internal triggering mechanism causes the moth

to make characteristic casting maneuvers [3, 81, 83]. D. melanogaster exhibit similar

plume tracking behavior, however, their casting does not appear to be controlled by an

internal clock, as evidenced by their maintaining an upwind heading in a wind tunnel

with a homogenous odor mixture [26]. An alternative to the internal clock model is

that casting is triggered directly by plume loss. This is similar to the basic strategy

of maintaining a straight course in the presence of attractive cues and altering course

in their absence that is shared by a diverse array of organisms operating at different

scales including Drosophila larvae [64], bacteria [10], and humans [116].

In addition to determining which of these two models best describes the plume

tracking behavior of the fruit fly, many other key issues need to be answered. For

example, the success in tracking a plume will likely depend critically on response dy-

namics, but we have no precise measurements for the sensory-motor delays associated

with the initiation of surges or casts. Although it is likely that flies use visual cues

to maintain upwind flight during surges and cross wind flight during casts, this has

not yet been demonstrated experimentally. Another critical unknown is the degree to

which flies alter their behavior in the face of different wind speeds, an environmental

condition that varies extensively in the field. All these details have proven difficult to

study because the variable and invisible nature of odor plumes makes it challenging

to simultaneously visualize the odor stimulus and an animal’s flight path at the same

time. To overcome this fundamental limitation, I developed an experimental system

that delivers a temporally- and spatially-calibrated odor plume within a laminar flow

wind tunnel equipped with a multi-camera, 3-D tracking system. These experiments

offer a comprehensive and detailed overview of the algorithm flies use to localize an

odor source, and can be described in the context of a simple stigmergic model.
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2.3 Methods

2.3.1 Animals

Experiments were performed on 2-to 3-day-old fruit flies, Drosophila melanogaster

Meigen, Canton-S background. Flies were deprived of food, but not water, for 6-8

hours prior to the start of the experiment in order to motivate flight. Flies were

on a 16 hr/8 hr light/dark schedule, with lights out at 11pm local time. For each

experimental trial, I introduced a group of 12 female flies to the corner of the arena

within a small test tube between 6 and 8 pm. The flies were then free to move

throughout the flight arena for a period of 12-18 hours, during which time data were

collected automatically.

2.3.2 Flight arena

I performed all experiments in a 1.5 m x 0.3 m x 0.3 m working section of a wind

tunnel (Fig. 2.1A) that has been described previously [26, 100, 141, 150]. In these

experiments, except where otherwise noted, the wind tunnel was set to 0.4 m s-1,

which was chosen based on previously published measurements of wind levels in an

apple orchard [26]. On the two long walls and floor of the arena, I projected different

visual stimuli using a Lightspeed Designs DepthQ (Oregon City, OR) projector with

the color wheel removed (120 Hz update rate, 360 Hz frame rate, mean luminance of

50 cd/m2). I generated the stimuli using the VisionEgg open-source image-rendering

software [139]. For the purposes of tracking, the arena was backlit with an array

of near-infrared (640 nm) LEDs. The cameras were equipped with long-pass filters

(Hoya R-72) so that the camera images were not contaminated by the pattern that

was displayed in visible wavelengths.

I tracked the 3-dimensional position of individual flies within the chamber using

a camera based real-time tracking system that is described in detail elsewhere [140].

The 10-camera (Basler Ace 640-100 gm, Basler, Exton, PA) system generated an

estimate of fly position at 100 frames per second with a median latency of 39 ms
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Figure 2.1: (A) Experiments were performed in a 1.5x0.3x0.3 m3 wind tunnel,
equipped with a camera based automated 3D tracking system to observe flies as
they interacted with a narrow ribbon plume of ethanol odor. (B) Odor delivery sys-
tem. (C) Raw (gray) and mean (red) measurements of odor concentration across a
horizontal crosswind cross-section of the wind tunnel in the presence of a constant
ribbon plume of ethanol (0.4 m s-1 wind). The measurements were collected with a
photo-ionization detector that was automatically translated through the wind tunnel
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of the ethanol plume (0.4 m s-1 wind), overlaid with the twelve original mean odor
concentration measurements (see C for an example) used to fit the model. In the
enlarged view, a flying fly is shown to scale.
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by triangulating the fly’s position from 2-dimensional tracking data contributed by

two or more synchronized cameras. The 3-dimensional position was estimated with

an extended Kaman filter, using a constant velocity motion model. Because of the

high frame rate relative to flight behavior, I found that this simplification worked well

in practice. The resulting trajectories were smoothed to remove digitization errors,

and to estimate velocity, using a simple forward/reverse, non-causal Kaman filter. I

excluded non-flying trajectories, as well as trajectories that were less than 1 second

in length, from my analysis.

2.3.3 Odor stimuli

In previous studies, apple cider vinegar or a banana and yeast cocktail have been used

to attract flies [26, 45, 54, 58]. Unfortunately these odors are difficult to work with,

as they are prone to sticking to tubing used to deliver the odors, making it impossible

to obtain a clean pulsing signal. To circumvent this issue I chose to use pure ethanol,

a common component of rotting fruit, which is less likely to stick to tubes and other

parts of the wind tunnel. Although the details of how ethanol is detected by flies

are not well understood, it is attractive to flies [6, 119, 167, 168]. Photo-ionization

detectors are also particularly sensitive to ethanol, making it possible to measure the

same plume that flies experienced during my experiments without using a tracer gas

that may behave differently.

To confirm that the behaviors I observed were due to the detection of an attractive

odor, rather than physiological changes due to my choice of ethanol as an attractive

odor, I repeated my experiments with the commercially available fruit fly attractant

similar to balsamic vinegar, Vector960 (Pest Control Solutions, St. Louis, MO).

Although the responses were less obvious (likely due to differences in concentration

in the air), I did not find any qualitative differences (Fig. 2.15, 2.16). Between

switching odors, I thoroughly cleaned all the potentially contaminated tubes and

vials with Hexane, and ran the experiment with no odor to ensure that all the system

was clean of any residual odors.
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2.3.4 Odor delivery

To compare the responses of flies to an attractive odor plume and clean air I de-

veloped a controlled odor delivery system (Fig. 2.1B). Breathable air from a com-

pressed air tank (Praxair, Seattle, WA) was sent through a mass flow controller (Part

No. 902C-P5BM-I1, Sierra Instruments, Monterey, CA) set to 158 sccm. I used an

Arduino Nano and solid-state relay to switch a three-way solenoid valve (Part No.

LHDA0531215H, Lee Corp, Essex, CT) that directed the airflow either through an

aquarium stone submerged in liquid ethanol contained in a glass vial, or through

uncontaminated tubes. These two pathways passed through another 3-way solenoid

valve controlled in parallel with the first, such that the desired flow of either odorous

air or clean air entered the wind tunnel through a 1.67 mm (I.D.) Polyethylene tube

from the same point with minimal switching latency.

For pulsing experiments, the Arduino was programmed to switch the odor on for

0.4 seconds, allowing clean air to pass through the system for 4 seconds between each

pulse. The timing of the pulses was sent over USB to the computer and saved to disk

for analysis. For the constant plume experiments, the odor delivery was turned on at

midnight, and persisted for 4 hours, after which time the solenoids were switched off

to deliver clean air for the remainder of the night.

2.3.5 Odor plume calibration

To determine the three-dimensional odor landscape, I scanned the wind tunnel with

a miniature photoionization detector (PID) in the presence of an ethanol plume. To

scan the pulsing plume, I positioned the PID at one point and saved the time course

of the Arduino’s control signals together with the output of the PID. I repeated these

measurements for 28 pulses at each of 61 positions, and constructed a 3-dimensional

time-varying Gaussian model based on the data using a least squares fit. Since I

focused my analysis on the results collected with the continuous plume, rather than

the pulsing plume, the results from these measurements are not shown for the sake

of space.
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To calibrate the continuous plume, I attached the PID system to a frame that

was actuated with a stepper motor and timing belt. The motor was controlled so

that the PID was slowly (0.01 m s-1) driven back and forth along the horizontal

crosswind direction through the plume for a period of 15 minutes (50 round trips)

while data was streamed to the computer via an Arduino. This was repeated for

12 different altitudes, each at three different positions along the wind line. For each

run I calculated the baseline subtracted mean (Fig. 2.1C), and used these means

calculate a least squares fit to a two-dimensional Gaussian model of the crosswind

concentration profile at each of the three positions along the wind line (Fig. 2.1D).

The three fits were very similar, so to simplify my analysis I modeled the odor plume

as a constant Gaussian 2D model that stretched down the length of the wind tunnel

as a cylindrical plume. To compare flies’ odor plume tracking behavior under different

wind speed conditions, I repeated the entire calibration process for three wind speeds

(0.3, 0.4, and 0.6 m s-1). For the slowest wind speed, I reduced the mass flow of air

to 77 sccm to obtain a stable plume. The mass flow rates for 0.4 and 0.6 m s-1 wind

speeds were both 158 sccm.

The photo-ionization detector provides data in arbitrary units, which must be

calibrated in order to provide a measure of the actual odor concentration. Unfortu-

nately, the calibration shifts significantly over the course of a few hours. Since each

calibration routine took over 6 hours, I took a first principles approach to calibrate

the magnitude of the odor signal. I assumed that by bubbling air through ethanol,

the ethanol and air mixture in the vial is at steady state. This assumption potentially

yields an over estimate of the concentration of ethanol. Under this assumption, the

mol fraction of ethanol in the air is described by the ratio of the vapor pressure of

ethanol to the atmospheric pressure:

Mol fraction of ethanol =
6.66KPa

101.325KPa
= 0.065. (2.1)

Given the mass flow rate of air through the system, 158 mL/min, I calculated the

flow of mols of ethanol per minute using the ideal gas law:
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n =
PV

RT
=

(101325Pa)(0.000158m3)

(8.314JK−1mol−1)(293.15K)
= 0.00656mols air/min, (2.2)

mols ethanol/min = 0.00656 ∗ 0.065 = 4.26x10−4
. (2.3)

The wind speed in the wind tunnel was set to 0.4 m s-1, or 24 m min-1, thus over

the course of one minute, 4.26x10-4 mols of ethanol are distributed across 24 meters

along the wind direction, or 1.775x10-5 mols per meter. The 2-dimensional Gaussian

model from my PID measurements describes the concentration profile that these

molecules must be distributed with in the plane perpendicular to the wind direction.

Normalizing the Gaussian model such that its integral is 1.775x10-5 yields a function

that describes the number of mols of ethanol in a 1*dy*dx m3 volume. Using the

ideal gas law again, I calculated the number of mols of total gas in that same volume:

41.57 mols. Thus, to calculate the molar fraction of ethanol at any point in the wind

tunnel, I take the ratio of the output from the normalized Gaussian function and

41.57. This yields a peak concentration of 0.0476% mols of ethanol in clean air.

2.3.6 Trajectory reconstruction and analysis

By combining the three-dimensional trajectories from the tracking system with my

model of the odor landscape I was able to reconstruct each flies’ olfactory experience

synchronized to its behavior. Visual inspection of the trajectories indicated that in

the presence of both the pulsing and continuous odor plumes the flies were casting

and surging as has been described previously (Fig. 2.2). To uncover the details of

this behavior, I developed custom analyses that allow us to present the results of all

of the trajectories together. All my analysis code was written in Python using the

open-source software packages Scipy and MatPlotLib.

The tracking software used to collect the 3-dimensional flight trajectories was

unable to maintain the identity of individual flies over the entire course of my ex-
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periments (12-18 hours). Therefore, I was unable to test whether individual flies

behaved consistently different from one another, and each trajectory was treated as

an independent sample. The values of “N” reported throughout the figures in this pa-

per represent the number of trajectories that contributed data to each Figure panel.

This, however, is only one interpretation of “N.” In many cases, individual trajectories

contributed more than once to my analysis, if the fly entered and left the odor plume

multiple times. Furthermore, the number of trajectories should not be confused with

the number of animals (which range between 36 and 108 per experiment). These

alternate values of “N” are reported in a supplementary Table 2.1.

2.3.7 Model

In order to quantitatively assess the importance of the three sensory-motor reflexes

we describe, we created a simple 3-dimensional simulation. In our simulation, a single

visual feature randomly emitted 3 cm diameter spherical “packets” of attractive odor

at a mean rate of 5 per second. We reasoned that this simplified model (as opposed to

modeling actual aerodynamics) would be sufficient to explore the implications of flies’

plume tracking behavior because their olfactory experiences are largely determined

by their own flight dynamics, rather than the plume dynamics. The values were

chosen arbitrarily such that the plume-tracking problem would be difficult, but not

impossible. Different values resulted in consistent behavioral differences between

the tracking algorithms we tested. The odor packets were advected by a 0.4 m s-1

wind that randomly changed direction according to a uniform distribution between

±100°/second. This resulted in a slow random walk of wind speed direction. Once

the first odor packet reached a distance of 1 meter from the source, a virtual fly was

spawned inside of that odor packet. This allowed us to circumvent the problem of

initial plume finding, which is beyond the scope of this study.

The virtual fly was programmed to surge and cast with the same sensory-motor

delays we observed (270 ms, and 640 ms, respectively). To simplify programming,

we allowed the virtual fly to have access to the absolute wind direction, rather than
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Table 2.1: Detailed statistics of trajectory data.
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implementing the programmatically more complex solution of visual anemotaxis. Our

experiments did not provide accurate insight as to how flies trigger casting reversals,

either in the horizontal or vertical directions. For our model, we initially chose 0.5

second casting intervals for both the horizontal and vertical aspects of casting (these

values are similar to what we observed for flies in our wind tunnel). However, we

quickly noted that by using an identical reversal frequency for horizontal and verti-

cal casts, the virtual flies would follow a highly periodic (X-shaped) pattern in the

crosswind plane. Whereas this strategy may be ideal in the case of a pulsing plume

in constant wind, following this algorithm in randomly shifting (or turbulent) winds

could prevent a fly from ever re-locating the plume because the plume may have

shifted outside of the flies periodic search trajectory. In this case, a more strategic

algorithm may be to use a less periodic trajectory, accomplished by adding a noisy

element to the reversal timing, or by using an irrational relationship between the hori-

zontal and vertical cast timing. For our simulation, we arbitrarily chose 0.5 second for

the horizontal reversals, and 0.3090169 seconds for the vertical reversals. Note that

with these values, the ratio of horizontal to vertical casting periods is approximately

equal to the golden ratio, an elegant irrational number found throughout nature and

art [95]. This was an arbitrary choice, and future experiments will be necessary to

determine what ratio of horizontal to vertical casting periods flies use, and whether

this value changes under different environmental conditions (e.g., wind and visual).

Although our simulation provides the framework for exploring what values may be

theoretically optimal under different conditions, without a biological basis for envi-

ronmental conditions and behavioral actions we are hesitant to draw any conclusions.

Once the fly came within 20 cm of the visual feature, we programmed it to approach

the feature, and if it sensed an odor, land on it. The 20 cm choice was again arbitrary,

and will likely depend on the size, and contrast, of the actual feature. We allowed

each simulation to run for 20 seconds, after which time flies had either landed on the

feature, or moved past it without hope of relocating it. We ran three simulations with

different behavioral algorithms (each with 1000 repetitions). In the first, the virtual

fly followed the algorithm outlined above (similar to what we observed real flies do).
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Next, we set the surge and cast delays to be equal (270 ms), and found that the

time flies required to locate the food source increased. Finally, we removed the visual

attraction component, and found that nearly none of the flies successfully located the

source (due to the shifting winds, and the sensory-motor delays). Although simple,

our simulation allows for easy comparisons of different behavioral and environmental

parameters. We invite other researchers to explore this space using our code, which

is made freely available here: https://github.com/florisvb/FlyPlumeTracking.

2.3.8 Statistics – Fisher’s exact test

Odor plume tracking behavior in Drosophila, as in other insects, is a complex time-

dependent and multi-dimensional behaviors, with clear qualitative differences. To

determine which aspects of flies’ behavior were due to the presence of an attractive

odor, I compared their behavior in the presence of an attractive odor plume to their

behavior in the presence of a pseudo-plume of clean air. I found several elucidat-

ing behavioral parameters that showed clear differences between the two treatments,

including flight heading in the horizontal and vertical planes, airspeed, and altitude.

To reduce such behaviors to a single descriptive statistic for performing statistical

tests could hide interesting and important details of the process, as well as running the

risk of giving misleading results. Rather than reduce the data to a single descriptive

statistic, I developed a method whereby I could assign a p-value to each individual

pixel of the density maps shown in figures 2.5-2.8 and 2.11 (Fig. 2.18). These p-values

give a quantitative statistical sense of the importance of the behavioral differences

between the clean air and attractive odor cases.

To determine these p-values, I use a non-parametric resampling approach, Fisher’s

exact test [51, 52]. For each resampling, I randomly reshuffled the labels “clean air”

and “attractive odor” assigned to the trajectories, resulting in two new test groups.

These new groups are run through my analysis, resulting in density maps (e.g., Fig.

2.5B). Each row of the density maps is normalized such that the integral for that row

equals one. Then, on a pixel-by-pixel basis, I calculated the difference between the
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two groups and record this value. After repeating this process for 1000 resampling’s,

I constructed a distribution these differences for each pixel. Comparing the difference

between the actual control and attractive odor cases to this distribution allows us

to calculate a two-tailed p-value that describes the probability that my result is due

to the random sampling process, rather than an actual difference in the underlying

mechanisms driving the behavior. Larger numbers of resampling’s provide more reso-

lution, and confidence, on the p-value. The computations involved in resampling data

at the trajectory level, and calculating p-values on a per pixel basis, are not trivial.

I found that 1000 resampling’s gave consistent results while providing sufficient reso-

lution to calculate p-values as small as 0.001. All of the clear behavioral differences I

present in this paper are significant, in the statistical sense, with a p-value of ≤ 0.001

across the relevant time and parameter space (Fig. 2.18).

2.3.9 Statistics - bootstrapping

Many of the analyses presented in this paper rely on the distributions (D*) of behav-

iors observed in large numbers of trajectories to draw conclusions on flies’ stereotyp-

ical behavior. In order to provide a sense of variability in my data due to random

sampling processes, I used a basic non-parametric bootstrapping method to calcu-

late 95% confidence intervals for these distributions [47]. The general approach is to

resample the original set of trajectories (Y), with replacement, to obtain a new set

of trajectories (Y*), with the same (or similar) sample size as the original dataset.

Note that Y* may include duplicates. Then the analysis is performed on Y* to de-

termine the distribution D*. This is repeated many times, and the resulting values

of the distributions D* are sorted so that a mean and 95% confidence interval can be

calculated. In my analysis, I found that 500 iterations provided repeatable measures

of confidence intervals. For a more detailed explanation, including several examples,

see [30].
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2.4 Results

I measured the 3D trajectories of fruit flies in a laminar flow wind tunnel as they

interacted with a controlled plume of ethanol, a compound which is strongly attractive

[6, 167, 168, 119]. The system was equipped with a high speed projection system that

allowed us to present different visual scenes to the floor and walls of the tunnel (Fig.

2.1A-B). To correlate the flies’ behavior with their olfactory experience, I used a

photo-ionization detector to construct a three dimensional map of the plume (Fig.

2.1C-D). Hungry flies were released into the wind tunnel between 6-8 pm, and the

odor was injected into the wind stream between midnight (their subjective dusk) and

4 am. This allowed us to control for other potential sensory cues by comparing the

flies’ behavioral response to the odor plume, and their response to a pseudo-plume of

clean air.

Our automated data collection system allowed us to collect more than 50,000 tra-

jectories (mean length > 5 sec) of flies entering and leaving the plume under different

visual conditions and wind speeds. In the presence of both a pulsing and continuous

plume, flies exhibited stereotypic surge and cast behavior (Fig. 2.2). As expected,

in the presence of the attractive odor, flies spent significantly more time within the

region of the odor plume (Fig. 2.3A). To present the results from a large dataset in

an informative manner I developed a graphical format that shows the time history

of various behavioral parameters aligned to the moment when each fly either entered

or exited the plume (Fig. 2.3B). To align the flies’ behavioral responses with their

olfactory experiences, I first empirically estimated the threshold odor concentration

that triggered a plume cast (Fig. 2.3C). Based on these results, I chose an odor con-

centration threshold of 3σ� from the plume maximum, which corresponds to 5x10-4

% ethanol in clean air. However, none of the results presented in subsequent figures

were sensitive to changes in this threshold choice within a range of 1 to 4σ�.

