
HAL Id: tel-00990245
https://theses.hal.science/tel-00990245v1

Submitted on 13 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sequential prediction for budgeted learning :
Application to trigger design

Djalel Benbouzid

To cite this version:
Djalel Benbouzid. Sequential prediction for budgeted learning : Application to trigger design. Other
[cs.OH]. Université Paris Sud - Paris XI, 2014. English. �NNT : 2014PA112031�. �tel-00990245�

https://theses.hal.science/tel-00990245v1
https://hal.archives-ouvertes.fr

LAL 14-24

UNIVERSITÉ PARIS-SUD

ÉCOLE DOCTORALE D’INFORMATIQUE

THÈSE DE DOCTORAT
Soutenue le 20 Février 2014 par

Djalel BENBOUZID

Sequential prediction for budgeted learning
Applications to trigger design

Discipline : Informatique
Préparée au Laboratoire de l’Accélérateur Linéaire de l’Université

(Paris-Sud XI), dans les équipes APPSTAT et TAO

sous la direction de Balázs KÉGL

Jury

Rapporteurs Ludovic DENOYER Université Paris VI
Kilian WEINBERGER Washington University in St.Louis

Directeur Balázs KÉGL Université Paris-Sud & CNRS
Examinateurs Florence D’ALCHÉ-BUC Université d’Evry-Val d’Essonne

Damien ERNST Université de Liège
Vladimir GLIGOROV CERN
Michèle SÉBAG Université Paris-Sud & CNRS

Invité Guy WORMSER Université Paris-Sud & CNRS

Last modified on February 28, 2014

LAL 14-24

UNIVERSITÉ PARIS-SUD

ÉCOLE DOCTORALE D’INFORMATIQUE

THÈSE DE DOCTORAT
Soutenue le 20 Février 2014 par

Djalel BENBOUZID

Prédiction séquentielle en apprentissage
statistique avec contraintes de budget

Applications à la conception de trigger en physique des particules

Discipline : Informatique
Préparée au Laboratoire de l’Accélérateur Linéaire de l’Université

(Paris-Sud XI), dans les équipes APPSTAT et TAO

sous la direction de Balázs KÉGL

Jury

Rapporteurs Ludovic DENOYER Université Paris VI
Kilian WEINBERGER Washington University in St.Louis

Directeur Balázs KÉGL Université Paris-Sud & CNRS
Examinateurs Florence D’ALCHÉ-BUC Université d’Evry-Val d’Essonne

Damien ERNST Université de Liège
Vladimir GLIGOROV CERN
Michèle SÉBAG Université Paris-Sud & CNRS

Invité Guy WORMSER Université Paris-Sud & CNRS

Acknowledgments
Remerciements

Il est difficile d’exprimer sa gratitude en quelques lignes lorsque l’on doit tant et à
autant de personnes. Je suis particulièrement reconnaissant envers mon directeur
de thèse, Balázs Kégl, dont l’enthousiasme scientifique, la gestion “googlienne” de
l’équipe et la constante bienveillance ont été et seront, pour moi, d’une inspiration
incommensurable. Merci pour ta confiance Balázs.

Un grand merci aussi à Róbert Busa-Fekete, alias Robi, qui a accompagné mes
débuts au sein de l’équipe APPSTAT et avec qui j’ai collaboré et appris. Une pensée
particulière va aussi à mon ami Rémi Bardenet qui a le don de toujours présenter
les mathématiques avec simplicité et clarté.

Je voudrais aussi remercier les personnes que j’ai eu le privilège de côtoyer tout
au long de mon doctorat pour les échanges passionnants et enrichissants dont j’ai
pu bénéficier, l’atmosphère scientifique fertile que chacun entretient et leur bonne
humeur invariable. Merci à Marcel Urban, Sylvie Dagoret-Campagne, Cécile Ger-
main, François-David Collin, Diego Garcia Gamez, Yacine Bekri, Sourav Prasad
Mishra et à Darko Veberic. Vous m’inspirer tous beaucoup d’humilité.

J’aimerais aussi chaleureusement remercier Damien Ernst et son équipe de
recherche pour la semaine fructueuse passée à Montefiore. J’exprime aussi ma
sincère gratitude envers Vladimir (Vava) Gligorov avec qui j’ai eu le privilège de
collaborer et dont les précieux conseils m’ont été extrêmement bénéfiques.

Il y a deux enseignants qu’il me tient à coeur de remercier, et avec beaucoup
d’humilité, monsieur Slimani pour sa passion et son enseignement des mathéma-
tiques (et de l’éthique d’ailleurs. . .) au lycée “sbitar” et madame Michèle Sébag
qui est à l’origine de mon engouement pour l’apprentissage statistique.

