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ii Résumé en Français

La classification de séries temporelles a suscité beaucoup d’intérêt ces
dernières années en raison de nombreuses applications telles que la sur-
veillance des électrocardiogrammes, la reconnaissance vocale ou la modé-
lisation environnementale. Dans cette thèse, notre but est de proposer de
nouveaux algorithmes pour la classification de séries temporelles qui sont
adaptés aux applications de télédétection mais également qui obtiennent de
très bonne performance par rapport aux algorithmes de classification de sé-
ries temporelles standards. La classification des séries temporelles présente
en effet un intérêt particulier pour la télédétection : celle-ci utilise des sé-
ries temporelles d’images satellitaires afin de générer automatiquement des
cartes d’occupation des sols et de couverture terrestre [Clark et al., 2010;
Hüttich et al., 2009; Wardlow and Egbert, 2008].

Ce résumé introduit les différentes problématiques abordées dans cette
thèse. Dans un premier temps, nous développerons un court argumentaire
afin de montrer l’intérêt de la classification de séries temporelles ainsi que
des données issues de la télédétection. Puis nous développerons les travaux
réalisés dans le cadre du doctorat. Ces travaux sont divisés en trois parties,
chaque partie correspondant à un futur chapitre.

La classification de séries temporelles

L’étiquetage manuel de données est un processus long et coûteux, or le
volume de données ne cesse de grandir. Afin de pouvoir utiliser ces données
il est souvent nécessaire de les classer, cependant le volume est tel qu’il est
impossible de le faire manuellement. L’utilisation d’algorithmes d’apprentis-
sage est un moyen de résoudre ce problème : des données peuvent servir
d’entrées à un algorithme afin d’être classées. Ces données peuvent être :
des documents (du texte), des images, des nuages de points ou encore des
séries temporelles.

Nous nous intéressons ici à la classification de données, pour laquelle
on définit l’apprentissage comme l’étape de construction du modèle, et la
prédiction comme l’étape de classification de nouvelles données. Dans le
cadre de l’apprentissage supervisé, l’apprentissage sur des données d’entraî-
nement (dont on connaît la classe d’appartenance) permet d’apprendre un
modèle qui sera ensuite utilisé pour classer de nouvelles données. Le but
des algorithmes de classification est d’apprendre un modèle qui minimisera
le nombre d’erreur sur ces nouvelles données, ce modèle doit donc être ca-
pable de généraliser sur les données d’apprentissage. De plus, pour être ex-
ploitables, les classifieurs doivent être rapides dans l’étape de construction
du modèle et/ou dans la prédiction d’une classe par le modèle. Il peut être
intéressant de tenir compte du temps requis pour classer une nouvelle don-
née. En effet certains algorithmes ont besoin de plus de ressources pour s’en-
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Résumé en Français iii

traîner mais effectueront une classification rapide voire instantanée, c’est le
cas pour les réseaux de neurones. Dans le cadre d’application où l’on s’en-
traîne une seule fois et où l’on classifie toujours avec le même modèle, choi-
sir un algorithme qui classifie très rapidement peut être un bon choix, même
si son temps d’apprentissage est plus long que d’autres algorithmes. Finale-
ment, comme les données proviennent de nombreux domaines, il est peu
probable qu’un algorithme soit le meilleur sur l’ensemble des jeux de don-
nées existants et à venir [Wolpert and Macready, 1997]. D’où la nécessité
de choisir un algorithme adapté aux données utilisées.

La classification de séries temporelles On se place maintenant dans le
cadre où nos données sont des séries temporelles pouvant être vues comme
une suite de valeurs réelles et ordonnées. Deux séries temporelles enregis-
trées par un même capteur peuvent être différentes soit à cause d’un déca-
lage temporel (en cas d’actions asynchrones) soit à cause d’une dilatation si
les deux actions n’ont pas été réalisées à la même vitesse. Parmi les carac-
téristiques que doivent avoir les classifieurs de séries temporelles, on peut
noter : la robutesse aux distorsions temporelles (telles que les décalages
dans le temps et la dilatation) mais également des caractéristiques liées à la
classification de données en général telles que la robutesse au bruit et aux
valeurs aberrantes.

La classification de données issues de la télédétection La classifica-
tion automatique de la couverture terrestre à partir de données satellitaires
est un sujet important qui permet de produire des cartes représentant les
différents types de sols (tels que eau, forêts ou villes). Cependant les chan-
gements rapides dans l’aménagement du paysage et l’utilisation des terres
rendent nécessaire une mise-à-jour régulière des cartes, qu’il est impossible
de faire de manière manuelle à l’échelle de la planète. On a donc besoin
d’algorithmes de classification afin de pouvoir générer de manière régulière
et automatique des cartes de couverture terrestre.

Le but de cette thèse est d’apporter de nouvelles approches pour la classi-
fication de séries temporelles, nous allons donc nous intéresser à un cas d’ap-
plication précis : les séries temporelles d’images satellitaires. Chaque série
temporelle représente l’évolution des valeurs d’un indice (par exemple me-
surant le taux de végétation) au cours du temps pour une zone précise. La
longueur de la série dépend de la durée d’acquisition et du temps de revi-
site du satellite, par exemple si l’on considère un satellite dont la résolution
temporelle est de huit jours et une période d’acquisition d’un an, on aura
une série temporelle environ de longueur 46. Grâce aux séries temporelles
d’images satellitaires, on peut observer les profils des différents types de sols
et notamment les profils de végétaux, qui diffèrent selon le type de planta-
tion.
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iv Résumé en Français

Il est donc nécessaire pour les communautées scientifiques de télédétec-
tion et d’apprentissage automatique de travailler ensemble à l’élaboration de
méthodes adaptées aux données satellitaires. Dans cette thèse, nous avons
choisi de nous concentrer sur des méthodes d’apprentissage permettant de
prendre en compte les particularités des séries temporelles, avec des mé-
thodes robustes aux décalages temporels, prenant en compte l’évolution des
valeurs au cours du temps et qui permettent une interprétation des résultats
obtenus.

Travaux sur les algorithmes de classification de sé-
ries temporelles

Dans le but d’améliorer les performances des algorithmes de classifica-
tion de séries temporelles, il a été montré qu’un moyen simple était de trans-
former les séries en se basant sur des éléments discriminatoires tels que des
caractéristiques locales [Lines et al., 2012]. C’est pourquoi, nous proposons
deux algorithmes de classification de séries temporelles basées sur l’utilisa-
tion de caractéristiques locales. Ces caractéristiques correspondent aux dif-
férentes variations d’une série temporelle telles que les pics ou les vallées.

La méthode Dense Bag-of-Temporal-SIFT-Words : D-BoTSW

Dans notre première approche, correspondant au chapitre 2, nous repré-
sentons des séries temporelles sous la forme d’un ensemble de caractéris-
tiques locales. Pour cela, on transforme les séries en histogramme comptant
la fréquence d’apparition de ces caractéristiques locales, puis on donne cette
nouvelle représentation à un classifieur afin de prédire sa classe d’apparte-
nance.

De manière plus détaillée, notre algorithme se déroule de la façon sui-
vante. Nous utilisons des descripteurs locaux basés sur la méthode SIFT,
adaptés pour les données en une dimension et extraits à intervalles régu-
liers (on parlera d’extraction dense). Ces descripteurs sont basés sur le voi-
sinage du point considéré et prennent en compte les différentes tendances
de la série autour de ce point. Ils permettent donc d’identifier : les pics,
les vallées, les tendances à la hausse, c’est-à-dire les différentes variations
de chaque série. Afin de mieux représenter les séries temporelles, nous uti-
lisons ensuite la représentation par sac de mots. L’idée est de générer un
dictionnaire de mots, où chaque mot rassemble un ensemble de descrip-
teurs qui sont proches : on aura donc des mots différents pour les pics et
pour les vallées. Chaque série temporelle est donc transformée en un his-
togramme comptant la fréquence d’apparition de chaque mot. La taille de
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l’histogramme et la taille du dictionnaire seront donc identiques. Les his-
togrammes servent d’entrées à un SVM linéaire pour l’étape de prédiction.
Un fois le modèle appris (c’est-à-dire le dictionnaire et les poids du SVM),
on peut prédire les classes de nouvelles séries temporelles en utilisant le
dictionnaire afin de générer l’histogramme correspondant puis le classifieur
appris.

L’algorithme D-BoTSW n’est pas adapté pour tous les problèmes de clas-
sification de séries temporelles. En effet, la représentation par sac de mots
ignore l’ordre d’apparition des caractéristiques, D-BoTSW n’est donc proba-
blement pas l’algorithme le plus approprié pour la classification de séries
temporelles où cela importe. Au contraire, les décalages temporels dans les
séries temporelles sont facilement gérés par D-BoTSW, de plus l’algorithme
est robuste au bruit.

Le temps d’apprentissage dépend principalement de l’étape de généra-
tion du dictionnaire et d’apprentissage des paramètres du SVM. En effet, les
descripteurs SIFT reposent sur des opérations simples et peu coûteuses ; et
l’étape de transformation d’une série en histogramme est très rapide une
fois le modèle généré. L’algorithme D-BoTSW peut donc être une bonne op-
tion pour les applications où l’on souhaite classer de nouvelles données en
utilisant toujours le même modèle.

Des expériences approfondies, menées sur 85 jeux de données, montrent
que notre méthode Dense Bag-of-Temporal-SIFT-Words (D-BoTSW) surpasse
de façon significative quasiment tous les classificateurs de référence compa-
rés. En effet, sur dix algorithmes de classification considérés comme réfé-
rences dans le domaine, des tests statistiques ont montré que D-BoTSW est
significativement meilleur que six d’entre eux, équivalent à trois autres et
uniquement battu par une seule méthode.

L’algorithme Adversarially-Built Shapelets : ABS

La deuxième approche, correspondant au chapitre 3, est basée sur l’ap-
prentissage de sous-séries caractéristiques (shapelets) permettant de diffé-
rencier les différentes classes de séries temporelles. Ye and Keogh [2009]
ont proposé un premier algorithme basé sur les shapelets. L’un des freins ma-
jeurs à l’utilisation de cet algorithme est le temps d’apprentissage, en effet
la recherche de shapelets est basée sur un algorithme force brute très gour-
mand en temps. Plusieurs algorithmes ont été proposés afin de réduire le
temps de recherche des shapelets [Rakthanmanon and Keogh, 2013; Ye and
Keogh, 2011]. Contrairement aux autres algorithmes basés sur ce principe,
l’algorithme Learning Time Series Shapelets (LTS) apprend ces sous-séries au
lieu de les rechercher. La méthode LTS est une des deux méthodes basées
sur les shapelets obtenant les meilleurs performances, il est donc intéressant
de proposer un moyen d’améliorer cette méthode.
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vi Résumé en Français

Afin de comprendre la construction de notre méthode, il est nécessaire
de connaître les étapes clés de l’algorithme LTS [Grabocka et al., 2014].
L’algorithme LTS est une méthode basée sur des caractéristiques locales qui
cherche à apprendre des sous-séries discriminantes (c’est-à-dire les shape-
lets) à partir d’un ensemble de séries temporelles. La distance d’une série
avec chaque shapelet est calculée, puis un classifieur linéaire est utilisé afin
de prédire la classe d’appartenance de cette série. Il est donc nécessaire d’ap-
prendre à la fois les shapelets mais également les paramètres du classifieur.
Les auteurs de la méthode LTS proposent de le faire de manière itérative en
actualisant en même temps les shapelets et les paramètres du classifieur.

Pour contruire l’algorithme ABS, nous montrons dans un premier temps
qu’il est possible d’écrire l’algorithme LTS en tant que cas particulier d’un ré-
seau neuronal convolutif (CNN). Pour cela, nous présentons les différentes
couches d’un réseau de neurones convolutifs (convolution, pooling et fully
connected) afin de faire le lien entre les deux approches. Il a été prouvé [Sze-
gedy et al., 2014] que les CNNs sont vulnérables aux exemples adversaires.
Les exemples adversaires sont des données générées dans le but de tromper
un CNN : pour cela, on modifie de manière imperceptible mais détermi-
niste une image bien classée par un CNN. Nous démontrons que comme les
CNNs, l’algorithme LTS est suceptible d’être vulnérable aux exemples ad-
versaires (des séries temporelles adversaires dans notre cas). Il a été établi
que l’introduction d’exemples adversaires dans le processus d’apprentissage
permettait de générer des réseaux plus robustes tout en améliorant légère-
ment les performances [Goodfellow et al., 2015]. Nous proposons donc une
méthode dont l’apprentissage est basé à la fois sur des séries temporelles
non-modifiées et sur des séries adversaires. À chaque itération, nous gé-
nérons de nouvelles séries temporelles adversaires. Celles-ci permettent de
générer des shapelets plus robustes et d’améliorer les performances globales
de l’algorithme.

L’algorithme ABS est particulièrement intéressant pour les problèmes de
séries temporelles où une ou plusieurs sous-séries permettent de bien dif-
férencier les différentes classes. Les algorithmes LTS et ABS étant des cas
particuliers de réseaux de neurones convolutifs, il est donc possible d’implé-
menter des algorithmes ayant un temps d’apprentissage faible. Concernant
le temps de prédiction, il est comme pour tous les réseaux de neurones très
faible.

Des expériences montrent une amélioration significative de la perfor-
mance entre l’algorithme LTS et notre proposition Adversarially-Built Sha-
pelets (ABS). Comparés aux autres méthodes de classification de séries tem-
porelles, ABS obtient de bonnes performances puisque sur onze algorithmes
de classification (les dix précédentes ainsi que D-BoTSW), des tests statis-
tiques ont montré que ABS est significativement meilleur que six d’entre
eux, équivalent à deux autres et battu par trois (dont D-BoTSW).
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Résumé en Français vii

Applications sur des jeux de données de séries temporelles
issues de la télédétection

Le dernier chapitre se concentre sur les applications en télédétection.
En effet, nous avons précédemment décrit l’intérêt de la classification auto-
matique de séries temporelles pour les applications en télédétection. Nous
avons donc choisi d’expérimenter sur deux jeux de données disponibles en
ligne : TiSeLac et Brazilian Amazon.

TiSeLac Ce jeu de données a été proposé dans le cadre d’un challenge
ayant pour but de rapprocher les communautés d’apprentissage automa-
tique et de télédétection. Pour cela, des données, enregistrées par le satellite
Landsat au niveau de l’île de la Réunion, ont été préparées afin de former
des séries temporelles multi-variées (10 indices différents) associées à leur
coordonnées. Nous avons réduit ce jeu de données à un seul indice (NDVI)
afin de pouvoir l’exploiter avec des algorithmes travaillant sur des séries
temporelles univariées en entrée. Le NDVI est un indice de végétation dont
la valeur varie en fonction du type de sol, par exemple une végétation dense
aura une valeur élevée de NDVI alors qu’un sol enneigé aura une valeur très
basse.

Le jeu de données TiSeLaC contient à la fois des classes de végétation
(telles que des forêts) ainsi que des classes non végétales (telles que des
zones urbaines). De plus, les séries temporelles ont une grande variabilité
intra-classe aussi bien temporellement parlant qu’en amplitude. La variabi-
lité en amplitude est due à la topologie particulière de l’île de la Réunion aux
reliefs très escarpés ainsi qu’aux différents climats présents sur l’île. La va-
riabilité temporelle des séries issues de la télédétection est un phénomène
répandu principalement dû à des dates de semis différentes et aux condi-
tions climatiques.

Brazilian Amazon Ce jeu de données contient des séries temporelles pro-
venant du satellite MODIS et extraites dans l’état du Mato Grosso au Brésil.
C’est un exemple applicatif particulièrement intéressant puisque les don-
nées représentent différentes parcelles agriculturales issues des régions tro-
picales. Le jeu de donnés Brazilian Amazon est composé uniquement de
classes végétales. L’indice végétal utilisé pour la représentation des séries
temporelles est l’EVI, qui comparé au NDVI a l’avantage de ne pas saturer
en présence de végétation dense.

Le jeu de données regroupe 5 classes différentes : (a) soja, (b) coton,
(c) soja + millet, (d) soja + maïs, et (e) soja + coton. On peut différencier
les cultures dites uniques (c’est-à-dire une culture par an), des cultures dites
intensives ou doubles cultures (c’est-à-dire deux cultures / récoltes par an).
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Chacun des jeux de données a été évalué sur plusieurs algorithmes de
classification de séries temporelles. Bien que les méthodes basées sur des
caractéristiques, telles que BOSS et D-BoTSW, ont montré des résultats pro-
metteurs, ce sont les méthodes basées sur les shapelets (c’est-à-dire ABS et
LTS) qui ont montré les meilleurs performances sur les deux jeux de don-
nées. Avec l’arrivée de nouveaux satellites ayant des résolutions spatiales et
temporelles plus précises, il est très probable que la performance de ces al-
gorithmes s’améliore dans le futur. En effet, une résolution temporelle plus
fine permettra une représentation plus précise des differents cycles phéno-
logiques, donc probablement de générer des caractéristiques plus discrimi-
nantes. Une résolution spatiale plus fine va permettre quant-à-elle de tra-
vailler avec des séries temporelles plus pures (c’est-à-dire qu’il y aura moins
de mélange de classes dans chaque pixel).

Des modèles simplifiés des deux méthodes proposées dans ce manuscript
(D-BoTSW et ABS) ont servi à illustrer les résultats obtenus sur Brazilian
Amazon. Pour D-BoTSW, nous avons généré un dictionnaire réduit afin de
représenter les différentes caractéristiques ainsi que les histogrammes as-
sociés. Pour ABS, nous avons généré un ensemble de shapelets ainsi que
les poids du modèle linéaire. A partir des modèles, nous avons pu vérifier
différentes hypothèses émises sur les données.
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INTRODUCTION

Motivation

This thesis aims at bringing new methodologies to classify time series
data. We consider that a time series corresponds to an ordered sequence of
real-valued datapoints representing the evolution of a quantity over time.
They arise in many domains and have a wide range of applications. Classi-
fication aims at identifying amongst a list of categories to which category a
new data belongs. Time series classification is of particular interest for the
remote sensing community that uses satellite images time series in order to
generate land use and land cover maps. Satellite images time series data
have been widely used in order to classify vegetation [Clark et al., 2010;
Hüttich et al., 2009; Wardlow and Egbert, 2008]. Indeed, time series data
are able to represent the phenological cycle that differs according to the
land cover type.

In the following, we present time series classification algorithms based
on local features, such as peask or valleys, since results interpretation and
analysis is of paramount interest for remote sensing applications. Moreover,
feature-based approaches often lead to high performance. Our motivation
is thus to bring machine learning and remote sensing communities closer by
providing algorithms that are adapted for remote sensing applications and
that also achieve high accuracy w.r.t. time series classification baselines.

A Need for Automatic Classification.

In the last decades, the amount of data generated by sensors, such as
satellites or ECGs, is constantly and exponentially growing. In order to ex-
ploit this data, it needs to be categorized and labeled, which quickly became
impossible to do manually. Hence, scalable automatic processes classifying
data had to be developed.

The creation of classification algorithms is a way to solve this problem of
new and numerous data to categorize. The first step is the training phase,
during which the algorithm builds a model from already labeled data. Dur-
ing the prediction step, this model is applied to new, unlabeled data. Note
that many data types can be used as inputs of such algorithms: documents
(e.g. text), images, videos, point clouds or time series. The data may come
from many different fields, such as biology, economy, or geology, and varies
greatly in size and forms.

1
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2 Introduction

Classification algorithms aim at minimizing the prediction error on new
data, to do so it is necessary to build models that generalize the data. More-
over, in order to be exploitable, classifiers need to be fast (learning and /
or prediction steps) as well as to be robust to noise and outliers. Concern-
ing the prediction step, the time required to classify a new data has to be
taken into acocount. Indeed, some algorithms need more resources to train
the model but will perform a fast or instantaneous classification, as it is the
case for neural networks. If we plan to learn the model once and perform
multiple classification using the same model, it can be interesting to choose
an algorithm that predicts fastly, even if its learning time requires more re-
sources. In order to take into account the intra-class variability (i.e. the
differences between the time series of the same class), the classifiers must
also be able to generalize well the information.

Also, the classification is more or less complex depending on the nature
of the data. It is thus impossible to create an algorithm that obtains the best
performance on all available data, as stated by the no free lunch theorem
[Wolpert and Macready, 1997]. However, the theorem also states that the
only way to find an algorithm more efficient than another is to adapt the
algorithm to the problem.

Time Series Classification

Amongst all classification problems, we are interested in time series clas-
sification, for which dedicated algorithms range from the simple k-nearest-
neighbor algorithm associated with Euclidean distance to ensemble methods
dedicated to time series.

The temporal ordering inside time series makes them particularly inter-
esting to study. The correlation between close points will be stronger than
the one between distant points. Finally, temporal distortions such as time
shifts and dilations can be present in time series, it is thus necessary to pro-
pose time series classification algorithms robust to these distortions.

Remote Sensing Applications.

For the last decades, Earth observation has been used to better under-
stand our planet and to follow its evolution. The characterization of con-
tinental surface transformations such as deforestation, evolution of agricul-
tural practices or urbanization, is essential to evaluate the impact of global
warming, public policies, or conflicts. Remote sensing satellites acquire im-
ages over the entire surface of Earth, offering the possibility to produce an
up-to-date land use / land cover map. Land use mapping is a crucial tool for
remote sensing applications, such as global changes tracking or large-scale
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Introduction 3

crop monitoring.
Remote sensing data has been widely used in different forms such as

images and time series. It has also been used to solve a large variety of
problems such as monitoring agricultural parcels, mapping or environmen-
tal modeling. Automatic classification of remote sensing data is of high
interest as the labeling step is limited (a) by the high cost, both in human
resources and in time through field campaigns or labeling by experts, and
(b) by the huge amount of data to label. Moreover, fast changes in land-
scape make necessary the frequent update of maps, which can not be done
manually at a global scale.

The purpose of this thesis is to provide new approaches for the classifi-
cation of time series, and we focus our applications on satellite images time
series. Each remote sensing time series represents the evolution of an index
value over time for a specific area. The length of the series depends on the
acquisition period and the revisit time of the satellite: if we consider a satel-
lite whose temporal resolution is of eight days and a one year acquisition
period, we will have a time series of approximately 46 datapoints, which
corresponds to the 46 images acquired by the satellite. Thanks to satellite
images time series, it is possible to observe the profiles of different soil types
and in particular vegetation profiles, which differ according to the flora.

It is therefore necessary for the scientific communities of remote sens-
ing and machine learning to work together to develop methods adapted to
satellite data. This thesis focuses on interpretable learning methods for time
series, robust to time shifts and taking into account the different features
(e.g. trends, peaks) of this type of data.

Contributions

In order to improve the performance of time series classification algo-
rithms, transforming time series into a new representation based on dis-
criminative features has shown to be effective [Lines and Bagnall, 2014;
Lines et al., 2012]. Since characteristics such as peaks and valleys are in-
teresting properties of time series, we aim to transform time series into a
new representation, based on these characteristics, that can be used with
general learning algorithms. Our approaches thus build on feature-based
representations of time series.

Dense Bag-of-Temporal-SIFT-Words

Our first contribution is the Dense Bag-of-Temporal-SIFT-Words algo-
rithm (D-BoTSW). It is based on two well-known and powerful methods:
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4 Introduction

SIFT features and Bag-of-Words representation. Basically, the algorithm
combines the extraction of descriptive features at regular time steps in the
time series with a histogram representation. The raw time series are trans-
formed into a new representation that gathers the different descriptive char-
acteristics into similarity groups, the new representation is then fed into a
classifier.

The D-BoTSW algorithm can be divided into the following steps. First,
we extract dense keypoints inside time series, i.e. we extracted a list of points
at regular time step that serve as bases for our future descriptors. Then, we
describe these keypoints using 1D-SIFT features, these feature use neigh-
boring points in order to describe the neighborhood of each keypoints and
to detect characteristics such as peaks or valleys inside time series. Once we
have our descriptors, we generate a codebook, i.e. we gather similar features
together in order to simplify the representation. To do so, we transform
each time series into a new representation corresponding to a normalized
histogram of words occurences, which allow us to easily compare two time
series. Finally, we perform the classification on the new representation.

Since the Bag-of-Words representation ignores temporal order, temporal
shifts in time series are easily handled by D-BoTSW. However, when order-
ing matters, D-BoTSW is probably not the most suitable algorithm. The
proposed algorithm is robust to both noise and temporal shifts. Moreover,
it exhibits high performance compared to state-of-the-art time series classi-
fication algorithms.

A detailed explanation of this algorithm as well as experimentations on
it can be found in Chapter 2.

Adversarially-Built Shapelets

Our second contribution is an improved version of the Learning Time
series Shapelets (LTS) algorithm. Shapelets are discriminative sub-series
that are used to predict the class label. Many algorithms were proposed for
shapelets discovery. However the LTS algorithm was the first to propose to
learn them instead of searching them.

In order to understand the construction of our method, it is necessary to
know a few key steps of the LTS algorithm [Grabocka et al., 2014]. The LTS
algorithm seeks to learn a set of discriminative sub-series. To do so, the first
step is to transform the time series into a set of features, where a feature
corresponds to the distance between a series and a shapelet. The next step
is to use these features (i.e. distances) in a linear classifier to predict the
class label of this series. The authors of the LTS method propose to do it
iteratively by updating at the same time the shapelets and the weights of
the classifier using training series.