In the presence of the continuous laminar ethanol plume, flies spent a median

of 250 ms within the plume during each encounter (Fig. 2.4A). By comparison, flies

spent 210 ms (median value) within the confines of the identically-sized pseudo-plume
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Figure 2.2: (A-C) (i) Example flight trajectories, color-coded for instantaneous odor
concentration, (A) for a pseudo-plume of clean air, (B) a pulsing plume of ethanol,
and (C) a constant ribbon plume of ethanol. (ii) Odor experience vs. time for each
trajectory.
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Figure 2.3: Characterization of flies’ responses to an ethanol plume. (A) Residency
heat map of flight trajectories in clean air and ethanol for the crosswind cross-section
of the wind tunnel. The black ovals indicate so-concentration lines of 1-4 standard
deviations from the peak of the 2D Gaussian model of the odor plume shown in Fig.
2.1D. (B) Cartoon of two flight trajectories, and their respective mapping onto a
plot showing heading relative to the time when they exit the odor plume. The black
trajectory depicts the stereotypical behavior I observed for a fly in the presence of
an attractive odor plume; the green trajectory depicts the stereotypical behavior of a
fly in the absence of any odors. I use these colors consistently throughout the paper.
(C) To show the responses of all the trajectories together, I plot the heading response
of flies relative to each time they exit the odor plume. These trajectory snippets are
overlaid, and shown as a density map in which each row is normalized such that it
spans the entire color range (higher color density indicates more trajectories). In the
presence of the ethanol plume, approximately 0.4-1 seconds after leaving the plume,
flies begin to fly crosswind (casting). To align the trajectories in this way requires
that I define a behavioral concentration threshold of ethanol. To determine at what
concentration flies begin to show a behavioral response, I selected for trajectories
that pass through four different regions of the plume corresponding to the level sets
of 1-4σ�, and set the behavioral threshold to the minimum of that region. Based on
these results, I chose the generous threshold of 3σ�. Responses to a pseudo-plume of
clean air did not show any clear changes based on my choice of threshold within these
ranges (not shown).
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of ethanol (0.25 sec) as they did in a pseudo-plume of clean air (0.21 sec), and a
pulsing plume (0.16 sec). Though small, these differences were statistically significant
(max p-val < 10-6, MWUB). (B) The timing between odor encounters, after the
initial encounter, was similar across the three plumes with no statistically significant
differences (min p-val > 0.37, MWUB). For E and D, the distributions show the
mean value of times across plume encounters for each individual trajectory, thus each
trajectory contributed once to E and once to D.

of clean air. The similarity of these values indicate that flies possess very limited

capacity to actively remain within the 5 cm wide odor plume once they encounter

it, despite that fact the plume is roughly 10 times the wingspan of a fly. In the

presence of the pulsing plume (400 ms on, 4 sec off), flies spent a median of 160 ms

in the plume. Although subtle, these differences were statistically significant (max

p-val<10-6, Mann-Whitney U test with Bonferoni Corrections (MWUB)). I did not

find significant differences between the three groups (continuous, pulsed, pseudo-

plume) for the time between plume encounters within a given trajectory (Fig. 2.4B),

which ranged from 1.1 to 1.4 seconds (min p-val>0.37, MWUB). In interpreting these

values it should be noted that the tracking system often did not allow us to follow

flies for durations as long as the period between successive odor packets in the pulsed

plume experiments. Thus, the data in Fig. 2.4B primarily reflect the time between

encounters of the odor within a single packet as it flowed through the tunnel.

In designing my system, my initial goal was to collect data using a pulsed plume

with dynamics similar to those observed in an open field [110]. However, as described

above, I found little difference in the statistics of plume interaction (time spent in

plume and time between plum encounters) in the continuous and pulsed-plume cases



24

(Fig. 2.4). The lack of effect of plume structure is explained by the fact that, on each

encounter, flies remained with the approximately 5 cm diameter plume for a relatively

brief period of time (see Fig. 2.4A). Thus, even in a pulsed plume, flies experienced

the odor intermittently not because they lost contact due to filament truncation, but

rather because their lateral and vertical motion carried them through the plume.

Because flies encountered the plume more frequently in the continuous plume (and

thus I collected interactions at a higher rate), I focused my efforts on this paradigm.

When encountering the plume, flies exhibited stereotypic surging and casting behavior

as has been described qualitatively in previous studies. In the following sections I

describe the details of these behaviors, organized in the ethologically relevant sequence

of events that take place after a fly first encounters the attractive odor.

2.4.1 Surging behavior

In the presence of an attractive odor, flies exhibited a clear preference for flying up-

wind compared to downwind (Fig. 2.5B), consistent with prior studies. The spatially

calibrated plume made it possible to accurately estimate the sensory-motor delay of

this behavior. Within approximately 270 ms after entering the ethanol plume, flies

turned upwind and increased their ground speed relative to control flies (Fig. 3B,C).

During this upwind surge, flies exhibited tighter distribution about the upwind di-

rection than did control flies, which also showed a preference for flying upwind (Fig.

2.6A). To test whether the ability to surge upwind after encountering an odor involved

visual feedback, I repeated the experiment under three visual conditions: a checker-

board floor, a floor with stripes parallel to the wind-line, and a floor with stripes

perpendicular to the wind-line. The visual anemotaxis model of Kennedy [82], posits

that a flying insect regulates its flight heading such that the direction of the visual

flow it experiences is aligned with its direction of motion, thereby minimizing visual

side slip. Under this control scheme, we would expect the error between flight heading

and the upwind direction to be smaller if the visual stripes run parallel to the wind

direction and larger if the stripes run perpendicular to the wind direction. These
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Figure 2.5: Within 270 ms after encountering an attractive odor plume, flies turn
upwind using visual cues, and simultaneously increase their forward flight speed. (A)
A trajectory (repeated from Fig. 2.2B) demonstrating the stereotypical upwind turn
shortly after the fly enters the plume (color encodes odor concentration, see Fig.
2.1). (B) Heading (in the horizontal plane) of each trajectory relative to each time
the fly enters the odor plume, for the duration of time that it remains inside the
plume. These trajectory snippets are overlaid, and shown as a density map (higher
color density indicates more trajectories). To make the distributions more visually
apparent, the colors of each row were normalized to span the entire color range.
The control plot (left) was generated using a “pseudo-plume” of clean air with the
same shape as the actual ethanol plume. Time is plotted on a log scale between 0
and 3. (C) Airspeed of each trajectory relative to each time a fly enters the odor
plume, plotted in the same manner as B. In B and C the visually apparent differences
are statistically significant (see Fig. 2.18, p-val 0.001-0.01, Fisher’s exact test). (D)
Fraction of trajectories flying upwind, crosswind, or downwind relative to plume entry
for a pseudo-plume of clean air (dashed) and ethanol (solid). Values were calculated
by binning the normalized heading shown in B into four 90° sections corresponding
to upwind, crosswind (left/right combined), and downwind (see color bars on the
abscissa of B). Light colored shading indicates bootstrapped 95% confidence intervals.
The arrow indicates the 95% rise time to the peak fraction of trajectories flying
upwind.

predictions were confirmed by my experimental results, which show a significantly

tighter distribution of upwind heading for flies surging in the presence of stripes par-

allel to the wind-line (p≤0.001, Fischer’s exact test) (Fig. 2.6B). Flies also showed

a significantly tighter distribution in the presence of faster wind speeds (p≤0.001,

Fischer’s exact test), and a reduced accuracy in surging upwind at slow wind speeds

(Fig. 2.6C), results that are also consistent with visual anemotaxis.
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Figure 2.6: (A) Histogram of headings, binned across the time range outlined in or-
ange in Fig. 2.5B. (B) (i) Comparison of heading histograms (calculated as in A) for
three visual environments. (ii) Difference between heading histograms in Bi and their
respective clean air control distributions, with enforced symmetry prior to subtraction
to minimize artifacts. The light colored shading shows bootstrapped 95% confidence
intervals. (iii) Concentration (peak sharpness) of each distribution in Bii, defined by
the difference between the peak value and the mean across the gray-shaded region in
Eii (mean and bootstrapped 95% confidence intervals). Statistically significant differ-
ences were calculated by the two-tailed Fisher’s exact test (*** indicates p≤0.001).
(C) Same as B, for different wind speeds, each with a checkerboard floor).

2.4.2 Casting behavior

Despite the unnatural constancy of the ethanol plume in my experiments, flies re-

mained within the plume for only 250 ms. Within approximately 640 ms after leaving

the plume, flies began casting crosswind (Fig. 2.7A-B). These maneuvers were not

confined to a horizontal plane, but rather the flies tended to make casting movement

oriented at oblique angles in the crosswind plane corresponding to ±45 o and ±135

o from vertical (Fig. 2.7C). This suggests that the casts are tuned to probe for the

plume equally in the horizontal and vertical dimensions. The timing of cast initiation

was independent of the time flies spent in the plume prior to leaving it (Fig. 2.7D).

This suggests that casting is triggered reflexively by each plume loss event and is not

strongly influenced by the flies’ prior experience within the plume.

In addition to its role in upwind surges, flies might also employ visual anemotaxis

during crosswind casts. To test this hypothesis, I again made use of stripes aligned

either parallel or perpendicular to the wind line. If flies use visual slip to control
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Figure 2.7: Within 600-800 ms after leaving an attractive odor plume, flies begin cast-
ing crosswind using visual cues, irrespective of wind speed. (A) A sample trajectory
repeated from Fig. 2.2B that shows the stereotypical crosswind cast soon after the
fly leaves the plume (color encodes odor concentration, see Fig. 2.1). (B) Heading (in
the horizontal plane) of each trajectory relative to each time the fly leaves the odor
plume, for the duration of time that it remains outside of the plume. The figures
were generated from the same trajectory snippets and in the same manner as Fig.
2.5B. (C) (i) Heading of each trajectory in the cross-wind plane perpendicular to the
wind direction relative to each time the fly leaves the odor plume, plotted in a similar
manner as B. In B and C the visually apparent differences are statistically significant
(see Fig. 2.18, p-val 0.001-0.01, Fisher’s exact test). (ii) Normalized histogram of
the headings for Ci, binned across the time range outlined in purple. (D) Fraction
of trajectories flying upwind, crosswind, or downwind relative to plume entry for a
pseudo-plume of clean air (dashed) and ethanol (solid). Values were calculated by
binning the normalized heading shown in B in a similar manner to Fig. 2.5D. The
arrows indicate the 95% rise time to the peak fraction of trajectories flying upwind
(bar shows 95% confidence interval). Results are shown for (i) all the data in B, and
two subsamples of the data corresponding to trajectories that spent (ii) 250-300 ms
and (iii) 1-2 seconds inside the plume prior to departure.
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Figure 2.8: (A) Histogram of headings, binned across the time range outlined in
orange in Fig. 2.7B. (B,C) Comparison of heading during casting behavior for different
visual environments and wind speeds, plotted in the same manner as Fig. 2.6B,C.

their cast heading as they do during surging maneuvers, we would expect to find a

tighter distribution about the crosswind direction if the lines are perpendicular to the

wind, whereas we would expect a much broader distribution if the lines are parallel

to the wind. This hypothesis was confirmed by my experimental results, which show

a significantly (p≤0.001, Fisher’s exact test) tighter distribution of heading in the

crosswind direction when the lines are perpendicular to the wind (Fig. 2.8B). Unlike

the upwind surges, however, I did not find any significant effect of wind speed on the

flies’ casting accuracy (Fig. 2.8C). The slightly increased proportion of flies that fly

upwind in the slow wind case can be explained by the reduced odor injection flow,

which was necessary to obtain a laminar plume structure under these conditions (see

Methods).

The simplest mechanism by which a fly could maintain a crosswind flight heading

independent of wind speed would be for it to orient its body into the wind by visual

anemotaxis, and control its flight force vector so as to generate pure visual side slip,

thereby maintaining a body orientation pointed directly upwind. To test whether

flies use this approach, I installed an 11th camera directly above the wind tunnel

looking straight down with a sufficiently narrow field of view to resolve flies’ body

orientation for a small sub-section of the wind tunnel (Fig. 2.9). I found that rather

than maintaining a constant body orientation into the wind, flies instead cast with
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Figure 2.9: Flies cast with slip angles that range between 0-90°, and the slip angle
is proportional to their flight speed. Three example trajectories of flies that pass
through the ethanol plume prior to entering the volume over which I was able to
track their body orientation with an auxiliary camera. The images show overlays of
sequential camera images (recorded at 100 fps, displayed at 25 fps), together with the
body angle estimates shown by the red triangle (the point indicates the head). The
body orientation estimates were smoothed with a forward/reverse non-causal Kalman
filter, and are shown as black triangles overlaid on the complete trajectories, which
are color-coded as in Fig. 2.3.

a broad distribution of body orientations. To explain the variability in behavior, I

examined the correlation between their flight speed and slip angle (where the slip

angle is defined as the difference between their direction of travel and their body

orientation). I found a strong correlation such that fast moving flies align their bodies

with their flight direction during casts, whereas slow moving flies tend to fly sideways

(Fig. 2.10). At intermediate speeds, flies employ an intermediate slip angle between

0° and 90°. Further, at slow wind speeds flies cast with a faster ground speed and a

smaller slip angle, whereas in fast wind speeds flies cast with a slower ground speed

and cast primarily by side slip. The fact that flies can fly crosswind by maintaining

different slip angles suggests that the circuitry underlying optomotor anemotaxis is

sophisticated enough that zero side slip can be regulated about an arbitrary optic

flow axis with respect to the body and head.
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Figure 2.10: From all the segments where I was able to collect body orientation data,
I selected those that occurred 1-10 seconds after the fly encountered the odor plume
(and is thus likely casting) and used these segments in plots i-iii. (i) Histogram of
flight heading, similar to Fig. 2.8A. The difference in the histograms shown here and
in Fig. 2.8A are expected since the auxiliary body orientation camera was centered
and could only capture a small portion of the wind tunnel’s width. (ii) Distribution
of heading vs. body orientation. Each column of pixels is normalized such that it
has a maximum and a minimum. (iii) Ground speed vs. slip-angle for the portions
of ii that correspond to a heading within ±20° from crosswind (shown as a pink back
drop in i).
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2.4.3 Odor induced visual saliency

In a natural setting, tracking a chaotic and sparse odor plume is not only challenging,

but it may never lead a fly to the actual source of the plume, although it will likely

get them close. To pin point the source of the odor it seems sensible that a fly would

use additional visual information to guide local search behavior. In my experiments

with a checkerboard pattern on the floor of the arena I observed that flies often flew

towards the bottom of the arena soon after leaving the attractive odor plume, and

spent a disproportionate amount of time near the floor compared to their behavior in

clean air (Fig. 2.11A). I hypothesized that this behavior was evidence of attraction

to high contrast visual features following the detection of an attractive odor. To test

the hypothesis further, I projected a small high contrast circle on an otherwise low

contrast checkerboard floor, and projected two additional circles on the vertical walls

of the tunnel. Under these conditions, flies did not exhibit as strong preference for

exploring the floor of the arena, presumably because the contrast of the checkerboard

pattern had been reduced (Fig. 2.11B). However, a close examination of the trajec-

tories revealed that flies approached and hovered in the vicinity of the three small

visual features after encountering the odor plume (Fig. 2.11C). These explorations

of the visual features are obvious in heat-maps of residency time in the tunnel when

compared to the clean air case (Fig. 2.12B).

The initial upward/downward symmetry in the distribution of trajectories leaving

the plume (t=0, Fig. 2.11A) indicates that flies did not leave the plume by flying

down in order to explore the checkerboards. Further, I did not find a correlation

between time spent in the plume and the time course of the fraction of trajectories

that explored the floor of the arena after leaving the plume. These results suggest that

odor-induced visual saliency is triggered by the loss of an attractive plume, much like

casting behavior. The accumulation of trajectories near the floor of the arena in the

presence of a checkerboard floor raises the question of whether the aspects of casting

behavior presented in Fig. 2.7-2.8 might be confounded by this behavioral effect. My

results, however, show that this is not the case (Fig. 2.17). Instead, casting and the



32

A B

-.15 0 .15
Altitude, m

−1

0

1

10

Ti
m

e
si
n
ce

 p
lu

m
e 

lo
ss

,
se

c

-.15 0 .15
Altitude, m

−1

0

1

10

Ti
m

e
si
n
ce

 p
lu

m
e 

lo
ss

,
se

c

N
=1368

Clean air Ethanol N
=3182

N
=1795

N
=1090

−1 0 1 10

Time since plume loss, sec

0.0

0.4

Fr
ac

ti
o
n

o
f
tr
aj

ec
to

ri
es

 
 3

 c
m

 fr
o
m

 
o
o
r

−1 0 1 10

1000-2000 ms in plume, N=345250-300 ms in plume, N=380

C
(i) (ii) (iii)

−1 0 1 10

1000-2000 ms in plume, N=345

Figure 2.11: Odor increases visual saliency of high contrast objects. (A-B) Altitude
response of flies relative to the time they exit the odor plume for different visual en-
vironments, for the duration of time prior to plume re-entry. The light red overlay in
the ethanol case indicates the extent of the odor plume. In A and B, the visually ap-
parent differences are statistically significant (see Fig. 2.18, p-val 0.001-0.01, Fisher’s
exact test). (C) Time course of object attraction is independent of time spent in
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exploration of high contrast features are distinct behaviors that are simultaneously

triggered after plume loss.

2.5 Discussion

Although I set out to study plume tracking responses of flies to a pulsed plume, I

noted that their behavior was quite similar to that elicited by a narrow continuous

ribbon plume. After an initial contact, flies re-encountered the continuous plume

with nearly the same interval (approximately 1 sec) as they did in the pulsed plume

and pseudo-plume of clean air. Initial contact with the pulsing plume, however,

was far less frequent, resulting in fewer trajectories. Flies spent a similar amount of

time inside the bounds of the plume in each of the three cases (0.16-0.25 seconds),

demonstrating that a fly’s flight trajectory plays a larger role in its perceived olfactory

experience than the dynamics of the odor plume itself. The density of trajectories

above and below the plume at the time of departure in Fig. 2.11, together with the

upwind heading at the time of departure shown in Fig. 2.7, indicate that flies left the

plume more often through changes in altitude than horizontal heading.

These results are surprising considering that previous studies with tethered flies

have shown that they have the sensory capacity to detect differences in odor con-

centration across their antenna, and thus should be able to track an odor gradient

in flight [45, 58]. Although the circular laminar plume should present a best-case

scenario for the use of osmotropotaxis during flight, I did not find any evidence that

flies used this mechanism. This is not surprising, considering that in a natural setting

concentration of odor is not a reliable guide to the direction of the source except

when the source is decimeters away [109]. However, flies might use osmotropotaxis

to decide in which direction they should make their cast after leaving the plume. For

example, a fly might be able to detect whether it exited the plume going left or right,

and thus initiate casting in the opposite direction (towards the plume). For flies

leaving the plume with both small heading angles (10°-20°) and large heading angles

(45°-135°) relative to upwind, I did find that flies were slightly more likely to turn
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in the direction of the plume after leaving it (56% and 69%, respectively). However,

this preference was not significantly different from the response of control flies in a

pseudo-plume of clean air (p>0.4, Fischer’s exact test), suggesting that their decision

is more likely based on visual cues from the walls of the wind tunnel, rather than

olfactory ones.

2.5.1 Casting, surging, and odor induced object salience con-

stitutes a stigmergic iteration

After encountering an attractive odor plume, flies initiated a surge within approxi-

mately 270 ms. This delay is generally consistent with previously reported values for

flies [26] and other insects [29]. Presumably the delay is a limitation of the system

(which includes olfactory processing, integration with visual stimuli, motor planning,

transduction, biomechanics, and aerodynamics) rather than a programmed delay, and

it has intriguing consequences. Often, the flies’ flight trajectory prior to contact will

take them through to the other side of the plume before they initiate a surge, result-

ing in only a brief encounter with the odor (insects have been found to react to short

bursts of odor of less than 10 ms [167]). If the animals initiated their casting behavior

with the same delay, they would make very slow headway towards the source. One

possible solution to this problem is to incorporate a delay before initiating a cast in

response to leaving the plume, guaranteeing some upwind progress for each plume

encounter. This is indeed what I observed; the measured delay of approximately 640

ms seems longer than the minimum required for sensory-motor processing (and twice

the delay associated with the surge). The additional delay also provides a low pass

filter, which would serve to smooth their behavioral responses to the high frequency

dynamics of natural odor plume filaments.

To quantitatively assess the importance of the casting delay, we constructed a

simple computer simulation to test the performance of several plume-tracking al-

gorithms (Figure 2.13). In our simulation, a single visual feature randomly emit-

ted 3 cm diameter odor packets (mean five per second), which were advected by
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a 0.4 m s-1 wind that randomly shifted direction (according to a uniform distribu-

tion between -100° and 100° per second). For details, and source code, please visit:

https://github.com/florisvb/FlyPlumeTracking. A virtual fly was released 1 m down-

wind of the source, and programmed to follow a simple algorithm consisting of the

three independent behavioral modules we observed in our experiments: (1) surging

upwind upon encountering an attractive odor with a delay of 270 ms; (2) casting

crosswind within 640 ms of losing the plume; and (3) simultaneously approaching the

visual feature after coming within 20 cm of it. We found that these three behaviors

are sufficient, and each of them necessary, to guide the fly to an odor source. Further-

more, artificially reducing the delay before flies initiated a cast significantly increased

the time before the fly located the food source (Fig. 2.13B).