Je remercie chaleureusement les personnes avec qui j’ai eu l’honneur d’enseigner
à l’université Paris-Sud et dont j’ai beaucoup appris, notamment Daniel Etiemble,
Mathieu Dubois, Michel Menou et Frédérique Coquelle.

Je remercie également mes rapporteurs ainsi que tous les membres de mon jury de
thèse d’avoir accepté de participer à la concrétisation de ces trois dernières années
de travail.

J’aimerais aussi rendre hommage à tout le personnel administratif du LAL dont
le travail a grandement contribué au bon déroulement de cette thèse. Merci à
Sylvie Prandt, Valentine Marcuola, Brigitte Renard, au service mission et bien sûr à
Françoise Maréchal pour son travail remarquable à la bibliothèque du LAL. Merci
à Stéphanie Druetta au secrétariat de l’école doctorale d’informatique. Merci aussi
à Estelle pour les jus d’orange pressés qui ont été essentiels durant les derniers

ii

moments de la rédaction. Un grand merci au service informatique et à l’équipe de
StratusLab, notamment à Cal et à Mohammed.

Je suis aussi éternellement endetté envers mes parents à qui je dois tout, littérale-
ment. La distance ne les a jamais empêché d’être présents tout au long de cette
thèse. Mes pensées vont aussi à ma famille qui m’a toujours soutenu et encouragé,
à mes grandmas pour leur du’aa (qui faisaient compétition avec ceux de Hani) ainsi
qu’à toutes les personnes qui sont “devenus” ma famille et qui ont aussi, chacune
à sa manière, contribué à la réalisation de cette thèse, Mohamed, Brahim, Roberto,
Zaki, Imad et tant d’autres !

Merci, Lilia, pour ton admirable soutien et pour ta constante affection.

Enfin, je me dois de rendre hommage à toute la communauté du logiciel libre et
open-source ainsi qu’à la fondation Wikimedia à qui nous devons tous beaucoup.

Contents

1 Introduction 11

1.1 Preamble . 11

1.2 Machine learning . 13

1.3 Supervised learning notation . 14

1.4 The training workflow . 16

1.5 Fast and budgeted classification . 16

1.6 Similarity with particle physics experiments problems 18

1.7 The LHCb trigger . 19

1.8 Overview . 20

2 Boosting based frameworks 23

2.1 Adaboost . 24

2.1.1 Description . 24

2.1.2 Gradient descent boosting . 25

2.1.3 Multi-class ADABOOST . 27

2.2 MULTIBOOST . 27

2.2.1 Implemented base learners . 29

2.3 Cascade classifiers . 29

2.3.1 The original Viola-Jones cascade 31

2.3.2 Improvements and variations 34

2.4 Budgeted learning . 43

2.5 Conclusion . 45

3 Making decisions for classification 47

3.1 Designing fast sequential classifiers 48

3.1.1 Instance-dependent sparsity 49

3.1.2 Sequential instance-dependent sparsity 54

3.1.3 MDDAG: Markov Decision Directed Acyclic Graph 55

2 Contents

3.1.4 Learning bj(x) from delayed rewards 56

3.1.5 The state representation . 60

3.1.6 The learning algorithm . 65

3.1.7 Visualizing the final classifier 68

3.2 Unsupervised side-effects . 70

3.2.1 Synthetic data . 70

3.2.2 MNIST example . 72

3.3 Discussions . 72

3.3.1 The action space . 72

3.3.2 The influence of the order of the classifiers 73

3.3.3 The evaluation cost of the agent 74

3.4 Experiments . 74

3.4.1 The Adult dataset . 75

3.4.2 The Arcene dataset . 76

3.4.3 The Balance Scale dataset . 77

3.4.4 The Gisette dataset . 78

3.4.5 The Landsat Satellite dataset 79

3.4.6 The Pendigits dataset . 80

3.4.7 The Viola-Jones dataset . 81

3.5 Prediction as a sequential process . 82

3.5.1 The paradigm continuum . 85

3.5.2 The learning method . 85

3.5.3 Myopic vs non myopic . 86

3.5.4 The features used for the actions 86

3.5.5 The type of actions . 86

3.6 Conclusion and perspective . 87

4 Trigger design in the LHCb experiment 91

4.1 Background . 92

4.1.1 The LHCb experiment . 92

4.1.2 The LHCb trigger . 92

Contents 3

4.2 The LHCb data . 93

4.2.1 The D decay . 93

4.2.2 Data description . 93

4.2.3 The feature costs . 94

4.2.4 The data filtering trick . 96

4.2.5 MDDAG training . 97

4.2.6 Results . 98

4.3 Conclusion . 102

5 Conclusion 107

5.1 Epilogue . 107

5.2 Future work . 108

Bibliography 111

List of Figures

1.1 A depiction of overfitting in classification with a two-dimension bi-
nary problem. The black decision boundary is more likely to gener-
alize to new data points than the green one, despite the fact that the
green curve makes fewer errors on the training points. 17