To build the ABS algorithm, the first part of our work was to demon-
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strate that the LTS algorithm could be seen as an instance of a Convolu-
tional Neural Network (CNN). Then, considering that CNNs can be fooled
by adversarial examples (i.e. inputs generated to fool a classifier, close to
the original), we prove that LTS can also be misled by adversarial exam-
ples. Finally, we propose a simple way to improve the LTS algorithm using
adversarial training. Adversarial training consists in introducing adversarial
examples during the training process in order to regularize the model and it
has been shown that it can slightly improve the performance of a network.

This work is described is Chapter 3, with experimental proofs that ABS
performs better than LTS.

Remote Sensing Applications

Many remote sensing applications use time series data such as land cover
mapping or agricultural monitoring. Moreover the amount of remotely
sensed data is constantly growing because of the new and upcoming satel-
lite platforms available. It is thus important to bring machine learning and
remote sensing communities closer. We present two remote sensing time
series datasets we experiment on using time series baselines.

The first dataset, named TiSeLaC, was proposed as part of a challenge
aiming to bring together the communities of machine learning and remote
sensing. The time series were recorded by the Landsat satellite above Re-
union Island and represent an interesting challenge to differentiate a large
number and variety of classes.

The second dataset, called Brazilian-Amazon, contains EVI time series
from the MODIS satellite extracted in the state of Mato Grosso in Brazil. This
is a particularly interesting application example since the data represent
different agricultural parcels and come from tropical regions. On the one
hand, one can differentiate the so-called unique cultures (i.e. one crop per
year) and double cultures (i.e. two crops / crops per year). On the other
hand, the dataset groups 5 different classes: 2 unique culture classes and 3
double culture classes.

Simplified models of our two proposed algorithms (D-BoTSW and ABS)
were used in order to illustrate the results obtained on the Brazilian Amazon
dataset. For D-BoTSW, we have generated a reduced dictionary that repre-
sents the different characteristics as well as per-class histograms. For ABS,
we generated a set of shapelets as well as the weights of the linear model.
Using the information extracted from the models, we were able to verify
different hypotheses on the data.

The characteristics of this data are developed both in term of machine
learning (noise, high intra class variability) and remote sensing (vegetation
index, climate) points of view. Results interpretation and analysis is pro-
vided for both of our algorithms.
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Organisation

The purpose of this thesis is to bring new solutions for the classification
of time series data, with some applications in remote sensing. In order to
fulfill these goals, this manuscript will be organized in four chapters.

The first chapter gives an overview of time series classification algo-
rithms in the literature, from basic concepts to advanced algorithms. These
algorithms are gathered according to their specificities then compared to
other baselines.

The second chapter introduces a first time series classifier based on fea-
ture extraction. This algorithm named Dense Bag-of-Temporal-SIFT-Words
relies on two well-known and powerful methods: SIFT features (adapted to
our data) and the Bag-of-Words representation.

The third chapter presents a second time series algorithm, which is
based on an already existing classifier: Learning Time series Shapelets (LTS),
which is also a feature-based algorithm. Our proposed method is called
Adversarially-Built Shapelets and rely on the introduction of adversarial time
series.

Finally, the fourth and last chapter focus on remote sensing applications
with different datasets. The first one gathers agricultural time series from
Brazil and the second one a variety of time series extracted from Reunion
island.
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10 Chapter 1. Time Series Classification State-of-the-Art

This chapter gives an overview of the state of the art Time Series Classifi-
cation (TSC) algorithms, from basic concepts to advanced algorithms. First,
we introduce notations and definitions related to TSC. Many algorithms use
raw time series whereas others change the time series representation before
the classification step. We thus categorize the different time series classifi-
cation models that exist and review some of them with their most relevant
characteristics. We start with the distance-based time series classification
models, then we review the feature-based, finally we introduce the ensem-
ble time series classifiers. In this chapter, we only aim at categorizing the
different types of time series classification algorithms as well as detailing the
most famous and most competitive ones ; and refer the curious reader to the
numerous existing papers on this problem [Bagnall et al., 2016; Fu, 2011].
We then present metrics for model evaluation. We conclude this chapter by
briefly reviewing other challenging time series problems.

1.1 Basic Definitions and Notations

In the following, we provide definitions as well as useful notations in
order to define the time series classification problem.

Definition 1.1 (Time Series). A time series xi of length n is an ordered se-
quence of valued data points, measured at regular time intervals, noted

xi = xi,1, xi,2, . . . , xi,n (1.1)

where xi,j denotes the j-th element of the time series xi.

Time series can be univariate or multivariate. A time series containing
records of a single (respectively of multiple) observation(s) is referred to
as univariate (respectively multivariate). Since we focus on univariate time
series in this document, the term time series should thus be considered as
univariate time series. A note will be added for algorithms that can be used
with multivariate time series.

Let X be a set of time series {x1,x2, . . . ,xN}. X can be referred to as
dataset. For simplicity, we assume that all time series in the same dataset
have the same length n. If a method can be applied on time series with
different lengths, it will be specified.

The association of a time series with a label (xi, yi) corresponds to a
labeled time series, whereas a time series without a label (xi) is called an
unlabeled time series.

Definition 1.2 (Labeled Dataset). A labeled dataset D corresponds to a set of
time series associated with a set of labels (one label for each time series). Label
yi represents the class of the i-th time series xi.

D = {(x1, y1), (x2, y2), . . . , (xN , yN )} (1.2)
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1.1. Basic Definitions and Notations 11

In the following, we denote labeled dataset as a dataset, and a set of
datasets is referred to as database. A time series in a dataset D can also be
called an instance of D.

A classification process aims at putting together individual objects or
data into classes, categories or groups based on their charasteristics. Classifi-
cation can be categorized into supervised, unsupervised and semi-supervised
classifications. In this thesis, we focus on supervised classification, whose
purpose is to correctly assign a class to a new, unseen, unlabeled data. Su-
pervised classification first step corresponds to the training step. During
training, the classification algorithm learns a model based on labeled data.
For parametric methods, the best set of parameters θ is also learned at this
step. This second step is called classification or prediction. In order to cor-
rectly classify new, unseen data, the classifiers must generalize well from
the training data to new cases and situations.

Definition 1.3 (Classifier). A classifier is a function f that maps the time
series from their original space to the space of possible class labels, noted

f : X −→ {1, . . . ,m}N or f : xi 7−→ {1, . . . ,m} (1.3)

f(xi) is called the prediction of the class label for the time series xi. If
f(xi) = yi then the classifier makes the right prediction.

To evaluate the performance of a classifier, a common method is to split
a dataset D into two datasets Dtrain and Dtest. The classifier will learn on
Dtrain, whereas Dtest will stay unseen during training and will be used to
evaluate the classifier.

Classification Challenges The purpose of any classifier is to find the func-
tion f that maximizes the accuracy given Dtrain. Considering that Dtest is not
known during f ’s training, as well as it differs from Dtrain due to many rea-
sons depending on the data, this task is far from trivial. We assume in the
following that Dtrain and Dtest share both the same data distribution and the
same class label sets. Being able to generalize well on unseen and unla-
beled data is a challenging problem that many researchers are working on
in order to bring new – more accurate – solutions. If we also consider time
series data which arise in a wide range of domains and applications, such
as medicine (ElectroCardioGram (ECG)), environmental applications (Land
Cover Maps), object recognition or economics with different characteristics
(e.g. length), we can notice that there is no best single method. This in-
tuition is confirmed by the no free lunch theorem [Wolpert and Macready,
1997]. This theorem states that there is no method, applicable to all prob-
lems, that can always optimizes a cost function ; and that the only way to
find an algorithm more efficient than another is to adapt the algorithm to
the problem.

Moreover, in order to be exploitable, classifiers need to be
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12 Chapter 1. Time Series Classification State-of-the-Art

• fast,

• robust to noise and outliers,
Indeed, there are more and more data collected that require fast classifiers
to process them. On one hand, parametric methods, while more adaptative
since they can better fit the characteristics of the data, might be a bit slower
during training considering that they need to select the best parameter(s).
On the other hand, one should also consider the time required to classify
a new data, indeed some algorithms which need more time to train will
perform fast classification, e.g. Time Series Shapelets [Ye and Keogh, 2011].
Classifiers also need to be robust to noise in order to take into account the
intra-class variability. Outliers can appear in the data (e.g. due to acquisition
problems) making some classifiers failing at classifying them into the right
category. It is thus important to build classifiers that are robust to noise and
outliers. In the following, we consider a set of (non-exhaustive) character-
istics in order to compare the different similarity measures and classifiers,
such as
• the ability to deal with temporal distortions (such as time shifts and

dilation),

• the robustness to noise and outliers,

• the computational cost,

• the number of parameters.

TSC versus Vector Classification Vector classification problems can some-
times be seen as similar to TSC problems, however it is important to notice
important differences between these two classification tasks. In both cases,
we aim at classifying an object, where this object can be considered as a
vector of values. An important feature to consider is the relation of tem-
poral order between points of the time series. A time series corresponds to
values measured at regular time step where the ordering matters, it is thus
not possible to change the order of elements in time series. On the other
side, elements of a vector correspond to values of different features such
as dimension, it is thus possible to change their order without any impact
on the classification. Finally, while time series length may vary, the vector
length must stay the same into a dataset.

In TSC problems, we will see that the temporal structure of the data
often plays an important role in order to discover / extract features that
enable one to discriminate the classes.

1.2 Distance-based Time Series Classifiers

The distance-based methods compute point-to-point distances between
time series. In this section, we review the most relevant (dis)similarity mea-
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1.2. Distance-based Time Series Classifiers 13

sures as well as distance based classifiers for time series classification. In
order to perform the classification step, these distances then need to be
associated with a classifier such as k-Nearest Neighbors (kNN) or Support
Vector Machines (SVM).

1.2.1 Dissimilarity Measures

The notion of similarity is a fundamental concept in scientific commu-
nities. Its purpose is to compare two instances by computing a single value
quantifying their similarity. We consider in the following that instances are
either vectors or time series. A similarity (respectively dissimilarity) measure
is a real-valued function that measures how close (respectively dissimilar)
two instances are to each other. The closer the instances are, the larger the
similarity is. There exists many (dis)similarity measures and definitions of
it, amongst them we denote a particular case: distance metrics.

Definition 1.4 (Distance Metric). A distance metric d between two instances
xi and x` must follow the following rules:

1. Non-negativity: d(xi,x`) ≥ 0

2. Identity: d(xi,x`) = 0 if and only if xi = x`
3. Symmetry: d(xi,x`) = d(x`,xi)

4. Triangle inequality: ∀xz : d(xi,xz) + d(xz,x`) ≥ d(xi,x`)
The distance metric d is a function

d : X × X −→ [0,+∞) (1.4)

Many techniques, that can be used for classification such as metric trees
(e.g. M-Tree, GNAT [Ratanamahatana et al., 2005]), can only be used with
distance metrics. Using distance metrics can thus be an advantage compared
to using non-distance metrics.

1.2.1.1 Based on Lp Distances

Lp distances correspond to a set of functions where p is a strictly positive
real number (p ∈ R∗+). The Lp distance, or Minkowski distance, can be
considered as a generalization of Manhattan (p = 1), Euclidean (p = 2) and
Chebyshev (p =∞) distances. The Lp norm is defined as

‖z‖p =
(

n∑

i=1

|zi|p
)1/p

(1.5)

The Lp distance (or Minkowski distance) between two sequences z and v is
defined as

dp(z,v) = ‖z − v‖p =
(

n∑

i=1

|zi − vi|p
)1/p

(1.6)
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14 Chapter 1. Time Series Classification State-of-the-Art

Figure 1.1 – Representation of Euclidean Distance between two Time Series

Figure 1.2 – Comparison of Manhattan Distance (blue) and Euclidean Dis-
tance (green)

Euclidean Distance The most famous and most used distance measure is
the Euclidean Distance (ED).

dED(z,v) = ‖z − v‖2 =

√√√√
n∑

i=1

(zi − vi)2 (1.7)

The Figure 1.1 represents the ED between the red and the blue time series.
The ED corresponds to the sum of points to points distance, as represented
by the vertical lines in the figure, ED is thus visually easily interpretable.
If we compare ED to Manhattan (p = 1, also called city-block) distance,
ED can be viewed as crow flies distance (see Figure 1.2). ED is a simple,
fast and parameter free distance metric, however it is sensitive to temporal
shifts, outliers and noise.

1.2.1.2 Dynamic Time Warping Measure

Lp distances are easy to compute, however they are only appropriate
when there is no time distortions between time series. It is indeed not pos-
sible for Lp distances to capture the similarity between time series when
patterns inside them are shifted (i.e. do not match point to point). In order
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1.2. Distance-based Time Series Classifiers 15

(a) DTW distance (b) Warping path

Figure 1.3 – Representation of DTW distance between two time series and
its optimal warping path

to tackle shifting issues inside time series, Sakoe and Chiba [1970, 1978]
introduced a dynamic programming approach called Dynamic Time Warp-
ing (DTW). DTW is another popular way to measure the similarity for time
series, it has elastic properties i.e. can deal with distortions and shifts in
the time axis. A representation of alignment between two time series using
DTW algorithm can be found on Figure 1.3a (where time series are shifted
in the y axis for better visualization). It can be seen that peaks from blue
time series match with peaks from red time series, and valleys are aligned
together. The optimal warping path, which corresponds to the alignment
minimizing the overall cost (i.e. the DTW distance), is represented on Fig-
ure 1.3b. When time series are aligned, DTW measure is equivalent to ED.

DTW is a sequence alignment method that can handle temporal shift and
compare time series with different lengths. However, it does not respect the
triangle inequality thus is not a distance metric, is sensitive to outliers, noise,
and has a quadratic computational time. DTW can be speeded up, e.g. using
global constraints on warping path.

DTW algorithm Given two time series xi and x` (of length n), we form
a n-by-n grid where each grid-point (j, k) corresponds to the alignment be-
tween xi,j and x`,k. In order to compute the overall cost, we first have
to compute the point-to-point cost. The warping path w corresponds to a
sequence w = w1, w2, . . . , wL, where wm correspond to a pair (jm, km) (in-
dicating a match between xi,jm and x`,km). The space of possible warping
pathsW should satisfy the following three conditions:

1. Monotonicity, i.e. the points must be ordered in time:
jm−1 ≤ jm and km−1 ≤ km,

2. Continuity, i.e. the steps in the grid should be consecutive:
jm − jm−1 ≤ 1 and km − km−1 ≤ 1,
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16 Chapter 1. Time Series Classification State-of-the-Art

(a) Sakoe-Chiba band (b) Itakura parallelogram

Figure 1.4 – Representation of global constraints for Dynamic Time Warping

3. Boundary condtions, i.e. the warping path should start at the begin-
ning and finish at the end of time series: w1 = (1, 1) and wL = (n, n)

The overall cost c of a warping path w between xi and x` is defined as

cw(xi,x`) =
L∑

m=1

d(xi,jm , x`,km) (1.8)

The optimal warping path between xi and x` is the warping path having
the minimal cost amongst all possible warping pathsW. The DTW distance
corresponds to the cost of the optimal warping path.

DTW(xi,x`) = min
w∈W

cw(xi,x`) (1.9)

Global constraints on time warping Finding the optimal DTW path can
be time consuming, to solve this problem many speed-up techniques have
been proposed. Some of them are based on restricting the space of possible
warping paths. Amongst them, the Sakoe-Chiba band [Sakoe and Chiba,
1978] and the Itakura parallelogram [Itakura, 1975] are the most popular.
The Sakoe-Chiba band narrows down the set of possible warping paths by
limiting them thanks to the following condition: |jm − km| ≤ r, where r
corresponds to the window length (r ∈ R+). Basically, the Sakoe-Chiba
band allows a maximum time shift of length r. As it can be observed on Fig-
ure 1.4a, the Sakoe-Chiba band forms a band around the diagonal and has
a fixed width (horizontal and vertical one). Admissible warping paths are
included into the grey section of the Figure 1.4a. The Itakura parallelogram
is an alternative to the Sakoe-Chiba band, which also limits the number of
possible warping paths. The Itakura parallelogram allows small shifts at the
beginning and at the end of the time series, and a larger distortion around
the middle of the time series (corresponding to the smaller diagonal of the
parallelogram). See Figure 1.4b, for a representation of possible warping
paths (in grey).
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1.2. Distance-based Time Series Classifiers 17

Derivative Dynamic Time Warping An extension of DTW called Deriva-
tive DTW (DDTW) was proposed by Keogh and Pazzani [2001]. This exten-
sion is based on the observation that two time series may also have differ-
ences in the y-axis. DTW can sometimes produce singularities in order to
explain these differences. To solve this issue, Keogh and Pazzani [2001]
thus proposed DDTW which considers the higher level of feature shape
by estimating derivatives of time series data. DDTW can be seen as DTW
where each time series xi is replaced by its derivative in a preprocessing
step. DDTW uses the distance between the derivatives instead of distance
between time series, which reduces the number of singularities. One can
easily apply global constraints on DDTW as well as proposed speed-up tech-
niques for DTW due to their similar process.

Weighted Dynamic Time Warping Jeong et al. [2011] proposed another
extension of DTW called Weighted Dynamic Time Warping (WDTW). WDTW
can be viewed as a penalty-based DTW, which takes the time difference be-
tween two points into account when computing their distances. The closer
the points are, the smaller weight is imposed (i.e. the less penalty is im-
posed). Large shifts, which are associated with larger weights, are more
penalized than smaller shifts. WDTW algorithm is identical to DTW algo-
rithm, the only difference is the distance measure used to compare two data
points. One advantage of WDTW is than it can easily be extended to variants
of DTW: e.g. the association of DDTW with WDTW (Weighted Derivative Dy-
namic Time Warping: WDDTW) has been proposed in [Jeong et al., 2011].
One can also easily apply global constraints as well as proposed speed-up
techniques for DTW on WDTW.

Summary on Dynamic Time Warping DTW can be used to measure the
similarity between time series with temporal shifts and distortions. Many
speed-up techniques have been proposed to reduce the quadratic complexity
of DTW. Amongst them global constraints enables one to reduce the com-
plexity of DTW (e.g. for Sakoe-Chiba band from O(n2) to O(n · r)), however
it does not make DTW less sensitive to noise, outliers, nor make it a metric.
To reduce the sensitivity to noise and outliers, some enhancement of DTW
were proposed such as DDTW and WDTW (that can also both handle time
series with different lengths).

1.2.1.3 Edit Distance

Edit distance is a method that quantifies how dissimilar two strings are.
Strings can be considered as a sequence of discrete values, where each value
is a letter or symbol of the alphabet. The distance between two strings can
be seen as the smallest number of added, deleted, substituted (or trans-
posed) symbols as stated in [Jurafsky and Martin, 2000, Part I, Chapter 5].
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xi - 3 7 4 - 6 2 1 5

x` 5 3 2 4 7 6 - 1 -

Figure 1.5 – Example of LCSS distance between two sequences

Deleting a symbol is equivalent to adding a symbol in the other time series.
In the following, an added symbol will be referred to as a gap element.

Edit distance can be used in order to compare time series. For instance,
a time series can be transformed into a sequence of discrete values, where
each discrete value correspond to a range of continuous values, i.e. into a
string. Another possibility is that, instead of checking whether two symbols
from strings are identical, point-to-point in time series distance can also be
compared to a predefined threshold.

The following edit distances are able to compare time series with differ-
ent lengths as well as can be used for multivariate time series. Moreover,
Edit-based distances can take into account outliers, contrary to DTW.

Distance Based on Longest Common SubSequences The basic idea of
the Longest Common SubSequences (LCSS) problem is to find the longest
common subsequence between two sequences, where we allow some ele-
ments to be unmatched or left out. LCSS distance allows only insertion
and deletion of elements, not substitution. In order to be used for time se-
ries (which are continuous variables), we need to relax the constraint on
the equality in the LCSS algorithm. Indeed, two continuous values are
unlikely to be exactly equal, however they can be closed to each other
(|xi,j − x`,k| < δ).

Definition 1.5 (LCSS Distance). Given two time series xi and x`, the LCSS
distance is defined as

dδ(xi,x`) =





0 if xi or x` is empty
1 + dδ

(
h(xi), h(x`)) if |xi,−1 − x`,−1| < δ

max
(
dδ(h(xi),x`), dδ(xi, h(x`))

)
otherwise

(1.10)
Where δ is the tolerance threshold and h(xi) corresponds to the head function,
i.e. to the time series xi without its last point xi,−1.

Given two sequences xi = {3, 7, 4, 6, 2, 1, 5} and x` = {5, 3, 2, 4, 7, 6, 1},
their LCSS is {3, 4, 6, 1}, as shown in Figure 1.5. In the time series literature,
LCSS distance has been applied on univariate time series [Das et al., 1997],
as well as on multivariate time series [Vlachos et al., 2002]. LCSS is an
alignment method that can handle outliers and temporal shifts, however it
is not a metric and has a quadratic complexity.
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Edit Distance on Real Sequences Chen et al. [2005] proposed the Edit
Distance on Real Sequences (EDR). In order to take into account the contin-
uous nature of the variables, the constraint on the equality is also relaxed.

Definition 1.6 (Edit Distance on Real Sequences). Given two time series xi
and x`, the EDR between two data points is defined as

dEDR∗(xi,j , x`,k) =





0 if |xi,j − x`,k| ≤ δ
1 if xi,j or x`,k is a gap
1 otherwise

(1.11)

where δ is the tolerance threshold.

In order to compute the distance dEDR(xi,x`) between two time series
respectively of length n and m, we can use a dynamic programming style:

dEDR(xi,x`) =





n if m = 0

m if n = 0

min





dEDR(r(xi), r(x`)) + dEDR∗(xi,1, x`,1),

dEDR(xi, r(x`)) + 1,

dEDR(r(xi),x`) + 1





otherwise

(1.12)
Where r(xi) corresponds to the time series xi without its first point xi,1.

Chen et al. [2005] showed that EDR supports local time shifts, is is more
robust to noise than DTW and LCSS, however its complexity is quadratic
and it is not a distance metric.

Edit Distance on Real Penalty The Edit Distance on Real Penalty (ERP)
has been proposed by Chen and Ng [2004]. ERP is a distance metric, which
is associated with a penalization. This penalization is a constant value g that
is applied when gaps are created (to create an optimal alignment).

Definition 1.7 (Edit Distance on Real Penalty). Given two time series xi and
x`, the ERP between two data points is defined as

dERP∗(xi,j , x`,k) =





|xi,j − x`,k| if neither xi,j nor x`,k are gaps
|xi,j − g| if x`,k is a gap
|x`,k − g| if xi,j is a gap

(1.13)

where g a constant value.

In order to compute the distance dERP(xi,x`) between two time series,
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we can again use a dynamic programming style:

dERP(xi,x`) =





∑n
k=1 |x`,k − g| if n = 0∑n
j=1 |xi,j − g| if n = 0

min





dERP(r(xi), r(x`)) + dERP∗(xi,1, x`,1),

dERP(xi, r(x`)) + dERP∗(x`,1, g),

dERP(r(xi),x`) + dERP∗(xi,1, g)





otherwise

(1.14)
Where g the penalization term (i.e. the gap – set to 0 by authors).

ERP is based on EDR but uses actual distance between points instead of
fixed values. ERP is able to handle outliers and temporal shift. Plus ERP can
be indexed since it is a distance metric, thus it can be easily fasten despite a
quadratic complexity.

1.2.1.4 Time Warp Edit Distance

Marteau [2009] proposed the Time Warp Edit Distance (TWED) another
elastic similarity metric (i.e. can handle shifts in time series). TWED elas-
ticity is controlled by a parameter called stiffness γ using time stamp dif-
ferences as part of the local matching cost. An infinite stiffness makes the
distance equivalent to the ED, whereas a null stiffness is similar to DTW
without warping window. A second parameter is involved in TWED, it corre-
sponds to penalty λ for insertion or deletion operations, similarly to the pre-
viously seen edit distance. TWED has three operations: delete_xi, delete_x`
and match.

Definition 1.8 (Time Warp Edit Distance). Given two time series xi and x`,
the TWED is defined as

dλ,γ(xi,x`) =

min





dλ,γ(h(xi),x`) + d(xi,−1, xi,−2) + λ+ γ · d(ti,−1, ti,−2))
dλ,γ(xi, h(x`)) + d(xk,−1, x`,−2) + λ+ γ · d(t`,−1, t`,−2))
dλ,γ(h(xi), h(x`)) + d(xi,−1, x`,−1) + d(xi,−2, x`,−2)

+ γ · (d(ti,−1, t`,−1) + d(ti,−2, t`,−2))

(1.15)

where λ is the constant penalty added in case of a deletion (λ ≥ 0), γ the
stiffness parameter (γ ≥ 0), h(xi) corresponds to the time series xi without its
last point xi,−1 (which time instant is denoted ti,−1) and d a Lp metric.

The TWED metric can handle temporal distortions and is robust to noise,
yet it is not a parameter free distance. Nonetheless, thanks to the stiffness
parameter, TWED can control the admissible shift in time series, which is
very useful on data where the temporal location matters. Note that TWED
can both handle multivariate time series as well as different lengths ones.
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1.2.1.5 Move-Split-Merge

Stefan et al. [2013] introduced the Move-Split-Merge (MSM), which is
based on a set of operations: move, split and merge. move is equivalent to
a substitution (i.e. changes the value of an element), split will double an
element (i.e. add the same element right after itself) and merge merges two
consecutive elements into one. Each operations has an associated cost c,
except the move operation which cost corresponds to the absolue value of
the difference between the original element and the new one. The distance
between two time series corresponds to the cost of the cheapest sequence
of operations that transforms the first time series into the second one. MSM
is a distance metric which is robust to temporal shifts and which is able to
deal with time series of different lengths and multivariate time series.