Following Grassé, I use the term stigmergy to describe how a complex behavior,

such as the trajectories I observed, can emerge from an iterative sequence of simple

sensory-motor reflexes without the need for a plan or memory [68]. The delay be-

tween plume loss and casting initiation is independent of the amount of time the flies

spent inside the plume, suggesting that casting behavior is most likely initiated in

response to plume loss, rather than some internal mechanism. These observations are

consistent with the previously published result that in the presence of a homogeneous

plume, flies continue to surge upwind, never initiating casting behavior [26]. To-

gether, these results provide convincing evidence for a stigmergic model. This model

is distinct from what has been proposed to explain pheromone tracking of moths,

which will initiate casting maneuvers in the presence of a homogenous plume rather

than a continuous surge. To explain this behavior, Kennedy and Marsh proposed

that casting is controlled by an internal clock, which is temporarily suppressed at

the onset of odor [3, 81, 83]. Recent evidence, however, suggests that moths’ cast-

ing dynamics are not simply a function of an internal clock, but rather that plume

dynamics influence the amplitude of their casts [164]. An alternative to the internal

clock mechanism is that moths exhibit the same stigmergic iteration that I propose

for flies, and that their casting maneuvers in homogenous plumes are explained by a

perceptual loss of the plume due to sensory adaptation, a phenomenon that is consis-
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Figure 2.13: Surge, cast, and odor-induced object saliency are sufficient, and each of
them necessary, for efficient plume tracking. (A) Three frames from a simple simula-
tion that show a virtual fly interacting with randomly generated 3 cm diameter odor
packets that are advected by a randomly shifting 0.4 m s-1 wind. (B) Distribution
of odor source localization times for three different algorithms each run 1000 times;
the simulations were truncated at 20 sec. Black: the fly is programmed to follow the
algorithm we observe real flies do, including surging with 270 ms latency, casting with
640 ms latency in both horizontal and vertical directions (switching of directions is
arbitrarily programmed to occur every 500 ms in the horizontal direction, and 308.44
ms in the vertical directions), and approaching the visual feature (a behavior we
arbitrarily trigger when the fly is within 20 cm of the object). Purple: the fly is
programmed with the same algorithm as Black, except the latency for surging and
casting are both set to 270 ms. Orange: same algorithm as Black, except without the
attraction to visual features (the virtual flies fly past the feature due to the shifting
winds and the sensory-motor delays).
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tent with some experimental studies [5]. To determine whether moths might use the

same mechanism that I propose for flies will require very careful behavioral assays

where the olfactory experience is known for entire flight sequences. This may prove

more difficult in moths, because their large flapping wings have a significant effect on

the plume structure [85, 98, 149].

Casting in moths is typically characterized by increasingly wider lateral crosswind

zigzags [41, 81, 89], however, I did not find any evidence for increasing width of casting

maneuvers in my experiments with flies. This may be a result of the geometry of my

wind tunnel (0.3x0.3 m2 cross section), however casts in an open environment are

typically no more than approximately 25 cm in amplitude (unpublished observations

of freely flying flies in the laboratory). To minimize the influence of the tunnel

geometry, I chose a visual stimulus for the walls of the wind tunnel—a single horizon

line—to minimize collision avoidance behaviors [145], while still providing a visual

reference for altitude control [141]. However, additional studies in a less constrained

environment are necessary to determine precisely how flies control the timing between

cast reversals, which is likely mediated by an internal mechanism. Because casting

maneuvers are often generated by pure side slip maneuvers, this behavior will prove

difficult to study in tethered preparations that are currently prevalent throughout the

field, which detect changes in body-yaw [121].

Previous studies of plume tracking have restricted their analysis to the horizontal

plane, with a few exceptions in plume tracking in moths [126, 155, 164]. The results,

however, indicate that the oft-overlooked vertical component of casting behavior in

flies is of the same magnitude as the horizontal component for flies. This is not

surprising, considering the 3-dimensional nature of tracking an odor plume in flight.

The relative timing of the vertical and horizontal aspects of casting has important

implications on the overall search pattern flies execute in the crosswind plane. Equal

timing would cause the fly to pass through the point where casting was first initiated

in every cycle. A timing ratio close to an irrational number, however, would (over

time) cause the fly to explore the entire crosswind plane. In the case of constant wind

directions, where the highest likelihood of plume re-encounter is in the place where
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the fly last encountered it, identical timing is optimal. In shifting winds, however,

plume re-encounter may best be served by unequal timings. To determine which

strategies flies use—and if they are environment dependent—is a question that can

only be answered in a larger tunnel space.

2.5.2 The role of odor induced visual saliency

Flies show a greatly increased attraction to the downwind side of high contrast objects

in the presence of an attractive plume, even though the objects were separated from

the plume by more than 10 cm. This behavior could allow a fly to locate the source

of a patchy plume more quickly than if it relied solely on plume tracking behavior, a

hypothesis supported by my simulations (Fig. 7B). The attraction to visual features,

like casting behavior, is triggered upon plume loss. By triggering both of these distinct

behaviors simultaneously causes flies to cast in the crosswind direction just downwind

of high contrast visual features, which is precisely where one would expect to find the

odor plume emitted by a piece of fermenting fruit. If the fly senses an odor, a surging

behavior would bring it towards the fruit and initiate the cascade of behaviors that

ultimately lead to a successful landing.

In a previous study of free flight odor plume tracking in Drosophila, Budick (2006)

found that flies exhibit a reduced attraction to a visual object (a post) in the presence

of wind compared to still air. This result is interesting in light of the odor-induced

visual saliency that I observed. Little is known about how insects localize odor sources

in still air [29]. In the absence of wind, there can be no odor plumes to track with

a surge and cast algorithm. Instead, it may be more beneficial for an insect to

explore visual features in the hopes of encountering a food source. In the presence of

wind, however, a more efficient strategy may be to focus on intercepting an attractive

odor plume, a behavior best served by ignoring visual features until the presence

of an attractive odor is identified. Although theoretical studies have been done to

determine optimal search strategies for initial plume interception [127], behavioral

evidence supporting them is lacking.
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2.5.3 Plume tracking, and visual saliency, do not diminish over

time

In my experiments with the continuous odor plume, odor was injected into the wind

tunnel continuously for a period of 4 hours. It is conceivable that the flies’ behav-

ior could change during this time either due to their circadian rhythm, learning, or

exhaustion. However, in comparing their surge, cast, and visual attraction behaviors

for the first 30 minutes to the last 30 minutes I did not find any substantial behav-

ioral differences (Fig. 2.19). These findings provide additional support for the simple

reactionary stigmergic model.

2.5.4 How does a fly cast crosswind?

The observation that flies can accurately cast crosswind across a range of wind speeds

has intriguing implications. For a fly to fly crosswind, it must have knowledge of the

direction that the wind is coming from relative to its current direction of travel. A

flying fly, however, has no known sensory mechanism for determining the component

airspeed velocity it perceives that is due to ambient wind speed. To do so would

require a measurement of absolute ground speed. A recent model suggest that insects

could theoretically estimate absolute if they accelerated (or rotated) by a known

amount while simultaneously measuring the change in its perceived wind speed and

direction (see Chapter 4), however there is no evidence that they are capable of this

computation.

A simpler solution would be for a fly to first orient itself upwind during the surge

maneuver, and cast by making a pure side slip maneuver. This is not, however, what

I observe. Instead, flies cast with side slip angles ranging from 0 to 90°, depending

on their ground speed (Fig. 2.10). The next most parsimonious solution is again for

the animal to begin by flying upwind, and then keep track of the angle by which it

rotates its body while turning, either by storing the control signal used to generate

the open loop maneuver, or through sensory mechanisms such as the halteres [8, 43] or

antenna [102]. Knowledge of the turn angle would allow a fly to remember the angle
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Figure 2.14: Summary diagram, indicating the three independent sensory motor mod-
ules that describe foraging in the fruit fly.

of the upwind direction relative to its body, and thus calculate at what angle it should

experience visual flow to maintain a cross wind flight heading. Once it has turned

the desired amount, it could use visual feedback to maintain the desired heading,

making it robust to changes in wind speed and direction (even lulls in wind), which

are common in natural flows. Although I do not have the data to test this hypothesis

directly, evidence in experiments with moths where the wind flow was stopped shortly

after they began casting showed that moths will continue to cast in the “crosswind”

direction during lulls in wind [4].

2.5.5 Conclusion

I used an automated 3D tracking system to observe fruit flies, Drosophila melanogaster,

as they interacted with a calibrated laminar plume plume of ethanol under a different

visual environments and wind speeds. The flies’ tracking behavior can be described by

a simple stigmergic model consisting of three distinct reflexes: (1) flies surge upwind

within 270 ms of entering an odor plume: (2) cast crosswind 640 ms after losing the

plume, and (3) explore high contrast visual features in the vicinity of the plume. All

of these behavioral modules involve an integration of olfactory and visual information.

Plume re-entry leads to another surging episode, and thus results in an iterative cycle

that allows the fly to efficiently locate fermenting fruits in order to feed, find mates,
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Figure 2.15: Behavioral responses to a plume of ethanol and Vector960 (fruit fly
attractant) are qualitatively similar. (A) Surge heading, see Fig. 2.5B. (B) Surge air-
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and lay eggs.

2.6 Supplementary figures
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After performing the experiments described in Fig. 2.11, I repeated the analysis
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wind plane, see Fig. 2.7C. (E) Altitude response with checkerboard floor, see Fig.
2.11A. (F) Altitude response with low contrast floor and dots, see Fig. 2.11B.
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Chapter 3

The visual control of landing and

obstacle avoidance in the fruit fly,

Drosophila1

3.1 Abstract

Landing behavior is one of the most critical, yet least studied, aspects of insect flight.

In order to safely land, an insect must recognize a visual feature, navigate towards

it, decelerate, and extend its legs in preparation for touchdown. Although previous

studies have focused on the visual stimuli that trigger these different components, the

complete sequence has not been systematically studied in a free-flying animal. Using

a real-time 3D tracking system in conjunction with high speed digital imaging, I was

able to capture the landing sequences of fruit flies (Drosophila melanogaster) from

the moment they first steered toward a visual target, to the point of touchdown. This

analysis was made possible by a custom-built feedback system I built that actively

maintained the fly in the focus of the high speed camera. The results suggest that

landing is comprised of three distinct behavioral modules. First, a fly actively turns

towards a stationary target via a directed body saccade. Next, it begins to decelerate

at a point determined by both the size of the visual target and its rate of expansion on

the retina. Finally, the fly extends its legs when the visual target reaches a threshold

retinal size of approximately 60°. My data also let me compare landing sequences to
1The material presented in this chapter is almost exactly transcribed from my publication [150].
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flight trajectories that, although initially directed toward a visual target, did not result

in landing. In these fly-by trajectories, flies steer toward the target but then exhibit

a targeted aversive saccade when the target subtends a retinal size of approximately

33°. Collectively, the results provide insight into the organization of sensory motor

modules that underlie the landing and search behaviors of insects.

3.2 Introduction

Deciding where and when to land, and subsequently performing a successful landing,

is arguably the most critical aspect of flight behavior for most flying animals. Despite

this importance, landing has been subject to much less research compared to other

aspects of flight behavior. This is likely due to the difficulties of enticing insects to

land in specific locations where they can be carefully observed. Unlike take-off, which

begins at a fixed location and takes place within a relatively small spatial volume,

landing consists of a complex sequence of different behavioral modules separated in

space and time. An animal must orient towards a particular sensory feature, alter its

wing motion to change its speed and posture, extend its legs, and then make contact

with the substratum.

Previous studies of landing have focused on the visual stimuli that trigger and

regulate landing behavior in a variety of insects including hoverflies (Syritta pipiens)

[38], houseflies (Musca domestica) [15, 17, 20, 143, 16, 157], blowflies (Calliphora

eurythrocephala) [65, 46] (Apis meliflora) [134, 49], the milkweed bug (Oncopeltus

fasciatus) [35], and fruit flies (Drosophila melanogaster) [144, 165]. Furthermore,

electrophysiological recordings exist for neurons believed to be associated with landing

and collision avoidance (locusts (Locusta migratoria): [123, 56, 57]; blowflies: [143]).

The fruit fly, Drosophila melanogaster, is well suited for studies of landing behavior

because its small size permits the analysis of long flight sequences within a controlled

laboratory setting. This makes it possible to study landing behavior from the moment

a visual target first influences an animal’s flight motion to the point of touchdown.

In addition, the visual system of Drosophila has been extensively studied [18], largely
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due to the genetic tools that are uniquely available in this species [131].

Although the free flight landing sequences of Drosophila have not been studied

explicitly before, several behavioral modules that are likely to represent components of

the behavior have been studied extensively. First identified in mosquitoes by Kennedy

[82], flying Drosophila exhibit a robust orientation reflex to vertical contrast edges

known as fixation ([67, 66]; see also [120]). Although the functional relevance of

this tethered flight phenomenon is not clear, free flight experiments suggest that

fixation might serve to lead flies towards salient visual objects [100] and thus could

represent the earliest component of a landing sequence. Further, Drosophila and

other flies often exhibit a flight pattern characterized by relatively long segments of

straight flight, interspersed with rapid turns called saccades [38, 161, 145]. If these

saccades are directed toward certain features, they too should be considered an early

component of the landing sequence. Although past studies have shown that visual

cues play a large role in triggering saccades and influencing their course direction (i.e.,

left vs. right) [73, 145, 9, 135], there is not yet definitive evidence that Drosophila

make directed saccades, such that they turn precisely to the angular position of a

particular visual feature.

Once a fly starts approaching an object, it will receive an expansion cue, which

has been shown to elicit a robust collision avoidance response [144, 9, 135]. In order to

land, however, the animal must override this reaction and maintain a collision course,

reducing its flight speed such that it can touch down safely. One free flight study

of houseflies, suggests that visual cues are responsible for triggering this deceleration

phase prior to landing [157].

Tethered flies exhibit a robust leg extension reflex in response to an expanding

visual stimulus (green bottle flies: [65]; houseflies: [15, 17]; fruit flies: [144, 165]).

Although this reflex has been previously termed “the landing response,” it only rep-

resents one component of landing behavior and its position in the complete free flight

landing sequence is not known. Each of the elements of the landing sequence, in-

cluding saccade generation, deceleration, and leg extension, have been shown to be

visually mediated [157, 65].
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In this study, I examine the landing behavior of freely flying Drosophila from the

point when they can initially resolve a visual target to the moment of touchdown.

The analysis was possible in part because of an automated 3D tracking system that

allowed me to collect a large number of landing trajectories, as well as a real-time

focus-following system that permitted the capture of high temporal and spatial res-

olution images during the final stages of this behavior. My dataset also enabled me

to explicitly compare landing sequences with sequences in which flies initially flew

towards the target, but then steered away from it. The results suggest that landing

sequences begin with a body saccade directed toward the vertical edge of a visual

target. Flies then begin to decelerate at a point determined by both the retinal size

of the target, and its rate of expansion. Finally, flies extend their legs when the visual

target subtends a critical angle. The nature of these triggering mechanisms normally

ensures that a fly begins to slow its approach and then extends its legs in time for

touchdown. In cases in which flies steer toward a target, but then do not land, the

initial orienting behavior is followed by an aversive saccade that is triggered when

the target subtends a critical angle. Collectively, the results indicate how a complex

behavioral cascade may emerge from a temporal sequence of separated sensory-motor

modules.

3.3 Methods

3.3.1 Animals

Experiments were performed on 3-5 day-old female fruit flies, Drosophila melanogaster

Meigen, from a laboratory stock descended from a wild-caught population of 200

mated females. Flies were deprived of food, but not water, for 2-6 hours prior to

the start of the experiment in order to motivate flight. For each experimental trial,

I introduced a group of 12 flies to the corner of the arena within a small test tube.

The flies were then free to move throughout the flight arena for a period of 12-24

hours, during which time data were collected automatically. A wet KimWipe in one
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of the corners of the flight arena provided the flies with water for the duration of the

experiment.

3.3.2 Flight arena

I performed all experiments in a 1.5 m x 0.3 m x 0.3 m working section of a wind

tunnel (Fig. 3.1) that has been described previously [26, 100, 141]. In these current

experiments, the wind tunnel was switched off, so that the internal air was still. To

provide the flies with visual contrast, I projected the floor and two long side-walls

with a static black and white checker pattern (checker size 3 cm, 11.5° retinal size at

15 cm distance) using a Lightspeed Designs DepthQ projector with the color wheel

removed (120 Hz update rate, 360 Hz frame rate, mean luminance of 50 cd/m2). The

two shorter walls of the chamber, consisting of the fine mesh screens of the upstream

and downstream ends of the wind tunnel, were not illuminated. The ceiling of the

chamber was transparent acrylic.

I tracked the 3D position of individual flies within the chamber using a real-time

tracking system that is described in detail elsewhere [140]. The 6 camera system

generated an estimate of fly position at 100 frames per second with a median latency

of 39 ms. For purposes of tracking, the arena was backlit with an array of near-

infrared (850 nm) LEDs. The cameras were equipped with long-pass filters (Hoya

R-72) so that the camera images were not contaminated by the checkerboard pattern

that was displayed in visible wavelengths.

3.3.3 Experiment protocol

In order to observe the flies’ response to a conspicuous visual object, I placed a 15 cm

tall, 1.9 cm diameter post in the center of the arena. The top of this post reached the

half height of the arena. I used two different types of posts: a solid black post (matte

black spray paint on a smooth aluminum cylinder) and a black and white checkered

post (5 mm checkers, 5° retinal size at a distance of 5.7 cm, printed on white paper

and tightly wrapped around an aluminum cylinder). I also collected data in the
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Figure 3.1: (A) Free flight arena equipped with 3D tracking system and high speed
video camera with automated focus system. (B) Definition of visual parameters used
throughout paper. Retinal size (α) is defined as angle subtended by the post on the
fly’s retina (see (3.1)). Post-angle (φ) is defined as the azimuthal angle of the center
of the post from the fly’s flight path. Turn angle (ψ) is defined as the angular change
in the fly’s heading over the course of a saccade (see Fig. 3.3-3.4). This term is
synonymous with saccade amplitude.
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Post type N 

trials 
Total 

trajecs 
Mean num 

trajecs / trial 
Min num 

trajecs / trial 
Max num 

trajecs / trial 
Total num trajecs 

after culling 
Percent 
Landing 

Black 14 25393 1813 4 5611 578 32% 

Checkered 15 45908 3060 269 14499 608 6.00% 

No Post 3 9951 3317 275 9951 266 NA 

Table 3.1: Trajectory statistics.

absence of a post. Because both visual inspection and statistical comparisons of the

data suggested that the results were only marginally influenced by post texture (solid

black vs. checkered, see Fig. 3.19-3.20), I pooled both data sets for the bulk of my

analysis unless otherwise noted.

3.3.4 Trajectory reconstruction and analysis

All analyses of flight trajectories were done using custom software I wrote in Python.

Each trajectory was treated as an independent sample, as the tracking software was

not able to maintain fly identities over the extended period of my experiments. As

a result, it is impossible to tell how many individual flies contributed to my analysis

(the possible range is 29-348). The tracking system logs all locomotor behavior within

the arena including bouts of flying and walking. The data presented are derived from

29 experimental runs, and 3 controls, which generated a total of 81,252 trajectories.

Further details of the experimental database are provided in Table 3.1.

Each trajectory was smoothed to remove digitization errors using a simple for-

ward/reverse, non-causal Kalman filter. Unless otherwise noted, the control data

from the no post trials were culled and analyzed in the same way as the data col-

lected with the post, using an imaginary post with the same dimensions and in the

same position as the real post. For my analysis, I only considered trajectories that

started at a distance greater than 10 cm away from the post, and approached to

within at least 3 cm of the post. Furthermore, except for the no post controls, I

removed trajectories in which the flies flew above the top of the post at any point

within the region of interest. This procedure was taken to maximize the likelihood
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that I was examining flight behavior that was influenced by the presence of the post.

These criteria removed the large majority of the original trajectories, which were of-

ten short sections of either flying or walking. As I did not collect as much data under

the no-post control arrangement, I did not require the control trajectories to be below

the (not present) post height. Because of the visual symmetry of the upper and lower

halves of the wind tunnel in these experiments, this difference in processing of the

no post data is unlikely to influence my results. Further, very few of my conclusions

depend on an explicit comparison with the no post data.

I used a simple algorithm to automatically classify trajectories as either ‘landings’

or ‘fly-bys’. Trajectories that ended within 1 cm (approximately 4 body lengths) of

the post with a velocity of less than 6 mm/sec were labeled as landings; all others were

labeled as fly-bys. These soft criteria helped in preventing erroneous classifications.

Furthermore, visual inspection of the raw data in Fig. 3.2 shows that my criteria were

sufficient to properly segregate landings and fly-bys. Data from the no-post controls

were also identified as pseudo-landings (trajectories that intersected the 3D volume

of the an imaginary post with identical dimensions to the real one) and pseudo-fly-

bys (all other trajectories). All landing sequences were analyzed from start to finish.

Fly-bys were only analyzed from the beginning of the trajectory until the point just

prior to the first saccade following the closest approach to the post (see Fig. 3.2).

This procedure was necessary to eliminate the portion of the sequence in which the

fly was flying away from the post, and thus unlikely to be responding to it.

Flight trajectories were described using a number of variables calculated in each

frame, including distance to the post (measured to the post surface), ground speed,

acceleration, heading (calculated as the tangent to the velocity vector), and angular

velocity. Except where otherwise noted (e.g., as in Fig. 3.2, right hand column), all

values were calculated as projected in the x-y plane, thus ignoring changes in altitude.