1.2 An example of a learning curve with overfitting. 17

2.1 The pseudocode of binary ADABOOST. 26

2.2 The pseudocode of the ADABOOST.MH algorithm. X is the n × d
observation matrix, Y is the n×K label matrix, W is the user-defined
weight matrix used in the definition of the weighted exponential
margin-based error (2.1.1), BASE(·, ·, ·) is the base learner algorithm,
and T is the number of iterations. α(t) is the base coefficient, v(t)

is the vote vector, ϕ(t)(·) is the scalar base (weak) classifier, h(t)(·)
is the vector-valued base classifier, and f(T)(·) is the final (strong)
discriminant function. 28

2.3 ADABOOST learning curve on a face detection dataset. The base
learner consist in a decision stump on the pixel values. 30

2.4 ADABOOST learning curve on a face detection dataset, with Haar-
like features. 30

2.5 The structure of the Viola-Jones cascade. Rectangles represent
stages, circles represent base classifiers. The width of the base clas-
sifiers in each stage represents the portion of examples that gets into
that stage. Each observation is sequentially classified by the stages,
starting from stage 1, and at the end of each stage, it either calls the
evaluation of the next stage or it stops the classification, ending at
the ∞ circle. Thus, every observation follows a specific path along
the cascade. In Chapter 3, we keep this visualization in order to
show how we can give more flexibility to the paths taken by the
observations. 32

2.6 The pseudocode of the Viola-Jones Cascade classifier. The input of
the algorithm are F , the vector of stages and Θ, the vector of thresh-
olds. The stages are evaluated sequentially. As soon as the score the
observation falls below the stage’s threshold, it is classified as nega-
tive. Otherwise, after the evaluation of the last stage, it is classified
as positive. 33

6 List of Figures

2.7 The pseudocode of the Viola-Jones Cascade training algorithm.
EVALUATE is a simple function that counts the number of false pos-
itives and false negatives. DECREASETHRESHOLD simply decreases
θ by a certain amount, it is left generic on purpose so that it’s ef-
ficiency depends on its actual implementation. It is left generic.
BOOTSTRAP augments the training dataset with new false positives. . 34

2.8 The four categories of the original Haar-like features. The grey area
of each feature is summed up and subtracted from the sum of the
white area. The resulting value is then thresholded with the deci-
sion stump algorithm. 35

2.9 The sum of pixels within the rectangle ABCD can be calculated only
with the value of its corner pixels and is equal to C + A - B - D. . . . 36

2.10 The sum of pixels within the rectangle ABCD can be calculated only
with the value of its corner pixels and is equal to C + A - B - D. . . . 36

2.11 Rotated Haar-like features. 36

2.12 The structure of the Soft Cascade. The stages consist of only one
base classifier each, which allows to exploit the cumulative knowl-
edge of the cascade. 38

2.13 The structure of Waldboost. The stages, are endowed with two
thresholds in order to discard both positives and negatives. 39

2.14 The pseudocode of Waldboost classifier. The input of the algorithm
are F , the vector of stages and Θ, the vector of threshold couples.
Each stage is endowed with two thresholds for classifying both pos-
itives and negatives. 39

3.1 ADABOOST.MH learning curves. The curves represent the 0-1 error
for the training and test set. 57

3.2 Learning curve: the accuracy (acc) of the final classifier vs the
episode number (t). 62

3.3 The Pareto front: The scatter points represent different policy eval-
uations and the continuous line represents the accuracy of AD-
ABOOST.MH for the corresponding complexity. The colors simply
allow us to see how the learning evolves: The first episodes cor-
respond to the blue points and subsequent episodes turn progres-
sively into the red. 63

3.4 The Pareto front with the raw state space 64

3.5 The Pareto front of the Toy dataset with SINGLESTUMP 65

3.6 Examples of unnormalized and normalized Radial Basis Function . . 67

List of Figures 7

3.8 The decision DAG for the 2-4 class. Colors represent sub-class prob-
abilities (blue is 2 and red is 4) and the node sizes and arrow widths
represent the number of instances in the states and following the
actions, respectively. 72