1.2.1.6 Global Alignment Kernel

Cuturi et al. [2007] proposed a kernel to handle the time series align-
ment problem. This DTW-inspired kernel aligns time series using the soft-
minimum of all alignment costs in order to define a positive definite kernel.
It has a quadratic complexity ofO(n2), which is similar to the DTW measure.

Definition 1.9 (Global Alignment Kernel). The Global Alignment Kernel (GAK)
kGAK between two time series xi and x` is defined as

kGAK(xi,x`) =
∑

w∈W
e−Dxi,x`

(w) (1.16)

where we consider W as the set of all possible alignments, w as an alignment
(of length L), and

Dxi,x`
(w) =

L∑

j=1

φ(xi,π1(j), x`,π2(j)) (1.17)

where φ is a positive-definite kernel.

As DTW, it is possible to use dynamic programming to compute the ker-
nel value. GAK can handle both different lengths and multivariate time
series. Cuturi [2011] later proposed a fast version of this kernel, that con-
siders a smaller subset of admissible alignments. This fast version can be
seen as adding global constraints, similar to Sakoe-Chiba band for DTW.
Then Cuturi and Blondel [2017] build on GAK to propose soft-DTW for time
series clustering and prediction, where they compute the soft-minimum of
all alignment costs.
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1.2.2 Summary on (Dis)Similarity Measures

Numerous similarity measures for time series exist, we detailed in this
manuscript a small selection of them. Each one of them can be associated
with a classifier. A comparison of their characteristics can be found in Ta-
ble 1.1.

To evaluate the performance (last column of Table 1.1), we compute
the one-sided Wilcoxon Signed Rank Test on the University of East Anglia
& University of California Riverside (UEA / UCR) database (85 datasets).
We use accuracies provided by Bagnall et al. [2017], on available similar-
ity measures associated with the 1-NN classifier, as shown on Table 1.2.
The one-sided Wilcoxon Signed Rank Test is a non-parametric statistical
test that can be used to determine if a method is statistically better than
another (i.e. p-value < 5%). The number of stars for the performance is
assigned based on the number of times the similarity measure is better than
the other ones (associated with 1-NN). The number of stars ranges from 0
(the minimum), for measures that are never significantly better than the
others (i.e. ED, DDTW), to 3 (the maximum), which corresponds to the best
similarity measure (i.e. MSM).

1.3 Feature-based Time Series Classifiers

Feature-based methods extract features from time series before the clas-
sification step where a classifier can be used on the extracted features. Many
different works have been proposed with different kind of features. In this
section, we first start by introducing time series representations that are
used in the literature. Then, we review the most relevant feature-based
time series classifiers. Finally, we present some shapelet-based algorithms.

1.3.1 Time Series Representations

Time series classification can be performed on both raw and transformed
time series. The most natural representation of time series is the raw rep-
resentation, i.e. the ordered list of valued data points. However, there are
many tasks for which a representation that highlights some specificities of
time series is the most suitable one, e.g. frequency for speech recognition.
Due to the wide range of possible applications for time series data, numer-
ous representations have been proposed by the time series community from
Fourier and Wavelet Transformations to SIFT-based Representation, through
Piecewise Approximations. In the following, we focus on the most well-
known time series representations.
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ED DTW DDTW ERP LCSS MSM TWED WDDTW WDTW # sign. better

ED - 0.999 0.846 1.000 1.000 1.000 1.000 1.000 1.000 0

DTW 0.001 - 0.046 1.000 0.998 1.000 1.000 0.917 1.000 2

DDTW 0.153 0.954 - 1.000 0.999 1.000 1.000 1.000 1.000 0

ERP 0.000 0.000 0.000 - 0.976 1.000 0.841 0.259 0.849 3

LCSS 0.000 0.002 0.001 0.023 - 1.000 0.533 0.114 0.239 4

MSM 0.000 0.000 0.000 0.000 0.000 - 0.000 0.000 0.000 8

TWED 0.000 0.000 0.000 0.158 0.465 1.000 - 0.057 0.605 3

WDDTW 0.000 0.082 0.000 0.739 0.885 1.000 0.943 - 0.854 2

WDTW 0.000 0.000 0.000 0.150 0.760 1.000 0.393 0.145 - 3

Table 1.2 – Comparison of similarity measures (associated with 1-NN) using
one-sided Wilcoxon Signed Rank Test p-values. The bold values indicate
that the difference is significant, e.g. DTW-NN is significantly better than
ED-NN since the p-value is equal to 0.001 < 5%. The last column provides
the number of times a similarity measure is significantly better than another
one, e.g. DTW is significantly better than 2 other similarity measures: ED
and DDTW.

1.3.1.1 Fourier and Wavelet Transformations

Fourier transformation represents a time series as a sum of sinusoidal
functions, whereas wavelet transformation approximates a time series by a
set of orthonormal representations. Both Discrete Fourier Transform (DFT)
and Discrete Wavelet Transform (DWT) reduce the dimensionality of time
series.

Discrete Fourier Transform The basic idea of DFT is to represent the
time series xi as a linear combination of cosines and sines (with amplitudes
a, b and phase w), where only the first few coefficients are kept.

xij =

n∑

k=1

(ak cos(2πwkj) + bk cos(2πwkj)) (1.18)

DFT (xi) = < (a0, b0), (a1, b1), . . . , (an, bn) > (1.19)

In order to find the best match of a time series, Agrawal et al. [1993]
proposed the following process:

1. Obtain the DFT coefficients for every time series of D,

2. Build the multidimensional index using the first few Fourier coeffi-
cients of every time series of D,

3. Perform the similarity search.

The DFT most popular implementation is the Fast Fourier Transform (FFT)
proposed by Cooley and Tukey [1965], and illustrated in Figure 1.6.
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FFT – Approximations

Figure 1.6 – Fast Fourier Transform. A Time Series and its Fourier Approx-
imations using the first 10 & 20 coefficients (respectively 2nd and 3rd line).

Discrete Wavelet Transform Wavelet bases are able to represent both fre-
quency and location informations inside a time series [Hastie et al., 2009,
Chapter 5]. This is a key advantage compared to Fourier Transform which
can only capture frequency information. Wavelets are generated by trans-
lations and dilations of a single scaling function ψ(x) (mother wavelet),
where translations can be defined by ψ(z) → ψ(z + 1) and dilations by
ψ(z) → ψ(2 · z).

The first proposed DWT is the Haar wavelet, which mother wavelet is

ψ(z) =

⎧⎪⎨
⎪⎩
1 for 0 ≤ z < 1/2

−1 for 1/2 ≤ z < 1

0 otherwise

(1.20)

Let j be the dilation index, k the translation one, the general form is written
as

ψj
k(z) = 2

j/2 ψ(2jz − k) (1.21)

Haar wavelet corresponds to a sequence of continuous square-shaped
functions that approximates the time series. Wavelet Transform has been
widely used by the time series community. Chan and Fu [1999] proposed
an efficient time series indexing method. Wu et al. [2000] go further and
explore DFT and DWT-based similarity seach in time series datasets, where
they show that both methods yield comparable results, even if DWT-based
methods have lower complexity than DFT ones. Kahveci and Singh [2001]
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use wavelets in order to find similar patterns in time series, thanks to the
wavelet-based compression of the time series they were able to significantly
reduce the computation time without performance loss.

1.3.1.2 Piecewise Aproximations

Numerous Piecewise Aproximations methods have been proposed in or-
der to reduce the dimensionality of time series, we detail here the most
relevant ones.

Piecewise Aggregate Aproximation Keogh and Pazzani [2000]; Yi and
Faloutsos [2000] independantly introduced Piecewise Aggregate Aproxima-
tion (PAA), a dimensionality reduction technique. The idea is to divide a
time series of length n into n′ segments, then to compute the average of
these segments. The main advantages of PAA are the interpretability and
the simplicity of the method, PAA is a compression-based technique.

Adaptive Piecewise Constant Aproximation Chakrabarti et al. [2002]
introduced an extension of PAA called Adaptive Piecewise Constant Aprox-
imation (APCA). It is possible to observe that in some datasets, the time
series information is concentrated on specific locations whereas the rest of
the time series provides few information (e.g. regarding the separability of
classes). In order to take this observation into account, APCA transforms the
time series into a set of variable length segments instead of same length seg-
ments as PAA does. APCA has two parameters for each segment: its value
(the mean of the segment) and its length. APCA is thus more flexible than
PAA leading to a better approximation of time series.

Piecewise Linear Aproximation The basic idea of Piecewise Linear Aprox-
imation (PLA, Cameron [1966]; Keogh and Pazzani [1998]) is to repre-
sent the time series as a sequence of linear segments. Given a time se-
ries xi, we seek for an approximate function: PLA(xi) = a · z + b, with
z = [xi,z1 , xi,z2 , . . . xi,zk−1

, xi,zk ]
> and followings the properties: (a) z1 = 1

(b) zk = n and (c) zi < zi+1.

1.3.1.3 Symbolic Aggregate approXimation

Lin et al. [2003] introduced the Symbolic Aggregate approXimation (SAX)
method that converts a time series into a symbolic form representation. The
first step of the SAX algorithm is to normalize the data to have zero mean
and standard deviation of one. Then to reduce the dimensionality of the
time series, the PAA dimensionality reduction technique is applied. The next
step is the discretization step: the symbols (corresponding to mean values
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included into a specific interval) are selected such that they are equiproba-
ble. The number of symbols is to be determined by the user.

1.3.1.4 Symbolic-Fourier Approximation

The Symbolic-Fourier Approximation (SFA) is a symbolic representation
proposed by Schäfer and Högqvist [2012]. Its first step consists in approxi-
mating all the time series using DFT, then to determine multiple discretisa-
tions from all these DFT approximations using the Multiple Coefficient Bin-
ning (MCB) discretization technique. The MCB is a data adaptative quan-
tization technique that computes intervals from training samples. In the
second step, each DFT approximation is discretized (one by one) using the
MCB discretization resulting in a SFA representation of the time series.

1.3.1.5 SIFT-based Representation

The Scale-Invariant Feature Transform was first introduced in the com-
puter vision community on problems such as recognition tasks, trajectory
tracking [Lowe, 2004]. The SIFT algorithm detects and describes local fea-
tures in images. Local features should correspond to regions of interest and
be scale and location invariant. Key location / key points are defined as
extrema (minima and maxima) of the Difference of Gaussians (DoG) func-
tion, this step can be referred to as Scale-Invariant feature detection. More
details on the full algorithm are available in [Lowe, 2004]. In the following,
we present time series representation based on SIFT which are adapted for
one-dimensional (1D) data.

Scale-Invariant Classifier with "R" metric (SIC-R) Xie and Beigi [2009]
proposed an algorithm that detects keypoints based on DoG detector [Lowe,
2004], where each keypoints is represented by a scale-invariant feature de-
scriptor. The general overwiew of the framework can be described by the
following steps:

1. Keypoints detection

2. Construction of descriptors

3. Keypoints matching

4. Metric computation

5. Classification.

DTW Pruning Constraints based on Salient Feature Alignments Can-
dan et al. [2012] introduced a new constraint to speed up DTW based on
salient features: sDTW. These salient features are identified by a SIFT-like
algorithm and then used to restrict the search space of possible warping
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paths in DTW. The proposed approach can identify not only the center posi-
tions but also the sizes of the features, which is a key advantage in order to
find a more precise alignment of time series. Experiments have shown that
sDTW helps improving DTW accuracy.

1.3.2 Codebook-based Representations

We previously detailed some of the most relevant time series features
representation. In the following we provide some keys on how to simply
use these features in order to compare time series.

Codebook-based representations are highly related with the Bag-of-Words
(BoW) model. We first start by introducing the BoW model then we detailed
some time series classification algorithms using the BoW model (or very
similar technique such as Vector Space Model (VSM)). Some previously in-
troduced methods can be associated with a codebook-based representation,
e.g. BoP and SAX-VSM that use SAX representation, later another example
will be provided in Chapter 2 where we combine 1D SIFT descriptors with
a codebook representation.

Bag-of-Words The BoW model consists in representing an instance using
a histogram of word occurrences. Despite the fact that the temporal order
of words is ignored, the BoW representation is able to capture high-level
structural information using both local and global characteristics. Indeed,
the overall representation is built by extracting the sub-sequences from the
time series, local (i.e. peaks, valleys) and global (i.e. general shape) char-
acteristics are thus taken into consideration. The BoW ability to quantize
the words might lead to information loss, nonetheless it provides some ro-
bustness to noise. Many codebook-based representations use the k-means
method in order to select k codewords. The selected codewords correspond
to cluster centers, and each local feature is assigned to the nearest cluster
center. The Bag-of-Words model has been widely used since it can lead to
powerful and accurate methods.

1.3.2.1 Bag-of-Patterns

Lin et al. [2012] proposed the Bag-of-Patterns (BoP) approach which
combines the Symbolic Aggregate approXimation (SAX) representation of
the time series with the Bag-of-Words technique. In order to extract words
from the transformed series, Lin et al. [2012] use a sliding window. Then,
they build the 1-NN classifier using frequencies of words within the time
series as features.
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1.3.2.2 SAX-VSM

Senin and Malinchik [2013] proposed the SAX-VSM algorithm, which is
based on two well-known techniques: SAX and VSM. SAX transforms raw
time series into a symbolic representation, then VSM constructs a BoW rep-
resentation from the symbols. SAX-VSM and BoP have many common char-
acteristics, except that the Term Frequency - Inverse Document Frequency
(TF-IDF) is used as a weighting scheme on the SAX-VSM representation (BoP
uses no weighting scheme).

More precisely, the first step is to apply the SAX algorithm in order to
transform raw time series to a list of SAX words. Time series are then treated
as bag-of-SAX-words on which a TF-IDF normalization method is applied.
The final step is to create class-characteristic weight vectors that are used for
classification of new time series. To do so Senin and Malinchik [2013] look
for characteristic subsequences that are representatives of a class (similarly
as time series shapelets – introduced later in this chapter) that they use to
build a single representation for each class (instead of one per training time
series).

1.3.2.3 Time Series Bag-of-Features

Baydogan et al. [2013] introduced the Time Series Bag-of-Features (TSBF)
algorithm. TSBF extracts time series segments of various lengths and posi-
tions and generates a codebook of those patterns that will be used to feed
the classifier. TSBF can be outlined as follow:

1. Extract local features from each segment of the time-series,

2. Create a supervised codebook of the features using random forest,

3. Transform the codebook features collection into a global bag-of-features
representation for each time series (using frequencies),

4. Classify the global bag-of-features representation using a random for-
est classifier.

TSBF leads to high performance compared to competitive baseline methods.

1.3.2.4 Bag-of-Words based on Discrete Wavelet Coefficients

Wang et al. [2013a] proposed an algorithm that segments time series
into local patterns and measures their frequencies as classification features.
Segments of pre-determined length are extracted along the time series using
sliding window. The set of segments is then transformed to feature vectors
using DWT. Finally the BoW representation of words frequencies is used to
feed a Nearest-Neighbors classifier.
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1.3.2.5 Bag-of-SFA-Symbols

The Symbolic-Fourier Approximation (SFA) is a symbolic representa-
tion used in Bag-of-SFA-Symbols (BOSS) which was introduced by Schäfer
[2015b]. BOSS uses the sliding window technique to create SFA words rep-
resenting the time series then generates a codebook representation from
them. Sliding windows split the time series (of length n) in consecutive
fixed-length windows (i.e. n−w+1 windows of length w). For consistency,
each window s is z-normalized (s−mean(s)

std(s) ) BOSS uses the 1-NN classifica-
tion on SFA representation. This transformation aims at reducing the noise
and at representing the time series as strings. BOSS is fast, robust to noise
and obtains high accuracies score on several datasets.

Building on BOSS, Schäfer [2015a] proposed Bag-of-SFA-Symbols in
Vector Space (BOSS VS) that can be seen as an enhancement of the BOSS
method: BOSS-VS has significantly lower computation complexity. How-
ever, BOSS obtains higher performance than BOSS-VS, even if the difference
is not significant.

1.3.3 Shapelet-based Algorithms

Time series shapelets were first introduced by Ye and Keogh [2009]. A
shapelet is a subsequence extracted in a time series that enables one to
differentiate the different classes. Ye and Keogh [2009] proposed a brute
force algorithm to build a decision tree classifier where shapelets are chosen
amongst all the possible candidates (i.e. the set of all continuous subse-
quence of the considered length). The chosen shapelets correspond to the
candidates that are the most discriminative for the classes.

Definition 1.10 (Dissimilarity measure between a time series and a shapelet).
The dissimilarity measure between a time series xi (of length n) and a shapelet
sk (of length L (with L < n)) is defined as

d(xi, sk) = min
j=1,...,J

1

L

L∑

`=1

(xi,j+`−1 − sk,`)2 (1.22)

with J = n− L+ 1.

Advantages of shapelets include their interpretability as well as fast clas-
sification time. However the shapelet discovery step has a high complex-
ity (i.e. is a time consuming process). The first improvement of the brute
force algorithm was proposed by the same authors in [Ye and Keogh, 2011],
where they introduced an early abandon pruning method. Since then, many
works have been published on time series shapelets, we review the most rel-
evant ones.

Bailly, Adeline. Classification de séries temporelles avec applications en télédétection - 2018



1.3. Feature-based Time Series Classifiers 31

Shapelets-based methods are particularly useful when only a subpart of
the time series is discriminative, as well as when some subparts of the time
series are missing (e.g. objects outline where the object is partially broken).
Shapelets-based methods also provide interpretability of the results since
it is possible to extract the most discriminative shapelet(s). Methods that
extract several shapelets use various discriminative subparts of time series
thus generally lead to better performance.

1.3.3.1 Fast Shapelets

Rakthanmanon and Keogh [2013] proposed a fast version of the algo-
rithm in order to reduce the complexity of the original algorithm from Ye
and Keogh [2009]. The main idea for a fast shapelets discovery is to trans-
form high-dimensional time series to a low-dimensional discrete represen-
tation. Indeed, it is more efficient to extract information from a smaller
representation.

Time series are transformed into a SAX representation. For a given time
series, multiple SAX words are generated using the sliding window tech-
nique, where each word corresponds to a symbolic representation of a sub-
sequence. In order to compare two time series, Rakthanmanon and Keogh
[2013] exploit the random projection idea by applying a random mask on
the SAX representation. If two time series are similar, then there is a high
probability of collisions between their SAX representations (a collision hap-
pens when two SAX representations are identical). After r random projec-
tions, it is possible to look for the best random projections candidates that
maximize the separability of the different categories.

The shapelets candidates are then limited to the raw subsequences of
time series corresponding to the best random projections in the SAX rep-
resentation domain. Then, we apply the same process than the original
algorithm on a reduced set of shapelet candidates. Fast shapelets algorithm
is faster than the original shapelet algorithm, however its overall accuracy
does not differ from the original algorithm.

1.3.3.2 Shapelet Transform

Lines et al. [2012] proposed to use shapelets as feature extractors in or-
der to classify time series. The outline of the Shapelet Transform algorithm
is the following:

1. Extract the K best shapelets

(a) Measure quality for all possible shapelets candidates

(b) Sort shapelets candidates by quality

(c) Return top K shapelets candidates
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2. Transform the data by computing the K dissimilarity measures be-
tween the time series and the set of selected shapelets. Each time
series will be transformed to a set of K features (corresponding to the
previously computed distance values)

Transform: N × n −→ N ×K (1.23)

3. Apply decision tree on shapelet transformed time series

The parameters of the model, which are the minimal and the maximal
shapelet length as well as the number K of shapelets to be selected, are
selected by a simple algorithm provided by Lines et al. [2012].

1.3.3.3 Learning Shapelets

Grabocka et al. [2014] propose to learn the shapelets instead of search-
ing the best one(s) in a set of shapelet candidates, indeed one of the main
drawback of the shapelet method from Ye and Keogh [2009] was the ex-
tensive search to find a discriminative shapelet. Grabocka’s method offers a
significant performance improvement compared to extensive search, more-
over it is able to learn the best set of K shapelets. Learning Time series
Shapelets (LTS) algorithm is based on a gradient descent method. In order
to initialize the shapelets, subseries of length L are extracted from the train-
ing time series, then a K-means is performed on them. The shapelets are
initialized to fit the K-means cluster centers, then the shapelets are learned
iteratively during the learning step. The shapelets are updated by minimiz-
ing a classification loss function through the iterations of a gradient descent
optimization process. The idea is to jointly learn both the logistic regression
weights w and the shapelets S that minimize the classification objective
function F :

argmin
S,w

F(S,w) = argmin
S,w

N∑

i=1

L(yi,wMi + w0) (1.24)

where L is the classification loss function and M is the matrix representing
the distances between a dataset X = {xi}Ni=1 and a set of K shapelets S =
{sk}Kk=1. The dissimilarity measure between the i-th time series xi and the
k-th shapelet sk is written as

Mi,k = d(xi, sk) = min
j=1,...,J

1

L

L∑

`=1

(xi,j+`−1 − sk,`)2 (1.25)

Amongst all shapelet-based algorithms, LTS is one of the two most accurate
and advanced one (with the Shapelet Transform algorithm). In Chapter 3,
we build on Grabocka et al. [2014]’s work to provide an enhancement of
the LTS method.
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1.4 Ensemble Classifiers for Time Series

Ensemble classifiers main idea is to generate more precise and accurate
classification systems using individual decisions combined together. Ensem-
ble classifiers can be divided into several categories:

1. Using a single learning method with different subsets of training data
(called Bagging, e.g. Random Forest)

2. Using a single learning method with different training parameters /
initializations (e.g. initial weights of a Neural Network)

3. Using a set of different learning methods (called Stacking, e.g. PROP,
COTE (defined below))

Ensemble classifiers lead to more accurate and more precise results than
single classifier(s) alone. The combination of predictions using various clas-
sifiers will be able to get the advantages of the subset of classifiers that are
the most well-suited for the considered dataset. This is really useful when
no prior information are known about the dataset.

Amongst drawbacks, ensemble classifiers have higher computational time
and space complexities as well as low interpretability. The time and space
complexities grow with the number of classifiers. The total amount of space
required by the ensemble corresponds to the sum of space required by each
classifier of the ensemble (plus some extra space for the Decision Making
Process (DMP)). However, time complexity can be reduced using parallel
computing system to the time needed to process the longest time method
(plus some extra time for the DMP). Finally, the more classifiers involve in
the DMP, the less comprehensible the decision is. Thus, the interpretability
decreases with the number of classifiers of the ensemble.

In the time series classification domain, only the stacking approach has
been investigated, we thus detail two stacking ensemble classifiers for time
series data that combine several classifiers.

1.4.1 Proportional Elastic Ensemble

Proportional Elastic Ensemble (PROP), which was introduced by Lines
and Bagnall [2014], is a combination of nearest neighbour classifiers that
use elastic baselines distance measures. PROP merges eleven elastic simi-
larity measures: ED, DTW, DDTW, DTW-CV, DDTW-CV, WDTW, WDDTW,
LCSS, ERP, TWED, MSM, where DTW-CV means DTW with Sakoe-Chiba
band set through Cross-Validation.

Each classifier (a function associated with the 1-NN classifier) runs inde-
pendently, then a weighted voting scheme is used for the prediction. Lines
and Bagnall [2014] studied four voting schemes, we develop only the one
corresponding to the PROP algorithm since it leads to the best performance.
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The PROPortional voting scheme assigns the weight proportionally to the
Cross-Validation accuracy on the training data. PROP significantly outper-
forms all standalone classifiers compared to in the paper.

1.4.2 Collective Of Transformation-based Ensembles

Bagnall et al. [2015] proposed the Collective Of Transformation-based
Ensembles (COTE) for time series classification. Both PROP and COTE com-
bine several standalone classifiers. Numerous time series classification algo-
rithms transform the time series into new representations, which can lead
to improvements in accuracy. COTE is partially based on transformations of
time series into new domains (features representation), whereas PROP uses
a set of elastic measures.

COTE is an ensemble classifier that contains transformations in time, fre-
quency, change and shapelet domains from 35 standalone classifiers. Each
classifier is associated to a weight during the classification step. The higher
the accuracy on the training set, the larger the weight.

COTE combines:
• Four transformations, in frequency domain with a transformation of

data using Power Spectrum and in change domain: three autocorre-
lation-based approaches. These transformations are associated with
eight classifiers

◦ k-NN

◦ SVM with linear kernel

◦ SVM with quadratic kernel

◦ Naive Bayes

◦ Bayesian network

◦ C4.5 decision tree

◦ Random Forest

◦ Rotation Forest

• PROP Elastic Ensemble for the time domain (11 classifiers)
In COTE, weights are assigned proportionally to the cross-validation ac-

curacy on the training data, as in PROP. COTE is significantly more accurate
than competing baselines algorithms and is on average the most accurate
algorithm (on UEA / UCR database).