In order to focus my analysis on experimental parameters that can provide insight

into possible sensory processes, I use the following variables that are defined relative

to the fly’s position (see Fig. 3.1B). Turn angle (ψ) is the angular change in the fly’s

heading over the course of a saccade. Post-angle (φ) is the angle between the fly’s
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Figure 3.2: Flight trajectories in the presence of a post, classified as fly-bys (n=300)
and landings (n=177). The trajectories for fly-bys represent a subset of the total
data set of n=1065. The thick red overlays on each trace indicate the portions of the
trajectories that were classified as the last saccade each fly made prior to its nearest
approach to the post, which is the focus of my subsequent analysis. See Fig. 3.3-
3.4 and the Methods section for my definition of a saccade. The thick blue overlays
indicate all other saccades. The dotted line in the bold fly-by trace indicates the
portions of trajectories after the flies’ closest approach to the post. These portions
were omitted from the rest of my analysis because it was unlikely a fly’s behavior was
influenced by the post after this point.
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heading and the vector to the post. Retinal size (α) is the angle subtended by the

post on the fly’s retina, which is calculated as:

α = 2arcsin
�
r

d

�
, (3.1)

where r is the radius of the post, and d is the distance from the fly to the center of

the post.

3.3.5 High speed imaging

To examine the landing and fly-by behavior near the post with greater spatial and

temporal resolution, I mounted a high speed camera (Photron SA1, San Diego, CA,

USA) looking down, approximately 30 cm above the post (see Fig. 3.1), equipped

with a 105mm Nikon macro lens (Nikon USA, Melville, NY, USA). I operated the

camera at 5,000 frames per second with a resolution of 1024x1024 pixels. To over-

come the depth of field limitations imposed by the limited available lighting and the

large magnification needed to resolve the flies’ legs, I designed an automated motor-

ized focus-following system. The custom built system used the real-time elevation

measurements from the 3D tracking system to automatically adjust a friction belt

connected to the manual focus ring of the lens. This system allowed us to capture

sharp video of flies at any elevation in the flight arena. The camera was post-triggered

whenever a fly came to within 1 cm of the post (capturing both landings and close

fly-bys).

One initial limitation of my focus-following system is that due to the distortion

from the lens I could not focus through the top of the cylindrical post to visualize a

clean circular section at any point along the height of the post. To solve this problem,

I machined a gently tapering post (1.9 cm at the base and 1.3 cm at the top). This

tapered shape made it possible to see the moment of touchdown along the entire

length of the post without obstructions from the top. To account for the effect of

the slight change in diameter of the post in these high speed experiments, I used the

diameter of the post at the altitude of the fly, when calculating the retinal size of the
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post. This slight modification in my analysis is reasonable, given that trajectories

did not vary significantly with altitude. Furthermore, I replicated all analysis using

a fixed value for the diameter equal to the mean diameter of the post, but found no

significant difference in the results.

3.3.6 Analysis of saccades

The free flight trajectories of fruit flies are characterized by relatively long straight

segments and short rapid turns, called saccades (for an example, see Fig. 3.3B-C). I

focused much of my analysis on these saccadic flight segments, which I define as the

portions of a trajectory during which the angular velocity exceeds a threshold of 300°

s-1. To justify both the particular threshold I used to define saccades as well as my

decision to focus on them, I performed an extensive analysis of the angular velocity of

all the trajectories I collected (in the presence of the post), and a subsequent analysis

of the segments I labeled as saccades (Figs. 3.3, 3.4).

The distribution of angular velocities of freely flying flies is well approximated

by the sum of a Gaussian distribution (µ = 0 s-1, σ = 85° s-1) and a log-normal

distribution (µ = ±300° s-1, σ = 2.3° s-1) (Fig. 3.3A). These results are similar

to those published on tethered flies [105, 9] and as in those studies I take this as

evidence for two distinct flight modes: noisy straight flight (described by the Gaussian

distribution) and active saccadic turns (described by the log-normal distribution).

Although the precise shape of the distribution is to some extent a function of the

filtering used to calculate the angular velocity, I did not find any significant difference

in the shape when angular velocity was calculated directly from heading (Fig. 3.3C,

blue trace) or a Kalman estimate (Fig. 3.3C, black trace). The distribution shown

in Fig. 3.3C comes from the Kalman-estimated angular velocities, which I also use in

all subsequent analysis to eliminate measurement noise, such as the transient seen in

Fig. 3.3C.

I define saccades as the portions of trajectories in which there is a >95% prob-

ability that the point lies within the log-normal distribution shown in Fig. 3.3A, a
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Figure 3.3: Changes in flight heading are primarily accomplished using body saccades
(defined as flight sequences with angular velocity (ω) > 300° s-1). (A) Histogram of
angular velocity (ω) at all time points for all trajectories (n=1224, N=352,680). The
distribution is well approximated by the weighted sum (S, magenta) of a Gaussian
distribution (G, black, �=0° s-1, σ�=85° s-1) and a log normal distribution (L, red,
�=±300° s-1, σ�=2.3° s-1) such that S = 0.8G + 0.2L. (B) A typical free flight trajectory,
seen from above, with red portions indicating saccades. (C) Angular velocity of the
trajectory in B, without smoothing (blue) and as a Kalman estimate (black). The
sharp transient in angular velocity at t=2.2 s is due to a measurement error, such
events are eliminated by the Kalman filter. (D) Changes in the ω−threshold used to
classify saccades have little effect on measurements of turn angle (ψ). The relative
change in ψ is plotted as a function of the saccade threshold; box plots indicate mean
and first and last quartiles.
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Figure 3.4: Changes in flight heading are primarily accomplished using body saccades
(defined as flight sequences with angular velocity (ω) > 300° s-1). (A) Distribution
of net change in heading of each saccade segment (�Hs) (red, N=5635) compared
to each non-saccade segment (�Hn) (black, N=6697) for all trajectories (n=1224).
The distributions are well approximated by a log-normal distribution (red, �=40°,
σ�=2.3°), and an exponential distribution (gray, λ=0.075). (B) Approximately 80% of
all net changes in heading occur during saccades. The distributions show the ratio
of the sum of �Hs to the sum of �Hs + �Hn for each trajectory. I tested three
definitions for the ω−threshold used to define a saccade: 200° s-1 (blue), 300° s-1

(red), and 400° s-1 (green). The associated curves are smoothed representations of
the distributions calculated using a 3rd order 0.4 Hz Butterworth filter. (C) Saccades
account for approximately 20% of the flight time. The histograms show the ratio
of time a fly was saccading to total trajectory time for each trajectory. The color
scheme and curves are defined as in F. (D) Peak angular velocity vs. turn angle for
all saccades, plotted as a heat-map with a logarithmic color scale.
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classification which corresponds to an angular velocity threshold of 300° s-1. This is

similar to the thresholds used in prior work in free flight (300° s-1, [145]) and mag-

netically tethered flight (350° s-1, [9]). The amplitude of these saccades, referred

hereto after as turn angle, does not vary by more than ±10° within a range of saccade

threshold choices from 150° s-1 to 450° s-1 (Fig. 3.3D).

The saccades I observed ranged in amplitude from 20°-270° (Fig. 3.4A), and are

well described by a log-normal distribution with a mean of 40° and scaling factor of

2.3°. Although these turns only comprise approximately 20% of the flight time (Fig.

3.4C), they account for roughly 80% of all net navigational changes in heading (Fig.

3.4B). The turn angle is also tightly correlated with peak angular velocity (Fig. 3.4D),

which closely matches prior results found in tethered flies [9]. This shows that flies do

not perform turns of arbitrary amplitude at constant velocity, and suggests that each

turn is an isolated maneuver that can be analyzed independently of the sequences

that precede and follow the turn. Although it is possible that flies actively adjust

their heading during the remaining flight segments, analyzing these aspects of flight

is beyond the scope of this paper. I did not find a significant correlation between turn

angle and horizontal flight speed (R2=0.02), nor between angular velocity and flight

speed (R2<0.001).

3.3.7 Procedures for analyzing landing behavior

To study the onset of deceleration in landing flies I followed each trajectory backwards

in time, starting from the point of landing, and defined the first negative to positive

crossover of acceleration (defined as the derivative of flight speed in the x-y plane)

as the point of deceleration initiation. For the subset of my landing data for which

high speed imaging was available, I scored leg extension manually as an all or nothing

event and defined the point of leg extension as the first point in time when the legs

appeared to be fully extended.
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3.3.8 Statistical analysis

Throughout the paper, I used multiple linear regression to determine whether rela-

tionships between two continuous variables, y and x1 (e.g., speed and deceleration

initiation, see Fig. 3.9) were influenced by a third categorical variable, x2 (e.g.,

whether or not a fly turned after initiating deceleration, see Fig. 3.9). In these anal-

yses, x2 was represented as a boolean variable (0 or 1). I used the statistical program

R [118] and the Python wrapper rpy2 [60] to fit the linear model to the data (R

command lm):

y = a1x1 + b1 + b2 + a1:2(x1 : x2), (3.2)

where a1 and b1 are the slope and intercept of the regression between the primary

variables (y and x1), b2 is the intercept due to the third variable (x2), and a1:2 is

the slope due to the interaction between x1 and x2. Essentially, this is analogous to

running an analysis of covariance, but allowing for interactions between the covariate

x1 and the categorical variable x2. To show whether the impact of x2 was significant,

I report a pair of p-values (p(x2) = b2, p(x1 : x2) = a1:2), where b2 corresponds to the

intercept due to x2 and a1:2 corresponds to the slope due to the interaction between

x1 and x2, respectively. T -tests tests were performed using the statistics sub-module

of SciPy [78], a Python module. I define a threshold of α = 0.01 to be significant,

and 0.01 < α < 0.05 to be marginally significant.

3.4 Results

3.4.1 Description of landings and flybys

Excluding trajectories that were above the level of the post, I analyzed a total of

1224 flight trajectories (Fig. 3.2) (in addition to 194 no post controls (Fig. 3.17)).

Flight speeds (measured at a distance of 10 cm from the post) for landing and fly-by

trajectories were similar in all my experimental conditions with a mean of 0.33±0.12
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Behavior Post Type N trajecs Speed, m s-1 Total length, s 

      m±s m (min, max) 

Fly-by's all 1047 0.32±0.12 3.03 (0.37, 24.99) 

 
black 439 0.31±0.13 3.28 (0.37, 24.99) 

 
checkered 608 0.34±0.12 2.84 (0.47, 16.13) 

Landings all 177 0.37±0.13 1.76 (0.52, 8.98) 

 
black 139 0.39±0.13 1.75 (0.52, 7.25) 

 
checkered 38 0.32±0.10 1.79 (0.66, 8.98) 

Pseudo landings none 97 0.27±0.16 7.61 (0.82, 83.88) 

Psuedo fly-by's none 97 0.31±0.17 6.26 (0.92, 30.12) 

Table 3.2: Flight speed under different conditions.

m s-1 (see Table 2 for details).

In the trajectories that were classified as fly-bys (Fig. 3.2, n=1065), flies exhibited

a turn away from the post when they were roughly 3 cm away from the object. This

avoidance behavior is clearly manifest as a zone of exclusion around the post in the

top down view of Fig. 3.2. Within the trajectories classified as landings (Fig. 3.2,

n=177), I observed two general patterns: flies that flew straight towards the post,

and those that performed a saccade at some point within 10 cm of the post. The

flies that landed did not show any preference for flying near the top of the post (on

average flies landed 6.3±3.4 cm below top of the post; see Fig. 3.2 right column).

This shows that under these experimental conditions flies are not more likely to land

at the top of an object as previously suggested based on their preference for flying at

the level of horizontal edges [141].

3.4.2 Saccade results

Because the most significant changes in direction are made during body saccades (see

Methods, Fig. 3.3-3.4), I focused my initial analysis on these behaviors. Of particular

interest is the last saccade flies perform prior to their nearest approach to the post,

which for landing flies corresponds to the moment of landing. For all of the following

analysis I focus exclusively on these saccades (the red overlays in Fig. 3.2). For my

initial analysis I grouped landings and fly-bys together. In the absence of the post,
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relatively few flies performed a saccade when the retinal size of the imaginary post

exceeded 25°, whereas in the presence of the post I saw a distinct peak near 35° (Fig.

3.5C). This suggests that the saccades flies make when in the vicinity of the post are

likely a response to the post, in particular when the retinal size exceeds 25°. Prior

to making a saccade, the distributions of post-angle in the experiments done in the

presence of the post and in the absence of the post are similar (Fig. 3.5A). The

fact that the mean post-angle is near 0° in both cases is presumably a result of the

geometry of the rectangular flight tunnel, which favors longitudinal flight. The post-

angle after turning, however, is clearly different in the post vs. no-post conditions

(Fig. 3.5B), suggesting that the presence of the post influences the turn angle of the

flies. I further confirmed this by convolving the distribution of saccade turn-angles

(Fig. 3.4A) with the post-angle prior to turning, yielding a unimodal distribution

(data not shown) that is clearly different from the multimodal distribution shown in

Fig. 3.5B. In order to examine the influence of the post on saccade behavior in more

detail, I will focus only on those saccades made when the retinal size of the post

exceeded 25°.

The distributions of post-angle after flies make a turn suggest that there are two

independent behaviors governing these actions (Fig. 3.6). One group turns such

that they are headed away from the post (described by Gaussian distributions with

� = ±140◦, σ� = 50◦), the other group turns such that they are headed towards the

post (described by a Gaussian distribution with � = 0◦, σ� = 40◦). These distributions

are each separated by more than twice the common standard deviation, confirming

that this is indeed a multi-modal distribution [7]. These two groups correspond

surprisingly closely with the independently-classified landing and fly-by trajectories

(Fig. 3.6C). This result justifies my subsequent analysis in which I treat the behavior

of saccades made by landing and non-landing flies independently.

To determine in what way the post influences the saccades made by landing and

non-landing flies, I examined the relationship between the post-angle prior to perform-

ing a saccade and the subsequent turn angle. If flies always made saccades directly

towards the post I would expect them to make a turn roughly equal in magnitude to
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Figure 3.5: The post influences saccades performed in the vicinity of the post. (A)
Prior to turning, flies show a qualitatively similar distribution of post-angle in the
presence (black, n=1012) and absence (green, n=148) of the post. (B) After turning,
flies show a qualitatively different distribution of post-angle in the presence (black)
and absence (green) of the post. (C) Flies show a qualitatively different distribution
for the retinal size at which they make their last saccade in the presence (black) and
absence (green) of the post. In all panels the associated shading shows smoothed
representations of the distributions calculated using 3rd order 0.3 Hz Butterworth
filters.
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Figure 3.6: Saccades near the post are described by two independent behaviors,
corresponding to landing and not landing. (A) Post-angle after turning for all saccades
made in the presence of the post when the retinal size exceeded 25°. (B) The histogram
shows the same data as in A, but after the distribution has been reflected about the
central axis and added to the original. The symmetric distribution is bi-modal and
is well approximated by a linear sum of a two Gaussian distributions shown in blue
(�=0°, σ�=40°) and orange ( �=+/-140°, σ�=50°). (C) The two Gaussian distributions
from B are repeated, and the histograms from B are segregated independently into
landings (blue) and fly-bys (orange).
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the post-angle, whereas turns directed away from the post would fall above or below

that line. For the saccades prior to landings, these points lie along a line with slope

close to one (Fig. 3.7A), suggesting that the flies were turning towards the post. This

is not surprising, because in order to land on the post the flies’ last saccade prior to

landing must necessarily have been directed towards the post. Indeed, I see a simi-

lar regression in the pseudo-landing flies from the no-post control experiments (Fig.

3.18A). In the presence of the post, however, flies tended to make their last saccades

much closer to the post than the control flies performing a ‘pseudo-landing’ in the

absence of a post (Figs. 3.7C, 3.18C). Because I have already demonstrated that the

saccades made when the retinal size of the post exceeded 25° were likely influenced

by the post (Fig. 3.5), it is conceivable that the landing flies were in fact directing

their saccades towards the post; I will revisit this hypothesis more rigorously later in

my analysis.

In contrast, the non-landing flies tended to make aversive saccades when they

were close to the post (Fig. 3.7B), at a mean retinal size of 33°±17° (Fig. 3.7D).

As expected, there are no obvious trends in the no-post control data for pseudo-

non-landing flies (Fig. 3.18C). Although some of the non-landing flies exhibited a

final saccade towards the post, these were all done at a much greater distance from

the post. To examine the aversive saccades more closely, I again set a threshold on

the retinal size of the post at 25° (which corresponds to a distance of approximately

3cm). These saccades – the last saccades non-landing flies made prior to their nearest

approach to the post – are strongly correlated with post-angle, as evidenced by the

two nearly parallel linear regressions for left and right turns (Fig. 3.8). The data are

colored blue and red according to left and right turns, respectively. The small clusters

of lightly shaded points (with a post-angle close to ±90°) correspond to shallow turns

towards the post when the flies were flying past the post. The separation between

these clusters and the rest of the turns made in the same direction suggest that they

are not governed by the same behavioral algorithm, and were thus excluded when I

calculated the regressions. In fact, these clusters appear to be associated with the

data corresponding to turns in the opposite direction. For example, the light red
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Figure 3.7: Comparison of saccade features for landings and fly-bys. Saccade turn
angle (ψ) is plotted as a function post-angle (φ) for landings (A) and fly-bys (B)
with the color of each point indicating the retinal size of the post at the time of the
saccade. The black line in A shows a linear regression through the data, ψ=1.18φ-3.45°
(R2=0.88, n=126). (C) The distribution of saccades in A (landings) as a function of
retinal size and distance to post. (D) The distribution of saccades in B (fly-bys) as a
function of retinal size and distance to post. In panels C and D, the associated shading
shows smoothed representations of the distributions calculated using 3rd order 0.3 Hz
Butterworth filters.
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points (shallow left turns) may be an extension of the dark blue points (right turns).

3.4.3 Landing behavior

Of all the trajectories in which a fly came to within 3 cm of the post, 14% landed

on the post (n=1224). In order for a fly to safely land it must decelerate to a safe

flight speed and extend its legs in time for touchdown (although not necessarily in

that order). To examine the deceleration behavior I estimated the point at which a

fly started to decelerate prior to landing on the post (see Methods section). I initially

restricted my analysis of deceleration to those trajectories where flies did not perform

a saccade after initiating deceleration. When these points are plotted as a function

of each fly’s instantaneous speed and the log of the retinal size of the post, the data

fall along a straight line (purple points, Fig. 3.9A-B). Thus, flies that are flying fast

begin to slow down when they are farther away from the post compared to flies that

are flying slowly. The data show that some flies began to decelerate as far away as

10-20 cm from the post, a retinal size of 5-10°, which is equivalent to one or two

ommatidial acceptance angles. In contrast, I did not find a significant correlation

between deceleration initiation and retinal size for fly-bys (R2=0.031, n=142) nor

pseudo-landings in the absence of the post (R2=0.153, n=82). This suggests that the

deceleration behavior seen in Fig. 3.9A is a unique hallmark of landing behavior.

If I now relax the requirement that flies not turn after initiating deceleration I see

that these points also fall along a straight line (blue points, Fig. 3.9B). Furthermore,

the regressions for turning and non-turning flies are very similar (Fig. 3.9B). Statis-

tically the slopes of the regressions are not significantly different from one another

(p(x1 : x2) = 0.10) and the differences in intercepts are only marginally significant

(p(x2) = 0.06), (see Methods). Because this deceleration pattern is uniquely indica-

tive of landing behavior, the saccades performed after initiating deceleration were

likely made with the intent to land, and thus intentionally directed towards the post.

To study leg extension in free flight I used a high speed video camera mounted

directly above the post equipped with an automated motor driven focus-following
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shallow saccades towards the post when the post was close to 90° on either side of
the fly. For reasons discussed in the text, these points were omitted when calculating
the regressions. The histograms at the top show the distribution of left and right
turns. The associated shading shows a Gaussian distribution (�=±25°, σ�=40°). The
histograms on the right show the distribution of turn angle for left and right turns.
The associated shading shows a Gaussian distribution (�=±90°, σ�=60°). The units
are occurrences, and the black bars show the distributions associated with the light
colored points, which were omitted when calculating the colored histograms.
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Figure 3.9: The motor programs for flight deceleration prior to landing and leg ex-
tension are distinct. (A) Points of deceleration initiation, plotted as horizontal speed
vs. the retinal size of the post, for all landing trajectories for which the flies did
not perform any saccades after initiating deceleration. The black traces show four
sample trajectories across a range of initial flight speeds. (B) The purple points are
repeated from A, and the purple line shows a linear regression through these data
(speed = -0.20α+0.22, R2=0.8, n=140). The blue points show the point of deceler-
ation initiation for all landing trajectories in which flies performed a saccade after
initiating deceleration, and the blue line shows a linear regression through these data
(speed = -0.17α+0.19, R2=0.75, n=37). The histograms show the distribution of the
data across retinal size. (C) A sample landing trajectory captured on high speed
video showing the point of deceleration initiation (purple) and leg extension (green).
(D) The point of leg extension for all landing trajectories for which high speed video
data were available. The light green histogram shows the distribution of leg extension
events as a function of retinal size. The associated curve is a smoothed representation
of the distribution calculated using a 3rd order 0.3 Hz Butterworth filter.
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Figure 3.10: Image sequence from a high speed digital video recording of landing
sequence.

system (see Methods section). Due to the limitations of high speed image capture

(e.g., long downtimes between trigger events to allow for data transfer), I was only

able to collect high speed imagery for a small subset of landings (n=36). As suggested

in previous tethered flight studies, I observed leg extension to be a highly stereotyped,

all-or-nothing behavior (Fig. 3.10). I determined the point of leg extension and initial

touchdown for each video by visual inspection (see Methods section). In contrast to

the start of deceleration, leg extension appears to be independent of flight speed,

and unimodally distributed about retinal size (61±22°, n=36). The final stage of

deceleration took place after touchdown (which I defined as the first point of contact

between a fly’s legs and the surface of the post). After touchdown, the flies decelerated

from an average of 7.1 cm/s (± 3.2 cm/s, n=30) over the course of roughly half a

body length (1 mm). This would correspond to a constant deceleration of 2.9 m/s2

or roughly 0.3g.