3.9 The influence of the order of the classifiers. 88

4.1 The dependency graph of the feature cost calculation. 96

4.2 Comparing the new cost-sensitive setup (top) with the classical cost-
insensitive setup (bottom). On the y-axis, the overall classifier cost.
On the x-axis, the episode number (t). In the classical setting, the
learning does not take into account the features costs, which results
in high cost “spikes” during the exploration. It also shows that the
problem is non trivial: when the learning only minimizes the classi-
fication error, the resulting classifier ends up using costly features.
The cost-sensitive setup, on the other hands, keeps the overall cost
low and orient the exploration towards the usage of cheap features. . 99

4.3 The Pareto front of the trigger. Red dots are individual policies,
most of them correspond to exploration policies. The accuracy is
expressed in percent and the evaluation cost in millisecond. 100

4.4 The ROC curve of the trigger. The three signal classes are merged
into one class that form with the bkgd class a virtual binary problem. 102

4.5 A visualization of the selected MDDAG classifier. The red nodes
represent 2-node trees, which are represented in the upper right cor-
ner. Every red node is linked to its corresponding tree with a dashed
line. As for the previous visualizations, the node radii and the edge
widths are proportional to the number of instances that traverse the
corresponding element. 104

4.6 MDDAG: The 3 signal classes visualized pair-wise. The colors rep-
resent the class-wise proportions. 105

4.7 MDDAG: The 3 signal classes visualized along with the back-
ground class. The colors represent the class-wise proportions. 106

List of Tables

1.1 Machine learning vs high energy physics glossary. 21

3.1 The properties of the illustrative datasets. 54

3.2 The results of an instance-dependent sparse classifier (regularized)
in comparison with the full AdaBoost with different complexities.
The table also shows the number of base classifier in the Control
Classifier (CC) and the average number of evaluated base classifiers
in the Data Classifier (DC). 54

3.3 The paths followed by more than 6 test instances, the corresponding
average images, and the number of instances. 73

3.4 The different type of sequential approaches. 89

4.1 Description of the dataset features. 95

4.2 The properties of the illustrative datasets. 97

4.3 The confusion matrix, at the instance level, on the test set. 101

4.4 The confusion matrix, at the bag level, on the test set. 101

4.5 The average classification costs in milliseconds. 102

CHAPTER 1

Introduction

Contents
1.1 Preamble . 11

1.2 Machine learning . 13

1.3 Supervised learning notation . 14

1.4 The training workflow . 16

1.5 Fast and budgeted classification . 16

1.6 Similarity with particle physics experiments problems 18

1.7 The LHCb trigger . 19

1.8 Overview . 20

1.1 Preamble

The human being always sought to extend his capabilities. Despite being endowed
with limited sensory organs, the creative faculties of his brain, that unveiled no
boundaries yet, have always allowed him to go far beyond his sensory limitations
and dig out secrets of the world that would have remained deeply buried other-
wise. He, for instance, can see but had to go beyond the limits of his eyes to invent
the microscope and investigate extremely small objects; he went even further than
the visible wavelengths and invented the electron microscope that no longer “sees
with light”. The same is true for extremely far objects that are now observed with
telescopes. From that perspective, we can look at the invention of computers as
yet another step towards extending the human capacities with the exception that,
this time, the extensions concern the brain itself. This idea in fact is not new and
dates back to the appearance of the first computers, back in the 40’s, when scien-
tists began to foresee that the machines would replace at some point the human
being for certain tasks. The high speed at which processors execute instructions
is an asset, in and of itself, that offers a great advantage for repetitive and sim-
ple programmable tasks, however, one fundamental goal that scientists have been
striving for over decades is to exhibit intelligent behavior out of machines, thus the
emergence of a whole field of research named Artificial Intelligence (AI) (Russell
and Norvig, 2009).

12 Chapter 1. Introduction

Machine learning (ML) is a descendant of AI and as such, it shares with its ances-
tor the goal of making machines mimicking human beings. In particular, it quickly
became a more concrete realization of the idea that machines can extend human
brain. Being inductive by definition, ML methods are fed with real data, directly
taken from nature. So does the human brain. Furthermore, ML algorithms re-
main powerful even when this data lies in high dimensional spaces and depend
on a large number of dimensions. For comparison, a normally constituted adult
under normal conditions can hardly exceed a couple of criteria taken altogether
when it comes to making decisions and reasoning. An average person can typi-
cally hold about 41 items simultaneously in mind (Miller, 1956; Cowan, 2001), ML
algorithms, on the other hand, produce better results with more data. In that re-
spect, we see ML as a way to, once again, extend our capabilities in territories
where our senses fail but machines excel.