1.5 Summary on Time Series Classification Al-
gorithms

Many algorithms have been described, Table 1.3 summarizes the main
characteristics of these time series classification algorithms. Performance
was evaluated by computing the one-sided Wilcoxon Signed Rank Test on
the UEA / UCR database (on 85 datasets) for each classifier, from classifi-
cation rates provided by Bagnall et al. [2017]. The computational cost was
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Temporal
Distorions

Robust to
Noise

Robust to
Outliers

#
Params

Performance

BoP X X X 3 899

BOSS X X X 4 889

COTE X X X - 888

DTW-NN X - 899

ED-NN X - 999

Fast Shapelets X 2 999

GAK X X 2 -
LTS X X 3 899

PROP X X X - 889

SAX-VSM X X 3 999

sDTW X X - -
Shapelets X X 2 899

ST X X 3 889

TSBF X X X 2 899

Table 1.3 – Comparison of Time Series Classifiers

not evaluated since it is highly correlated with the implementation as well
as the number of parameters.

COTE and PROP are considered to be the more powerful and accurate
time series classification algorithms to this day. However since they corre-
spond to sets of classifiers, they have a high computational cost. When no
prior information is known, it might be a good choice to use COTE and PROP
since they are able to adapt well on different characteristics (e.g. presence
or absence of temporal distortions).

Standalone classifiers often offer good performance and might be con-
sidered as providing sufficient accuracy for some applications. An algorithm
should be choosen carefully depending on:

1. Complexity of the algorithm

2. Constraint on computational space

3. Constraint on time

4. Dimensionality of the data (time series length and dataset size)

5. Easiness of the classification task

6. Expected level of accuracy

7. If interpretability of results is needed

8. Separability of time series using shapelets

9. Temporal distortion in the dataset

In the following, we will use UEA / UCR datasets to illustrate some char-
acteristics and which time series classifier(s) is best suited for it. For very
simple problems such as Coffee, a simple ED-NN will be more than satis-
factory since it returns a classification score of 100%. For datasets where
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Figure 1.7 – Illustration of temporal distortion: Three time series per class
(one class per line) for CBF & Gun_Point datasets

temporal distortions occur e.g. CBF & Gun_Point (as shown on Figure 1.7),
ED-NN will perform poorly compared to alignment method such as DTW
(nearly 15% error rate for ED-NN, whereas DTW-NN has a 0.3% error rate).
When orderig matters e.g. 50words where words were transformed in time
series & Two_Patterns (as shown on Figure 1.8) where the different classes
differs from the combinations of two patterns, the time series classifiers us-
ing a BoW representation will lead to less acurate results: BOSS and BoP
respectively have 30% and 46% error rate whereas both PROP and COTE
have less than 20% of errors. For datasets where only a small part of the
time series matters such as Gun_Point, the shapelet based algorithms will
lead to the highest classification rates (LTS has 100% good classification
whereas ED-NN and DTW-NN have around 91% of accuracy).

There is no time series classifiers that outperforms all others, however a
classifier choosen w.r.t. the dataset characteristics will often lead to higher
accuracy than a randomly selected classifier.

1.6 Model Selection and Evaluation

1.6.1 Metrics for Evaluating Time Series Classifiers Per-
formance

A wide range of metrics have been proposed, we only provide formulas
of the evaluation metrics used in this dissertation.

Definition 1.11 (Accuracy). The accuracy, which measures the performance
of a classifier, corresponds to the percentage of well classified data in the testing
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Figure 1.8 – Illustration of temporal order importance: Two_Patterns dataset
(Only one time series per class for readibility)

dataset and is also called classification rate. For Dtest = {(xi, yi)}Ni=1, where
instances from the test set are only used to compute the accuracy and not the
prediction:

Accuracy(f) =
| {i|(f(xi) = yi)}Ni=1 |

N
(1.26)

Definition 1.12 (Error Rate). The error rate, which corresponds to the per-
centage of misclassified instances, can be expressed as a function of the accu-
racy:

ER(f) = 1− Accuracy(f) (1.27)

1.6.2 UEA / UCR Database

The University of East Anglia & University of California Riverside (UEA
/ UCR) time series database [Bagnall et al., 2017; Chen et al., 2015] was
built in order to improve the quality of papers using time series data. There
are currently 85 datasets available in the UEA / UCR database, compared to
20 at the very beginning. Using all or a subset of them enables one to easily
evaluate the performance of an algorithm compared to other methods. The
UEA / UCR database does not aim at representing all real-life problems. It
provides however a large panel of problems, from very small datasets to
larger ones, see Table 1.4 for more details. UEA / UCR datasets represent

Bailly, Adeline. Classification de séries temporelles avec applications en télédétection - 2018



38 Chapter 1. Time Series Classification State-of-the-Art

From Up to
# of Classes 2 60

Time Series Length 20 More than 2500
Training Set Size Less than 20 8000

Test Set Size 20 8000

Table 1.4 – UEA / UCR Database in Numbers

a variety of problems from image outline classification to motion classifica-
tion via sensor reading classification, some datasets are also simulated ones
(i.e. they do not come from real data). Each dataset is divided into a train
set and a test set. Splitting into train / test sets and classifying on the same
set of data enables one to compare algorithm performances.

In the time series classification literature, the performance of algorithms
is often measured on a fixed set of problems that uses separate train and test
datasets, such as UEA / UCR database architecture. This database has been
used in a large amount of research papers on time series analysis, many
time series classification algorithms thus provide classification rates on UEA
/ UCR datasets. One may consider that a fixed database may not represents
all real-life tasks one may encountered thus does not enable one to check if a
classifier that works well on a specific database will generalize well on new
tasks. That is one the reason why an open call for new time series datasets
to fulfill the UCR / UEA database is still open.

The UEA / UCR database provides a large set of datasets with differ-
ent characteristics. Some of these characteristics are detailed in the paper
where the datasets were first introduced, however there is no paper that de-
tails characteristics for all the datasets. Datasets may be subject to temporal
shifts, temporal distortions, noise, outliers, or sensitive to the order of differ-
ent events, to abrupt changes, the amplitude taken by the time series values
can be important, only a subpart of the time series can be relevant for the
classification, etc. There is no classifier than can outperform all others on a
large variety of problems with such different characteristics. Each classifier
has advantages and drawbacks thus works better on dataset with specific
characteristics, a detailed listing of time series dataset characteristics would
enables one to better choose a classifier depending on the characteristics of
the considered dataset.

Another drawback of the UEA / UCR database is the lack of very large
datasets (in terms of number of time series or length). In real-life problems,
it is often possible to acquired a large number of time series leading to large
dataset (e.g. more than 10000 training time series). It has been shown
than the performance depends on the train set size thanks to experiments
on synthetic datasets: the larger the training set, the smaller the error rate
(e.g. in Wang et al. [2013b]). Providing very large real-life datasets might
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be difficult due to the lack of labels, however it is necessary as it can affect
the performance of some methods. Moreover some methods might require
more data for an optimal training and thus might be under-estimated on the
UEA / UCR datasets.

In Chapter 4, we use two remote sensing time series datasets that contain
many time series (500 time series per class) with few datapoints: the length
of the time series is 24. These time series have a high intra-class variability.
Moreover, time shifts and dilations occur in both datasets. These two remote
sensing datasets can be used to enlarge the variety of problems contained in
the UEA / UCR database.

1.7 Other challenging problems related to Time
Series Classification

Time series classification brings up a lots of challenges due to the speci-
ficities of time series data, however there are related tasks using time series
that are as much as challenging as TSC. In this section, we will briefly review
time series challenges that will not be studied in this thesis.

Anomaly Detection In order to detect anomaly in time series, we have
to find outlier points or abnormal subsequences relative to standard data,
i.e. to find patterns that do not match with the normal behavior of time
series. Anomaly detection in time series has many applications such as real-
time monitoring of sensors (e.g. to check patients’ health in hospital using
ECG) or resource usage (e.g. to track unplanned electricity consumption in
winter). Anomaly detection is thus an important topic that can prevent
critical situations. Anomaly detection methods can either be supervised,
semi-supervised or unsupervised. Supervised techniques can be seen as a
special case of binary classification where the labeled data are either normal
(0) or abnormal (1). In order to detect anomaly, a typical approach consists
to generate a model normal behavior of time series then to look for the
subseries / points that do not correspond to the model expectation. An
overview of different anomaly detection methods can be found in Chandola
et al. [2009]; Cheboli [2010].

Clustering Data clustering [Aghabozorgi et al., 2015; Everitt et al., 2009],
which can be referred to as data partitioning, corresponds to unsupervised
classification, it aims at dividing an unlabeled dataset into different homo-
geneous groups that share common charasteristics. Elements in the same
cluster are more similar (e.g. according to a distance measure) to each other
than those that belongs to other clusters. The definition of similarity and
the number of clusters have a high influence on clustering results, that is
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the reason why it should be chosen carefully. Cluster analysis can not be
considered as an automatic task, since results of clustering are required to
be interpreted, but more as a process extracting knowledge from data. This
process can be based on a multi-objective optimization problem in order
to obtain relevant and well-separated clusters, in that case the clustering
function should both minimize the intra-class variability and maximize the
inter-class variability. There are multiple ways and algorithms to separate
data into clusters, the most famous one is a centroid-based method called
k-means. Time series clustering can be easily applied using k-means on
codebook representation for example.

Domain Adaptation Domain adaptation problems arise when datasets
have different probability distributions. Instead of train and test sets, a
source and a target domains are used (Dsource and Dtarget). The main pur-
pose here is to transfer the knowledge learned from Dsource to Dtarget the
unknown domain. In classic supervised learning problems, it is assumed
that instances of Dtrain and instances of Dtest follow the same probability
distribution P. The goal is thus to learn a classification function f such that
it maximizes the accuracy on new unseen data following P. However for
domain adaptation problems, instances of Dsource (respectively instances of
Dtarget) follow the probability distribution PS (respectively PT ), where PS
and PT are not equal. The purpose is thus to learn f such that it maximizes
the accuracy on new unseen data following PT . f can be trained with in-
stances following PS only ; or from PS and PT (using labeled or unlabeled
instances). Domain Adaptation methods can either be supervised, semi-
supervised or unsupervised depending on the information available on the
instances of each domain. Time series domain adaptation problems have
been studied in Petitjean et al. [2011] where domain adaptation problem
stems from the fact that the time series are acquired at two different years.

Summary Time series data comes from many domains and have many ap-
plications. Many tasks can be solved using time series data such as anomaly
detection, clustering tasks, domain adaptation problems, early classification,
forecasting as well as classification. Time series data thus provide challeng-
ing problems to solve.
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As seen in Chapter 1, numerous approaches for time series classifica-
tion are based on feature extraction associated with a Bag-of-Words (BoW)
representation of these features. This can be easily explained by the fact
that there exists many possibilities for feature extraction in time series,
where some are based on symbolic representation (e.g. SAX) while others
rely on the neighborhood of keypoints (e.g. Scale-Invariant Feature Trans-
form (SIFT)). SIFT feature extraction framework has led to widely used
descriptors thanks to its efficiency and effectiveness in image classification.
Moreover, SIFT features are easily adaptable from 2D (for image) to 1D
features (for time series), making SIFT a reasonable choice for feature rep-
resentation of time series. Finally, the BoW representation has proved its
robustness to noise, its easiness of use as well as its capability to help build-
ing highly accurate methods thanks to its ability to capture both local and
global information.

In this chapter, we propose a new time series classification algorithm,
that builds on two well-known and powerful methods in computer vision:
local features which are extracted from time series using a SIFT-based ap-
proach, and a global representation of time series using these features which
is produced using the BoW technique.

2.1 Related Work

This section first introduces the SIFT feature extraction framework pro-
posed by [Lowe, 1999, 2004], then introduces key notions related to the
BoW technique.

2.1.1 Scale-Invariant Feature Transform

SIFT was first introduced by [Lowe, 1999, 2004] in the computer vi-
sion community for image matching task. In order to be effective, the fea-
ture transform should follow some useful characteristics such as: (a) Scale
Invariance, (b) Rotation Invariance, (c) Illumination Invariance, (d) View-
point Invariance. SIFT identify a large number of interest points in both lo-
cations and scales e.g. Figure 2.1. These keypoints are both distinctive and
invariant and can be found even if the point of view of the object changes.
The adaptation of SIFT framework from 2D to 1D requires some simplifica-
tion in particular there is no need for illumination and rotation invariances
for time series data. 1D SIFT only has to be scale and location invariant.

The overall 2D SIFT feature extraction framework can be divided into
several steps:

1. Scale space computation
2. Location of keypoints
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Figure 2.1 – SIFT – Keypoints Detection. Top image: 1128 detected keypoints
on a 512 × 512 pixels image. Bottom image: 519 detected keypoints on a
780× 350 pixels image (Generated using OpenSIFT Library).

Figure 2.2 – Match between two images, 161 matches (OpenSIFT Library)

Bailly, Adeline. Classification de séries temporelles avec applications en télédétection - 2018

http://github.com/robwhess/opensift
http://github.com/robwhess/opensift


46 Chapter 2. TSC based on Local Features Representation

3. Orientation assignment (not relevant for time series data)

4. Construction of the keypoint descriptors

Scale Space Computation The first step is to compute the scale space. To
efficiently find the key locations in images, Lowe [1999] proposes to use the
Difference-of-Gaussians (DoG) function to detect scale-space extrema in the
scale space. This can be easily done by computing a pyramid of smoothed,
convoluted images.

Let L(x, y, σ) be the convolution (∗) of an image I(x, y) with a Gaussian
function G(x, y, σ) of width σ

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (2.1)

where G(x, y, σ) is equal to

G(x, y, σ) =
1

2π σ2
e−(x

2+y2)/2σ2
. (2.2)

The DoG function is defined as

D(x, y, σ) = (G(x, y, kscσ)−G(x, y, σ)) ∗ I(x, y) (2.3)

= L(x, y, kscσ)− L(x, y, σ), (2.4)

where ksc is a parameter of the method that controls the scale ratio between
two consecutive scales. The DoG function is particularly efficient to com-
pute: an image substraction is applied on convoluted images. Moreover, the
detected extrema have stable location accross images.

Location of Keypoints Keypoints correspond to DoG extrema, selection
of keypoints based on the extrema of a scale-space representation is a reli-
able method to detect events that persist over large changes in scale [Miko-
lajczyk, 2002]. In order to locate them on the scale space, each pixel is
compared with its neighbors. For images, each pixel has 8 neighbors on the
same level and 9 on the above and below levels. If a pixel is a maximum
or a minimum amongst all its neighbors then it is selected as a key loca-
tion. Since most of the pixels are eliminated within a few comparisons, the
detection of keypoints has a small cost. Keypoints detection is illustrated
in Figure 2.1, where each arrow represents a keypoint and its main orienta-
tion.

Construction of the Keypoint Descriptors Keypoint descriptors corre-
spond to local gradients. They are measured at the selected scale around
each keypoint. Their construction ensures stable location, scale and orien-
tation for each keypoints, as well as robustness against small local shifts.
Figure 2.3 shows a 2 × 2 descriptors computed from a 8 × 8 sample ar-
ray where the circle represents a Gaussian filter and where the length of
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Figure 2.3 – SIFT – Keypoint Description [Lowe, 2004]

each arrow corresponds to the sum of the gradient magnitudes in the region
around. For efficiency, Lowe [1999] proposes to use precomputed gradients
from the pyramid that were used for key locations detection. Neighbors
are separated into different regions then each region are represented by a
histogram of nb bins of size a. Keypoint descriptors are then used to gen-
erate codewords that will form a codebook. The codewords can be seen as
approximations of the keypoint descriptors.

Dense Extraction Dense SIFT has been proposed as an extension to the
SIFT framework. The idea is to create a codebook which is not based on key
location but based on dense sampling. Dense sampling extracts keypoints at
regular positions and scales in both location and scale instead of scale space
extrema. Thus dense sampling can be seen as applying a regular grid on an
image and in our case repeating this process over multiple scale. Jurie and
Triggs [2005]; Wang et al. [2009] showed that dense representation con-
sistently outperforms equivalent keypoint representation. Liu et al. [2008]
were the first to propose a Dense SIFT version for image alignment and reg-
istration, later Vedaldi and Fulkerson [2010] proposed a fast algorithm for
the computation of a dense set of SIFT descriptors.

Dense sampling outperforms equivalent keypoint representation, how-
ever it also produces a very large number of features, which slows down the
overall computation since features need to be computed and compared.

2.1.2 Bag-of-Words

The Bag-of-Words model consists in representing documents using a his-
togram of word occurrences. It is a very common technique in text mining,
information retrieval and content-based image retrieval because of its sim-
plicity and performance. The latter can be explained by the fact that the
BoW representation is able to capture both local and global structure sim-
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ilarity information, despite the fact that the location of words is ignored.
Another advantage of the BoW representation is its robustness to noise.
However since it quantizes words, it might lead to information loss. For
large images, it is often more appropriate to consider the similarity be-
tween data based on higher-level structures such as histogram or feature-
based representations instead of raw data. For images, classifiers using
BoW representation are based on the following operations: first convert-
ing images into words, then computing a histogram of words occurrences
and finally building a classifier upon this histogram representation. Stan-
dard techniques such as Random Forests, Support Vector Machines (SVM)
or k-Nearest-Neighbors (k-NN) can be used for the classification step.

BoW normalization Dense sampling on multiple Gaussian-filtered data
provides considerable information to process. It also tends to generate
words with little informative power, as stop words do in text mining ap-
plications. In order to reduce the impact of those words, there exists several
normalization schemes for BoW, such as Signed Square Root normalization
(SSR) and Term Frequency - Inverse Document Frequency normalization
(TF-IDF). In order to obtain the SSR-normalized representation, the sign
square root function is applied to each element z of an unnormalized BoW
representation (sign(z) ·

√
|z| ). TF-IDF is a weighting method that measures

how important is a term comparatively to the full term collection. TF-IDF
normalization can be divided into two steps: first increase the weight term
proportionally to the frequency of the term in the document, then weight
down the frequent terms and scale up the rare ones from the full term col-
lection. Both SSR and TF-IDF normalizations are commonly used in image
retrieval and classification based on histograms such as in [Jégou and Chum,
2012; Jégou et al., 2010; Perronnin et al., 2010; Sivic and Zisserman, 2003].

Jégou et al. [2010] and Perronnin et al. [2010] showed that reducing
the influence of frequent codewords before L2 normalization could be prof-
itable. They apply a power α ∈ [0, 1] on their global representation. SSR
normalization corresponds to the case where α = 0.5. TF-IDF normalization
also tends to lower the influence of frequent codewords. To do so, docu-
ment frequency of words is computed as the number of training time series
in which the word occurs. BoW are then updated by diving each component
by its associated document frequency. In the following, SSR and TF-IDF are
both applied before L2 normalization.
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2.2 (Dense) Bag-of-Temporal-SIFT-Words Algo-
rithm

In the following, Dense Bag-of-Temporal-SIFT-Words (D-BoTSW) corre-
sponds to the dense keypoints extraction, whereas BoTSW corresponds to
the scale space extrema detection. D-BoTSW can be seen as the extended
and improved version of BoTSW.

Both methods are based on three main steps: (a) extraction of keypoints
in time series, (b) description of these keypoints through gradient magni-
tude at a specific scale, (c) BoW representation of time series, where words
correspond to quantized version of the description of keypoints. These steps
are depicted in Figure 2.6 (dense version) and detailed below.

The Bag-of-Patterns [Lin et al., 2012] and the BOSS [Schäfer, 2015b]
algorithms are two works close to D-BoTSW. Indeed, they both extract fea-
tures that are used in a histogram representation. The main difference with
D-BoTSW is that the feature are discrete for both BoP and BOSS, whereas
descriptive features in D-BoTSW are real-valued.

2.2.1 Keypoints extraction in time series

The first step of our method consists in extracting keypoints in time se-
ries. Two approaches are described here: the first one is based on scale-
space extrema detection (Bailly et al. [2015]) and the second one proposes
a dense extraction scheme (Bailly et al. [2016a,b]).

2.2.1.1 Scale-space extrema detection

The 2D SIFT framework is transformed to fit 1D time series data. Key-
points in time series can be detected as local extrema in terms of both scale
and (temporal) location. These keypoints are important sub-part of time
series, since they correspond to extrema at a specific scale. They are often
detected near time series extrema, as shown on Figure 2.4.

The scale-space extrema are identified using a DoG function, and form a
list of scale-invariant keypoints. Let L(t, σ) be the convolution (∗) of a time
series S(t) with a Gaussian function G(t, σ) of width σ:

L(t, σ) = S(t) ∗G(t, σ) (2.5)

where G(t, σ) is defined as

G(t, σ) =
1√
2π σ

e−t
2/2σ2

. (2.6)
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Figure 2.4 – BoTSW – Scale-Space Extrema Detection: A Time Series (top
line) and its DoG representation (bottom line). The vertical lines represent
the detected keypoints.

Figure 2.5 – Detection of extrema using Difference-of-Gaussians function.
On the left, the considered point (in red) is not an extrema compared to
its neighbors (in green). On the right, the considered point is the minima
amongst its neighborhood, it is thus a selected keypoint. The different scales
are represented by the grey gradient.
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Lowe [1999] proposes the Difference-of-Gaussians (DoG) function to detect
scale-space extrema in images. Adapted to time series, a DoG function is
obtained by subtracting two time series filtered at consecutive scales:

D(t, σ) = L(t, kscσ)− L(t, σ), (2.7)

where ksc is a parameter of the method that controls the scale ratio between
two consecutive scales.

Keypoints are then detected at time index t in scale j if they correspond
to extrema of D(t, ksc

jσ0) in both time and scale, where σ0 is the bandwidth
of the Gaussian corresponding to the reference scale. At a given scale, each
point has two neighbors: one at the previous and one at the following time
instant. Points also have six more neighbors: three one scale up and three
others one scale down (at the previous, same and next time instants), lead-
ing to a total of eight neighbors, as shown in Figure 2.5. If a point is higher
(or lower) than all of its neighbors, it is considered as an extremum in the
scale-space domain and hence a keypoint. Figure 2.4 shows an example of
the scale-space extrema detection, where keypoints are detected near local
extrema.

2.2.1.2 Dense extraction

Previous works have shown that better classification could be achieved
by using densely extracted local features [Jurie and Triggs, 2005; Wang
et al., 2009] at regular step. In this section, we present the adaptation of
this setup to our BoTSW scheme. Keypoints selected with dense extraction
no longer correspond to extrema but are rather systematically extracted at
all scales every τstep time steps on Gaussian-filtered time series L(·, ksc

jσ0).
Unlike scale-space extrema detection, regular sampling guarantees a

minimal amount of keypoints per time series. This is especially crucial for
smooth time series from which very few keypoints are detected when using
scale-space extrema detection. In all cases, description of these keypoints
covers the description of scale-space extrema if τstep is small enough, which
leads to a more robust representation. A dense extraction scheme is repre-
sented in Figure 2.6.

2.2.2 Description of the extracted keypoints

Next step in our process is the description of keypoints. A keypoint at
time index t and scale j is described by gradient magnitudes of L(·, ksc

jσ0)
around t. To do so, nb blocks of size a are selected around the keypoint.
Gradients are computed at each point of each block and weighted using a
Gaussian window of standard deviation a×nb

2 so that points that are farther
in time from the detected keypoint have lower influence. Then, each block
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is described by two values: the sum of positive gradients and the sum of
negative gradients. Resulting feature vector is hence of dimension 2× nb.

2.2.3 (Dense) Bag-of-Temporal-SIFT-Words for Time Se-
ries Classification

Training features are used to learn a codebook of k words, where we
apply a k-means clustering on all the features extracted from the whole set
of training time series. Words represent different local behaviors in time
series. Then, for a given time series, each feature vector is assigned the
closest word in the codebook. The number of occurrences of each word in
a time series is computed. (D-)BoTSW representation of a time series is the
normalized histogram of word occurrences.

2.2.3.1 Bag-of-Words normalization

It has been shown that Bag-of-Words normalizations on dense sampling
lead to higher accuracy of the model. Indeed the normalizations reduce the
impact of words with little informative power, leading to more stable repre-
sentation. We show in the experimental part that using BoW normalizations
helps improving the accuracy of D-BoTSW. The normalized histograms fi-
nally feed a classifier (Linear SVM) that learns how to discriminate classes
from this BoW representation.

2.2.3.2 Complexity study

The process of computing (D-)BoTSW representation for a time series
has linear time complexity in the number of features extracted. When us-
ing scale space extrema detection (BoTSW), this number mainly depends on
the data. For some datasets we might detect very few features, whereas for
other datasets we extract much more features. It is thus complicated to eval-
uate the complexity of BoTSW. When using dense extraction (D-BoTSW),
this number depends on the length of the time series. For a time series of
length n, features will be computed at bn/τstepc different time instants. At
each time instant, features will be computed at all scales and the number of
scales is

⌊
log(n/8σ0)

log ksc

⌋
. Finally, time complexity of computing D-BoTSW for a

time series of length n is in O (n log n).

2.2.3.3 Pros and cons of (D-)BoTSW

(D-)BoTSW is based on two powerful techniques which are the SIFT
features extraction framework and the Bag-of-Words representation, it thus
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inherits advantages and drawbacks from both SIFT features and BoW rep-
resentation.