3.4.4 Crash landings

In observing the high speed sequences, it is clear that a sizable percentage (35.7%)

of the landings were crashes in which the head or wings collided with the post before

the fly extended its legs. In the cases of wing crashes (Fig. 3.11C), the fly’s wing

struck the surface of the post and in nearly all cases the fly rotated towards the post,

extended its legs, and ended up landing successfully. Head-on crashes (Fig. 3.11D)

also resulted in leg extension in nearly all cases, but the end result appeared to depend

on flight speed. Slower flies tended to recover quickly and land, whereas the faster ones
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bounced off of the surface of the post, tumbled through the air, and either managed to

turn and land on the post or fell to the floor of the flight arena. I performed the same

analysis for the crash landings as the normal landings to qualitatively compare the

two (Fig. 3.8A-B). In 76% of the crash landings, the flies began to decelerate at the

appropriate retinal size for their flight speed, based on the regression of deceleration

initiation for successful landings from Fig. 3.9B. They did not, however, decelerate

fast enough to be at an appropriate flight speed at touchdown, and they did not

extend their legs in time. The flight speed of the trajectories that result in crashes is

not any greater or lower than the typical flight speeds of successful landings.

3.4.5 Post texture

As a part of my experimental design, I tested two different types of post surfaces: solid

black and checkered (5 mm squares, 5° retinal size at a distance of 5.7 cm). For the

primary results of this paper (which are summarized in Fig. 3.16), I did not find any

substantive differences in the behavior of flies landing on the two different post types

both by visual inspection and statistical analysis, with two exceptions (Fig. 3.19-

3.20). The largest difference in behavior is in the distance at which non-landing flies

saccade away from the post. On average flies turn away from the checkered post at a

retinal size of 10° less (thus earlier) compared to the black post (p<0.001, Fig. 3.20B).

The second substantial difference is in the intercept of the linear regression associated

with the turn angle of aversive saccades (Fig. 3.19A-B). The regressions suggest that

in the presence of the checkered post flies make a smaller turn (by approximately 40°)

compared to those made in the presence of the black post (p(x2)=0.03, 0.001, for left

and right turns, respectively).

Although neither deceleration nor leg extension are strongly correlated with post

contrast (Fig. 3.19C-D), the percentage of trajectories that ended in the fly landing

in the presence of the checkered post (7.4%, n=662) was much lower than for the

solid black post (29%, n=637). Of these landings (for which I had high speed data) a

much higher percentage were crash landings in the presence of the black post (38.5%
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Figure 3.11: Crash landings correspond to sequences in which flies do not decelerate
fast enough. (A) Examples of successful landing trajectories plotted as in Fig. 3.9A.
(B) Speed vs. retinal size plots for crash landings. The purple line shows the linear
regression from the landing data in Fig. 3.9A. (C-D) Image sequence from high
speed digital video recordings for (C) a head on crash and (D) a wing impact crash.
The point of impact is highlighted by the red arrow in the enlarged inset. Since
successfully landing flies touchdown with their legs first (Fig. 3.9E) the distance at
which their speed falls to zero is greater than zero. Crashing flies, however, collide
with the post (often head first) with velocities much greater than zero. This explains
why the trajectories of successfully landing flies terminate earlier than those of the
crashing flies.
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of landings on the black post, n=29, were crashes) compared to the checkered post

(18.5% of landings were crashes, n=27).

3.5 Discussion

In this study, I examined landing behavior of Drosophila by analyzing their flight

behavior in the presence of a conspicuous vertical post. Landings appear to consist of

a temporal sequence of three distinct behaviors. First, flies actively turn towards the

visual target via saccades that are directed toward the center of the post (Fig. 3.7A).

The flies next begin to decelerate at a point that is a function of both their speed

and the retinal size of the post (Fig. 3.9A-B), although in some cases deceleration is

initiated prior to turning towards to the post (Fig. 3.9B). Finally, flies extend their

legs just prior to touchdown when the post subtends an absolute size of approximately

61±22° on their retina (Fig. 3.9D). In contrast, flies that do not land make a targeted

saccade away from the post when it subtends a retinal size of approximately 33° (Figs.

3.7-3.8).

3.5.1 Attractive and aversive saccades

The tendency for flies to fly towards prominent visual features, such as high contrast

edges and posts, was first documented by Kennedy for tethered mosquitoes, and has

been studied thoroughly in tethered [66, 67] and free-flying Drosophila [100]. Over

time, this so-called fixation behavior could be achieved via either smooth tracking, ac-

cording to the model proposed by Reichardt and Poggio [120], or a series of directed

saccades (or both, as proposed by Land [91] and observed in humans). Achieving

target tracking through saccadic maneuvers has been proposed for hoverflies when

visual targets lie outside of their optical fovea [38] as well as for houseflies chasing

conspecifics [14, 13]. To my knowledge, I believe my data provide the first evidence

that Drosophila make targeted body saccades towards and away from visual features,

although many tethered flight studies have suggested that they saccade in the direc-

tion of a visual target [72]. Although subtle, this is an important distinction in that
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in order to perform a targeted saccade the magnitude of the turn – and not just the

direction – must depend on the retinal position of the object prior to the turn.

Whereas the saccades directed towards the post do not seem to be triggered by

specific target size, the distribution of aversive saccades suggests a trigger threshold

of roughly 33° (Fig. 3.7D). This corresponds quite closely with data from a previ-

ous study in the same apparatus, using a different-sized post (1.27 cm diameter, 30

cm tall) [100]. Another study using magnetically-tethered Drosophila (free to rotate

about their yaw axis) reported that flies exhibit aversive saccades in response to ex-

panding squares when the retinal size reaches approximately 60°, with an estimated

neural processing delay of about 50 ms [9]. Electrophysiological recordings in locusts

[56, 57] as well as hawkmoths [163] also supports a triggering mechanism for aver-

sive maneuvers that depends upon an absolute angular threshold. This retinal size

threshold model, which is independent of contrast, also would explain why I did not

observe a significant difference in the aversive saccades in experiments using the black

and checkered posts.

The simplest implementation of a neural mechanism for achieving targeted body

saccades would make use of the assumption that the fly’s body and head are oriented

in the direction that it is flying. By further analyzing the high speed video that I

collected during my experiment I found that flies do not, in fact, always orient their

bodies in the direction that they are flying, even during straight flight segments,

resulting in a slip angle that ranges between 0° and 50° (Fig. 3.12). The resolution

of my video was not sufficient to resolve head motion, so it is possible that the flies

partially corrected for this slip by adjusting the position of their head. Alternatively,

the slip angle could be partly responsible for the variance in the observed turn angles

I measured (Figs. 3.7A, 3.8).

3.5.2 Landings

The combination of free flight 3D tracking in a large volume and with a focus-following

optics on a high speed camera, enabled us to observe the complete landing sequence
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between a fly’s body orientation and the direction it is flying. The data shown are
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of freely flying Drosophila from approach and deceleration to leg extension and the

final moments of touchdown. Despite the wide variety of approaches (Fig. 3.2), many

of which show intermittent targeted body saccades towards the post, flies exhibit a

clear pattern in when they initiate deceleration prior to landing (Fig. 3.9A-B). This

pattern depends on a combination of their speed and distance to the post. However,

it is very unlikely that the fly can accurately measure either its ground speed or its

distance to the post directly. Given the constraints of the visual and mechanosensory

systems available to the fly, it is more likely that they use a measure of the retinal

size of the post (which is correlated with distance) and the rate of expansion (which

is correlated with ground speed). For this reason, I re-plotted the linear fit from Fig.

3.9B in terms of the retinal size of the post, α (as defined by (3.1)), and its retinal

expansion velocity, � (Fig. 3.11):

Ω =
dα

dt
=

−2s (r/d2)�
1− (r/d2)

, (3.3)

where s is the flight speed in the x-y plane, r is the radius of the post, d is the distance

from the fly to the center of the post. This retinal size dependent expansion threshold

model (RSDET) can be visualized by considering the approach trajectories of flies

flying at constant velocity toward the post, plotted in the α−� plane (Fig. 3.13).

A fast flying fly crosses this threshold, and thus starts to decelerate, at a greater

distance from the post than a slow flying fly. From the perspective of the fly, a

relatively low rate of expansion is sufficient to trigger deceleration when an object

size is small, whereas a higher rate of expansion is required when the retinal size of

an object is large. Note that this model is independent of the actual physical size

of the object, but by combining measures of α and �, deceleration would not, for

example, be triggered by a physically large, but distant object (because � would be

too small). This principle is nearly identical to the rate of relative expansion velocity

model (RREV), previously proposed by Wagner for houseflies (Wagner, 1982). The

RREV model states that insects should begin decelerating when the ratio of retinal

expansion velocity and the retinal size of an object reaches a critical threshold:
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Figure 3.13: Retinal size-dependent expansion threshold compared to the time-to-
contact model. The solid purple line and shading shows the regression and standard
deviation from Fig. 3.7C, calculated as expansion vs. retinal size using (3.3). The
model predicts that flies initiate deceleration once their trajectory passes above the
purple line. Three constant velocity trajectories are shown along with the associ-
ated predicted points of deceleration (0.6, 0.4, 0.2 m/s, corresponding to i, ii, iii,
respectively). The dotted purple line shows an example threshold curve for the time-
to-contact model that closely matches the RSDET model up to a retinal size of about
80°. This curve was calculated using 3.7 and a time-to-contact value of 120 ms.
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RREV =
1

α
Ω, (3.4)

Wagner further simplified this definition as:

RREV
�
≈ −2s

1

d
, (3.5)

where d is the distance to the center of the post, and s is the flight speed. Note,

however, that this simplified definition is derived by making some approximations that

are only valid when the distance to the object is much greater than the object’s radius.

However, in many of the trajectories I recorded, flies initiated deceleration only after

they were quite close to the post, at distances of the same order as the radius. Thus,

although the RSDET and RREV models are fundamentally identical (both are a

measure of the expansion relative to retinal size) and are probably experimentally

indistinguishable, I will keep the terminology distinct for the sake of mathematical

clarity.

Using the above approximation, the RREV model is formally the inverse of the

time-to-contact (τ), that is, the time before the fly will collide with an object assuming

that it is indeed on a collision course and flying at constant velocity:

RREV
� = τ

−1
, (3.6)

For reference, without any approximations the time-to-contact can be calculated as:

τ =
−2 sin (α/2)

Ω
�

1− sin2 (α/2)
. (3.7)

Because of this relationship, the RREV model has been referred to as the time-

to-contact model [56]. The time-to-contact model, using a time-to-contact threshold

value of about 120 ms, can be made to fit my RSDET model quite closely up to

retinal sizes of 80° (Fig. 3.11). Note that once flies are close enough to the post for it

to reach a retinal size of 80° they have typically already initiated deceleration (Fig.

3.9B), so comparing performance of either model beyond this point is not particularly
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meaningful.

Although the time-to-contact model may be an intuitive way of thinking about

the time course of a trajectory, I prefer not to use this terminology because neither

of two critical assumptions, constant velocity and a direct collision course, is valid for

the flies’ behavior. Furthermore, there is no need for the fly to actually calculate a

time to contact when a simple retinal size dependent expansion threshold calculation

is sufficient. The three models: RSDET, RREV, and time-to-contact, are all funda-

mentally the same with regards to the sensory inputs they use and the behaviors they

predict.

Once the fly has started to decelerate it needs to control its speed such that it

will reach a safe touchdown velocity prior to landing. This is not a trivial calculation,

as there are no experimentally supported hypotheses for how a fly might accurately

measure the distance between itself and a physical object. Previous work on honey-

bees landing on flat horizontal surfaces suggests that they use a simple controller that

holds the rate of retinal expansion constant, elegantly guaranteeing that they reach

a flight speed of nearly zero just before touchdown [134]. However, my data for fruit

flies landing on a vertical post are not consistent with this model (e.g., when speed

is plotted with respect to distance in a linear scale, I do not see a linear relation-

ship between these two parameters). This should not be surprising, because the two

experimental paradigms are fundamentally different (both in geometry and animals).

As the retinal size of an object and its derivatives are the only optical cues di-

rectly available to the fly, the most biologically plausible controller would use some

combination of retinal size, rate of expansion, and the rate of change of expansion. In

Fig. 3.14, I show that both rate of retinal expansion (Ω) as well as the rate of change

of the rate of retinal expansion (Ω̇) could, in principle, be used to safely decelerate

prior to impact without requiring a measurement of ground speed, object distance, or

a priori knowledge of how large the object is. In both cases, Ω is first put through a

threshold function (3.8), where the threshold (ξ) is defined by the solid purple curve

in Fig. 3.11:
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Ωξ,t = max(Ωt − ξ, 0). (3.8)

The discrete time control models for Ω (Fig. 3.14B) and Ω̇ (Fig. 3.14C) are defined

by (3.9, 3.10), respectively:

st+1 = st −KΩΩξ,t, (3.9)

st+1 = st −KΩ̇Ω̇ξ,t, (3.10)

where s is the flight speed in the x-y plane, KΩ is the gain for Ω, and KΩ̇ is the

gain for Ω̇. In order for (3.10) to be stable in the final moments of landing, I need

to add the requirement that Ω̇ξ,t be greater than or equal to zero. These models,

which match the general trend of the observed data, are provided only as proofs of

concept that such controllers could be employed by the fly given the limited sensory

information available to it. Future experiments will be needed to test whether or not

flies actually use such algorithms.

The next stage of landing – leg extension – has been subject to more prior work

than the rest of the landing sequence due to the ease of studying it in tethered flight

preparations. Several hypotheses for the underlying neural mechanism that trigger

leg extension have been proposed. One idea is that flies use the same sort of retinal

size threshold trigger that is used for the expansion avoidance response. This model is

supported by several studies on tethered flying Drosophila, which extend their legs at

a fixed retinal size of about 50° with a neural processing delay of approximately 50 ms

[165, 144]. Leg extension behavior in houseflies and blowflies, however, is inconsistent

with the retinal size threshold, because they will extend their legs in response to

sinusoidal gratings expanding within a grating mask of fixed size [17, 161]. The

authors of these studies proposed a spatio-temporal integration model, in which flies

integrate motion energy until a certain threshold is reached [17]. Note that because

multiple pathways could trigger leg extension, these two hypotheses are not mutually
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Figure 3.14: Potential control models for deceleration. The purple trace shows the
observed point of deceleration, repeated from Fig. 3.9A. (A) Observed speed vs.
retinal size traces, duplicated from Fig. 3.11A. Four arbitrary trajectories at different
initial velocities are highlighted for clarity. Using the same initial conditions from
the observed data in A, I simulated the time course of trajectories using two kinds
of deceleration controllers: (B) sk+1 = sk - 3500(max(�k - τ, 0)), (C) sk+1 = sk –
170000(max(d(�k- τ)/dt, 0)), where τ represents the expansion threshold drawn from
Fig. 3.13. The max() function simply ensures that the threshold subtraction returns
zero when �i is less than τ.

exclusive. Alternatively, a fly could react to a sudden change in luminosity in its visual

field, referred to as the temporal contrast model. This model has been proposed for

triggering escape responses in stationary Drosophila [76, 148] as well as leg extension

responses in blowflies [65], but does not elicit turning or leg extension in Drosophila

[144]. Finally, flies could use the “time-to-contact” model, or the more general RSDET

model that I proposed above as the trigger for deceleration.

Because I do not see any correlation between leg extension and flight speed, and

thus rate of expansion (Fig. 3.9D), it is unlikely that either the spatio-temporal

integration model or the RSDET model are responsible for triggering leg extension

in free flight. The most parsimonious hypothesis for explaining the leg extension

behavior I observed is a retinal size threshold model. The value I measured for this

threshold (61±22°, n=36), is remarkably close to a previously published result from

tethered flies of about 50° [144].

However, it is unlikely that the leg extension trigger is as simple as a retinal size
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threshold, as many of the non-landing flies experience retinal sizes of approximately

60°, yet very few extended their legs (we did, however, observe some examples of

non-landing flies extending their legs as if in preparation for landing). The additional

requirement that the extent of the object needs to be centered on the field of view

might prevent unnecessary leg extension during fly-bys, as they will typically have

turned away from the post by the time it subtends 60° (Fig. 3.7D). This idea is

consistent with psychophysical tuning curves from tethered flies which show that leg

extension is triggered by expansion centered on the fly’s retina, but not by lateral

expansion [144].

The final stage of landing – touchdown – appears to be a stereotyped open-loop

process, likely done without visual feedback. I did not find any indication that flies

orient their bodies (and thus legs) in relation to the surface of the post, a behavior

that has been observed in honeybees [49]. Because honeybees weigh on the order

of 200 times more than a fruit fly, and they often need to make more challenging

landings, such as on flowers swaying in the breeze, it is not surprising that their

landing sequence is more complex. The time between leg extension and touchdown

is less than 50 ms for about 1/3 of the landings I observed (Fig. 3.15). This is such

a short time frame (equal to the visual processing delay found in other experiments

described earlier) that it is unlikely that this aspect of landing is under tight visual

control. In the majority of touchdowns I observed that one of the two front legs would

touch the post before the other. Because the legs were spread out, this asymmetric

touchdown creates a moment arm that automatically orients the fly to the normal of

the post surface.

3.5.3 To land, or not to land?

What factors determine a fly’s choice to land or not? Is the decision dictated solely

by sensory experience, or does the animal’s internal state play a role? In other words,

if two different flies started with the same exact initial sensory conditions, would

they be likely to follow similar trajectories? A simple explanation for whether a fly
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Figure 3.15: Time elapsed between leg extension and touchdown is less than 100 ms
for the majority of landings (n=36).

lands or not would be that certain visual cues ultimately lead to landing while others

lead to aversive maneuvers. I term this deterministic scheme the sensory attractor

hypothesis. Based on my analysis, the most relevant visual cues for landing and

obstacle avoidance are retinal size, flight speed (or, alternatively, rate of expansion),

and post-angle. Thus, if the decision to land were governed by a sensory attractor, I

would expect it to be possible to construct a predictor based on some combination of

these sensory stimuli. Despite my efforts, the best predictor I found (based on post-

angle and retinal size) exhibited a 57% accuracy at predicting whether a fly would land

or not at a distance of 6 cm. Although it is possible that a better predictor exists, my

analysis suggests that the decision to land or not is either largely random, determined

by sensory parameters other than retinal size, rate of expansion, and post-angle, or

influenced by the internal state of the fly. It is certainly feasible that unaccounted for

sensory cues could play a role in this behavioral decision. For example, it has already

been shown that attractive odors have a significant impact on post approach and

landing behavior [54, 34, 26, 135]. However, because my experiments were performed
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in the absence of such cues, a more plausible explanation is that the decisions I

observed were influenced by some combination of internal states such as hunger,

exhaustion, the need to lay eggs, or defecate.

Assuming that the decision is not random, and that the internal state model is

correct, at what point in their trajectory do flies make a decision to land on or turn

away from an object? Because flies begin to decelerate when the post subtends as

little as 5 to 10° (equivalent to subtending 1 to 2 ommatidia), they probably can

detect the presence of an object at those distances. Why then, do non-landing flies

wait until the post subtends about 33° before they turn away from it? Perhaps they

are using the visual cue of the post as a means to navigate, and thus until there is

a more enticing visual feature to fly towards there is no need to turn away until a

collision becomes imminent. Alternatively, this observation could be an artifact of

the rectangular flight arena I used. If a fly were to turn away from the post when it

was only 5-10° it would not be able to travel very far before having to turn again.

3.5.4 Crashes

Our focus-following system, which enabled us to capture the final moments of landing,

revealed that 35.7% of landings were crashes (these crashes were excluded from the

data shown in Fig. 3.9). Due to my tracking system being unable to maintain fly

identity over the course of my experimental runs, I cannot rule out there are simply

some individuals that are bad flyers, and I plan to address this question in the future.

For the analysis in this paper I assumed that all flies behave similarly.

The result that the majority of crashing flies initiate deceleration at the appro-

priate time according to the RSDET model is of particular interest. It is not that

the flies failed to decelerate; the problem appears to be that they did not decelerate

fast enough. According to my proposed models for velocity control prior to landing,

deceleration is controlled by some combination of the rate of expansion and the rate of

change of expansion (Fig. 3.12). If the flies are able to measure expansion sufficiently

well to trigger deceleration, why were they unable to use that measure to control
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their deceleration? One hint comes from the observation that flies crashed into the

solid post more frequently than they crashed into the checkered post. It would make

sense for the measure of expansion from the checkered post to be more accurate, as

there are more contrast edges to use for calculating motion. However, perhaps a more

important error in the crash landings than insufficient deceleration is the failure of

these flies to extend their legs. If they were able to detect the presence and size of

the post in order to initiate deceleration, why did they not extend their legs in time?

One possible explanation for this is that leg extension may only be triggered if the

flight speed is below some threshold. This hypothesis is supported by Fig. 3.9D and

Fig. 3.11B, which suggest a threshold of approximately 0.2 m/s. I plan to address

these hypotheses in future experiments.