A concrete example of this idea is also found in practice. In modern particle
physics experiments, physicists usually have to deal with enormous amounts
of data and measurements, in order to study a given phenomenon. The typi-
cal approach in analyzing this data is to isolate regions of interest in the multi-
dimensional space of measurements on the basis of the theoretical properties of the
studied phenomenon. Traditionally, these cuts on the variables values have been
done manually and for every dimension separately, however, ML techniques, such
as Boosted Decision Trees, have shown during the past years to be very effective
during the phase of data exploration and analysis (Hoecker et al., 2007). Besides
being objectively driven by the data, their most appealing aspect lies in the multi-
variate discriminant functions they produce, which obviously tend to consistently
outperform the traditional univariate approach.

Targeted audience

This manuscript is mainly targeted to the machine learning community, however,
we also address the particle physics community since the scientific environment
in which the presented works were conducted, the initial motivating problem and
the main practical application are all related to the field of high energy particle
physics. It is not intended to present a unified language which both communities
could refer to, but we try nevertheless to make the content accessible to the particle
physics community.

It is always a bit delicate to address two different communities, in particular when
they have an overlapping terminology, sometimes used for different concepts.
Since our main contributions are in machine learning, we made the choice to al-
leviate the terminological ambiguities mainly in the introduction and keep a pure

1A bigger number is sometimes cited but evidence tend to show that beyond 4 items, the brain
uses smart trickery instead of actually storing the items.

1.2. Machine learning 13

ML terminology in the remaining chapters. Also, we summarize the different ter-
minological parallels in Table 1.1 at the end of this chapter.

1.2 Machine learning

Machine learning refers to a broad family of algorithms that inductively extracts
models from data in order to perform some specific tasks. If this definition is
generic, it nevertheless reflects the wide range of applications this sort of algo-
rithms can lead to, in particular in a time where data is preponderant, both in
industry and scientific research (Mitchell, 2006). Industry is nowadays completely
penetrated by machine learning algorithms with diverse applications like adver-
tisement placement, face recognition systems, text translation and categorization,
speech recognition, fraud detection in banking transactions as well as many ap-
plications in robotics. Scientific research is no exception in the use of machine
learning such as in genetics, drug design, but also in fields like cosmology and
high energy physics. In some cases, this adoption even led to the institutionaliza-
tion of almost fully new independent fields like biostatistics and, more recently,
data science.

When categorizing machine learning algorithms, we often distinguish three major
paradigms, mainly depending on the data we have to deal with, namely

• Supervised Learning,

• Unsupervised Learning,

• and Reinforcement Learning.

In supervised learning, the data is presented as a set of pairs, each of which com-
prises the observation (also called instance or example) and its label2. The goal
is to infer a function that maps the observations to their labels through a process
called the training or learning phase. The learned function, sometimes referred to
as the predictor, is meant to provide the correct label for any new data that it sim-
ilar to the already known one. In other words, it must generalize the prediction to
unknown observations.

Getting labels is often expensive, error prone or even impossible. When the avail-
able data is not labeled, we refer to the corresponding learning methods as un-
supervised learning. The objective is usually to discover hidden structure in the
data, find its compounding clusters or reduce its dimensionality before some fur-
ther processing or for visualization purposes.

2We sometimes find in the literature that the instance refers to both the observation and label
together, however, we find that distinguishing the instance from its label is more coherent with the
fact that we also classify an instance at test time, even though its label is unknown.

14 Chapter 1. Introduction

The third category, Reinforcement Learning (RL), is sometimes described as an in-
termediate paradigm between supervised ans unsupervised learning. The data
come in fact from the interaction of a learning agent with a source of information
called the environment and is said to be evaluative data (and not informative), i.e,
unlike in supervised learning, the environment does not provide a definitive an-
swer or label but only gives a feedback to the actions that the learning agent takes.
By analogy with reinforcement learning in behaviorist psychology, the feedback
is usually called reward. Another important line of distinction between RL and
the other types of learning is the sequential dimension of the interaction between
the agent and the environment. We talk about episodes, usually modeled as state
machines, which consist in alternating state transitions and actions taken by the
learning agent. In short, the agent takes an action and the environment responds
with a reward that evaluates that action along with a new state. The goal of RL
methods is either to estimate the expected sum of the rewards over an episode for
the different states, which is known as planning, or to optimize the decision mak-
ing of the agent so as to maximize the expected sum of rewards. The latter case is
known as a control problem.