SIFT framework is effective, efficient and provides features that are ro-
bust and invariant. Yet for smoothed data with the scale space extrema
detection, few key locations will be detected leading to poorly represented
data. Dense sampling solves this problem by extracting keypoints at regu-
lar locations, which guarantees a minimal amount of keypoints. However
since the number of keypoints grows with the time series length and the
time step, dense sampling can lead to a very large number of features for
large datasets, which requires larger storage space, and which slows down
the time computation for the codewords generation step.

The Bag-of-Words representation has many advantages such as its ro-
bustness to noise and its ability to handle temporal shifts. Nevertheless, the
BoW representation causes information loss during the quantization step. In
most cases, this information loss will have no impact, however in datasets
that contain very similar classes the information loss might lead to simi-
lar BoW representation for distinct classes (thus lead to poor performance).
Another facet to take into account is that BoW representation ignores the
temporal order of words. For datasets where ordering of events matter, it
is adviced not to use a time series classification algorithm using a BoW rep-
resentation such as (D-)BoTSW. In other to tackle this ordering issue, we
[Tavenard et al., 2017] use temporal kernels between feature sets ; this pa-
per can be seen as an extension of D-BoTSW but will not be detailed in this
manuscript.

D-BoTSW longest step corresponds to the k-means learning process and
the fitting of the linear SVM classifier, since dense extraction, features de-
scription and transformation to BoW representation can be done efficiently ;
D-BoTSW is thus able to fastly classify new data.

Finally, it is possible to visualized the model generated by D-BoTSW. This
model consists of the descriptive features and the histogram representation.
They can be used together in order to see the most important features for
each class and thus offer some interpretability of the results. An illustration
of this interpretability is provided in Chapter 4.

2.3 Experiments on UCR/UEA datasets

In this section, we investigate the impact of both dense extraction of
keypoints and normalizations of the Bag-of-Words on classification perfor-
mance. We then compare our results to the ones obtained by 9 relevant
baselines.

Experiments are conducted on the 85 currently available datasets from
the UEA / UCR repository [Bagnall et al., 2017].
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For the sake of reproducibility, C++ source code used for (D-)BoTSW in
these experiments is made available for download 1, and all raw numbers
are available in Appendix A. To provide illustrative timings for our method
(D-BoTSW), we ran it on a personal computer (laptop with 2.70GHz CPU
and 16 GB RAM), for a given set of parameters, using dataset Cricket_X [Bag-
nall et al., 2017] that is made of 390 training time series and 390 test ones.
Each time series in the dataset is of length 300. Extraction and description
of dense keypoints take around 2 seconds for all time series in the dataset.
Then, 75 seconds are necessary to learn a k-means and fit a linear SVM
classifier using training data only. Finally, classification of all D-BoTSW cor-
responding to test time series takes less than 1 second. Note that the time
computation could be reduced by sub-sampling the amount of features to
learn the codewords in the k-means.

2.3.1 Experimental setup

Parameters a, nb, k and CSVM of (D-)BoTSW are learned by Cross-Vali-
dation (CV), whereas we set σ0 = 1.6 and ksc = 21/3, as these values have
shown to produce stable results [Lowe, 2004]. Parameters a, nb, k and CSVM
vary inside the following sets: {4, 8}, {4, 8, 12, 16, 20},

{
2i,∀i ∈ {5..10}

}
and

{1, 10, 100} respectively. A linear SVM is used to classify time series repre-
sented as (D-)BoTSW. For our approach, the best sets (in terms of accuracy)
of (a, nb, k, CSVM) parameters are selected by performing cross-validation on
the training set. Due to the heterogeneity of the datasets, leave-one-out
cross-validation is performed on datasets where the training set contains
less than 300 time series, and 10-fold cross-validation is used otherwise.
These best sets of parameters are then used to build the classifier on the
training set and evaluate it on the test set. For datasets with little train-
ing data, it is likely that several sets of parameters yield best performance
during the cross-validation process. For example, when using DiatomSiz-
eReduction dataset, BoTSW has 150 out of 180 parameter sets yielding best
performance, while there are 42 such sets for D-BoTSW with SSR normal-
ization. In both cases, the number of best parameter sets is too high to allow
a fair parameter selection. When this happens, we keep all parameter sets
with best performance at training and perform a majority voting between
their outputs at test time.

Parameters a and nb both influence the descriptions of the keypoints;
different datasets will required different settings of these parameters thus
their optimal values should be chosen carefully for each dataset in order the
description of keypoints to fit the shape of the data. If the data contains
sharp peaks, the size of the neighborhood on which features are computed
(equal to a × nb) should be small. On the contrary, if it contains smooth

1. http://github.com/a-bailly/dbotsw
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peaks, descriptions should take more points into account. The number k
of codewords needs to be large enough to represent precisely the different
features. However, it needs to be small enough in order to avoid overfitting
(especially for datasets with only few training time series). We consequently
allow a large range of values for k to better take into account the hetero-
geneity of the UEA / UCR database.

For all experiments with dense extraction, we set τstep = 1, and we ex-
tract keypoints at all scales. Using such a value for τstep enables one to have
a sufficient number of keypoints even for small time series, and guarantees
that keypoint neighborhoods overlap so that all subparts of the time series
are described.

2.3.2 Comparison of Dense Extraction and Scale-Space
Extrema Detection

Figure 2.7 shows a pairwise comparison of error rates between BoTSW
and its dense counterpart D-BoTSW for all datasets in the UEA / UCR repos-
itory. A point on the diagonal means that methods obtain equal error rates
(•). A point above the diagonal illustrates a dataset for which D-BoTSW
outperforms BoTSW (N), whereas a point below the diagonal illustrates a
dataset for which D-BoTSW is outperformed by BoTSW (H). The further a
point is from the diagonal, the larger the difference is. Win/Tie/Lose scores
is given in the bottom-right corner of the figure. D-BoTSW reaches bet-
ter performance than BoTSW on 66 datasets, equivalent performance on 6
datasets and worse on 13 datasets. One-sided Wilcoxon signed rank test is
also used to compare the methods, if the p-value is less than the 5% sig-
nificance level, one of the method is considered as significantly better than
the other one, e.g. Figure 2.7 shows that D-BOTSW (L2) is significantly
better than BoTSW (L2) (p < 5%). The dense sampling version, D-BoTSW,
improves classification rate on a large majority of datasets compared to the
scale space extrema detection version. In the following, we show how to
further improve these results thanks to BoW normalization.

Experiments have shown that scale space extrema detection did not al-
ways provide keypoints on time series. It happens in Adiac dataset where
BoTSW has an error rate of 51.9% and it drops down to a 25.1% error rate
using the dense version D-BoTSW thanks to additional keypoints.

2.3.3 Impact on Bag-of-Words normalization

The BoW representation was L2-normalized for BoTSW, we keep this
normalization for D-BoTSW. Since Jégou et al. [2010] and Perronnin et al.
[2010] showed that reducing the influence of frequent codewords before L2
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Figure 2.7 – Error rates of BoTSW compared to D-BoTSW.
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Figure 2.8 – Error rates of D-BoTSW with and without normalization.
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Figure 2.9 – Per-dimension energy of D-BoTSW vectors extracted from
dataset ShapesAll. The same codebook is used for all normalization schemes
so that dimensions are comparable across all three sub-figures.

normalization could be profitable, we study the impact of both the Signed
Square Root (SSR) and the Inverse Document Frequency (IDF) normaliza-
tions prior the L2 normalization for our codebook.

As can be seen in Figure 2.8, the SSR normalization improves classifi-
cation performance, the IDF however does not improve it. Lowering the
influence of largely-represented codewords using SSR normalization hence
leads to more accurate classification with D-BoTSW. SSR normalization sig-
nificantly improves classification accuracy. This is backed by Figure 2.9,
which shows that SSR normalization tends to spread energy across BoW
dimensions, leading to a more balanced representation than other two nor-
malization schemes.

2.3.4 Empirical comparison with State-of-the-Art techniques

In the following, we will consider a SSR-normalized D-BoTSW, since
this setup is the one providing the best classification performance. We now
compare our D-BoTSW to the most popular state-of-the-art methods for time
series classification. All time series classification algorithms used here are
detailed in Chapter 1. The UEA / UCR repository provides error rates for
the 85 datasets with Euclidean distance 1-NN (ED-NN) and Dynamic Time
Warping 1-NN (DTW-NN) [Ratanamahatana and Keogh, 2004]. Numerical
performance values on UEA / UCR database are available in Appendix A. In
order to check if a method is significantly better than another, we provide
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D-BoTSW is significantly better than BoP (p = 0.000)
D-BoTSW is significantly better than DTW-NN (p = 0.000)
D-BoTSW is significantly better than ED-NN (p = 0.000)
D-BoTSW is significantly better than LTS (p = 0.000)
D-BoTSW is significantly better than SAXVSM (p = 0.000)
D-BoTSW is significantly better than TSBF (p = 0.005)

D-BoTSW is not significantly better than PROP (p = 0.218)
D-BoTSW is not significantly better than SMTS (p = 0.173)

BOSS is not significantly better than D-BoTSW (p = 0.139)

COTE is significantly better than D-BoTSW (p = 0.000)

Table 2.1 – D-BoTSW – One sided Wilcoxon Test p-values. If the p-value is
less than the 5% significance level, the method is considered significantly
better than the one it is compared to.

the p-values of the one-sided Wilcoxon signed rank test in Table 2.1.
We use published error rates on 85 datasets from [Bagnall et al., 2017]

for the following time series classification algorithms: BoP [Lin et al., 2012],
BOSS [Schäfer, 2015b], COTE [Bagnall et al., 2015], LTS [Grabocka et al.,
2014], PROP [Lines and Bagnall, 2014], SAX-VSM [Senin and Malinchik,
2013] and TSBF [Baydogan et al., 2013] ; as well as published error rates
for the SMTS method (45 datasets) [Baydogan and Runger, 2015].

2.3.4.1 On Standalone Classifiers

Figures 2.10 & 2.11 show that D-BoTSW performs better than 1NN com-
bined with ED (ED-NN) or DTW (DTW-NN), BoP, LTS SAX-VSM and TSBF ;
and that this difference is statistically significant. Indeed the one-sided
Wilcoxon signed rank test has a p-value of p < 5% for all the methods
mentioned above. D-BoTSW also performs better than SMTS, however the
difference is not statistically significance (p = 0.173). We can also notice
from Figure 2.11 that BOSS and D-BoTSW have comparable Win/Tie/Lose
performance. Note that, if D-BoTSW is not significantly better than BOSS
(p = 0.862), the reverse is also true (p = 0.139).

It is striking to realize that D-BoTSW not only improves classification ac-
curacy, but might improve it considerably. Error rate on Shapelet Sim dataset
drops from 0.495 (ED-NN) and 0.348 (DTW-NN) to 0 (D-BoTSW), for exam-
ple. Pairwise comparisons of methods show that D-BoTSW is significantly
better than almost all state-of-the-art standalone classifiers (i.e. better than
7 out of 8 tested baselines).
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Figure 2.12 – Error rates for D-BoTSW (SSR+L2) versus baseline ensemble
classifiers (PROP and COTE).

2.3.4.2 With Ensemble Classifiers

In Figure 2.12, we compare our standalone classifier D-BoTSW to two
ensemble classifiers: PROP and COTE. PROP and COTE are considered to
be the best time series classifiers (in terms of performance). Wilcoxon tests
show that COTE outperforms D-BoTSW (p = 0.0 < 5%). However neither
D-BoTSW nor PROP is significantly better than the other. It is more than
satisfactory to obtain a higher classification rates on more datasets than
PROP, with a Win/Tie/Lose of 48/2/36 in favor of D-BoTSW.

Further work based on a more precise representation than the BoW one
could lead to a more competitive algorithm, and might even be significantly
better than PROP. Moreover, ensemble classifiers can benefit from the design
of new standalone classifiers such as D-BoTSW.
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Figure 2.13 – Mean profiles for OliveOil and Wine datasets per class

2.3.5 Discussion

We noticed that D-BoTSW performs especially well in the presence of
sufficiently long time series. On the contrary, when faced with short training
time series e.g. ItalyPowerDemand (of length 24), it is more likely (though
still a minority) that non-parametric methods such as DTW-NN or ED-NN
are competitive against D-BoTSW. This can be easily explained by the fact
that D-BoTSW rely on the notion of neighborhood and on the number of
keypoints per time series, which are related with a time series length.

On one hand, D-BoTSW has proven its robustness to noise e.g. on simu-
lated UEA / UCR datasets such as CBF, synthetic_control and Two_Patterns.
On the other hand, D-BoTSW limitations can be seen on datasets where it
is difficult to distinguish the different classes such as Wine (2 classes) and
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OliveOil (4 classes) as shown on Figure 2.13. Concerning the dense sam-
pling of D-BoTSW, some experiments with very large train set were not able
to run on a personal computer due to the amount of space required by the
generated features, using a computing cluster with more memory fixed this
problem.

D-BoTSW exhibits high accuracy and high performance on a large set
of datasets. These experiments, conducted on a wide variety of time se-
ries datasets, show that D-BoTSW significantly outperforms most considered
standalone classifiers.
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Shapelet-based methods, which were first introduced by Ye and Keogh
[2009], are a family of time series classification algorithms relying on lo-
cal shape-based similarity. Amongst them, the Shapelets Transform [Lines
et al., 2012] and the Learning Time Series Shapelets [Grabocka et al., 2014]
methods are the most competitive w.r.t. the state-of-the-art time series clas-
sification baselines.

Convolutional Neural Networks (CNNs) are a family of neural networks
that exploits the local spatial correlation present in natural images. Szegedy
et al. [2014] showed that neural networks can be fooled by adversarial ex-
amples which correspond to close-to-original synthetic data for which the
network fails to predict the right class label. Szegedy et al. [2014] and
Goodfellow et al. [2015] both proposed a methodology that uses adversarial
examples in order to generate more robust classifiers. Indeed, one property
of adversarial examples is that they can provide an additional regularization
benefit.

In this chapter, we propose an enhancement of the Learning Time Series
Shapelets algorithm [Grabocka et al., 2014] based on the insertion of adver-
sarial time series in the training procedure. We first introduce the different
key concepts we built on, then show how they can be related to each other.
Finally, we present our proposed method first theoretically then experimen-
tally.

3.1 Related Work

Our approach for time series classification , which is named Adversarially-
Built Shapelets (ABS), builds on three techniques from machine learning
and deep learning communities. The classifier Learning Time series Shapelets
(LTS) proposed by [Grabocka et al., 2014] learns time series shapelets that
will be used to predict the class labels of new data. In order to improve
this method, we (a) make the link between the LTS algorithm and CNNs
[Krizhevsky et al., 2012; LeCun et al., 1995], (b) use a regularization method
specific to CNNs (i.e. adversarial training [Goodfellow et al., 2015; Szegedy
et al., 2014]), (c) show that this regularization also works for the LTS model.

3.1.1 On Learning Time Series Shapelets

Details about time series shapelets baselines are available in Chapter 1.
We focus here on the LTS algorithm [Grabocka et al., 2014], which learns
the shapelets instead of looking for them.

LTS is based on logistic regression where both the weights of the logistic
regression and the shapelet coefficients are learned and updated through
the iterations of a gradient descent process. The process can be seen as the
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following: at each iteration, the time series is represented by a feature vector
corresponding to the similarity between the time series and the different
shapelets. Then, a logistic regression is applied in order to get the prediction
for the time series. The LTS method learns the K best shapelets.

More precisely, it starts by initializing the shapelets to K-means clus-
ter centers of all the sub-series of length L extracted from the training time
series. Then, the shapelets are updated (learned) by minimizing a classifica-
tion loss function through the iterations of a gradient descent optimization
process. The idea is to jointly learn both the weights of the logistic re-
gression w and the shapelets S that minimize the following classification
objective function F :

argmin
S,w

F(S,w) = argmin
S,w

N∑

i=1

L(yi,wMi + b) (3.1)

where
• L is the classification loss function, defined as

L(yi,wMi+b) = −yi · ln
(
σ(wMi+b)

)
+(1−yi) · ln

(
1−σ(wMi+b)

)
(3.2)

• M is the N ×K matrix representing the distances between a dataset
X = {xi}Ni=1 and a set of K shapelets S = {sk}Kk=1. The dissimilarity
measure between the i-th time series xi and the k-th shapelet sk is
computed as

Mi,k = d(xi, sk) = min
j=1,...,J

1

L

L∑

`=1

(xi,j+`−1 − sk,`)2 (3.3)

where d(xi, sk) corresponds to the minimal distance between a time
series xi (of length n) and a shapelet sk (of length L) and J = n−L+1.

For a specific time series xi, the objective function is defined as

Fi = L(θ|xi, yi) +
λW
N

K∑

k=1

w2
k (3.4)

with θ = (w, b).
This approach offers a significant improvement in term of accuracy com-

pared to approaches searching shapelets. It is also the first shapelet-based
method which actually learns the shapelets instead of searching them.

3.1.2 On Convolutional Neural Networks

3.1.2.1 Neural Networks Classifiers

Also called artificial neural networks, they are systems based on highly
connected nodes (neurons) often organized in layers and are inspired by
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Figure 3.1 – Schematization of a Multi-Layer Perceptron with two hidden
layers
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Figure 3.2 – Artificial Neural Network – Zoom on a neuron

biological neural networks (see Figure 3.1 for an example of a possible ar-
tificial neural network’s architecture: Multi-Layer Perceptron). There exists
several types of architecture of neural networks, we only detail the one used
in this manuscript: the CNN model. A neuron is the elementary unit of a
artificial neural network, it is connected to input sources (such as other
neurons) and returns a new information as output. Each neuron of a layer
performs a transformation on its inputs (α1, . . . , αK). Each input is associ-
ated with a weight coefficient and the neuron considers the weighted sum
of its inputs: b +

∑K
k=1wkαk (with b the bias coefficient) as the input of an

activation function g. The output of a neuron will thus be (see Figure 3.2)

a = g(b+
K∑

k=1

wkαk) (3.5)

The activation function g is usually a non-linear function, such as the fol-
lowing sigmoid function

g(z) = σ(z) =
1

1− e−z , (3.6)
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Figure 3.3 – Convolutional Neural Network – Image Convolution

or the Rectified Linear Unit (ReLU) function

g(z) = max(0, z). (3.7)

The activation functions have different characteristics and properties, e.g. the
sigmoid function is differentiable which can be useful. Both ReLu and sig-
moid function gives intermediate values, it is not always the case (e.g. the
binary step activation function that returns 0 for z < 0 and 1 otherwise).

Once the model is learned, the network is able to perform fast clas-
sification. Neural networks perform well on a wide variety of problems
(e.g. images, speech, and time series classification [LeCun et al., 1995])
and can thus be found in many domains. However, due to their complexity
(e.g. number of parameters, layers) they are often seen and used as black
boxes; e.g. AlexNet [Krizhevsky et al., 2012] has 60 millions of parameters,
it is thus nearly impossible to determine the most discriminative features by
studying the weights of multiple layers.

Neural networks exist in many form such as Convolutional Neural Net-
works (CNNs), which have been successfully applied for image recognition
and classification. These networks are invariant to small transformations,
distortions as well as translations. Each CNN is built on a set of three types
of layers: (a) Convolution, (b) Pooling, (c) Fully Connected.

3.1.2.2 Convolution Layer

The primary purpose of convolution is to extract features from the input
image using different filters. The number of filters as well as their size are
defined by the user.

Let us consider a grayscale image represented by a 2D matrix of pixels.
In order to obtain the features of an image, we apply a convolution between
the image and a smaller matrix: the filter. The result obtained by the con-
volution of the image with the filter is called feature map. Since the image
and the filter have different sizes, we extract sub-regions of the image us-
ing the sliding window technique, as shown on Figure 3.3. Sub-regions of
the image are considered, CNNs thus exploit the spatial relationship among
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Image

↑
Convolution

Feature Maps

↑
Pooling

↑
Fully Connected

Predictions

Figure 3.4 – Convolutional Neural Network overview, minimal example with
three filters, five classes, and one layer of each type (convolution, pooling,
fully connected).

neighboring pixels of an image. Each convolution provides one feature that
corresponds to the dot product between the filter and the sub-region (on
which we apply an activation function g). The convolution thus preserves
the spatial relationship between neighboring pixels by learning features us-
ing sub-regions of the image.

Different filters will have different effects since they detect different
characteristics from an image. Some filters can blur the visual aspect of
an image (e.g. gaussian filter), whereas different filters will sharpen it or
detect its edges. Different filters will thus result in different feature maps.
The filters will be learned by the CNN during the training process.

3.1.2.3 Pooling Layer

Pooling is also referred to as subsampling since it reduces the dimension-
ality of each feature map in order to retain the most important information.
There exists different types of pooling: max, average, min, etc, that respec-
tively takes the larger, the average, the smaller feature value amongst the
considered sub-region of the feature map. The pooling operation has sev-
eral benefits, such as reducing the number of parameters of the network and
making the model more robust (e.g. invariant to small deformations).

3.1.2.4 Fully Connected Layer

Fully connected layers are used to predict the class label of an input im-
age, which convolution and pooling layers can not do. There is thus at least
one fully connected layer at the end of a CNN to perform the classification.
Fully connected layers join each neurons from its layer to every neurons
from the previous layer, in order to use features generated by convolution
and pooling layers to classify the input data. The predictions correspond
to probabilities of belonging to a specific class, thus the sum of all proba-
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Figure 3.5 – Examples of Adversarial Image. From left to right: an original
image I, a perturbation η and its adversarial image Ĩ = I + η. On the first
line, the image originally classified as a panda (with 60% level confidence) is
slightly perturbed then labeled by the same network as some monkey (with
99% level confidence) [Goodfellow et al., 2015]. The second line shows an
image originally classified as a kitten and with an adversarial peer labeled
as a goldfish by the same network 1.

bilities in the output layer will be one. Finally, the network assigns to the
input image the class that has the highest probability among all possible
categories.

On Figure 3.4, we can see an input image processed by a CNN which has
one convolutional layer with three filters, followed by a pooling layer, and
where the network has to choose between five classes.

3.1.3 On Adversarial Examples

Szegedy et al. [2014] showed that applying a visually imperceptible per-
turbation on an image could cause a neural network (and several other ma-
chine learning models) to misclassify an image, which is correctly classified
without the perturbation, as illustrated on Figure 3.5. This perturbed image
is referred to as an adversarial example.

Deep neural networks have retained a lot of attention due to their effi-
ciency and high performance on classification tasks. It could be expected
from such networks to be robust to small changes of their input. However, a
perturbation can be applied on an image in order to fool the network. This
perturbation can be generated using a deterministic process that maximizes

1. From Andrej Karpathy’s blog: http://karpathy.github.io/2015/03/30/

breaking-convnets/
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the prediction error of the network.
Let fN be a neural network such that it takes a n × ` image I as input

and outputs a class label amongst m possible categories,

fN : Rn×` −→ {1, . . . ,m}.
To find an adversarial image for the image I using a n × ` perturbation η,
the idea is to minimize ‖η‖2 such that the adversarial image is misclassified:
fN (I + η) 6= fN (I). As long as ‖η‖∞ < ε, with ε sufficiently small for the
perturbation to be imperceptible, we expect the classifier to predict the same
class label for both I and Ĩ.

The existence of adversarial examples is due to the fact that deep neu-
ral networks are not smooth classifiers i.e. classifiers with smooth decision
boundaries. As adversarial examples are often shared by different networks,
Goodfellow et al. [2015] show that they correspond to low-probability pock-
ets in the decision space and are caused by linear behavior in high dimen-
sional spaces. Informally, adversarial examples are improbable data. How-
ever, they expose some important flaws in the model and more particularly
in how the model makes its predictions. These low-probability pockets are
of particular interest for our purpose as they can help regularize the model,
i.e. build more robust model, thanks to the generation of adversarial time
series.

Adversarial training consists in adding continuously generated adversar-
ial examples into the original training set at each iteration during the train-
ing step. At the beginning of each iteration, adversarial examples are gen-
erated using the current model, then the weights of the model are updated
using both original training data and the corresponding adversarial data.
At each iteration, new adversarial examples are thus computed. Szegedy
et al. [2014] and Goodfellow et al. [2015] proved that adversarial training
provides an additional regularization benefit to the classifier, resulting in a
reduction of the vulnerability of the model to adversarial examples and in a
regularization of the model. Goodfellow et al. [2015] proposed a fast way
to generate adversarial examples, making adversarial training feasible: the
fast gradient sign method.

Let us consider an image I, its label yI and its adversarial peer Ĩ = I+η.
Let θ be the set of parameters of the model and J(θ, I, yI) the adversarial
objective function, i.e. the cost used to train the neural network. The model
will compute the dot product between this adversarial image Ĩ and a weight
vector w:

w>Ĩ = w>I +w>η (3.8)

The adversarial perturbation will cause a growing of w>η of the activation.
In order to maximize the impact of this increase under some constraints
Goodfellow et al. [2015] propose to set η to

η = ε · sign(∇I J(θ, I, yI)) (3.9)
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Indeed, it will enable one to obtain an optimal max-norm constraint per-
turbation. This way of generating adversarial examples is called the fast
gradient sign descent. Goodfellow et al. [2015] observe that adversarial ex-
amples occur in contiguous regions and not in fine pockets. We can thus
consider a direction of perturbation rather than specific points in decision
space, since it is the direction that matters the most.

3.2 Link between Convolutional Neural Networks
and Learning Time Series Shapelets

In this section, we first start by explaining that the LTS algorithm is a
special case of convolutional neural network (for 1D data). Then, we will
explain how this fact can be used to build a more robust algorithm that
learns time series shapelets.