3.5.5 Post texture

Although subtle, the differences in behavior in the presence of the checkered and solid

black posts deserve comment. The most apparent difference in behavior correlated

with post texture was the fact that far fewer flies landed on the checkered post

compared to the solid black post (Tables 3.1, 3.2). More experiments will be necessary

to get a full understanding of why this is the case, but my current hypothesis is that

under the experimental conditions, at distances beyond which the flies could resolve

the individual checkers on the checkered post (approximately 5-10 cm), the checkered

post may not have been as conspicuous as the black post. This would have caused

fewer flies to be attracted to, and thus land on, the checkered post. Furthermore,

since flies show such a strong preference for navigating towards conspicuous vertical

patterns, it would not be too surprising if they adjust their behavior in the presence of

such visual features by increasing flight speed. Together with the reduced saliency of

the checkered post hypothesis, this would explain the slight difference in mean flight

velocities I observed in landing flies in the presence of the black post (0.39±0.13 m

s-1) compared to the checkered post (0.32±0.13 m s-1).

I also found that non-landing flies turn, on average, at a retinal size of 10° earlier
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in the presence of the checkered post (p(x2) = 0.03, 0.001, for left and right turns,

respectively; see Fig. 3.19-3.20 for complete statistical details). This suggests that the

aversive saccade maneuvers are, to some degree, a function of object contrast. I found

the same trend for leg extension, although the statistics are less convincing (p=0.08).

These observations are in agreement with the similarly subtle results found in tethered

flies [9], and favors a model in which the internal contrast of the object, and not just

the position and expansion rate of its edges does influence the underlying visual

processing. This may, at first, appear to be at odds with the contrast independent

retinal size threshold that I and others propose as the trigger for both aversive saccades

and leg extension, but there could easily be two (or more) pathways for triggering

these behaviors. For example, aversive saccade maneuvers can be elicited by wide

field expansion [145]. Alternatively, the circuitry that somehow tracks the expansion

of edges might nevertheless be sensitive to internal motion. Indeed, a system using

exclusively a retinal size threshold would have functional limitations, as it would cause

a fly to either extend its legs or initiate an aversive saccade when a physically large,

but very distant object reached the appropriate retinal size. By incorporating some

sort of expansion threshold in addition to the retinal size threshold, these unnecessary

triggers could be prevented. This addition to the model could explain the slight

dependence on contrast I observed.

3.5.6 Summary

In conclusion, my findings suggest that flies have an internal state that guides their

decision of whether to land or not. In both cases flies actively turn towards the post

when the post is far away. Flies that do not land make targeted body saccades away

from the post once it reaches a critical retinal size threshold of 33°±17°. Landing flies,

however, continue to make targeted body saccades towards the post and eventually

start to decelerate when a retinal size-dependent expansion threshold is reached,

followed by leg extension, which is triggered by a fixed retinal size threshold of 61±22°,

and finally, touchdown (Fig. 3.16).
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Figure 3.16: Landing and fly-by behaviors are distinct, and controlled by retinal
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with the related figures earlier in the paper. The purple line indicates the point
at which flies initiate deceleration (Fig. 3.9B), the green distribution shows when
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towards toward the post (Fig. 3.7C), and the orange distribution shows when flies
make evasive saccades (Fig. 3.7D).
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3.6 Supplemental figures
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Figure 3.18: Comparison of saccade features for pseudo landings and fly-bys, with
respect to a virtual post. Saccade turn angle (ψ) is plotted as a function post-angle (φ)
for landings (A) and fly-bys (B) with the color of each point indicating the retinal size
of the post at the time of the saccade. The black line in A shows a linear regression
through the data, ψ=1.06φ-4.06° (R2=0.90, n=68). (C) The distribution of saccades
in A (landings) as a function of retinal size and distance to post. (D) The distribution
of saccades in B (fly-bys) as a function of retinal size and distance to post. In panels
C and D the associated shading shows smoothed representations of the distributions
calculated using 3rd order 0.3 Hz Butterworth filters.
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Figure 3.19: Object contrast subtly influences landing and fly-by behavior. Figure
3.8 is repeated, but with the data segregated for the black post (A) and checkered
post (B). The linear regressions are given in Table S. I did not find any significant
differences for left turns (blue points, p(x2)=0.03, p(x1:x2)=0.58) or right turns (red
points, p(x2)=0.001, p(x1:x2)=0.11), except for the intercept (p(x2)=0.001) for right
turns, and marginal significance for left turns (p(x2)=0.03). In panels (C) and (D)
Fig. 3.9B is repeated with the data segregated for the black and checkered post,
respectively. The linear regressions are given in Table S. Although the statistics sug-
gest that there may be significant differences in deceleration behavior due to the post
texture for the flies that did not turn after initiating deceleration (purple points,
p(x2)=0.66, p(x1:x2)=0.011), visual inspection of the data does not show any notable
difference. The flies that did turn after initiating deceleration do not show any sta-
tistically significant difference (blue points, p(x2)=0.67, p(x1:x2)=0.30). The details
of this statistical analysis are given in the Methods. In both cases, visual inspection
does not suggest that there are any substantive differences, and there is insufficient
data for statistical comparisons to be taken at face value.
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Figure 3.20: (A) Leg extension behavior is not likely influenced by post texture.
The data from Fig. 3.9D is repeated for the black post (black) and checkered post
(teal). The difference in these distributions is insignificant (t-test, t=1.79, df=34,
p=0.08). (B) Retinal size at which non-landing flies perform an evasive saccade is
subtly influenced by the contrast of the post (t-test, t=8.86, df=1222, p<0.001). Fig.
3.7D is repeated, but with the data segregated for the black post (black) and the
checkered post (teal).
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Chapter 4

Monocular distance estimation from

optic flow during active landing

maneuvers
1

4.1 Abstract

Vision is arguably the most widely used sensor for position and velocity estimation

in animals, and it is increasingly used in robotic systems as well. Many animals use

stereopsis and object recognition in order to make a true estimate of distance. For

a tiny insect such as a fruit fly or honeybee, however, these methods fall short. In-

stead, an insect must rely on calculations of optic flow, which can provide a measure

of the ratio of velocity to distance, but they cannot determine either parameter in-

dependently. Nevertheless, flies and other insects are adept at landing on a variety

of substrates, a behavior that inherently requires some form of distance estimation

in order to trigger distance-appropriate motor actions such as deceleration or leg ex-

tension. Previous studies have shown that these behaviors are indeed under visual

control, raising the question: how does an insect estimate distance solely using optic

flow? In this paper I use a nonlinear control theoretic approach to propose a solu-

tion for this problem. My algorithm takes advantage of visually controlled landing

trajectories that have been observed in flies and honeybees. Finally, I implement my

algorithm, which I term dynamic peering, using a camera mounted to a linear stage
1As of Nov. 1st 2013, the material in this chapter is in press at Bioinspiration and Biomimetics

[151].
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to demonstrate its real-world feasibility.

4.2 Introduction

Many animals rely heavily on vision to gather information about their position and

velocity relative to objects in the world around them. As an animal moves, it perceives

apparent motion of these objects, with nearby objects moving faster than distant ones.

This phenomenon is referred to as optic flow and essentially provides a measure of the

ratio of forward movement to the distance of surrounding objects [86]. This coupled

relationship intuitively suggests that estimating either absolute distance or velocity

from optic flow is challenging. Indeed, it is not immediately clear whether an accurate

estimate of both position and velocity from optic flow is possible at all.

Optic flow is only one of many sensory modalities available to most animals, and

given additional sensory information it is possible to derive accurate estimates of

velocity and position. For example, terrestrial animals might count strides, as sup-

ported by experiments in desert ants [166]. Another theoretical possibility for walking

animals is to use visual odometry based on ventral optic flow, with the system cali-

brated by proprioceptive information that accurately measures the distance between

the eye and the ground [63]. Animals with high acuity vision and long-term memory

might estimate distance to recognizable objects by remembering their typical size

[62]. Perhaps the most straightforward strategy is stereopsis, which can provide a

distance estimate based on parallax [11, 62]. As will become clear in my subsequent

discussion, however, none of these approaches are plausible for small flying insects.

How is it then possible for a fruit fly or honeybee to avoid some objects and land on

others, without knowing either how fast they are going or how far away the obstacles

are located?

Growing evidence from studies of insects and birds reveals a clever algorithm that

solves this problem, at least in the context of landing. Although the details vary across

the studies, the core strategy is that by maintaining a constant rate of optic flow,

an animal can decelerate to a safe touchdown velocity without needing to directly
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measure either its velocity or distance to target [134, 160, 150]. Because optic flow

essentially provides a measure of the ratio of velocity to distance (units of s-1), it

is often instead referred to as the inverse of time-to-contact (the time it would take

for the animal to hit an object assuming it is on a collision course and maintains its

initial speed and heading). A controller implementing this simple law would cause an

animal to decelerate in such a way that its velocity would be inversely proportional to

the distance to nearby objects. These observations have inspired the implementation

of similar algorithms on robotic aircraft to achieve smooth automated landings [32].

Although the constant optic flow algorithm offers a robust strategy for decelera-

tion, other components of landing behavior may require different sensory mechanisms.

For example, at some point before contact, the animals need to extend their legs to

help touch down safely. For animals that tuck their legs tightly during flight, this mo-

tion would ideally happen at a short and consistent distance from the landing target.

Indeed, both flies and honeybees appear to have this capacity [49, 150]. Furthermore,

tethered flight experiments with fruit flies have demonstrated that leg extension be-

havior is triggered by visual cues [17, 144]. Honeybees have also been shown to rely

exclusively on visual cues to accurately determine the distance to targets such as ar-

tificial flowers [31, 94, 93]. These observations suggest that somehow insects are able

to measure some feature that is tightly correlated with distance using only vision, yet

the precise details of how this might be accomplished are not known.

In this paper I present a novel algorithm, termed dynamic peering, that I propose

as a potential model for how insects accomplish this task as well as being a useful

algorithm for small scale and computationally limited robotics applications where

traditional forms of distance estimation such as stereo, sonar, and laser rangefinders

are too large, heavy, costly, or computationally intensive. Image based sensing also

has the advantage that it is a passive system, rather than needing to send out or

receive active signals.
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4.2.1 Review of visual distance estimation in biological sys-

tems

Before beginning the derivation of the dynamic peering algorithm, I present a brief

review of experimentally confirmed mechanisms for vision based distance estimation in

biological systems (see also [37]). Perhaps the most familiar mechanism for estimating

distance from visual information, on which humans heavily rely, is object recognition.

Given a recognizable object and knowledge of its typical size, it is possible to estimate

the distance to the object. This process is, however, a cognitively complex task that

relies on high acuity vision, many layers of visual processing, and a large memory

of objects. It is thus an unlikely general mechanism for insects, which have neither

the high acuity vision nor the neural capacity necessary for this approach. Another

strategy is to use an image-forming lens with a shallow depth of field, which makes

it possible to calculate depth from the level of defocus [115]. Such a mechanism,

however, is incompatible with the optics of compound eyes [92]. The simplest, and

most widely used mechanism for estimating distance—both in biology as well as

in computer vision and robotics—is stereopsis. Stereopsis works by calculating the

parallax between two (or more) simultaneous images of the same object taken from

different viewpoints to triangulate the absolute distance to the object. Many factors

play a role in the accuracy of this method, however a simplified distance estimate

error (ed) from a stereoscopic camera pair is given by:

ed ≥
d
2
ξ

lf
, (4.1)

where d is the distance to the target, l is the interocular distance, f is the focal length

of the lens, and ξ is the pixel resolution [154]. To use this equation with biological

systems, I rewrite the equation using the relationship:

ξ

f
= 2 tan

�
θ

2

�
, (4.2)

where θ is the angular resolution of the visual system. Substituting 4.2 in 4.1 yields:
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Figure 4.1: Theoretical errors in stereoscopic absolute distance estimates for humans
(blue) and fruit flies (red), calculated using 4.3.

ed ≥ 2 tan

�
θ

2

�
d
2

l
. (4.3)

To gain intuitive insight into this relationship, consider the human visual system,

which has an interocular distance of approximately 65 mm and a stereoscopic angular

resolution of 0.003° [159]. Given these parameters, the minimum theoretical error in

distance estimates is described by the blue curve in Figure 4.1. Next, consider the

visual system of the fruit fly, which has an interocular distance of approximately

0.3 mm. Although the precise angular resolution of the flies’ visual system is not

known, I approximate it by the ommatidial acceptance angle of 5°, yielding the red

curve in Figure 4.1. Given these results, stereopsis might provide useful information

for behaviors that involve operating at very close distances, for example when a male

chases a female during courtship. However, it is unlikely that flies could use stereopsis

to trigger leg extension during flight, which occurs when they are approximately 1 cm

from the target [150], at which distance the minimum error using stereopsis would

be approximately 3 cm. Although details vary, such limitations are general for most

insects given their small values of interocular distance.
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A related, time domain approach to stereopsis is to use sequential images from a

single moving eye that has traversed some known distance between acquisitions. Some

insects, such as locusts, use this approach to estimate distances before jumping or

attacking prey by moving their heads back and forth in a regular fashion, a behavior

known as “peering” [36, 133, 158]. For this approach to work, the distance between the

positions at which the two images are acquired must be known. This distance could,

for example, be calculated if the velocity and time interval are known, or determined

directly via proprioceptive sensory feedback [117]. However, because a flying animal

has no accurate measure of its true groundspeed (only its airspeed), this method is

not feasible for estimating distance for landing behaviors.

Suppose that rather than moving an eye or camera at some known velocity, it is

accelerated at a known rate. The acceleration could either be produced along the

direction of travel in the case of a straight trajectory, or by changes in direction.

As I will show in the following section, knowledge of the acceleration and the time

interval between image acquisitions is sufficient to estimate both velocity and absolute

distance. This approach, which I term dynamic peering, has the intuitive functionality

of the nonlinear observer I will develop more formally in the following sections.

4.3 Modeling and observability analysis

Of the approaches for vision based distance estimation described above, only dy-

namic peering has the potential for use by a small flying insect, and thus also by

a similarly-scaled robot. In this section, I will take a control theoretic approach to

formalize this concept and construct a nonlinear observer that can estimate distance

if, and only if, certain controls (actuation patterns) are applied. In order to sim-

plify the system so that the principles are as transparent as possible, I will focus

on the problem of landing on a large flat target given a system with simple linear

dynamics limited to a single translational degree of freedom. In the final section, I

describe a physical implementation of the proposed observer, which demonstrates its

feasibility in the real world. Finally, I will propose some methods that would allow
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my algorithm to be implemented by higher degree of freedom systems in complex

environments. Throughout the following sections, I will use the term “camera” and

“robot” to represent a simple imaging device and some moving agent, but the terms

“eye” and “animal” could be used as well.

4.3.1 Problem statement

Given a single camera and control over forward acceleration, an agent flying toward

a flat surface must decelerate to a safe speed and estimate the distance in order to

prepare for touchdown.

4.3.2 Analysis

As the camera approaches the surface, from its perspective, textures on the wall will

appear to move across its visual field at some angular velocity that is a function

of its forward flight speed, the distance to the wall, and the heading angle between

the texture and the agent’s trajectory. If I assume perfectly spherical optics, this

relationship can be described as follows,

dα

dt
= −

vh

dh
tan (α) , (4.4)

where dh is the distance to the object, vh is the velocity in the direction of dh, α is

the position of the object on the camera’s retina, and α̇ is the angular velocity (e.g.,

optic flow) of the object relative to the camera, see Figure 4.2.

Assuming spherical lens geometry, α corresponds directly to the heading of the

object relative to the camera. Thus, for each direction α, the ratio vh/dh is directly

proportional to α̇ by a constant of −1/tan(α). In the case that the camera is moving

directly towards a flat wall, I can relate all such measurements for different α’s and

rewrite 4.4 in terms of the forward velocity (v) and the distance to the wall (d):

−
α̇

tan (α)
=

vh

dh
=

v

d
. (4.5)
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Figure 4.2: Geometric relationship of the moving camera and a reference object, as
referenced in (4.4).

By only using measurements corresponding to small α (e.g., from the center of its

field of view), the equation further simplifies to:

v

d
= −

α̇

tan (α)
≈ −

α̇

α
. (4.6)

These simplifications make it possible to estimate v/d as the mean of α̇/α across all

(small) α. In the following sections I use this relationship to describe optic flow as
v/d. Note that although this relationship appears to be poorly defined at α = 0, α̇

also tends toward zero in this direction, and the limit remains well-defined. In a

real-world implementation where noise is unavoidable, this relationship is prone to

producing large errors. In my implementation section, I discuss a simple solution to

this problem.

Next consider a robot equipped with a single camera flying straight towards a

static object. The equations of motion can be written as:
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 ḋ(t)

v̇(t)



 =



 v(t)

0



+



 0

1



 u(t) =



 0 1

0 0







 d(t)

v(t)



+



 0

1



 u(t), (4.7)

where d is the distance to the object, v is the forward flight speed, and u is the control

input (which is equivalent to acceleration with these dynamics). With optic flow as

the system’s only sensory input, I can write the observations as:

y(t) = [v(t)/d(t)] . (4.8)

Although the dynamics are linear, the observation equation, y, is nonlinear. In order

to use linear systems analyses, I begin by linearizing the system about a nominal

trajectory, (dt(t), vt(t)). This choice allows us to write the system in the canonical

state space form:

x(t) = Ax(t) + Bu(t), y(t) = Cx(t) +Du(t), (4.9)

where, for my system, the terms are defined as follows:

x(t) =



 d(t)

v(t)



 , (4.10)

A =



 0 1

0 0



 , B =



 0

1



 , C =
�

−vt/d2t
1/dt

�
, D =

�
0
�
.

To address the question of whether or not it is possible to estimate distance and

velocity using only optic flow, I examine the system’s observability (a measure for how

well the states of a system, such as position and velocity, can be inferred given the

available sensory measurements [112]). First, I check the linear observability condition

for an arbitrary nominal trajectory by calculating the rank of the observability matrix:
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 C

CA



 =




−vt/d2t

1/dt

0 −vt/d2t



 . (4.11)

This matrix is full rank along any trajectory provided that neither the velocity nor

distance is zero, suggesting that the system is observable. Because in practice I am

concerned with non-zero velocities at non-zero distances, this limitation is not critical.

This conclusion, however, goes against the intuition presented in the introduction,

which suggested that it should be difficult, if not impossible, to extract either distance

or velocity from optic flow. To explore this discrepancy, I use an alternative check

for calculating the observability of a linear time-varying system, the observability

Gramian:

P (t0, tf ) =

tf�

t0

e
AT t

C
T
Ce

At
dt (4.12)

where C (defined in 4.10) is time varying. The advantage of this approach is that

the condition number (the ratio of the minimum and maximum singular values of

a matrix), termed the local estimation condition number, is a direct measure of the

well-posedness of the estimation problem [88]. The smaller the condition number, the

better posed the estimation problem. Calculating 4.12 analytically is often challenging

for complex systems. Instead, it is possible to numerically estimate the observability

Gramian, termed the empirical local observability Gramian, by simulating the system

and comparing the outputs y for perturbations ±� of the initial condition [75, 88].

It can be shown that as � → 0, the estimate converges to the result from 4.12.

Using this approach on my system shows that the condition number for a constant

velocity trajectory approaches infinity for any time interval (Figure 4.3, black trace),

suggesting the system is not in fact observable in a linear sense. However, significantly

smaller condition numbers exist if I consider non-constant velocity trajectories (Figure

4.3).

For a more direct confirmation that non-zero control inputs are required for the

system to be observable, I can employ a nonlinear observability analysis, which draws
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Figure 4.3: Condition number of the empirical local observability Gramian for a
constant velocity trajectory (black) approaches infinity, whereas a constant accelera-
tion trajectory (blue) or a constant optic flow trajectory (red) achieves significantly
lower condition numbers. The constant optic flow trajectory is obtained by using the
controller given by 4.16, and will be discussed at length later in the paper.
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on Lie algebraic tools to account for the contribution of active controls.

A brief review of the key elements will be presented here; for a more detailed

discussion see [112]. The Lie derivative of the observation equation, y = h(x), with

respect to a vector field, fi(x) ∈ Rn, where x ∈ Rn, is defined as:

Lfih =
∂h

∂x
fi. (4.13)

Intuitively, the Lie derivative represents the change in a function or vector field along

a vector field. Applied to the observability problem presented in this paper, Lfih is

the change in the observations (y = h(x) = optic flow) along either the drift dynamics,

f0 = Ax, or the control direction, f1 = B. Because the drift dynamics cannot be

turned off, I take a repeated Lie derivative with respect to both f0 and f1 in order to

calculate the change in the observations with respect to the control. This repeated

Lie derivative is defined as:

Lf0f1h = Lf0Lf1h =
∂

∂x
(Lf1h) f0. (4.14)

Next, define the observability Lie algebra, O, which is the collection of Lie deriva-

tives of the observations, h, with respect to the drift dynamics and each of the controls.