Transversely, the research has focused on specific cases such as when only a subset
of the available data is labeled, raising the question of how supervised learning
methods can still take advantage of the unlabeled part, this is referred to as semi-
supervised learning and if, furthermore, the learner can actively query for new data
points, the problem is known as active learning. Other transverse family of algo-
rithms concern the cases wherein the data is provided one instance at a time and
not as a bunch, which is known as on-line learning or whether one can build a
model for a type of problems and still apply it to another related problems, com-
monly known as transfer learning questions.

1.3 Supervised learning notation

In supervised learning, we learn a function g : X → L from a dataset

D =
{
(x1, `1), . . . , (xn, `n)

}
∈ (X ×L)n

comprised of pairs of observations and labels. The elements x(j) of the d-
dimensional feature vector x are either real numbers or they come from an un-
ordered set of cardinality Mj. When the label space L is real-valued, the problem
is known as regression, whereas when the labels come from a finite set of classes,
we are talking about classification.

In multi-class classification, the label ` of the observation x comes from a finite
set. Without loss of generality, we will suppose that ` ∈ L = {1, . . . , K}. We
will refer to the label of the observation x as `(x). For technical reasons that will

1.3. Supervised learning notation 15

become clear later, we will encode the label using a K-dimensional binary vector
y ∈ Y = {±1}K. In the classical multi-class setup, y is known as the one-hot
representation: the `(x)th element of y will be 1 and all the other elements will be
−1, that is,

y` =

{
+1 if ` = `(x),

−1 otherwise.

This representation has the advantage to be generalizable to multi-label learning
when and observation x can belong to several classes. From now on we will call y
and ` the label and the label index of x, respectively.

The general multi-class training data is thus

D =
{
(x1, y1), . . . , (xn, yn)

}
∈ (X ×Y)n,

and the goal of learning is to infer a vector-valued multi-class classifier g : X → Y
from D. Sometimes we will use the notion of an n × d observation matrix of X =

(x1, . . . , xn) and an n× K label matrix Y = (y1, . . . , yn) instead of the set of pairs D.

As in binary classification, learning algorithms usually output a multi-class dis-
criminant function f : X → RK. The semantics of f is that the higher the `th element
f`(x) of f(x), the more likely is that the real label index of x is `. The vector-valued
classifier g is formally obtained by simply thresholding the elements of f(x) at 0,
that is,

g`(x) = sign
(

f`(x)
)
, ` = 1, . . . , K.

The single-label output of the algorithm is then the class index ` for which f`(x) is
maximal, that is,

`f(x) = arg max
`

f`(x).

The classical measure of the performance of the multi-class discriminant function
f is the single-label one-loss

LI

(
f, (x, `)) = I {` 6= `f(xi)}

that defines the single-label training error

R̂I(f) =
1
n

n

∑
i=1

I {`(xi) 6= `f(xi)}. (1.3.1)

16 Chapter 1. Introduction

1.4 The training workflow

In supervised learning, a common way to obtain an estimation of the future per-
formance of a trained classifier once it is used with real data, is to split the dataset
D in two folds, Dtrain and Dtest so that the learning is done on Dtrain and the out-
put classifier is tested on Dtest. Another benefit of this setup is to detect overfit-
ting. Overfitting occurs whenever the trained models fits so well the training data
that it also encodes its random variations. When the learner overfits, its perfor-
mance on the training set carry on decreasing while it increases on the test set. In
other words, it no longer generalizes. Figure 1.1 illustrates this phenomenon with
a 2D toy problem3. In order to accurately detect when this happens, it is usual to
plot the so called learning curve, depicting the training set error (or another perfor-
mance measure) against the running time (or the iteration, for iterative algorithms,
or other complexity parameters). An example of such a learning curve is shown in
Figure 1.2.

During the learning, the parameters of the trained model are tuned (or added) in
order to achieve the learning goal, however, the learning algorithms themselves
can have parameters that influence the learning and that must be set before the
training starts. Examples of such parameters are the number of decision nodes
in a decision tree or the number of units in a neural network. They are called
hyperparameters and in order to correctly tune them for a given problem, we add
a third step to the two steps of training and test, that is the validation step. The
principle is to split the data set in three folds, Dtrain, Dvalid, and Dtest so that the
training is done with Dtrain as usual, the selection of the hyperparameters is done
on Dvalid, and Dtest is used to estimate the generalization error using the selected
set of hyperparameters.