3.2.1 LTS representation as a CNN

In LTS, the primary idea is to jointly learn both the weights of the logistic
regression w and the shapelets S that minimize the classification objective
function F (eq. 3.1):

argmin
S,w

F(S,w) = argmin
S,w

N∑

i=1

L(yi,wMi + w0)

with (eq. 3.3):

Mi,k = min
j=1,...,J

1

L

L∑

`=1

(xi,j+`−1 − sk,`)2

In the following, we denote τ ji as the subsequence of the i-th time series xi
starting at the j-th index and of length L: τ ji = [xi,j , xi,j+1, . . . , xi,j+L−1].

In order to compute Mi, we need to compute the minimal distances
between the time series xi and the set of shapelets S (of length L). It can
be divided in the following steps:

1. First, we compute the distances between each shapelet and all the
possible subseries of xi. The sub-series of xi can be extracted using
a sliding window technique. Shapelets from LTS are thus equivalent
to filters from the convolution step of a CNN, computing the distance
between shapelets and each subsequence of a time series thus corre-
sponds to a convolution layer for time series. For LTS, the convolution
exploits the temporal relationship between neighboring points, which
is equivalent to a convolution applied on an image which exploits the
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Time Series

↑
Convolution

Feature Maps

• •

↑
Min

Pooling

•
↑

Fully
Connected

Predictions

Figure 3.6 – Learning time series shapelets algorithm as a convolution neural
network, with three shapelets (filters) and five classes.

spatial relationship between neighboring pixels. Indeed, the differ-
ent subseries correspond to sub-parts of the time series extracted at
regular step.

2. Then, we select the minimal distances between xi and sk for i ∈
{1, 2, . . . , N} and k ∈ {1, 2, . . . ,K}. This step corresponds to a min-
pooling layer.

3. Finally, we use the weights of the logistic regression w in order to
predict the class label of the time series, which is equivalent to the
fully connected layer of a CNN.

All these steps are pictured in Figure 3.6, where:
• The red and blue bullets respectively correspond to the distance be-

tween the first shapelet s1 and two subsequences of the time series:
τ 1
i & τ 2

i .

• The grey bullet corresponds to the minimal distance between the first
shapelet s1 and the time series xi,

• In order to get the predictions, we use the logistic regression weights
In the literature, this relationship between LTS and CNN has been men-

tionned – to our knowledge – only in Cui et al. [2016] and Lods et al.
[2017].

3.2.2 What does it means that LTS is a specific case of a
CNN? Which impact does it have?

We showed that it is possible to write the learning time series shapelets
algorithm as a instance of a convolutional neural network. Szegedy et al.
[2014] and Goodfellow et al. [2015] both show that CNNs are vulnerable to
adversarial examples and that adversarial training can be used to build more
robust models for image classification. A natural way to improve the LTS
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algorithm is to combine adversarial examples (i.e. adversarial time series)
with the original training set during the model training.

In the following, we provide an improvement of the LTS method, which
is based on adversarial examples in order to generate more robust time se-
ries shapelets. At each epoch during the learning process, we learn new
adversarial time series that we use – in association with original time series
– to update the weights and the shapelets. Adversarial time series provide an
additional regularization benefit for the shapelets and experiments show an
improvement of the performance between the LTS baseline and our frame-
work.

3.3 The proposed method

We first start by studying the general case formulation as introduced
in [Goodfellow et al., 2015]. Then, we consider the shapelet formulation
for our specific case. In each case, the impact of adversarial training is
investigated.

3.3.1 General problem formulation

We first start by considering a linear model. We remind that the logistic
sigmoid function is defined as

σ(z) =
1

1 + e−z
(3.10)

Given a set of examples of N input time series: X = {x1,x2, . . . ,xN}
and their associated class labels y = {y1, y2, . . . , yN}, we have for the binary
classification case (y ∈ {−1, 1}) and for linear models

P (yi = 1|θ,xi) = σ(w> xi + b) (3.11)

Where yi corresponds to the target (i.e. class label) associated with the i-th
time series xi and where the parameters of the model are represented by
θ = (w, b). Thus,

P (yi = −1|θ,xi) = 1− σ(w> xi + b) (3.12)

= σ(−(w> xi + b)) (3.13)

Consequently, for yi ∈ {−1, 1}, we can write

P (yi|θ,xi) = σ(yi(w
>xi + b)) (3.14)

In order to define the cost function, we first have to consider the defini-
tion of the likelihood function where the joint probability is the product of
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Figure 3.7 – Function ζ(z) = log(1 + exp(z))

all individual probabilities.

L(θ|X ,y) = P (y|θ,x) =
N∏
i=1

P (y = yi|θ,xi) (3.15)

For convenience, we choose to use the log-likelihood function, defined as

logL(θ|X ,y) =
N∑
i=1

logP (y = yi|θ,xi) (3.16)

The training cost corresponds to the negative log-likelihood of probabil-
ities, so

J(θ,X ,y) = − logL(θ|X ,y) (3.17)

=
N∑
i=1

log
(
1 + e−yi(w

�xi+b)
)

(3.18)

=
N∑
i=1

ζ(−yi(w
�xi + b)) (3.19)

with ζ(z) = log(1 + exp(z)), a representation of this function is provided
in Figure 3.7.

Finally for the general problem formulation, the training cost can be
written as

J(θ,X ,y) = ζ(−y(w�X + b)) (3.20)
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Impact of Adversarial Training If we consider a particular time series xi
and its adversarial equivalent x̃i, then we have

J(θ,xi, yi) = ζ(−yi(w>xi + b)) (3.21)

and

J(θ, x̃i, yi) = ζ(−yi(w>x̃i + b)) (3.22)

= ζ(−yi(w>xi +w>ηi + b)) (3.23)

We know that ηi = ε · sign(∇xi J(θ,xi, yi)) = −ε yi · sign(w), thus

J(θ, x̃i, yi) = ζ(−yi(w>xi + b) + ε‖w‖1) (3.24)

If we compare the training cost of normal and adversarial time series,
we see that the perturbation results in the addition of a regularization term
ε‖w‖1 into the ζ function. The term ε‖w‖1 would suggest a L1 regulariza-
tion however the fact that this term is inside the ζ function implies some
important differences.
• First case: The model makes an accurate prediction.

We know that for −yi(w>xi+b) << 0, i.e. is sufficiently lower than 0,
we have Ji(θ,xi, yi) ' 0 ; and yi and (w>xi + b) have the same sign
consequently the model prediction is both confident and accurate for
the label prediction of xi.
If we add ε‖w‖1 before feeding to the ζ function, we will also have
J̃i(θ,xi, yi) ' 0 if the prediction is confident enough. Under this con-
dition, J̃i(θ,xi, yi) and Ji(θ,xi, yi) will be equivalent and the model
will act as if no regularization has be done. Consequently, the penalty
which is added during training disappears once the model has learned
to make confident enough predictions.

• Second case: The model makes an inaccurate prediction.
We also know that for −yi(w>xi + b) > 0, we have (w>xi + b) and
yi of opposite signs i.e. it corresponds to the case where the model
prediction is inaccurate.
Here, Ji(θ,xi, yi) > 0 and adding the perturbation will result in an
increasing cost: J̃i(θ,xi, yi) > Ji(θ,xi, yi) (since ζ(z + c) > ζ(z) for
c > 0). A closer look at the perturbation term enables one to see that
the L1 norm is applied onw, which will tend to shrink the coefficients,
but only when the model is inaccurate. Whereas L1 regularization
continues to shrink the coefficients though the iterations process even
when the model makes confident predictions.

With adversarial training, the regularization is taken into account when
the model does not fit the data, whereas when the model fits the data the
regularization does not have any effect. This is a very interesting property
since the model will be able to converge to the true (w, b), unlike L1 which
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fails to deactivate in case of good margin. The perturbation on inputs will
thus only shrink the coefficients w to prevent overfitting when needed (i.e.
during training when the model does not make confident predictions).

3.3.2 Shapelet formulation

If we consider the classification process proposed by [Grabocka et al.,
2014] for the Learning Time series Shapelets algorithm, the problem for-
mulation becomes

P (y|θ,X ) = σ(w>M + b) (3.25)

and the objective function is

Fi = L(θ|xi, yi) +
λW
N

K∑

k=1

w2
k (3.26)

where λW is a regularization parameter and L(θ|xi, yi) corresponds to

L(θ|xi, yi) = − logP (yi|θ,xi) = log(1 + e−yi(w
>Mi+b)) (3.27)

We remind that the perturbation will not be applied directly on M but on
the time series X . The perturbation is thus limited by [X−η;X+η], we don’t
need to add a regularization term for this perturbation (since by definition,
we have ‖η‖∞ < ε). On Figure 3.8, we can observe, for a particular time
series, the impact of the limitation ‖η‖∞ < ε on its admissible adversarial
equivalents.

The purpose here is to define the training cost of the adversarial formu-
lation. To do so, we first compute the gradient of the objective function,
then we compute the training cost of the adversarial formulation.

Gradient of the objective function In the following, we denote the gra-
dient of the objective function for the i-th time series with respect to the j-th
point of the i-th time series as

∇xi,jFi =
∂Fi
∂xi,j

(3.28)

=
∂L(θ|xi, yi)
∂(w>Mi + b)

K∑

k=1

∂(w>Mi + b)

∂Mi,k

∂Mi,k

∂xi,j
(3.29)

where,
• Mi corresponds to the minimal distances between the i-th time series
xi and the set of shapelets S. Mi = [Mi,1,Mi,2, . . . ,Mi,K ],

• ∂L(θ|xi, yi)
∂(w>Mi + b)

=
∂ log(1 + e−yi(w

>Mi+b))

∂(w>Mi + b)
=

−yi
1 + eyi(w>Mi+b)

,
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Figure 3.8 – Representation of possible adversarial time series. If ‖η‖∞ < ε
(here ε = 0.25 for readibility), the set of all possible adversarial time series
for the blue time series (continuous line) correspond to time series that are
included between the two dashed green lines.
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Figure 3.9 – Match between a time series xi and a shapelet sk (of length
L = 18). Here j∗k = 28, i.e. the minimal distance between xi and sk is

obtained for τ j
∗
k

i = τ28i . Thus
∂Mi,k

∂xi,j
�= 0 if j ∈ [j∗k , j

∗
k + L − 1] = [28, 45],

i.e. if j is one of the indices where xi matches with sk.
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• ∂(w>Mi + b)

∂Mi,k
= wk,

• ∂Mi,k

∂xi,j
=
∂minj

1
L

∑L
l=1(xi,j+l−1 − sk,l)2
∂xi,j

If we consider that the minimum for
L∑
l=1

(xi,j+l−1 − sk,l)2 is obtained

when j∗k is the index of xi where xi starts to match with sk, then the
derivative ∂Mi,k

∂xi,j
will be non zero if j ∈ [j∗k , j

∗
k + L− 1] (Figure 3.9).

◦ If j ∈ [j∗k , j
∗
k + L− 1], then

∂Mi,k

∂xi,j
= 2

L(xi,j∗k+lj∗k−1
− sk,lj∗

k
)

with lj∗k the position of the match between xi and sk.
Here, we could rewrite j as j = j∗k + lj∗k − 1 (1 ≤ lj∗k ≤ L).

◦ Else if j /∈ [j∗k , j
∗
k + L− 1], then

∂Mi,k

∂xi,j
= 0.

Since j∗k and l∗k depend on k, we have to consider the shapelets sk only
for a limited number of cases, j must be part of the matching indices of xi

with sk i.e. j ∈ [j∗k , j
∗
k + L − 1]. If we define the set of indices {k`} (such

as {k`} ⊆ {1, 2, . . . ,K}) as the indices of shapelets where xi,j matches with
sk`,l, we now have

∇xi,jFi =
∂L(θ|xi, yi)
∂(w>Mi + b)

∑

k`

∂(w>Mi + b)

∂Mi,k`

∂Mi,k`

∂xi,j
(3.30)

Training cost of the adversarial formulation If we perturb the time se-
ries xi to obtain x̃i = xi + ηi and if we set ηi to ε · sign(∇xi J(θ,xi, yi)) (as
in eq. 3.9) ; then Mi,k will become

M̃i,k = min
j

1

L

L∑

l=1

(
xi,j+l−1 + ε sign(∇xi,j+l−1

Fi)︸ ︷︷ ︸
x̃i,j+l−1

−sk,l
)2

(3.31)

If we compute the cost function for the i-th time series, we will have

Ji,S(θ,xi, yi) = ζ
(
−yi(w>Mi + b)

)
(3.32)

and the adversarial version

J̃i,S(θ,xi, yi) = ζ
(
−yi(w>M̃i + b)

)
(3.33)

= ζ

(
−yi
L

(∑

k

wkmin
j

∑

l

(
xi,j+l−1 + ε sign(∇xi,j+l−1

Fi)− sk,l
)2
)
− yib

)

(3.34)
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Considering that minj is obtained for j∗k , i.e. that the minimal distance
between x̃i and Sk starts at the j∗k-th index of x̃i.We deduce that

J̃i,S(θ,xi, yi) = ζ

(
− yi
L

∑

k

wk
∑

l

((
xi,j∗k+l−1 − sk,l

)2)
− yi ε2

∑

k

wk

− 2yiε

L

∑

k

wk
∑

l

sign
(
∇xi,j∗

k
+l−1
Fi
)(

xi,j∗k+l−1 − sk,l
)
− yib

)

(3.35)

= ζ

(
−yi(w>Mi + b)︸ ︷︷ ︸

No perturbation

−yi ε2
∑

k

wk −
(
2yiε

L

∑

k

wk

∑

l

sign
(
∇xi,j∗

k
+l−1
Fi

) (
xi,j∗k+l−1 − sk,l

))

︸ ︷︷ ︸
A

)

(3.36)

where A corresponds to the effect of the adversarial training (i.e. the per-
turbation part). A depends on sign

(
∇xi,j∗

k
+l−1
Fi
)

, we might use it to obtain
a better expression of A.

We know thanks to equation 3.30, that

sign
(
∇xi,jFi

)
= sign


 ∂L(θ|xi, yi)
∂(w>Mi + b)

∑

k`

∂(w>Mi + b)

∂Mi,k`

∂Mi,k`

∂xi,j


 (3.37)

= −yi · sign


∑

k`

wk`

(
xi,j∗k`+lj∗k−1

− sk`,lj∗
k

)

 (3.38)

In equation 3.38, j∗k corresponds to the first index where xi and sk match ;
whereas in equation 3.36, j∗k corresponds to the first index where x̃i and sk
match. So in order both j∗k to be equivalent, we make the assumption that
the match with the shapelets does not change between perturbed and the
original time series.

By doing so, we are able to keep equations as simple as possible (since
we can make some simplifications). Moreover, it is a realistic assumption
since as long as we use a sufficiently small ε the probability that the matches
between xi and x̃i with sk start at the same index j∗k is high.

According to the notation we have j = j∗k + l − 1 and we previously
stated that j should look like j∗k + lj∗k − 1 in order ∂Mi,k

∂xi,j
not to be zero, thus

by identification we have l = lj∗k . Consequently,

sign
(
∇xi,j∗

k
+l−1
Fi
)
= −yi sign


∑

k`

wk`(xi,j∗k`+l−1
− sk`,l)


 (3.39)
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Then A becomes,

A = −yi ε2
∑

k

wk −
2yiε

L

∑

k

wk
∑

l

sign
(
∇xi,j∗

k
+l−1
Fi
)(

xi,j∗k+l−1 − sk,l
)

(3.40)

= −yi ε2
∑

k

wk

︸ ︷︷ ︸
A1

+
2ε

L

∑

k

wk

∑

l

sign

(∑

k`

wk`
(xi,j∗k`

+l−1 − sk`,l)

)(
xi,j∗k+l−1 − sk,l

)

︸ ︷︷ ︸
A2

(3.41)

Now, let us consider the specific case where k` takes a single value (i.e.
xi,j matches with a single shapelet) and that this value is k. Depending on
the number of shapelets this assumption might not be realistic, however in
order to better understand what is happening this simplification is necessary.
Considering it, we can simplify A2 the following way:

A2 =
2ε

L

∑

k

wk
∑

l

sign
(
wk(xi,j∗k+l−1 − sk,l)

)(
xi,j∗k+l−1 − sk,l

)
(3.42)

=
2ε

L

∑

k

|wk|
∑

l

∣∣∣xi,j∗k+l−1 − sk,l
∣∣∣ (3.43)

=
2ε

L

∑

k

|wk|
∥∥xSi − sk

∥∥
1︸ ︷︷ ︸

νk

(3.44)

=
2ε

L
‖wν‖1 (3.45)

where xSi = [xi,j∗k , . . . , xi,j
∗
k+L−1].

Thus, under the previous hypothese, A2 will always be positive. How-
ever sign(A1) depends on the sign(yi), which can be positive or negative.
We have two cases:
• When A1 < A2, the adversarial training will add a positive element

into the ζ function. Regularization will only be performed when the
model doesn’t fit the data; whereas when the model makes confident
and accurate predictions, it will act as if no regularization was done.
• However when A1 > A2, a negative element will be including in the ζ

function resulting into a smaller cost (J̃i,S(θ,xi, yi) < Ji,S(θ,xi, yi)).
When the model fits the data, it will have no impact (since the cost
value will still be ' 0). However if the model predictions are inac-
curate, the cost will be underestimated and consequences will be: we
won’t be abe to measure precisely how close our prediction matches
the true one. Consequently, it might perturb the convergence of the
model.
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If we take a closer look at the expression of A1 and A2, we can say
that A1 is most likely to be smaller than A2. Indeed, in A1 we add the
wks without paying attention to their signs, so the sum (of elements that
can be either positive or negative) is likely to be smaller than the sum of
absolute values of wk (such as in A2) even weighted by a positive element
(νk). Another fact tends to show that A1 is likely to be smaller than A2:
the sum in A1 is multiply by a ε2 factor, whereas the sum of absolute values
in A2 is only mutiply by a ε factor. Consequently, for small enough epsilon
values, the probability to be in the case where A1 < A2 is high, i.e. most
of the time, we will apply a regularization when the model does not fit the
data and the penalty will disappear when the model makes confident and
accurate prediction.

We obtain similar observations that in the general formulation, it thus
confirms our intuition that adversarial examples can provide a regulariza-
tion benefit to LTS.

3.3.3 ABS algorithm

There is no differences neither for the initialization of the shapelets nor
for the prediction step between LTS and ABS algorithms. We thus only
provide a description of the learning step for both LTS and ABS (respec-
tively in Algorithms 1 & 2) to easily compare them. The differences are
written in green in order to be better visualized. Moreover, we slightly sim-
plify the algorithm (e.g. we consider a binary class problem and only one
scale for the length of the shapelets) for readibility. Note that the function
generate_adversarial_time_series(x, ε) returns the adversarial time series:
xadv = x+ ε sign(∇xJ(θ,x,y)).

Interpretability of ABS ABS is built on LTS, the main difference between
the two algorithms append during the learning step. Indeed, ABS has to
learn adversarial time series at the beginning of each iterations. The model
generated by ABS is the same than the one generated by LTS (i.e. the
shapelets associated with the parameters of the classifier). ABS thus bene-
fits from the same interpretabitily than LTS. The shapelets of the model offer
interpretable features; and associated with their corresponding weights, it
is even possible to detect the most influential shapelets for each class. An
illustration of the interpretability of the model generated by ABS is available
in Chapter 4.
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Require: Training dataset x ∈ RN×n, K shapelets S (of length L), η the learning
rate, the number of iterations maxIter.

Ensure: The shapelets S ∈ RK×L, and the parameters θ = (w, b) (i.e. the
classification weights w ∈ RK and the bias b ∈ R).

for iter from 1 to maxIter do
for i from 1 to N do

for k from 1 to K do
wk ← wk − η

∂Fi

∂wk
for l from 1 to L do

sk,l ← sk,l − η
∂Fi

∂sk,l
end for

end for
b← b− η ∂Fi

∂b
end for

end for
return S,θ

Algorithm 1: Learning Shapelets Algorithm [Grabocka et al., 2014]

Require: Training dataset x ∈ RN×n, K shapelets S (of length L), η the learning
rate, the number of iterations maxIter, the adversarial perturbation ε.

Ensure: The shapelets S ∈ RK×L, and the parameters θ = (w, b) (i.e. the
classification weights w ∈ RK and the bias b ∈ R).

xtemp ← x
for iter from 1 to maxIter do

xadv ← generate_adversarial_time_series(xtemp, ε)
x← xtemp + xadv

for i from 1 to 2×N do
for k from 1 to K do

wk ← wk − η
∂Fi

∂wk
for l from 1 to L do

sk,l ← sk,l − η
∂Fi

∂sk,l
end for

end for
b← b− η ∂Fi

∂b
end for

end for
return S,θ

Algorithm 2: Adversarially Built Shapelets Algorithm
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3.4 Experiments on UEA / UCR datasets

In this section, we compare Learning Time series Shapelets (LTS) al-
gorithm with our method, called Adversarially-Built Shapelets (ABS) algo-
rithm. We then compare our results to the ones obtained by 10 other rele-
vant baselines (i.e. the 9 previous and D-BoTSW).

Experiments are conducted on 74 of the 85 currently available datasets
from the UEA / UCR repository [Bagnall et al., 2017], due to memory and
time limitations of our computation system. Raw numbers are available
in Appendix A.

3.4.1 Source code

We choose to base our ABS code on the time series classification code
provided by Bagnall et al. [2016] 2 that includes many classification algo-
rithms. Amongst them, a Java version of the LTS algorithm is implemented.

Considering the number of datasets as well as some computation re-
source limitation, we decided to set the defaults parameters (as recom-
mended by the author):
• the regularization parameter λw = 0.01,

• the number of scales R = 3,

• the percentage of series length to 0.2,

• the number of iterations to 600,
and to slightly modify the initializeShapeletsKMeans function. In order
to initialize the shapelets we take a random number of 10 000 sub-series
(if the number of sub-series is greater than 10 000), or all the sub-series
(i.e. the algorithm is unchanged).

For the sake of reproducibility, the source code used for LTS and ABS in
these experiments are made available for download 3.

3.4.2 Impact of adding adversarial time series

Figure 3.10 shows a pairwise comparison of error rates between LTS
and its adversarial counterpart ABS for tested datasets of the UEA / UCR
database. ABS (with ε set by cross-validation in {0.001, 0.01, 0.1}) reaches
better performance than LTS on 36 datasets, equivalent performance on 20
datasets and worse on 18 datasets. The error rate differences between LTS
and ABS might seem small, however this can be explained by the fact that
ABS is based on LTS. We used the previously introduced one-sided Wilcoxon

2. https://bitbucket.org/TonyBagnall/time-series-classification

3. https://github.com/a-bailly/adversarially_built_shapelets
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Figure 3.10 – Comparison of error rates obtained by LTS and ABS (with a
perturbation ε in {0.001, 0.01, 0.1})

signed rank test in order to check if the difference is significant. We obtained
a p-value of 0.002 which is below the 5% significance level, our experiments
thus show that ABS is significantly better than LTS.

3.4.3 Empirical Comparison of ABS with State-of-the-Art
Techniques

We use published error rates on 85 datasets from [Bagnall et al., 2017]
for the following time series classification algorithms: BoP [Lin et al., 2012],
BOSS [Schäfer, 2015b], COTE [Bagnall et al., 2015], ED-NN, DTW-NN,
PROP [Lines and Bagnall, 2014], SAX-VSM [Senin and Malinchik, 2013]
and TSBF [Baydogan et al., 2013]. As well as published error rates for the
SMTS method (45 datasets) [Baydogan and Runger, 2015].

3.4.3.1 On Standalone Classifiers

From Table 3.1 and Figures 3.11 & 3.12, we can observe that
• The Win/Tie/Lose score indicates that ABS obtains a better classifica-

tion accuracy more datasets than 1-NN combined with ED (ED-NN)
or DTW (DTW-NN), BoP, SAX-VSM and SMTS. ABS performs signif-
icantly better than ED-NN, DTW-NN, BoP as well as SAX-VSM (with
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ABS is significantly better than BoP (p = 0.000)
ABS is significantly better than DTW-NN (p = 0.000)
ABS is significantly better than ED-NN (p = 0.000)
ABS is significantly better than LTS (p = 0.002)
ABS is significantly better than SAXVSM (p = 0.000)

ABS is better than SMTS (p = 0.053), however it is not significant
ABS is better than TSBF (p = 0.270), however it is not significant

PROP is better than ABS (p = 0.243), however it is not significant

BOSS is significantly better than ABS (p = 0.002)
COTE is significantly better than ABS (p = 0.000)

D-BoTSW is significantly better than ABS (p = 0.013)

Table 3.1 – ABS – One sided Wilcoxon Test p-values. If the p-value is less
than the 5% significance level, the method is considered significantly better
than the one it is compared to.

5% significance level). If we consider a 10% significance level then
ABS is also significantly better than SMTS.

• The Win/Tie/Lose score indicates that ABS obtains a better classifica-
tion accuracy on a few more datasets than TSBF, however Wilcoxon
p-values shows that the difference is not significant.

• Finally both BOSS and D-BoTSW are significantly better than ABS, on
the UEA / UCR database.

Note that the UEA / UCR contains a large variety of problems for which
all algorithms are not adapted. Thus, in order to choose an algorithm, one
should consider the characteristics of its data and not only the performance
obtained on the UEA / UCR database.