In the case of my problem:

O = {h(x), Lf0h(x), Lf0f1h(x)} =

�
v

d
,
−v

2

d2
,
v

d2

�
. (4.15)

If the Jacobian of O is full rank (i.e. if the number of linearly independent terms is

equal to the number of states in the system) at all states, the system is said to be

observable. If O must include Lie derivatives between h and a control vector, f , in

order to become full rank, this control dimension must be actuated in some way in

order for the system to be observable. In my system, the terms {v/d, −v2/d2} result in

linearly dependent terms within the Jacobian, so O reduces to {v/d, v/d2}, which has

a full rank Jacobian if and only if the term Lf0f1h(x) is included (and for v �= 0 and

d �= 0). The presence of the term Lf0f1h(x) suggests that in order for the system
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to be fully observable, some acceleration must be applied. That is, if the camera-

equipped robot were approaching the wall at constant velocity, I would not be able to

observe d and v separately. If the camera accelerates, however, such an observation

is possible. These results are consistent with my conclusions from the observability

Gramian analysis in Figure 4.3, and is the critical feature of my proposed method.

In principle, I could conclude my analysis at this point and simply implement

an unscented Kalman filter or particle filter to estimate the unobserved states [39]

and ensure that the system accelerates sufficiently often. Unfortunately, however,

the observability Lie algebra calculation does not give any indication of what that

control needs to be; only that it cannot be identically zero. To address this limi-

tation, previous studies have developed methods that use the condition number of

the observability Gramian to rank potential trajectories [75]. In this paper, I take a

bio-inspired approach as described below.

Consider the landing algorithm presented in the introduction, where an animal

maintains a constant rate of optic flow in order to guarantee a safe landing velocity at

touchdown. This motion can be accomplished by using a simple proportional feedback

controller on the velocity:

u = k(r − rd), (4.16)

where r = v/d, and rd is the desired ratio of v/d. To understand the implications of

such a controller I write:

optic flow ∝ r = v/d, (4.17)

d

dt
r =

d

dt
vd

−1 =
v̇

d
−

v
2

d2
=

v̇

d
− r

2 =
u

d
− r

2
. (4.18)

Rewriting this equation yields the following equation for distance:

d =
v̇

ṙ + r2
=

u

ṙ + r2
. (4.19)
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Thus, given non-zero control, it possible to estimate distance directly from the

control input and a measurement of r along with its derivative, both of which can

be extracted from measurements of optic flow. It is important to note, however, that

this relationship has several pitfalls, particularly for a noisy system. As I will describe

in the implementation section, current computer vision methods for calculating optic

flow are indeed noisy, so these pitfalls present a real problem. In the case that

ṙ+ r
2 = 0, the distance estimate approaches infinity. Although this will theoretically

not happen if the acceleration is sufficiently large, there is no such guarantee in a

noisy system. Given the bio-inspired controller that maintains a constant rate of

optic flow (ṙ = 0), however, the distance estimate in 4.19 can be simplified to:

d =
u

r
2
d

, (4.20)

where rd is the desired rate of optic flow, u is the control input (acceleration), and d

is the distance to the target. This equation evolves with time according to:

d = d0e
rdt, (4.21)

where t is time, and d0 is the (unknown) initial distance. In this way, I have removed

the potential for dividing by zero, and all the effects of noise reside within the relative

safety of the numerator. Furthermore, by using 4.21 I have reduced the estimation

problem to that of estimating a single parameter—the initial distance—allowing us to

calculate a clean distance estimate with a sequential least squares filter [39, pg. 19]2.

This approach is, of course, limiting for general applications. However, in the context

of landing, where a constant rate of optic flow controller is ideal, these constraints

do not present a critical problem. On the contrary, they provide an exceptionally

elegant method for triggering behaviors such as leg extension based on the internal

state of control (or the measured value of acceleration). In the discussion, I explore

the possibilities for expanding this approach to more general cases.
2The sequential least squares filter makes it possible to update a least squares estimate as new

measurements arrive, rather than batch processing the entire dataset at once. The filter essentially
works as a Kalman filter without dynamics.
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A B

Figure 4.4: Visual target and optic flow estimation. (A) Example camera image
showing the visual target and region of interest (red box). (B) Optic flow as a function
of camera pixel from two successive frames, calculated using OpenCV’s Lucas Kanade
algorithm. For the purposes of control, I calculated a linear fit of the data (red line)
over the region of interest indicated in (A).

4.4 Implementation

As a proof-of-concept physical demonstration of the distance estimation algorithm

presented in the previous section, I implemented it using a camera (Basler Ace 640-

100 gm) equipped with a 1.4mm fisheye lens (Fujinon C Mount 1.4mm CCTV Fish-

Eye) mounted to a linear stage. The camera was driven by a computer controlled

servo along a 1.5 m track towards a panoramic image of a forested scene. All the

image processing and estimation were done on a desktop computer running Ubuntu

Linux. Images were acquired with the open source camera aravis driver, and the

rectified images were published on a Robot Operating System (ROS fuerte) network.

All subsequent processing was done in Python. I used OpenCV’s implementation

of the Lucas Kanade algorithm to calculate optic flow over a region of interest that

corresponded to an approximately 45° field of view in the horizontal direction. For

simplicity, I restricted my analysis to the optic flow along the horizontal dimension.

Figure 4.4 shows a representative measurement of optic flow along this axis. Recall

from 4.5 that optic flow (α̇) is equal to − tan(α)v/d. In order to extract v/d, I fit a

line to the central portion of this curve using a RANSAC algorithm [50], and used

the slope of this line as the estimate for v/d. Note that this approach circumvents the

potential for dividing by zero at small α and also makes the algorithm robust to poor
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camera alignment and noisy optic flow estimates.

In order to use these optic flow estimates for my estimation problem, I first had to

calibrate the system, since the Lucas Kanade algorithm provides normalized values

between ±1. To calibrate the system, I drove the camera at various known rates of
v/d and recorded the associated slope. After collecting several of these points, I did

a least squares fit to determine the relationship between my slope estimate and the

true v/d.

Next, I implemented a simple proportional controller 4.16 with gain k = 6 to

adjust the acceleration of the camera such that it maintained the desired value of

optic flow. The acceleration commands were turned into updated velocity commands

based on the operating frequency of the control loop and were sent to an Arduino Uno

board over USB. The Arduino continuously generated step and direction commands

that were sent to the stepper motor controller, which in turn moved the camera.

These step commands served as my ground truth of the actual distance and velocity

of the camera to which I could compare my algorithms’ estimates. The rate limiting

step of my implementation was the communication to the Arduino board, resulting

in a 50 Hz operating frequency, which was sufficient for my demonstration purposes.

To estimate the distance, I used a two-step process. For each cycle of the 50 Hz

control loop, I estimated distance using 4.20. These distance estimates were then run

through a sequential least squares (SLS) filter [39] to estimate the initial distance d0

in 4.21. Because 4.20 is only valid when the system is moving with the desired rate

of optic flow, I kept the covariance in the SLS filter artificially high until the desired

rate of optic flow was reached. My software, as well as the data collected using this

system, are freely available online at www.github.com/florisvb/dyneye.

4.5 Results and discussion

The camera started out at zero velocity 1.5 m away from the target, quickly acceler-

ated up to the desired optic flow set-point, and subsequently began gently decelerating

as it approached the target so as to maintain the desired constant rate of optic flow.
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Figure 4.5 shows a comparison between the actual position, the nonlinear observer

estimates at each time point calculated using (18), and the sequential least squares

(SLS) filtered estimates. I also implemented a square-root unscented Kalman filter

(UKF) [152] and found very similar performance to the SLS results, but with much

greater computational overhead (not shown for the sake of graphical clarity).

Because my nonlinear observer 4.20 only provides valid information when the

system is close to the desired trajectory, the position and velocity estimates show

large initial errors. These initial errors are an artifact of my system starting out

at zero velocity and initially needing to accelerate to reach the desired optic flow

rate. The initial errors are more pronounced in experiments with higher rates of

optic flow, as the system took longer to reach the target level. This left little space

on the limited track to operate at the final desired rate. In a freely moving system,

deceleration could be triggered when the optic flow reaches the desired threshold, and

subsequent distance and velocity estimates would be accurate so long as the system

maintained the target level of optic flow. For very slow rates of optic flow (r > −0.01),

the poor estimates are most likely due to insufficient changes in pixel values between

sequential image acquisitions to calculate accurate measures using the Lucas Kanade

algorithm. This limitation could potentially be solved by using longer delays between

image acquisitions.

4.5.1 Applications to robotic systems

The approach presented here is best suited for landing applications due to the tra-

jectory choice; however, by integrating the algorithm into a more complex trajectory

it could provide more general utility in navigation tasks. For example, a flying robot

could periodically approach the ground below it with constant optic flow to estimate

its altitude and use this measurement as a calibration for other optic flow estimates.

Recall that optic flow alone can provide relative measurements to different objects,

so if the distance to any one of these objects is known, the others can be calcu-

lated as well. Between these bouts, the robot could use other bio-inspired visual cues
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Figure 4.5: Performance of the dynamic peering estimation algorithm. Panels A-D
show results for a desired optic flow rate of -0.1 s-1. (A) Actual position (blue), raw
dynamic peering estimate (green), and the sequential least squares filtered dynamic
peering estimate (red). (B) Actual velocity (blue), dynamic peering with sequen-
tial least squares filtering (red). (C) Actual velocity/distance (blue) and optic flow
measurement based on Lucas Kanade calculations (red). (D) Control commands,
equivalent to acceleration (blue). (E) Same Figure as (A) repeated for different de-
sired optic flow rates (indicated above each plot).
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to maintain a constant altitude, such as local horizon following[141]. Although my

implementation made use of a full desktop computer, this use was purely for conve-

nience. Optic flow can be calculated with simple parallel analog circuits, without the

need for extensive memory [136].

I restricted my analysis to a single degree of freedom system for simplicity, however

the principles presented here can be generalized to three-dimensional motion. In three

dimensions, the non-zero acceleration requirement can also be satisfied by non-zero

angular accelerations, i.e., changes in direction [1].

4.5.2 Implications for landing insects

The dynamic peering algorithm presented here provides a plausible mechanism for

how insects might estimate distance in order to trigger leg extension or any other

behavior during landing maneuvers. Once the animal starts decelerating in prepa-

ration for landing by maintaining a constant rate of optic flow, it could trigger leg

extension when either its internal control signal, or a measured value of acceleration,

reaches a particular threshold. This threshold would always correspond to the same

distance if the animal uses the same rate of optic flow for regulating its deceleration,

a hypothesis supported by behavioral observations [134, 150]. Such a threshold cal-

culation could be easily implemented by the nervous system with as little as a single

neuron. To my knowledge, this is a novel and plausible principle. Insects, such as

flies [53, 106, 125], are known to use optic flow to regulate their velocity by adjusting

acceleration, suggesting that such an internal control signal is indeed present.

To experimentally test whether insects use dynamic peering, one could construct

an experiment in which animals are tricked into decelerating faster or slower than

usual by using a virtual reality system. If the insects use an approach similar to what

I describe, their leg extension behavior would be correlated with their internal control

commands, and thus the observed acceleration behavior. Unfortunately this type of

experiment is challenging to perform, as it requires free flight observations of leg

extension behavior and simultaneous control of the visual stimulus in closed loop. As
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reported previously, flies landing on a target typically extend their legs after having

first initiated a deceleration [150]. However, flies that approached the target but did

not decelerate, did not extend their legs. These results suggest that leg extension is

not simply triggered by object size or image velocity, but rather it depends on some

aspect of the flies’ internal state, or their deceleration behavior, an observation that

is consistent with my model for distance estimation. Tethered flight experiments in

fruit flies, as well as other insects, have shown that visual stimuli are sufficient to

elicit strong leg extension responses [17, 144]. These results from tethered flies seem

contradictory to my hypothesis because the flies extend their legs without physically

decelerating. However, in these tethered flight experiments it is impossible to know

if the flies were attempting to decelerate. Assuming they were, this behavior could

be explained if they used an internal signal (e.g., efferent copy) of the control output.

It is also possible that there are multiple sensory-motor pathways that can elicit leg

extension.

Our analysis focused on a single degree of freedom trajectory, which is consistent

with the landing behavior of fruit flies which do not make significant changes in

heading after initiating deceleration prior to landing [150]. Additional degrees of

freedom in the system would make it possible for an insect to extract a true depth

estimate from optic flow simply by changing direction by a known amount. Previously

published results from experiments with honeybees are consistent with this option,

having shown that they do actively change direction in a stereotypical fashion in order

to determine the height of objects above the ground using optic flow information [93].

4.5.3 Summary

To summarize, in this paper I used tools from control theory to show that non-zero

acceleration is necessary and sufficient to estimate distance from optic flow with a

single camera. There are, however, an infinite number of possible trajectories that

satisfy these requirements, many of which will fail in real-world noisy implementa-

tions. In order to choose a trajectory that provides an accurate estimate of distance,
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I turned to biological inspiration from landing insects, which decelerate so as to keep

their optic flow at a constant value. This choice of trajectory simplifies the estimation

problem to a single parameter (initial distance), resulting in an accurate estimate of

distance from sequential least squares filtering. My dynamic peering algorithm pro-

vides a plausible, and testable, mechanism for how insects might trigger leg extension

prior to landing, as well as being a novel method for estimating distance with a single

camera in robotic systems.
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Chapter 5

Octopaminergic modulation of the

visual flight speed regulator of

Drosophila1

5.1 Abstract

Recent evidence suggests that flies’ sensitivity to large field optic flow is increased by

the release of octopamine during flight. This increase in gain presumably enhances

visually-mediated behaviors such as the active regulation of forward speed, a process

that involves the comparison of a vision-based estimate of velocity with an internal

set point. To determine where in the neural circuit this comparison is made, I selec-

tively silenced the octopamine neurons in the fruit fly, Drosophila, and examined the

effect on vision-based velocity regulation in free flying flies. I found that flies with

inactivated octopamine neurons accelerated more slowly in response to visual motion

than control flies, but maintained nearly the same baseline flight speed. My results

are parsimonious with a circuit architecture in which the internal control signal is

injected into the visual motion pathway upstream of the interneuron network that

estimates ground speed.
1As of Nov. 1st 2013, the material in this chapter is under review at the Journal of Experimental

Biology.
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5.2 Introduction

Many animals modulate the properties of their neural networks according to behav-

ioral state in order to increase their functionality [103], a principle that presumably

applies to control circuits that regulate behavioral actions. Studies in mice [2, 111],

monkeys [108, 147], and flies [79, 101], show that modulation of the visual processing

system in particular is a common feature across taxa, however, the behavioral impli-

cations of these modulations are unknown. Presumably, increasing the sensitivity of

the visual system during certain behaviors allows these animals to react more quickly

to visual disturbances through a sensory motor feedback control loop.

Feedback control works by comparing a perceived sensory signal with a desired

output, and adjusting motor actions to minimize their difference. Within such a cir-

cuit, there are two fundamentally different locations where modulation (e.g., changes

in gain) might take place: in the sensory system (before the comparison is made),

or in the controller (after the comparison is made). Our current understanding of

the underlying neuroanatomy in monkeys, mice, and flies, would suggest that this

gain modulation is situated on the sensory side of the feedback comparison (Fig. 5.1,

H1). However, gain changes in sensory signals can lead to unpredictable behavioral

responses because of a large bias introduced to the error signal (when the desired

value is not equal to zero). One solution would be to link changes in sensory gain

with simultaneous and identical changes in the branch including the command input

so that the error signal is balanced (Fig. 5.1, H2a).

A simpler alternative is to modulate the gain of the feedback controller that cal-

culates the error signal (Fig. 5.1, H2b). To incorporate this approach for a visual-

motor task would necessitate that an animals’ desired reference signal enters the

visual stream early, upstream of the neuromodualtory inputs that alter sensory gain.

Although topologically distinct, H2a and H2b are mathematically identical. Design-

ing neurobiological experiments that can distinguish between H1 and H2 requires the

ability to artificially modulate a specific neural circuit involved in a well-characterized

feedback control task without affecting other aspects of behavior. The fruit fly,
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Drosophila melanogaster, is particularly well-suited for addressing this question, be-

cause genetic tools make it possible to selectively label and manipulate the activity

of small groups of neurons in intact behaving animals [113, 131, 153].

In flies and other species of insects, estimates of self-motion are extracted from

patterns of optic flow. Local optic flow is estimated by a two-dimensional array

of so-called elementary motion detectors [18, 21, 48, 70] and then integrated across

visual space by large interneurons in the lobula and lobula plate. The lobula plate

tangential cells (LPTC) are particularly well-characterized and many exhibit receptive

fields that make them sensitive to different patterns of self-motion, such as those

created by rotation and translation during flight [80, 84, 87]. This LPTC network

is thought to serve a critical role in flight control, a hypothesis supported by their

connections to descending pathways controlling wing and neck motor neurons [69,

137, 138]. Additional experiments in which lobula plate neurons are ablated by either

physical or genetic means add further support to this hypothesis [61, 71, 74].

Recent studies in Drosophila suggest that gain modulation of the LPTC network

occurs during both walking [33] and flight [101]. In the case of flight, this modulation

appears to be mediated by octopamine neurons which become active during flight

and cause an increase in the gain of the visual responses in at least one class of

LPTCs, the vertical system (VS) cells [142]. Evidence from other flies [79, 97] suggest

that gain modulation during flight is not restricted to VS cells, but may represent a

ubiquitous feature of the visual motion system [27]. Thus, modulation by octopamine

probably increases the sensitivity to many large field visual cues, perhaps allowing

the fly to react more quickly to visual disturbances during flight. In this paper I

test this hypothesis directly by observing flies’ velocity and acceleration responses

to translational visual motion with and without octopamine by genetically silencing

their octopamine producing neurons. Then, I use my results to distinguish between

the two models proposed in Fig. 5.1.
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Figure 5.1: Feedback control diagrams describing the three potential control model
architectures under consideration (left), each of which is paired with the system dy-
namics and sensory feedback shown on the right.
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5.3 Methods

5.3.1 Animals

Experiments were performed on 2-3 day-old fruit flies, Drosophila melanogaster Meigen,

using the following transgenic constructs in a w[+] Canton-S genetic background:

Tdc2-Gal4 (FBst0009313) and UAS-Kir2.1-EGFP (FBti0017552). In the text, the

parental controls are always referenced in the following order: UAS-Kir2.1, Tdc2-

Gal4. Flies were deprived of food, but not water, for 6-8 hours prior to the start of

the experiment in order to motivate flight. For each experimental trial, I introduced

a group of 12 flies to the corner of the arena within a small test tube. The flies were

then free to move throughout the flight arena for a period of 12-18 hours, during

which time data were collected automatically. With the exception of Fig. 5.3B, all

experiments were done with female flies.

5.3.2 Flight arena

I performed all experiments in a 1.5 m x 0.3 m x 0.3 m working section of a wind

tunnel (Fig. 5.2A) that has been described previously [26, 100, 141, 150]. In these

experiments the wind tunnel was switched off, so that the internal air was still. On

the two long walls and floor of the arena I projected a sine grating perpendicular to

the length of the wind tunnel with a constant linear spatial frequency of 4.2 m-1 us-

ing a Lightspeed Designs DepthQ (Oregon City, OR) projector with the color wheel

removed (120 Hz update rate, 360 Hz frame rate, mean luminance of 50 cd/m2).

The spatial frequency was chosen because it lies within the range of maximum re-

sponse for similar visuomotor behaviors in a similar arena [53, 141]. I generated the

sine grating, and controlled its temporal frequency, using the VisionEgg open-source

image-rendering software [139].

I tracked the 3D position of individual flies within the chamber using a real-time

tracking system that is described in detail elsewhere [140]. The 11-camera (Basler

Ace 640-100 gm, Basler, Exton, PA) system generated an estimate of fly position at
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Figure 5.2: (A) Wind tunnel in which the experiments were performed, with a prop-
erly scaled representation of the 4.2 m-1 spatial frequency used during the experiments.
(B) Confocal image of a Drosophila brain and thoracic ganglion showing the GFP
labeled octopamine neurons (green), which I genetically silenced with Kir2.1. The
imaging for B was done by my colleague, Dr. Marie Suver.

100 frames per second with a median latency of 39 ms. For the purposes of tracking,

the arena was backlit with an array of near-infrared (850 nm) LEDs. The cameras

were equipped with long-pass filters (Hoya R-72) so that the camera images were not

contaminated by the pattern that was displayed in visible wavelengths.

5.3.3 Experiment protocol

To automate the data collection I used a position and velocity dependent trigger near

both ends of the wind tunnel. When a fly passed through either trigger volume while

flying towards the opposite end of the wind tunnel, the visual display of sine gratings

began to move randomly at one of eight specified temporal frequencies (0-16 Hz), in

the same direction as the flies initial motion. The stimulus continued to move for 12

seconds, which was more than sufficient time for the fly to reach the opposite end of

the tunnel. I restricted my analysis to the first 0.5 seconds of these trajectories. After

each visual presentation there was a refractory period of 25 seconds during which time

the trigger remained off regardless of the flies’ behavior.
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5.3.4 Trajectory reconstruction and analysis

All analyses of flight trajectories were done using custom software written in Python

using the open-source software packages Scipy and MatPlotLib, as well as Matlab.

Each trajectory was treated as an independent sample, as the tracking software was

not able to maintain fly identities over the extended period of the experiments. There-

fore I could not test whether individual flies behaved consistently differently from

other flies. I tested 24 individual flies for each of the parental controls, and 108

Tdc2-Gal4, UAS-Kir2.1-EGFP flies, resulting in 42-106 trajectories for each tempo-

ral frequency and each of the three genetic lines. Trajectories that came within 5

cm of the wind tunnel ceiling, or turned around part way through the trial, were

left out of my analysis. Each trajectory was smoothed to remove digitization errors,

and to estimate velocity and acceleration, using a simple forward/reverse, non-causal

Kalman filter. I measured a 19±1 ms delay between the computer generating the

visual stimulus and the projector [55] (Fuller, 2011). Adjustments were made to the

trajectories to align them with the true estimated timing of the stimulus post facto.