1.5 Fast and budgeted classification

The subject of this dissertation fits into the supervised learning category and tack-
les the problem of classification. In particular, we are interested in cases where the
classification process is subject to strong constraints such as computational and
time constraints. These questions, often raised when it comes to apply classifica-
tion algorithms in practice, have not known as much interest as for the generic
theoretical framework; so far, the focus has been usually put on the classification
performance of the learning algorithms and their statistical guarantees. Object
detection in images, such as face detection, is a typical example of constrained
classification problems because it is often applied in embedded environments and
requires a real-time classification. The problem appears to be even harder when
we know that the common process for detecting an object inside a image consists

3http://commons.wikimedia.org/wiki/File:Overfitting.svg

http://commons.wikimedia.org/wiki/File:Overfitting.svg

1.5. Fast and budgeted classification 17

Figure 1.1 – A depiction of overfitting in classification with a two-dimension binary
problem. The black decision boundary is more likely to generalize to new data
points than the green one, despite the fact that the green curve makes fewer errors
on the training points.

time

e
r
r
o
r

overfitting

Learning curve

train
test

Figure 1.2 – An example of a learning curve with overfitting.

of sweeping this image with a sliding window that covers all locations in the im-
age at different scales. Thus, the problem is no longer that of classifying an image
accurately, for which a plethora of solutions already exists, but how to correctly
classify thousands of images within a frame rate between 10 and 24 images per

18 Chapter 1. Introduction

second.

Even though early object detectors in images could achieve satisfying performance
Roth et al. (2000); Schneiderman and Kanade (2000), the breakthrough in real-time
face detection happened with the work of Viola and Jones (2004), introducing cas-
cade classifiers (Section 2.3). Conceptually, the idea was to turn the classification
into smaller sequential classification steps, called stages, that can be early pre-
empted. If simple and fast classifiers are put at the early stages, they can allow
most of the observations to be classified with a small complexity, by sequentially
processing them and discard them as soon as a certain classification confidence is
attained. In the Viola-Jones cascade, the discarded instances were the non face im-
ages and the overall classifier was efficient because of the highly skewed nature of
the detection problems in term of class imbalance and because the non faces were
easier to classify that the face images. As it is pointed out by Schneiderman (2004),
the idea of cascade classifiers dates back to the 70s and 80s as it was widely used
for automatic target recognition, however, the seminal work of Viola and Jones as
well as the subsequent improvements extended the initial concept and it became
since then the framework of reference for a variety of problems where fast clas-
sification is involved, such as in web page ranking (Cambazoglu et al., 2010) and
structured prediction (Weiss et al., 2012).

1.6 Similarity with particle physics experiments problems

Interestingly, a very similar type of problems to that of detecting objects in im-
ages arises in modern particle physics experiments in which, not surprisingly, the
same concepts of cascaded classification are employed. The Large Hadron Col-
lider (LHC) for example produces on average 600 million collisions per second,
corresponding roughly to 1 Petabyte of data per second but due to limited stor-
age capacities, only a minor fraction of these events can be kept, thus an extremely
fast classifier, called the trigger, must operate on-line in order to detect the “most
interesting” events and discard the rest, usually labeled as background. For com-
parison, in ATLAS, one of the four experiments of the LHC, the trigger is expected
to only select 200 events per second. This can seen as a big decrease in the so
called trigger rate but it is still relatively high, knowing that the Higgs boson, the
targeted particle, is expected to be produced at a rate of 0.01 Hz. The triggers in
modern particle colliders are also structured in stages (referred to as levels in the
physics terminology) where the acceptance rate, i.e, the number of retained events,
decreases step-wise from a level to another. Naturally, the lowest levels use raw
measurements in order to perform a fast classification but the high levels, as they
receive less data to process, employ constructed features that are more discrimi-
native but also more expensive to compute. In particular, some of them take more
time to compute than the other. When the features incur an acquisition cost and,
in particular, when a subset of the features is cheaper to acquire than the others,

1.7. The LHCb trigger 19

we usually talk about budgeted learning. The idea behind budgeted learning is
to use the least costly features as much as possible so as to decrease the average
classification cost.

Besides real-time and budgeted classification, we also find a number of other mo-
tivations for investigating fast classifiers. The problem is, for example, related to
medical diagnosis where one needs to obtain an answer based on different medical
tests but, because the tests might have secondary effects on the patient or because
some of them (usually the most informative ones) are expensive, we need to pre-
scribe as few tests as possible, while maintaining a mandatory level of accuracy.
Another issue of interest concerns the reduction of energy waste. The motivation
behind can be either purely technical, as for the spatial stations that must keep
strict energy policies, pecuniary or even ecological, the driving principle being
that reducing computation also reduces energy consumption.

In order to avoid dilution, our focus in this manuscript will be particularly on par-
ticle physics experiments, as it was our primary motivation, and also on object de-
tection in images, because of all the similarities that exist between these two types
of problems and the shared nature of solutions that have been proposed for both
types of problems. Within these two applications, we investigate what constitutes
the key ingredient in the efficiency of the cascades, the sequential classification,
and propose a method that tackles the problem in a novel way.