3.4.3.2 With Ensemble Classifiers

In Figure 3.13, we compare our standalone classifier ABS to ensemble
classifiers. Wilcoxon tests show that ABS is not statistically better than nei-
ther PROP nor COTE (respectively p = 0.758 and p = 1.0). Testing the
reverse hypothesis that ABS is outperformed by these methods gives signifi-
cance for COTE (p < 5%) but not for PROP (p = 0.243).

3.5 Discussion

Since the first paper on shapelets from Ye and Keogh [2009], many ap-
proaches using time series shapelets were proposed. Our contributions for
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Figure 3.13 – Error rates for ABS versus baseline ensemble classifiers (PROP
and COTE).
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time series shapelets includes:

1. A formal proof that LTS is a special case of CNN,

2. A theoretical explanation and experiments showing that LTS can be
regularized using adversarial training,

3. A regularization of the LTS model using adversarial training (with an
easy and fast way to generate adversarial time series).

Considering the growing interest for deep learning model (and in par-
ticular for convolutional neural networks), this work could serve as a basis
for future work on time series shapelets.

Future work

A fast implementation of ABS using a convolutional neural networks
framework could be beneficial in term of computation performance (e.g. with
CNNs libraries of Python such as keras).

Moreover, since we show that LTS is an instance of a CNN, it might be
interesting to evaluate the impact of the CNN setup, such as the choice of
the activation function or the impact of the number of layers. The shape
and size of the filters often play an important role in the learning process of
a CNN, further investigation on the shapelet sizes might also be necessary.
A more adapted CNN setup can lead to further improvment of the method.

Several methods have been proposed to avoid overfitting for CNNs (such
as dropout and early stopping), an evaluation of their impact on the LTS
algorithm is relevant and might help building a better algorithm.
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In this chapter, we investigate Remote Sensing Time Series Classifica-
tion (RS-TSC) problems. Automatic land cover classification from satellite
image time series is of paramount relevance to assess vegetation and crop
status, with important implications in agriculture, biofuels and food. More-
over it is also very useful in order to monitor urban development as well as
to follow land cover changes.

We first present specificities of remote sensing data. Then we intro-
duce two remote sensing time series datasets: TiSeLac (proposed by Ienco
[2017]) and Brazilian Amazon (introduced in Bailly et al. [2016a]). Finally
we experiment on these datasets on both time series classification baselines
and previously introduced algorithms: Dense Bag-of-Temporal-SIFT-Words
(D-BoTSW, Chapter 2) & Adversarially-Built Shapelets (ABS, Chapter 3).

4.1 Remote Sensing (Time Series) Data

4.1.1 Remote Sensing Data

Remote sensing data have been widely used in many forms such as im-
ages [Tuia et al., 2009; Xie et al., 2008], hyperspectral images [Melgani and
Bruzzone, 2004] or time series [Arvor et al., 2011b; Bailly et al., 2016a;
Gómez et al., 2016; Gond et al., 2013a]. Remote sensing data have also
been used in a wide variety of problems such as agriculture monitoring
[Duveiller and Defourny, 2010], vegetation mapping [Xie et al., 2008] and
environmental modeling [Dusseux et al., 2013].

4.1.1.1 Satellite Characteristics and Evolution

Each satellite is characterized by:
• Its spatial resolution i.e. the pixel size of taken images that represents

the area at the surface of the earth,

• Its temporal resolution or revisit time i.e. the time elapsed between
two observations of a given location,

• Its spectral resolution which is the ability of the sensor to discriminate
signals of different wavelengths. It depends on the number of spectral
bands but also the width of these bands.

While the first sensors were mainly dedicated to meteorology, such as
the Advanced Very High Resolution Radiometer (AVHRR) in the 70’s, which
has a kilometric resolution associated with a wide field of view; sensors
evolve to high spatial resolution leading to a larger number of applications.
In the 2000’s, the sensors spatial resolution with a high temporal resolution
reaches 250 to 300 meters, e.g. Moderate Resolution Imaging Spectrora-
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diometer (MODIS) sensors abroad Terra and Aqua satellites. Projects ded-
icated to earth observation through satellites with high spatial resolution
have thus been developed such as the Landsat program launched by the Na-
tional Aeronautics and Space Administration (NASA) in 1972. Eight satel-
lites were launched by this program, two of them are still in orbit: Landsat-7
and Landsat-8; they acquire data all over continental surfaces. Landsat-8
has two sensors that have spatial resolutions of 30 meters (visible, Near
Infra-Red (NIR), Short-Wave Infra-Red (SWIR)), 100 meters (thermal) and
15 meters (panchromatic) as well as 16 days temporal resolution 1.

4.1.1.2 Data Limitation

Producing an accurate and up-to-date land cover map is an important
topic for remote sensing applications. Moreover the amount of remotely
sensed data is constantly growing because of the new and upcoming satel-
lite platforms available. However, due to the high cost in terms of money
and human resources for labelling data through field campaigns or through
expert knowledge, only a very limited number of labeled data are available.
Additionally, fast changes in landscape and land use would require a never-
ending labeling.

4.1.2 Remote Sensing Time Series Data

A remote sensing time series is obtained when images of the same given
location are acquired at different dates. It is characterized by its temporal
resolution, i.e. the number of images and the gap between the different
acquisitions. Note that vegetation indices (e.g. EVI, NDVI) are often prefered
to raw values.

Remote sensing time series are often challenging to classify since they
combine several characteristics that can perturb the classification. The veg-
etation and agricultural landscapes significantly vary across Earth resulting
in temporal distortions and shifts in time series. Agricultural practices can
also cause shifts in amplitude. Due to atmosphere conditions (e.g. clouds),
remote sensing time series often contain outliers and are often noisy.

4.1.3 Remote Sensing Time Series Classification

Many methods have been proposed for the classification of satellite data,
for applications such as land cover mapping. However, few focus on the
classification of satellite images time series. This can be explained by the
lack of reference data (i.e. labeled), as well as by the recent availability of

1. https://landsat.usgs.gov/landsat-8
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time series with high spatial resolutions.
Since the early 2000s, the high temporal resolution of the Moderate

Resolution Imaging Spectroradiometer (MODIS) sensor aboard the TERRA
and AQUA satellites allows the monitoring of phenological cycles in order
to classify vegetation types. MODIS time series have been used for many
applications such as
• Crop mapping in [Arvor et al., 2011a; Chang et al., 2007]. Arvor

et al. [2011a] use crop mapping in order to evaluate the agricultural
intensification in the state of Mato Grosso, in Brazil and to understand
its impact. They focus on the different agricultural practices involving
three commercial crops (soybean, maize and cotton) planted in single
or double cropping systems. Chang et al. [2007] investigate the use
of MODIS time series in order to map and monitor United States corn
and soybean fields.

• Forest mapping in [Gond et al., 2013b], where authors aim at gener-
ating a more precise map of forests in the Congo Basin in the context
of global changes.

• Land cover mapping in [Clark et al., 2010; Hüttich et al., 2009].
The characterization of land cover mapping in all type of ecosystem
is indeed of interest for a suitable and sustainable land management
purpose.

• Multi-year agricultural mapping in [Brown et al., 2013], where au-
thors aim at showing the agricultural landscape of Mato Grosso (Brazil)
including the type of practices (single or double cropping).

The first Landsat satellite was launched in 1972, since then the Landsat
spatial and spectral resolutions have been improved leading to high resolu-
tion satellite images time series. The Landsat time series have been used
in many applications such as detecting forest cover changes [Hansen et al.,
2013], as well as mapping the surface water [Pekel et al., 2016] in the con-
text of global changes.

Gómez et al. [2016] provide a general overview for land cover classi-
fication using satellite images time series. Bégué et al. [2018] focus on
methodologies that map cropping practices using remote sensing time se-
ries, in order to improve the monitoring of cropping practices in the context
of food security.

Numerous papers have been published using remote sensing time se-
ries data, however data are often unavailable or have been preprocessed by
authors, making it impossible to both reproduce the experiments and use
the data for further comparison. In the following, we use two datasets of
remote sensing time series, available online. These datasets includes time
series collected from the Reunion island as well as the Brazilian amazon.
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4.2 TiSeLac Dataset

In order to bring machine learning and remote sensing communities
closer, a classification challenge was proposed by Ienco [2017]. The data
used for this challenge corresponds to satellite image time series.

4.2.1 The challenge

The purpose of this challenge was to classify a set of satellite image time
series collected above the Reunion Island (with a 30m resolution) acquired
by LANDSAT-8 sensor in 2014. There are a fixed train and test sets coming
from the same satellite images. Therefore, they cover the same time period,
and training and testing data have the same distribution.

The dataset uses a set of 23 images acquired in 2014 and provides a total
of ten features: seven surface reflectances as well as three complementary
spectral indices. The 7 surface reflectances are Ultra Blue, Blue, Green,
Red, Near-InfraRed, Short-Wavelength InfraRed (SWIR) 1 & 2. And the 3
computed indices corresponds to Normalized Difference Vegetation Index
(NDVI), Normalized Difference Water Index (NDWI) and Brightness Index
(BI).

Satellite image time series were labeled using two publicly available
datasets: the Corine Land Cover (CLC) map from 2012, and the Registre
Parcellaire Graphique (RPG) from 2014.
• The Registre Parcellaire Graphique is a geographical information

system allowing the identification of agricultural parcels. It was set up
by France in 2002 and it is the only geographic database of this size
to be annually updated. Indeed as part of european union common
agricultural policy, farmers have to declare which crops they cultivate
for each one of their fields as well as the type of cultures (e.g. if it is
irrigated or not). Agricultural classes information thus comes from the
RPG database.

• The Corine Land Cover 2 consists of computer aided photo-interpre-
tation of satellite images. The programm was launch in 1985 by the
european union. CLC classes that have been considered are the non-
agricultural ones (e.g. forests or urban areas).

The challenge training set consists of a set of 81 714 multi-dimensional
satellite image time series with their associated labels and coordinates. The
challenge testing set is composed of 17 973 satellite image time series with
labels and coordinates as well.

Figure 4.1 shows Reunion island localization on Earth, whereas Fig-
ure 4.2 provides an overview of the Reunion Island including the land cover

2. https://www.eea.europa.eu/publications/COR0-landcover
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ground truth.

4.2.2 Dataset

In order to run all our baseline classification algorithms, we reduce this
multivariate dataset to a univariate dataset. Amongst all surface reflectances
and radiometric indices, we choose only one index: the Normalized Differ-
ence Vegetation Index (NDVI). Indeed the NDVI is a widely used vegetation
index e.g. for vegetation mapping.

The second step is to define the set of land cover classes to consider.
We choose to keep the 9 classes present in the original dataset in order to
ensure land cover diversity. The dataset thus gathers the following classes:

1. Urban Areas,

2. Other built-up surfaces,

3. Forests,

4. Sparse Vegetation,

5. Rocks and bare soil,

6. Grassland,

7. Sugarcane crops,

8. Other crops,

9. Water.

We reduce the amount of training and test time series in order to be
able to run experiments on more time series classification algorithms. Thus
we keep 500 time series per class in the training set (i.e. 4 500 training time
series), as done in the Brazilian Amazon dataset. For testing, we select 5 000
time series from the test set.

The last step consists in removing the coordinates information from the
dataset. Figure 4.3 shows per-class average NDVI time series for the reduced
version of TiSeLac dataset. Figure 4.4 shows a random selection of five time
series for each class.

The dataset can be reconstructed using available data from Ienco [2017]
using the first 500 NDVI time series for each class for the training set and
the first 5 000 NDVI time series for the testing set. This can be seen as a
random selection since the data were already shuffled, as indicated by the
coordinates. Moreover, classification rates obtained for the challenge are not
expected to be reached since we reduce the original dataset to one index (on
10) and remove the coordinates.
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Figure 4.1 – Reunion island localization (from Wikipedia)

Figure 4.2 – Reunion island and the corresponding land cover classes (from
Ienco [2017])
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Figure 4.3 – TiSeLaC mean profiles per class (NDVI)
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Figure 4.4 – Representation of five randomly selected time series per class
from TiSeLaC dataset (NDVI)
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4.2.3 Specificities

4.2.3.1 Reunion Island

The Reunion island, which is located in the southern hemiphere, has
a tropical climate with two distinct seasons. The wet season starts in De-
cember and ends in February, whereas the dry season runs from May to
September. It is a volcanic island with several volcanos such as Piton des
Neiges and Piton de la Fournaise. The island relief is thus very uneven with
numerous height variations causing the island to have a large number of
microclimates. The Reunion island climate is thus distinguished by a great
variability especially due to its particular relief resulting in large disparities.
On one hand, disparities come from precipitation differences between the
windward coast (east) and the leeward coast (west). On the other hand,
disparities are explained by temperature differences between the warmer
areas (coastal zones) and colder areas (mountainous zones).

4.2.3.2 Information on Normalized Difference Vegetation Index

NDVI values belong to range−1.0 to +1.0. Low NDVI values 3 (e.g. 0.1 or
less) can correspond to rocks, sand or snow. Medium NDVI values represent
sparse vegetation such as shrubs, grasslands or crops (low season). Finally,
High NDVI values (e.g. > 0.6) correspond to dense vegetation such as forests
and crops before harvest.

4.2.3.3 TiSeLaC classes

The TiSeLaC dataset contains both vegetation classes (e.g. forests) as well
as non-vegetation classes (e.g. urban areas). On Figure 4.4, we observe that
there is an high intra-class variability both temporally (e.g. sugarcane crops)
and in amplitude (e.g. urban areas). Temporal variability can be explained
by different sowing dates, whereas amplitude shifts might be due to altitude
or climate differences.

Visually the most distinguishable class is the sugarcane crops. Indeed
sugarcane time series can be easily identify thanks to their distinctive NDVI
profiles. On the contrary forests, other crops and grasslands have very similar
profiles (same observation for urban areas, sparse vegetation and other built-
up surfaces).

The specificities of the different classes are listed below:

1. Urban Areas. Reunion island cities are not as dense as european cities
[Rivière et al., 2013]. Moreover there exists many green spaces in

3. Information collected from Remote Sensing Phenology website: https://phenology.
cr.usgs.gov/ndvi_foundation.php

Bailly, Adeline. Classification de séries temporelles avec applications en télédétection - 2018

https://phenology.cr.usgs.gov/ndvi_foundation.php
https://phenology.cr.usgs.gov/ndvi_foundation.php


104 Chapter 4. Time Series Classification: Remote Sensing Applications

the cities such as trees rows to provide shade and cooler areas. The
greenness density of a pixel can influence its associated NDVI values.

2. Other built-up surfaces could refer to greenhouses, however this is
an assumption. Indeed greenhouses are often established in green
areas, thus it could explain the larger intra-class variability compared
to urban areas.

3. Forests. Due to the tropical climate, forests NDVI values do not fluc-
tuate. Time series representing forests on Reunion island thus have
high but stable NDVI values.

4. The Sparse Vegetation class regroups pixels that do not belong to any
of the other classes. This class thus regroups a variety of profiles with
intermediate NDVI values.

5. Rocks and bare soil will have by definition low NDVI values (closed
to or below 0). For a particular pixel the NDVI value is expected to
have little variation.

6. The Grassland class gathers together grazed and mowed grasslands.
Depending of the irrigation, the regrowth speed may vary resulting in
different time series profiles.

7. Sugarcane crops time series have the most distinguishable profiles
since NDVI values drop after harvests. Sugarcane crops represent
∼60% of the cultivated area on Reunion island, the harvesting period
of sugarcane crops spreads over around a month. [Denize, 2015]

8. The Other crops class is formed by many crops (e.g. pineapple and
bananas crops) as well as orchards (e.g. lychees and mangos). This
diversity of crops results in a high intra-class variability for this class.

9. The Water has a high intra-class variability that can be explained by
the turbidity of the water. The turbidity of the water is a measure of
the water clarity which can perturb NDVI values.

In order to distinguish the different TiSeLaC classes, we can not rely on
distinctive features. Indeed different classes have similar profiles but can be
discriminated thanks to their mean NDVI values, e.g. forests and grasslands.

4.3 Brazilian Amazon Dataset

Mapping croplands is of primary interest to estimate cultivated areas
and agricultural production or to qualify the agricultural practices and their
potential impacts on the environment. This assessment is especially true for
tropical areas. Indeed, these regions which concentrate major global natural
resources are expected to supply a large proportion of increasing production
demand at global scale.
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Since the early 2000s, the temporal resolution of the MODIS sensor on-
board the Terra and Aqua satellites allows the monitoring of phenological
cycles in order to classify vegetation types. Such approach appears to be
especially relevant in tropical areas where vegetation index time series en-
able one to limit the constraints related to high cloud cover rates. In the
Brazilian amazon, many studies based on MODIS vegetation index time se-
ries were carried out to map croplands and crop types [Chang et al., 2007;
Clark et al., 2010; Hüttich et al., 2009; Wardlow and Egbert, 2008]. How-
ever, in a context of climate change and crop expansion to other Brazilian
states, agricultural calendars are expected to evolve so that it is necessary
to implement new methodologies to process remote sensing time series.

In the following, we propose a dataset which time series were extracted
in the Brazilian amazon and represent MODIS vegetation index time series
corresponding to diverse cropping practices.

4.3.1 Study Area

The study area is located in the state of Mato Grosso, in the southern
Brazilian amazon, as shown on Figure 4.5. This state has suffered dramatic
land use changes since the 1970s due to the rapid progress of an agricultural
frontier. This frontier was the result of efficient public policies to encourage
people to settle the large and plane areas of native savannas and forests. It
led to the establishment of a powerful agricultural sector dedicated to the
production of commodities such as soybean, maize or cotton in large-scale
farms. Indeed, Mato Grosso is nowadays one of the world’s biggest producer
of these crops. As a consequence until the mid-2000s the agricultural sector
was especially criticized for its severe impacts on forests since Mato Grosso
has long been known for its high deforestation rates.

Nonetheless, deforestation decreased for ten years and the historical ex-
tensive agriculture model is being replaced by intensive agriculture practices
[Macedo et al., 2012]. For example, double cropping agriculture systems
have been generalized in Mato Grosso (from 35 to 62% of the net cropped
area [Arvor et al., 2012]) and especially concern the cultivation of soybean
followed by maize, millet or cotton. In this case, soybean is sown first be-
tween late September and late November and cultivated until early January
and late March. When soybean is harvested, maize and cotton are sown to
be harvested between late May (for maize) and mid-July (for cotton).

Although the average agricultural calendar is well known in this region,
slight differences may occur at regional scale due to rainfall variability [Ar-
vor et al., 2014] or logistics issues. Indeed, for largest farms (up to 35,000
ha), the sowing or harvesting period can last up to three months. This is-
sue is important to emphasize since it implies a large temporal variability
in vegetation index time series for pixels of a same crop class thus affecting

Bailly, Adeline. Classification de séries temporelles avec applications en télédétection - 2018



106 Chapter 4. Time Series Classification: Remote Sensing Applications
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Figure 4.5 – Map of the study area with field data location.

any attempt to classify these classes.

4.3.2 Dataset

We extract two years of MODIS vegetation index time series correspond-
ing to the cropping periods 2005-2006 and 2006-2007. The dataset is thus
made of 46 MODIS images from July 2005 to July 2007, i.e. 23 MODIS
images per year. This study period was chosen to match with field data
in order to enable statistical validation of the method. The vegetation in-
dex time series refer to Enhanced Vegetation Index (EVI) of the MOD13Q1
product (tile h12v10), which are made freely accessible by the NASA Land
Processes Distributed Active Archive Center 4. The EVI was created in order
to improve the quality of Normalized Difference Vegetation Index (NDVI)
products. The computation of EVI is similar to the NDVI one, however EVI
improves on NDVI’s spatial resolution and has a higher sensibility which en-
ables it to better differentiate heavily vegetated area (where NDVI saturates)

4. https://lpdaac.usgs.gov/
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Figure 4.6 – Brazilian Amazon – Mean profiles per class (EVI)
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Figure 4.7 – Brazilian Amazon – Five randomly selected time series per class
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[Huete et al., 2002]. When missing data occurs (e.g. due to meteorological
conditions), we performed linear extrapolation using closest available data
points before and after the missing data.

The field data used for validation is the same as in [Arvor et al., 2011a].
It is based on an extensive field campaign carried out in 2007 to collect vali-
dation data about crop type, crop yield and sowing and harvesting dates for
two harvests (2006 and 2007). Seventy-six farms were visited and mapped
in thirteen municipalities from the two main agricultural regions in Mato
Grosso, i.e. along the BR163 road and the Chapada dos Parecis. Five crop
classes were identified:

1. Soybean,

2. Soybean + Millet,

3. Soybean + Maize,

4. Soybean + Cotton,

5. Cotton.

Classes 1 and 5 refer to single cropping practices whereas classes 2, 3 and 4
refer to double cropping practices. For each class, 500 pixels were randomly
selected each year. Thus, we built two datasets (each of them composed of
2500 pixels described by time series of length 23) on two different years in
order to assess the method’s robustness by training and validating on differ-
ent years. The training set corresponds to the period 2005-2006 whereas
the testing set to the period 2006-2007.

Figure 4.6 shows per-class average EVI time series for cropping period
2005-2006. Figure 4.7 shows a random selection of five time series for each
class in order to illustrate high intra-class temporal variability as well as
amplitude variability. The dataset is available online 5.

4.3.3 Specificities

Due to the climatic conditions in the state of Mato Grosso in Brazil dif-
ferent agricultural practices can be observed: single cropping and double
cropping. These practices – as well as with large farms and logistics issues –
generate a specific agricultural calendar.

Indeed, to ensure two harvests (Soybean and {Cotton, Maize or Millet})
in the same year, it is necessary for farmers to be organized. Cotton, maize
and millet do not have the same phenological cycle: cotton has the longest
one followed by maize ; i.e. cotton crops require more time from sowing
to harvesting than both maize and millet crops. It is thus necessary to start
sowing the soybean that will be followed by cotton earlier than the one to be

5. https://github.com/a-bailly/time_series_data/tree/master/

brazilian-amazon
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followed by maize, since the soybean followed by cotton need to be harvest
first. The same reasonning apply to soybean with maize and soybean plus
millet. Moreover since millet is usually not planted for commercial use but
rather for soil cover, it is logical to be sown last (for double cropping) as it
will not be harveted.

Concerning cropping practices, single soybean can be sown later than
double cropping soybean since there will be only one harvest. After single
cropping soybean is harvested, it is possible to observe that the vegetation
grows again on Figure 4.6. This can be explained by the fact that the rainy
period is not over. Cotton cultivated in single cropping is sown later than
soybean for a practical reason: cotton need to be harvested during the dry
season i.e. after the end of the rainy period.

Knowledge on remote sensing data can help building more specific ap-
proaches. For the Brazilian Amazon, we show that there exists a specific
agricultural calendar that can bring more information to help properly clas-
sify properly the time series.

4.4 TiSeLaC Dataset versus Brazilian Amazon
Dataset

The TiSeLaC dataset is more challenging than the Brazilian Amazon one
for the following reasons:

1. It contains more classes.

2. The profiles proximity of several classes makes the classification more
challenging for TiSeLaC than for Brazilian Amazon.

3. The lack of distinctive features in the data makes it more difficult to
extract knowledge from TiSeLaC, making it harder to properly classify
the time series, especially for feature-based algorithms.

We can thus expect better classification performance on Brazilian Amazon
than on TiSeLaC.

4.5 Experiments on Remote Sensing Time Series
datasets

In order to follow the UEA / UCR dataset format, we split each dataset
into a training and a testing sets, as detailed in Table 4.1 (500 training
time series per class for both). The experiments are carried out using only
training data during the training step and error rates are reported on the
test set in Table 4.2.
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Brazilian-Amazon_EVI TiSeLac_NDVI
# Classes 5 9

Length 23 23
# Training Time Series 2500 4500
# Testing Time Series 2500 5000

Table 4.1 – Remote sensing time series datasets in numbers

4.5.1 Algorithms

We run the experiments on the following algorithms:
• The available implementations of Bag-of-Patterns, BOSS, DTW-NN,

LTS, SAX-VSM, SMTS from [Bagnall et al., 2016] 6.
Note that we slightly modifiy the LTS algorithm since we take a maxi-
mum of 10 000 random sub-series to initialize shapelets instead of all
the sub-series of the training set. This modification has low impact on
performance, however it requires less computational space and less
time for large datasets.

• Our implementation of ABS which is available on GitHub 7. As de-
scribe in Chapter 3, we initialize the shapelets using either the entire
set of sub-series (if < 10 000) or a maximum random set of 10 000
sub-series. We also use recommended LTS parameters:

◦ The regularization parameter λw = 0.01,

◦ The number of scales R = 3,

◦ The percentage of series length to 0.2,

◦ The number of iterations to 600.

Finally, we use cross-validation to learn the parameter for the adver-
sarial perturbation inside the set {0.001, 0.01, 0.1}.
• Our implementation of D-BoTSW which is available on GitHub 8. Note

that in order to reduce the computation time, we set the parameters k
(k-means) and C (SVM) respectively to 1024 and 1.

• For ED-NN, we use the python KNeighborsClassifier function from pack-
age sklearn.neighbors associated with euclidean distance (from pack-
age scipy.spatial.distance).