Means and standard deviations of the accelerations in response to the visual stimulus

were calculated by averaging the Kalman estimates of acceleration for the time range

of 200-400 ms after the onset of visual motion.

All statistical comparisons were performed with the two-tailed Mann-Whitney

U test. Statistically significant differences at the p = 0.001 level were calculated

using the Bonferroni method for multiple hypothesis testing [130]. I used open-

source python software for computing the statistically homogeneous groups, which is

described in detail elsewhere [124]. This software is made freely available by Andrew

Straw: http://astraw.github.com/pairs2groups/.

5.3.5 Immunohistochemistry and imaging

Note: this section was performed by a co-author and colleague, Dr. Marie Suver. She

dissected brains in 4% paraformaldehyde in PBS and fixed for a total of 30 min. She

then incubated them overnight at 4°C in a primary antibody solution containing 5%
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normal goat serum in PBS-Tx, mouse anti-nc82 (1:10, DSHB) and rabbit anti-GFP

(1:1000, Invitrogen). Brains were then incubated for two hours at room temperature

in a secondary antibody solution containing 5% normal goat serum in PBS-Tx, goat

anti-mouse Alexa Fluor 633 (1:250, Invitrogen) and goat anti-rabbit Alexa Fluor 488

(1:250, Invitrogen). She then mounted the brains in Vectashield and imaged them

on a Leica SP5 II confocal microscope under 20x magnification and scanned at 1�m

section intervals. She adjusted intensity and contrast for single channels for the entire

image using ImageJ 1.46r.

5.4 Results

To study the functional role of octopamine-mediated modulation in the visual system,

I examined the velocity control system of flies in free flight. Previous studies showed

that flies use large field visual motion to regulate their flight speed about a fixed visual

motion set point [53, 106]. Flies maintain a constant groundspeed over a large range

of headwind velocities [40], demonstrating that this vision-based feedback system is

quite robust. Assuming that the LPTC network plays a role in this behavior by

estimating the groundspeed from optic flow, then the flies’ ability to regulate forward

flight speed should be compromised by silencing the octopamine neurons, thereby

reducing or eliminating the gain boost in the network during flight. I tested this

hypothesis by presenting regressive (back-to-front) visual motion to flying flies and

recording their flight trajectories with a 3D tracking system (Fig. 5.2A, see Methods

for additional details). The visual stimulus consisted of a moving contrast grating

(spatial frequency = 4.2 m-1) presented at a temporal frequency that varied between

trials from 0 to 16 Hz (corresponding to 0-3.8 m s-1 linear pattern velocity). To

determine the role of octopamine in this behavior, I silenced putative octopaminergic

neurons by expressing the inwardly-rectifying potassium channel Kir2.1 [77] using the

Tdc2-Gal4 driver line (Fig. 5.2B).

Flies responded to the regressive visual motion by accelerating in the direction of

the stimulus after an initial delay of approximately 100-150 ms. The magnitude of
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the acceleration increased monotonically with the temporal frequency of the motion

stimulus (Fig. 5.3). However, for temporal frequencies of 1 Hz (0.23 m s-1 linear

pattern velocity) and higher, flies with inactivated octopamine neurons showed sig-

nificantly lower accelerations when compared to parental controls, whereas there were

no significant differences in acceleration responses exhibited by the two parental con-

trols at any temporal frequency with the exception of 8 Hz (Fig. 5.3D). Across all

genetic lines, and all temporal frequencies, over 92% of the flies’ velocity was in the

direction of visual motion for the duration of the trials. Baseline flight speeds were

just slightly higher for the flies with inactivated octopamine neurons (median 0.26 m

s-1) compared to parental controls (medians 0.23, 0.21 m s-1) (Fig. 5.3E).

In addition to its role in gain modulation of the visual pathway, octopamine is

known to influence a wide range of physiological effects. In my experiments, female

flies with Kir2.1 expression in their octopamine neurons exhibited a swollen abdomen

that is consistent with tonically low octopamine levels and the inability to oviposit

[107]. To test whether the results could be explained by the additional mass of the

gravid female flies, I repeated the experiment with males of each genetic line (Fig.

5.3B). The results for male flies were very similar, indicating that the results for

females were not due to differences in abdominal mass.

Octopamine is also known to play a role in body tissues such as muscle [114]. Thus,

another possibility is that the inhibition of the octopamine system could negatively

affect the flies’ ability to accelerate via its action on the motor system. The maximum

acceleration I observed in the Tdc2-Gal4/UAS-Kir2.1 flies was 1.5 m s-2, elicited by

a temporal frequency of 16 Hz. This magnitude of acceleration would be sufficient to

match the accelerations generated by control flies at temporal frequencies of 1-2 Hz.

However, even at these low temporal frequencies, the flies with inactivated octopamine

neurons accelerated significantly less than the parental controls. It is thus more

parsimonious that the influence of octopamine acts on groundspeed regulation via the

visually-mediated feedback control pathway, rather than through effects on the motor

system. Although I cannot be sure that the behavioral effect of octopamine I observed

is mediated by the LPTC network, the result is consistent with electrophysiological
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Figure 5.3: Octopamine null flies respond to regressive visual motion during free flight
with lower accelerations than wild type flies. (A) Individual (gray) and mean (colored)
velocity vs. time responses to regressive visual motion with a temporal frequency of
8 Hz for flies with inactivated octopamine neurons (red), and the parental controls
(blue, black). I use consistent colors in subsequent panels. The visual motion started
at t=0. (B) Mean velocity responses to an 8 Hz temporal frequency stimulus for males
and females. (C) Mean velocity responses to regressive motion at different temporal
frequencies (for each genotype of each temporal frequency, 42≤n≤106). For the sake
of graphical clarity, I chose not show the variance in these traces. The raw traces
from panel A are a representative of the data from other temporal frequencies. (D)
Acceleration responses to regressive motion vs. temporal frequency (mean ± std dev).
Accelerations for each trajectory were calculated as their mean acceleration during
the 200-400 ms window after the stimulus was triggered, shown as a gray background
in C. Significant differences in acceleration behavior between the flies with inactivated
octopamine neurons (red) and the parental controls (blue, black) are indicated for each
temporal frequency with red asterisks (p<0.001). Significant differences between the
two parental controls are indicated with a black asterisk (p<0.001). (E) Histogram of
steady state velocities for trajectories 1 ms prior to the onset of the regressive motion
stimulus.
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recordings that show that octopamine modulates the gain of neurons within this

system [79, 96, 97, 142].

5.5 Discussion

To test the models presented in Fig. 5.1, I constructed a control theoretic model of

the flight speed regulator based on, but not identical to, earlier models [53, 55, 125]

(Fig. 5.4A). Although the focus of my analysis is on the visual processing and flight

control, in order to build a functional model it is necessary to incorporate an accurate

prediction of a fly’s passive flight dynamics as well. Following the example of Fuller

(2011), I modeled the passive flight dynamics as a simple unity gain low pass filter

with a time constant of 170 ms, which takes into account the aerodynamic drag on

a fly’s flapping wings as well as inertial effects of its body mass. At high temporal

frequencies, the flies exhibited maximum accelerations of up to 2.9 m s-2, which is

similar to the maximum of 2.5 m s-2 found by [125]. This saturation presumably

represents a biomechanical limit, and I modeled it by incorporating an acceleration

saturation, although I present the results both with and without the saturation. Prior

experiments have demonstrated that flies exhibit an antenna-mediated reflex that in-

creases active damping in response to fast changes in air speed [55]. Although this

component only marginally affects the dynamics in my model, I include it for com-

pleteness. The effect of the antenna is nearly identical to the passive flight dynamics,

resulting in a unity gain low pass filter with a time constant of 170 ms and a 20 ms

delay.

Previous models of the groundspeed regulator have described the visual processing

dynamics of the fly as a pure delay [55, 125]. However, this treatment ignores the

temporal frequency dependence introduced by early motion processing in the optic

lobes, a feature that is thought to emerge from the fundamental properties of motion

detectors [48, 70]. To describe these filter dynamics more completely, I estimated this

function based on published electrophysiological recordings of VS cells within the

LPTC network [142] (Fig. 5.4B). The recordings also provide an accurate estimate
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of the processing delay accrued before the LPTC network (36±12 ms), which is inde-

pendent of temporal frequency (Fig. 5.4C). Prior models of groundspeed regulation

used a pure delay of 100 ms; to account for this total delay I included a 64 ms delay

in the process dynamics. As in previously proposed models of flight speed control

[55], I chose an integral type controller, which is necessary to explain a fly’s ability

to maintain constant flight speed in variable wind conditions [40] (David, 1982).

Although it consists of many components, my dynamic model contains only one

free parameter, a proportional gain term, which I chose using Matlab’s implementa-

tion of Lagarias’ simplex search method [90]. To account for the differences in visual

motion gain between control flies and those with inactivated octopamine neurons,

I chose a proportional gain with values of 5.5 and 2.2, respectively. To match the

steady state behavior of the parental controls, I used a preferred visual set point of

0.22 m s-1 for the H2 model (which is equivalent to the observed median baseline

flight speed), and set point of 1.2 m s-1 for the H1 model (which is equivalent to the

product of the gain, 5.5, and the observed median baseline flight speed of 0.22 m s-1).

Both models are equally accurate at predicting the observed temporal frequency-

dependent acceleration responses, with an octopamine-mediated increase in gain of

150% during flight (Fig. 5.4D). The maximum acceleration of the flies with inacti-

vated octopamine neurons lies well below the biomechanical saturation limit of 2.5

m s-2, and their behavior is well captured by the low pass filter derived directly from

physiology experiments. The behavior of the parental control lines is best explained

by a model that includes a biomechanical saturation. The two models differ substan-

tially, however, in their steady state predictions (Fig. 5.5B). According to the H1

model, a reduction in gain due to the absence of octopamine would result in a 150%

increase in steady state flight speed, whereas the H2 model predicts that there would

be no change in steady state flight speed. In my experiments the flies with inactivated

octopamine neurons showed only a marginal increase in flight speed of 18%, despite

the fact that these flies accelerated more slowly in response to visual motion than

control flies did. Of these two models, my results are best explained by H2.

H2a is mathematically indistinguishable from H2b because the gain is simply
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distributed to multiply the preceding blocks (the sensory signal, and the desired set

point) independently. This does, however, have significant implications for the neural

implementation. Any mismatch in the two gain blocks in H2a would result in a shift

in baseline flight speed. This could explain the slight increase in baseline flight speed

I observed. However, time dependent changes in the activity of octopamine neurons

would result in unpredictable oscillations in flight speed. In H2b, on the other hand,

time dependent changes in octopamine would serve to change the dynamics of the

flies’ response, rather than their baseline activity. Given these potentially detrimental

effects, I suspect that the H2a is less likely than the H2b model, although there is

currently insufficient data to distinguish between them.

The H2b model suggests that the preferred flight speed set point may enter the

visual sensory-motor cascade upstream of the LPTC network, which implies that

their functional role is not restricted to that of a set of matched filters for detecting

self-motion. Although the LPTC network is considered as part of the visual system,

they synapse directly onto descending interneurons that project to neck, leg, and

wing motor centers in the thoracic ganglia [69, 137, 138]. Thus, the major output
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elements of the LPTC network are only 1-2 synapses away from motor neurons, and

it is reasonable to propose that control signals, such as those determining the forward

velocity set point, might enter the sensory-motor path within the LPTC network

rather than downstream from it.

Octopamine neurons, however, project throughout the brain (Fig. 5.2B), result-

ing in a vastly more complex network of modulation than accounted for by either

the H1 or H2 models. In addition to its role in the LPTC network, octopamine has

been implicated in modulation of contrast sensitivity and motion adaptation in visual

processing presynaptic to the LPTC network, presumably within the elementary mo-

tion detection circuits [42]. Since contrast has been shown to influence baseline flight

speed [140], octopamine could have an indirect influence on a flies’ preferred visual

set point, which could also explain the slight increase in baseline flight speed that I

observed.
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To place the H2b model within in the context of the flies’ known neural architec-

ture, I constructed a simple putative neural circuit (Fig. 5.6). The key conclusion

from the experimental and modeling results is that the octopamine gain is likely

applied after the flies’ estimate of translational motion is compared to its preferred

visual set point. I hypothesize that this comparison, and the subsequent octopaminer-

gic gain modulation, is mediated by a neuron within the lobula plate, which I call the

Forward Velocity Controller (FVC). Previous studies suggest that the flies’ preferred

visual set point may be a function of visual cues such as total luminance, contrast,

and distance to objects, as well as olfactory cues. Thus, future electrophysiological

studies should investigate the influence of such sensory cues on the response properties

of visual interneurons within the LPTC network.
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Chapter 6

Conclusion

In this thesis, I explore the question of how the complex behavior of foraging emerges

from the numerically simple brain of the fruit fly, Drosophila melanogaster. In Chap-

ters 2-4, I described in detail six sensory-motor modules in the fruit fly that are

sufficient to produce robust foraging behavior: (1) surging upwind upon encountering

an attractive odor; (2) casting crosswind upon plume loss; (3) exploring small visual

features after encountering an odor; (4) maintaining constant optic flow during land-

ing maneuvers; (5) turning away from obstacles if the retinal expanse (or possibly the

optic flow) reaches a threshold; and (6) leg extension triggered by a threshold retinal

size (Chapter 3), or an internal control signal (Chapter 4). Finally, in Chapter 5,

I demonstrated the behavioral effect that the neuromodulator Octopamine has on a

fly’s flight control system. By extension, it is likely that neuromodulators play an

important role in tuning the interaction between many sensory-motor modules. For

example, neuromodulators may be responsible for governing the decision of whether

to land or not, based on olfactory stimuli. Given the apparent complexity of plume

tracking behavior that arises from such a small set of behaviors, the complexity that

could arise from hundreds to thousands, or perhaps millions, of such modules, espe-

cially with added layers of neuromodulation, is beyond our imagination - perhaps, it

is even what makes our imagination possible.

Many more sensory-motor modules that guide the behavior of flies have been de-

scribed previously (for example [162, 28]), and understanding how they all interact

with one another is a critical next step. In a recent article, Dickinson reviews these
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modules, and describes how a stigmergic1 iteration of these behaviors could give rise

to long distance dispersal [44]. Many of the sensory-motor modules appear to be in-

dependent, as evidenced by inconsistent sequential ordering. For example, in Chapter

3, I showed that flies sometimes begin decelerating prior to turning towards an ob-

ject, and sometimes vice versa. Furthermore, sometimes flies land, without having

followed an odor plume [150], and they show attraction to visual features without

experiencing odors [67]. The sensory-motor modules of the fly may likely be wired in

parallel within the brain (while sharing certain components, such as basic visual pro-

cessing), which would reduce sensory-motor delays and energy costs in information

transmission, enhance evolvability, and reduce developmental complexity. Thanks to

this apparent modularity, it has been possible to isolate these behaviors and study

each one independently, which has indeed been the focus of neuroscientists for the

past century. We have now come to a point, however, where we are flooded with data

on individual behaviors, often in highly reduced preparations, with little understand-

ing of the greater context. In order to understand how complex behaviors emerge, it

is imperative that we discover how each of these sensory-motor modules interact with

one another, and the effect that neuromodulators have on these interactions. Many of

these interactions, such as those described in this thesis, do not become apparent until

the impact they have on a freely moving animals’ sensory system is considered. For

example, in Chapter 4, the leg extension trigger hypothesis I proposed only emerged

as a possibility because of the trajectory that results from a simple optic flow regu-

lator. As another example, the importance of casting, surging, and visual attraction

during odor plume tracking do not become clear until the moving fly is modeled in a

realistic environment, and the impact of 200-600 ms delays becomes apparent.

Therefore, in order to understand how complex behaviors emerge from indepen-

dent sensory-motor modules, I believe that neuroscientists, roboticists, and computer

scientists, must come together to build an extensible model that incorporates each

published sensory-motor module into a comprehensive embodied system. Such a
1Stigmergy: the emergence of complex behavioral cascades through the iteration of independent

sensory-motor reflexes. See the Introduction for more details.
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model would have several clear and immediate uses: it would (1) help organize our

growing knowledge into a comprehensive, and continuously updated, summary; (2)

describe the emergent properties of independent sensory-motor modules; (3) elucidate

gaps in our knowledge by forcing scientists to create a working model, and thereby

producing testable hypotheses. With a carefully constructed framework, such a mod-

eling environment would serve the neuroscientist community as a crowd sourced, self-

validating, and continuously updating neuroethological review, while automatically

generating well defined and testable hypotheses to help direct research towards gaps

in our knowledge. Simultaneously, the approach would give roboticists a chance to

test this bio-plausable brain structure on physical systems, revealing its potential ad-

vantages and disadvantages compared to modern control approaches, and producing

testable hypotheses for biologists to consider.

Fortunately, thanks to the apparent independence and presumably parallel struc-

ture of these modules, this task is not as daunting as it may seem. By building a

computational framework consisting of carefully considered protocols it will be pos-

sible for independent researchers to write simulations of the sensory-motor modules

they observe in such a way that they are all compatible with one another. The ba-

sis for such frameworks already exists, for example, the Robot Operating System

(ROS) makes it possible to write simple, parallel, and asynchronous modules that

can communicate with one another indirectly through a custom messaging protocol

- all on a single desktop computer. Through software version control, it will be pos-

sible to keep track of an indefinite number of hypotheses for how the modules are

constructed. For example, the third sensory-motor module I describe in a fly’s for-

aging behavior–odor-induced object saliency–could be implemented in one of several

ways. Perhaps the visual signal itself is modulated, changing the perceptual sensory

experience of the fly at the level of the lobula plate, or even earlier (similar to the

effect that Octopamine has on wide field visual motion, as described in Chapter 5).

Or perhaps there exists a circuit that determines visual features, and the operation

of this circuit may be modulated to pick out features more readily. Or downstream

circuits that trigger attending to visual features is modulated. These are examples of
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testable hypotheses that could give rise to the behavior we observe, and each of them

could be programmed as alternatives within the model’s framework such that future

theorists can test the implications of these models, and experimentalists can devise

experiments to test between them given an understanding of the implications the

different approaches would have on the structure and function of the overall network.

This type of simulation would not, initially, be directed at the level of individual

neurons. Instead, it represents an abstraction that is far simpler to explore, is im-

mediately within our grasp, and has immediate practical applications to engineering

and neuroethology.

The principle of using independent and layered sensory motor modules to design

control architectures for robotic systems has not gone unnoticed by engineers. The

possibilities of such an architecture were first elegantly described by Valentino Brait-

enberg in a series of thought experiments in his book Vehicles [19]. Turning these

thought experiments into reality, however, has proven to be a challenge. Rodney

Brooks took on this challenge twenty years ago, when he proposed his “subsumption

architecture” for designing artificially intelligent robots [22, 23, 24]. Though initially

promising, his approach has not been as successful as “traditional” control approaches

based on central processing and full state estimation. This is largely due to the serial

architecture of computer chips and significant advances in processing speeds. Modern

computer chips are sufficiently fast and efficient to use central processing for robotic

applications such as the self driving cars of the DARPA Grand Challenge, and Boston

Dynamics’ famous robots such as Big Dog. Furthermore, designing control architec-

tures from independent behavioral modules is a non-intuitive task, generally requiring

countless iterations of trial and error (sometimes aided through evolutionary design

approaches). This approach is both time consuming, and results in poorly defined

behavioral responses that require exhaustive testing to fully characterize. As a result,

only relatively simple modern robots, such as the Roomba Vacuum Cleaner, are gov-

erned by a collection of independent reflexes, rather than a central state estimation

based controller. By building a comprehensive model of the behavioral modules that

have been discovered in flies (and other animals), and analyzing the interactions be-
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tween modules, we will build a library of useful reflexes that can be used in robotic

systems, potentially making Brooks’ dream a reality.

The most intriguing application of the stigmergic approach is that by follow-

ing simple control laws, it is possible to indirectly simplify challenging estimation

problems, a principle which I introduced in the introduction as idiokinemetry. For

example, in Chapter 4, I describe a putative mechanism for distance estimation which

reduces the problem to a single variable by following a trajectory of constant optic

flow. A second example was given in Chapter 2, where I described how flies solve

the problem of determining the crosswind direction without needing to measure the

magnitude or direction of the wind. First, flies find the upwind direction by mini-

mizing visual slip. Then, to fly crosswind, a fly can turn by a known amount (φ),

and maintain a new optic flow axis equal to (90° − φ). So long as the wind direc-

tion does not shift, the fly will maintain a crosswind trajectory. A third example

is implied in Chapter 3, where I show that the majority of flies’ changes in heading

are accomplished through ballistic saccadic maneuvers. This vastly simplifies visual

processing by removing the rotational component of motion. The key point is that

rather than determining the control necessary to construct an explicit observer to

estimate unobservable states, the controls are chosen to simplify the problem such

that these observations are implicitly determined. This is a powerful principle, which

has been subject to relatively little research in both engineering and biology. It seems

likely, however, that this principle is pervasive throughout biological systems, and

may prove to be a key component in building robust and efficient engineered systems

with limited computational resources.
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