6. www.timeseriesclassification.com – Corresponding to 229d523 bitbucket commit
7. https://github.com/a-bailly/adversarially_built_shapelets

8. https://github.com/a-bailly/dbotsw
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Brazilian-Amazon (EVI) TiSeLaC (NDVI)
ABS 0.285 0.415
BoP 0.501 0.610

BOSS 0.467 0.474
D-BoTSW 0.295 0.583
DTW-NN 0.457 0.457
ED-NN 0.354 0.438

LTS 0.285 0.428
SAX-VSM 0.570 0.717

Table 4.2 – Average error rates on remote sensing time series datasets (on 6
runs)

4.5.2 Results Interpretation

From Table 4.2, we see that for both datasets, shapelet-based methods
(LTS & ABS) perform nicely. We can also notice that in the top 4 methods
there is also a feature-based method (BOSS for TiSeLaC and D-BoTSW for
Brazilian-Amazon) as well as the simple ED-NN.

Learning Time series Shapelets and Adversarially-Built Shapelets are
both able to identify a set a sub-series (shapelets) that characterize well
the different classes thus that lead to a small amount of errors for these two
remote sensing time series datasets.

ED-NN performs well on these two datasets, it might come from the
fact that the time series length is relatively small (only 23 datapoints per
time series). On the contrary, we observe that DTW-NN obtained a larger
number of errors than ED-NN on both datasets. We show that the Brazilian
Amazon data respect an agricultural calendar, where time series of the same
class can have a small temporal shift due to practical reason. Aligning time
series might seem like a good idea since it can enable one to take in account
this temporal variability. However, it is necessary to consider the maximum
temporal shift of the time series of the same class, which DTW-NN does not.

Finally, the feature-based methods BOSS and D-BoTSW often achieve
good performance. However, the length of the time series of these two
remote sensing datasets is relatively small and can affect their performances.
Nonetheless, we have to keep in mind that new satellites such as Sentinel
1 & 2 with a smaller revisit time provide longer remote sensing time series,
which enable these method to build their model on more characteristics,
i.e. to have a more precise representation. All four BOSS, D-BoTSW, LTS
and ABS can thus expect to achieve better performance on other remote
sensing time series datasets with longer time series.
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4.5.3 Study of Robutness Methods for Remote Sensing Data
Specificities: Growing Amount of Data

We propose to further experiment in order to evalutate the impact of the
number of time series per class on the performance of the different algo-
rithms. We use a subset of the training set in order to create increasingly
large training sets (respectively 20, 50, 100, 200 & 500 training time series
per class) that we run on ABS, BoP, BOSS, D-BoTSW, ED-NN, LTS and SAX-
VSM algorithms. Figures 4.9 and 4.8 summarize the results respectively for
datasets TiSeLaC and Brazilian-Amazon. For each size, we learn on 6 dif-
ferent training sets and compute the error rates on the same testing set
(i.e. the previous testing set with 5 000 time series). The average error rates
are given in Table 4.2. On Figures 4.9 and 4.8, we can observe both the
average error rate (continuous line) as well as minimum and maximum er-
ror rates obtained on the different training sets. Note that for the Brazilian
Amazon we only have 500 training time series which results in a small / zero
variance on Figures 4.9 on a large number of time series (200 and 500 time
series per class) ; for the TiSeLaC dataset we randomly select the training
time series in the 81 714 original training time series.

We observed in Table 4.2 that BoP and SAX-VSM have the highest er-
ror rates in both cases. A possible explanation comes from the fact that
both BoP and SAX-VSM reduce the data dimensionality. However, for our
applications, it might be a problem considering that the time series have a
relatively small length (only 24 datapoints). These two approaches are thus
unlikely to perform well on remote sensing datasets with time series having
few datapoints.

We experiment on two other feature-based methods: BOSS and D-BoTSW.
Their features are more robust and lead to better performance than BoP
and SAX-VSM. However they also suffer from the low dimensionality of the
data, i.e. from the small time series length. We expect to obtain better per-
formance on remote sensing time series with higher temporal resolution for
both BOSS and D-BoTSW, since they rely on the notion of neighborhood.
Note that the difference between minimal and maximal error rate is larger
for BOSS, which suggest that D-BoTSW is more robust to variations.

4.5.4 Descriptive Features

In order to illustrate both our proposed algorithms: ABS & D-BoTSW,
we have generated some shapelets and codewords for the Brazilian Amazon
dataset which has more distinguishable features than the TiSeLaC one.
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Figure 4.8 – TiSeLaC – Evolution of error rates for an increasing number of
training time series

20 50 100 200 500
# Time series per class

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
rr

or
ra

te
s

Brazilian-amazon – EVI
ABS
BoP
BOSS
D-BoTSW
DTW
ED-NN
LTS
SAX-VSM

Figure 4.9 – Brazilian Amazon – Evolution of error rates for an increasing
number of training time series
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Figure 4.10 – Brazilian Amazon – The 6 shapelets generated by ABS (of
length 12)

4.5.4.1 Adversarially-Built Shapelets

In order to illustrate ABS algorithm, we have generated a set of shapelets
for the Brazilian Amazon dataset, as shown on Figure 4.10, we also provide
associated weights and bias in Table 4.3. For readibility,

1. We fixed the number of shapelets to 6 instead of computing it using
Grabocka’s formula.

2. We run this experiment on default parameters (# of scales: R = 3
and percentage of time series length = 0.2), however we only plot
the sufficiently long shapelets (corresponding the third scale, with 12
datapoints) for readibility.

The number of classification errors is slightly higher than the one obtained
with more shapelets since we obtained an error rate of 0.306 instead of 0.285
previously.

It is possible to associate a shapelet with a specific class, such as
• The � shapelet with the Soybean+Cotton class. Indeed, there are two

consecutive large peaks which corresponds to the Soybean+Cotton
profile.

• The �, � and � shapelets represent a large peak followed by three
smaller ones.

◦ The � shapelet has the largest second peak between the three
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XXXXXXXXXXXShapelets
Classes

Soybean
Soybean
+Millet

Soybean
+Maize

Soybean
+Cotton

Cotton

� 0.458 -0.145 3.063 -4.620 -0.598
� -2.967 -2.412 -1.246 1.602 4.106
� -0.592 -0.443 2.529 3.937 -2.903
� -0.447 -2.391 -3.856 2.956 2.215
� -1.045 -1.105 1.62 3.828 -3.855
� -4.545 -1.817 -0.421 0.115 4.290

Bias 0.643 0.211 -0.545 -0.505 -1.525

Table 4.3 – Weights associated with the shapelets represented on Figure 4.10
for each class. We indicate the most influential weight in bold i.e. the weight
which is the more related to a class. The weights with the largest abso-
lute values correspond to most informative features. Note that due to the
construction of the model, the most influential weights are not the largest
positive ones but the largest negative ones.

considered shapelets ; thus we assume that this shapelet is re-
lated to the Soybean+Maize class.
◦ The second peak of the � shapelet is a bit smaller than the �

one ; we can make the following hypothesis: the � shapelet is
associated with the Soybean+Millet class.
◦ Finally, the � has the smallest second peaks, our assumption is

that it is related with the Soybean class.
• Both � and � shapelets correspond to the end of a small / medium

peak followed by a large one, which can correspond to Cotton class.
In Figure 4.7, we observe that the different classes have a high intra-
class variability, these two different shapelets representing the same
classes can be seen as a good illustration of this variability.

Thanks to the weights associated with each class and each shapelet
(see Table 4.3), we are able to check our hypotheses. For each class we
hightlight the most influential shapelet(s) which confirmed our previous as-
sumptions e.g. the class Soybean is associated with the � shapelet.

4.5.4.2 Dense Bag-of-Temporal-SIFT-Words

In order to illustrate D-BoTSW algorithm, we have generated a set of
codewords for the Brazilian Amazon dataset (see Figure 4.11) as well as
corresponding histogram per class (see Figure 4.12). For a better visualiza-
tion we set the parameters to:
• The number of points per block a to 2,
• The number of blockss nb to 6,
• The number of codewords k to 16,
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Figure 4.11 – Brazilian Amazon – The 16 generated features from D-BoTSW
algorithm
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• And the SVM parameter CSVM to 1.
The error rate obtained with this setup (0.316) is approximatly the same
than the one obtained with the cross validation (0.295). In the following,
we will refer to a specific codeword by its coordinates, i.e. one letter to
specify the line and a number for the column, as indicated on Figure 4.11.
For example, the D1 codewords has two long arrows pointing up for blocks
four and five otherwise small arrows. Each codeword represents a total
amount of 12 datapoints, i.e. around half of the total time series. Note that
examples of time series and their corresponding codewords can be found
in Figure 2.6(c).

Several codewords show the presence of one peak such as A2, B2 or
D2, others suggest even two peaks e.g. E1 and G2 . It is possible to ob-
serve that the second peak of E1 has much smaller values that the second
peak of G2. The histogram value associated with E1 should thus be larger
for class Soybean+Maize than for the other classes ; and those with G2
larger for class Soybean+Cotton. In order to check this hypothesis, we gen-
erated the average histogram per class for the Brazilian Amazon training set,
on Figure 4.12. The larger the values, the more important the codeword is
detected in the class. We can observe that
• Class Soybean+Maize has the largest value for the codewordE1, i.e. this

codeword is representative of this class. On the contrary, classes Soy-
bean+Cotton and Cotton has low values for this codeword.

• The class that has a highest value for the codeword G2 is the Soy-
bean+Cotton class.

Consequently, our hypotheses on both codewords correspond to the reality.
It is possible to find the codewords that are the most associated with specific
classes logically. D-BoTSW can thus be used for results interpretation or to
check data hypotheses.

4.6 Conclusion

In this chapter, we provide two time series datasets available online
that we recommend to use in association with the well-known UCR / UEA
database to evaluate the performance of any algorithm. Indeed, the variety
of problems represented by the UCR / UEA can be enlarged, thanks to these
datasets that contains remote sensing time series. We also provide an anal-
ysis of the data in order to better understand the nature and the specificities
of these datasets.

We perform a set of experiments on these datasets using time series
classification algorithms. Then we show the impact of a growing amount of
time series and algorithm stability using different training sets. Finally, we
depict both ABS and D-BoTSW through shapelet and feature visualizations
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for a better understanding of these two algorithms.
Moreover, for some applications, we have identify some additional in-

formation that can help classifying data. The creation of algorithms to take
into account these informations (e.g. by detecting the beginning of cropping
period) can help improve current performances.

Time revisit and/or spatial resolution are increasing for new satellites.
We can differentiate satellites with high spatial resolution but low temporal
resolution (e.g. SPOT-6, SPOT-7) and satellites with lower spatial resolution
but high temporal resolution (e.g. Sentinel-1, Meteosat). Sentinel-2 sensors
combine both high spectral and spatial resolutions (10, 20 or 60m) with
a high temporal resolution, since they cover the entire Earth surface every
five days [Malenovskỳ et al., 2012]. Higher spatial resolution leads to purer
pixel and higher temporal resolution leads to longer time series. Both purer
pixels and longer time series mean that feature-based method performances
will be improved.
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Results Summary

Time series data can be found in many domains resulting in an explosion
of interest in mining time series data in the last two decades. A wide number
of algorithms have already been proposed to classify time series and for
many applications.

In this thesis, our main purpose was to propose new methodologies for
time series classification. Indeed, there is no classifier that is the best on
all problems; it is therefore important to propose new algorithms, where a
list of dataset properties, for which these algorithms are adapted, has been
identified. We choose to focus on methodologies, whose learned models
can be interpreted, and introduce two time series classification algorithms
that outperform most state-of-the-art baselines. One of the main reason to
focus on interpretable methods is the importance of results interpretation
and analysis for remote sensing applications in order to better understand
the dynamics related to the transformations of our planet. Source code as
well as data are available online for reproducibility.

We first proposed an algorithm that builds on two well-known and pow-
erful methods: local features which are densely extracted from time series
using a SIFT-based approach and a global representation of time series us-
ing these features which is produced using the Bag-of-Words technique. We
identify both strengths and weaknesses of our Dense Bag-of-Temporal-SIFT-
Words algorithm (D-BoTSW). Amongst weaknesses, we have identified that
it is important to have enough points for each time series. Due to the Bag-of-
Words representation that causes information loss during the quantization
step, D-BoTSW might not perform well on datasets where it is difficult to
distinguish the different classes. Amongst strengths, D-BoTSW is robust to
noise and exhibits high accuracy and high performance on many datasets.
Experiments, conducted on a wide variety of time series datasets, show that
D-BoTSW significantly outperforms nearly all considered standalone classi-
fiers. Finally, a visualization of the model, that includes the codewords and
the histogram representations of time series, is possible in order to check
hypotheses made on the data.

We then propose an enhancement of an already existing algorithm: Learn-
ing Time series Shapelets (LTS). In order to build our improved algorithm,
we first prove that LTS can be seen as an instance of a Convolutional Neu-
ral Network (CNN). Then, based on the fact that adversarial training can

121
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be used to build more robust models for image classification, we demon-
strate that this assumption is also valid for LTS. Finally, we implemented
the Adversarially-Built Shapelets algorithm (ABS) in order to also prove
experimentally that ABS performs better than LTS. Note that with adver-
sarial training, the performance is only slightly improved (thanks to more
robust shapelets), however the improvment is statistically significant. Both
LTS and ABS are interpretable algorithms. Indeed, characteristics sub-series
(i.e. shapelets) are used in order to discriminate the classes. These shapelets
can be used in association with the corresponding logistic regression weights
in order to determine the most important feature(s) for each class.

Amongst drawbacks, the current learning step of ABS implementation
might be seen as not fast enough, however a fast implementation based
on CNN libraries is planned. ABS has the same advantages than LTS that
can be found in [Grabocka et al., 2014], such as a fast prediction step.
Both ABS and LTS focus on discriminative sub-series in order to predict
the class labels. This is a strength point considering that time-series data
often exhibit inter-class differences in terms of sub-series. Shapelets also
offer interpretable features. Finally, ABS exhibit competitive performance
w.r.t. time series classification baselines.

We tested our algorithms on datasets from many domains (using UEA /
UCR database) in order to compare them to existing time series algorithms.
However one of our purpose was to design classifiers adapted to satellite
images time series. Our last contribution was to study how time series algo-
rithms can perform on this data as well as to show how our algorithms can
be used in this context. Namely, we benchmarked many time series classi-
fication algorithms on two remote sensing datasets, for which we detailed
the specificities. These experiments show that shapelet-based methods are
well-suited for this kind of data. Feature-based methods also show promis-
ing performance, which we expect to be improved in the future thanks to
new and upcoming satellites with higher temporal and spatial resolutions.
Finally, we provide a detailed explanation of the interpretability for both
D-BoTSW and ABS. We believe that interpretability will be an incentive for
remote sensing scientists to use these methods.

Perspectives

Our work can be seen as a step towards bringing closer remote sensing
and machine learning communities. The introduction of methodologies able
to use additional knowledge (e.g. pixel coordinates, calendar information)
present in remote sensing data is a direction that is worth being explored.
In order to propose new algorithms supporting massive amounts of data
(e.g. Sentinel-2 satellite gathers over 10 trillions time series), it is necessary
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for both communities to work together. Moreover, with the increasing num-
ber of spectral bands acquired by sensors, multivariate time series will be in
the future an important topic for the time series classification community.

For satellite data it makes perfect sense to consider multivariate data
since satellite sensors acquire several spectral bands, hyperspectral sensors
even acquire hundreds of them. Each spectral band can bring different infor-
mation that can help for the classification. Both D-BoTSW and ABS could
be easily adapted to multivariate time series. It is possible for D-BoTSW
to generate different codebooks (one per dimension), the new time series
representation will thus correspond to the histograms concatenation. Ex-
periments using only a sub-part of the spectral band could be easily done
(by removing the corresponding histograms) in order to detect the most
discriminative bands for a specific application. Concerning ABS, it is possi-
ble e.g. to generate shapelets for each dimension instead of different length
shapelets. As for D-BoTSW, this approach allows an analysis of the discrim-
inative power of spectral bands. Considering that a hyperspectral sensor
deals with a large number of bands over a continuous spectral range, it is
crucial for the time series classification community to develop more mul-
tivariate solutions for remote sensing applications. These solutions should
allow results interpretability such as providing information on the most dis-
criminative spectral bands

SIFT features for time series used in Dense Bag-of-Temporal-SIFT-Words
already serve as a basis for an algorithm that considers the temporal order
of the features [Tavenard et al., 2017]. Future work on D-BoTSW can fo-
cus on considering more information such as pixel coordinates for satellite
image time series in order to take into account the neighboring time series.
Coordinates information can help for the prediction between similar classes.
Indeed, neighboring pixels are often part of the same parcel or field, thus
it can help detect misclassify time series. For instance, if a pixel is labeled
as maize but all its neighbors belong to the coton class, one may assume
that this pixel is misclassify and should be also labeled as coton. Finally,
D-BoTSW can also be included into easily-extendable frameworks such as
ensemble classifiers dedicated to time series classification (e.g. COTE).

Our Adversarially-Built Shapelets algorithm shows very promising clas-
sification results. We show that LTS is an instance of a CNN, it might thus
be interesting to evaluate the impact of the CNN setup. The activation func-
tion, the impact of the number of layers, the shape and size of the filters
(i.e. of the shapelets) all play an important role in the learning process
of a CNN. Further investigation is required in order to better understand
their influence on the model, which can lead to further improvment of the
method. Moreover, several methods have been proposed to avoid overfitting
for CNNs (such as dropout and early stopping), an evaluation of their im-
pact on the LTS & ABS algorithms is relevant and might help building better
algorithms. Moreover, a fast implementation of both LTS & ABS using CNN
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libraries must be implemented in the future to promote these methods. Fi-
nally, many scientific papers are currently based on CNNs and adversarial
examples, which can lead to further improvment of LTS & ABS or even new
shapelet-based approaches.
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AERROR RATES NUMERICAL
COMPARISON

For readibility, the numerical error rate values for the UEA / UCR database
are separated into two Tables: A.1 and A.2. We provide error rates for our
two proposed algorithms: D-BoTSW and ABS ; as well as for LTS since the
algorithm provided by Bagnall et al. [2017] has been updated and we run
it on UEA / UCR database for fair comparison with ABS.

In this manuscript, we also used error rates (on 85 datasets) provided
by Bagnall et al. [2017] for BoP, BOSS, COTE, DTW-NN, ED-NN, LTS, PROP,
SAX-VSM and TSBF algorithms. Error rates for SMTS methods (on 45 datasets)
can be found in [Baydogan and Runger, 2015].
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142 Appendix A. Error Rates Numerical Comparison

name D-BoTSW ABS LTS
50words 0.218 -1 -1

Adiac 0.269 -1 0.332
ArrowHead 0.189 0.126 0.143

Beef 0.167 0.2 0.167
BeetleFly 0.1 0.2 0.2

BirdChicken 0.2 0.2 0.2
Car 0.067 0.15 0.183
CBF 0 0.009 0.01

ChlorineConcentration 0.45 0.359 0.385
CinC_ECG_torso 0.192 0.105 0.137

Coffee 0 0 0
Computers 0.236 0.392 0.408
Cricket_X 0.231 0.241 0.251
Cricket_Y 0.249 0.256 0.285
Cricket_Z 0.233 0.241 0.259

DiatomSizeReduction 0.085 0.02 0.026
DistalPhalanxOutlineAgeGroup 0.168 0.266 0.266

DistalPhalanxOutlineCorrect 0.188 0.214 0.214
DistalPhalanxTW 0.223 0.36 0.381

Earthquakes 0.205 0.259 0.252
ECG200 0.06 0.14 0.14
ECG5000 0.056 0.064 0.061

ECGFiveDays 0 0 0
ElectricDevices 0.333 0.334 0.34

FaceAll 0.201 0.224 0.226
FaceFour 0.023 0.034 0.045
FacesUCR 0.055 0.06 0.06

FISH 0.023 0.04 0.034
FordA 0.087 0.066 0.077
FordB 0.106 0.181 0.18

Gun_Point 0.02 0 0
Ham 0.362 0.324 0.305

HandOutlines 0.117 -1 0.089
Haptics 0.549 0.549 0.545
Herring 0.406 0.391 0.375

InlineSkate 0.613 -1 0.629
InsectWingbeatSound 0.438 0.414 0.406

ItalyPowerDemand 0.064 0.036 0.039
LargeKitchenAppliances 0.131 0.24 0.272

Lightning2 0.115 0.164 0.197
Lightning7 0.301 0.205 0.205
MALLAT 0.106 0.047 0.049

Table A.1 – Error rates from various time series classification methods from
50words to MALLAT
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name D-BoTSW ABS LTS
Meat 0.1 0.15 0.167

MedicalImages 0.27 0.307 0.328
MiddlePhalanxOutlineAgeGroup 0.193 0.403 0.409

MiddlePhalanxOutlineCorrect 0.35 0.162 0.192
MiddlePhalanxTW 0.378 0.494 0.513

MoteStrain 0.169 0.131 0.144
NonInvasiveFatalECG_Thorax1 0.059 -1 -1
NonInvasiveFatalECG_Thorax2 0.062 -1 -1

OliveOil 0.6 0.833 0.833
OSULeaf 0.07 0.256 0.24

PhalangesOutlinesCorrect 0.23 0.198 0.217
Phoneme 0.718 -1 -1

Plane 0 0 0
ProximalPhalanxOutlineAgeGroup 0.141 0.176 0.176

ProximalPhalanxOutlineCorrect 0.158 0.103 0.134
ProximalPhalanxTW 0.203 0.2 0.185
RefrigerationDevices 0.544 0.488 0.507

ScreenType 0.445 0.589 0.568
ShapeletSim 0 0.033 0.111

ShapesAll 0.107 -1 -1
SmallKitchenAppliances 0.272 0.32 0.304
SonyAIBORobotSurface 0.088 0.186 0.176

SonyAIBORobotSurfaceII 0.17 0.087 0.129
StarLightCurves 0.023 -1 0.044

Strawberry 0.044 0.059 0.089
SwedishLeaf 0.082 0.096 0.088

Symbols 0.016 0.05 0.06
synthetic_control 0.003 0.003 0.003

ToeSegmentation1 0.035 0.066 0.066
ToeSegmentation2 0.069 0.062 0.069

Trace 0 0 0
Two_Patterns 0.001 0.003 0.004
TwoLeadECG 0.009 0.001 0.003

uWaveGestureLibrary_X 0.208 0.201 0.198
uWaveGestureLibrary_Y 0.265 0.296 0.293
uWaveGestureLibrary_Z 0.26 0.258 0.258
UWaveGestureLibraryAll 0.13 -1 -1

wafer 0.004 0.004 0.004
Wine 0.426 0.5 0.5

WordsSynonyms 0.309 0.319 0.317
Worms 0.343 0.39 0.39

WormsTwoClass 0.315 0.273 0.299
yoga 0.142 0.161 0.154

Table A.2 – Error rates from various time series classification methods from
Meat to yoga
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Classification de Séries Temporelles avec
Applications en Télédétection

Résumé La classification de séries temporelles a suscité beaucoup d’intérêt au cours des der-
nières années en raison de ces nombreuses applications. Nous commençons par proposer la mé-
thode Dense Bag-of-Temporal-SIFT-Words (D-BoTSW) qui utilise des descripteurs locaux basés sur
la méthode SIFT, adaptés pour les données en une dimension et extraits à intervalles réguliers. Des
expériences approfondies montrent que notre méthode D-BoTSW surpassent de façon significative
presque tous les classificateurs de référence comparés. Ensuite, nous proposons un nouvel algo-
rithme basé sur l’algorithme Learning Time Series Shapelets (LTS) que nous appelons Adversarially-
Built Shapelets (ABS). Cette méthode est basée sur l’introduction d’exemples adversaires dans le
processus d’apprentissage de LTS et elle permet de générer des shapelets plus robustes. Des ex-
périences montrent une amélioration significative de la performance entre l’algorithme de base et
notre proposition. En raison du manque de jeux de données labelisés, formatés et disponibles en
ligne, nous utilisons deux jeux de données appelés TiSeLaC et Brazilian-Amazon.

Mots Clés Classification des séries temporelles, Télédétection, Sac-de-mots, SIFT, Shapelets de
séries temporelles, Réseaux de neurones convolutionnels, Exemples adversaires

Time Series Classification Algorithms with
Applications in Remote Sensing

Abstract Time Series Classification (TSC) has received an important amount of interest over the
past years due to many real-life applications. In this PhD, we create new algorithms for TSC, with
a particular emphasis on Remote Sensing (RS) time series data. We first propose the Dense Bag-of-
Temporal-SIFT-Words (D-BoTSW) method that uses dense local features based on SIFT features for
1D data. Extensive experiments exhibit that D-BoTSW significantly outperforms nearly all compa-
red standalone baseline classifiers. Then, we propose an enhancement of the Learning Time Series
Shapelets (LTS) algorithm called Adversarially-Built Shapelets (ABS) based on the introduction
of adversarial time series during the learning process. Adversarial time series provide an additio-
nal regularization benefit for the shapelets and experiments show a performance improvement
between the baseline and our proposed framework. Due to the lack of available RS time series da-
tasets, we also present and experiment on two remote sensing time series datasets called TiSeLaC
and Brazilian-Amazon.

Keywords Time Series Classification, Remote Sensing Time Series, Bag-of-Words, SIFT features,
Time Series Shapelets, Convolutional Neural Networks, Adversarial Examples
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