1.7 The LHCb trigger

We are initially motivated by another of the four experiments inside the LHC,
namely the LHCb experiment. In this experiment, the data is produced at a rate of
16 MHz and the trigger must only let the data to be stored at a rate of 2 kHz. This
tremendous amount of data to discard, which reminds of the original motivation
behind cascade classifiers, is not the only learning challenge. In fact, the features
that the classification is based on have different computational costs that depends
on many factors. The acquisition of some features requires the computation of
other features beforehand which, overall, creates a network of dependency among
the features. Also, there is a subset of features the cost of which depends on their
actual value (reflecting the idea that some high values are easier to compute and
necessitate less computational time, such as particle momenta). Furthermore, in
order to compute the classification cost of an observation, one must also take into
account the fact that the observations come in groups (or bags) corresponding to
the same physics event and that among instances of the same group, some feature
computations are shared. These constraints are atypical in machine learning and,
in order to provide a fully data-driven, automatic procedures to train efficient clas-
sifiers in that context, one must investigate new learning methods. As we show in
later chapters, our direction of investigation points towards sequential models.

20 Chapter 1. Introduction

1.8 Overview

In the next chapter, we introduce boosting methods. We start with this chapter
for mainly two reasons, this family of learning algorithms has been employed re-
currently when it concerned fast classification. Their additive nature allows them
to precisely control the complexity of the prediction and, furthermore, they are
employed in most of the works on cascade classifiers and fast classifiers. The sec-
ond reason is that boosting methods are an important part in our approach. Even
though theoretically not necessary, they contribute greatly to the application of our
method in practice for tackling fast classification. Chapter 2 also reviews cascade
classifiers, their origin and the different subsequent works. Budgeted learning in
the framework of boosting methods is also reviewed, as it is directly related to
fast classification and in particular to our motivating problem. We also describe
in this chapter an efficient and modular library, implementing some boosting and
cascades algorithms, that we maintained and extended during the course of this
thesis.

In Chapter 3, we describe a method for fast classification that was initially inspired
by cascade classifiers but finally differs in many ways from classical approaches.
We first define a fast classification framework that lead us to introduce sequential-
ity in order to satisfy all our requirements, then we propose our Algorithm, named
MDDAG (for Markov Decision Directed Acyclic Graph), that represents a con-
cretization of the aforementioned framework. The main idea behind MDDAG is
that we explicitly cast the classification as a decision making procedure and solve
the new problem through a reinforcement learning approach. The resulting al-
gorithm is fast and accurate but also extremely flexible in the sense that it can
accommodate various practical constraints such as feature costs. Throughout this
chapter, we illustrate the different steps of building MDDAG using illustrative
problems and, later, show experiments conducted on different classical machine
learning datasets in order to confirm the efficiency of the proposed method. At
the end of the chapter, we also review other works that, similarly to ours, cast the
initial prediction problem into a decision making task.

In Chapter 4, we apply MDDAG to our initial particle physics problem. After
explaining the non trivial cost calculations used for the features employed within
the LHCb trigger, we adapt MDDAG accordingly and show that it perfectly takes
the new logic into account.

Finally, 5 concludes this dissertation and provides an overview for future works.

1.8. Overview 21

Machine Learning High Energy Physics

Instance, example, observation Candidate, data point

Label Response

Bag of instances Event

Attribute, column, feature Variate, covariate, variable

Training, Learning Fitting

Generalization Test set performance

Hyperparameter Parameters of the learning algorithm it-
self, by contrast with those of the output
model. Eg. depth of the trees, number of
iterations etc.

Validation The selection of the appropriate set of the
hyperparameters, usually measured on a
separate dataset. This is why we usually
speak about a three-fold data splitting, re-
ferring to training, validation and test.

Base classifier Either a cut on one feature augmented
with a decision or a small classification
tree.

Strong (, Final, or Ensemble)
classifier

The classifier that combines multiple base
classifiers.

Table 1.1 – Machine learning vs high energy physics glossary.

CHAPTER 2

Boosting based frameworks

Contents
2.1 Adaboost . 24

2.1.1 Description . 24
2.1.2 Gradient descent boosting . 25
2.1.3 Multi-class ADABOOST . 27

2.2 MULTIBOOST . 27
2.2.1 Implemented base learners . 29

2.3 Cascade classifiers . 29
2.3.1 The original Viola-Jones cascade 31
2.3.2 Improvements and variations 34

2.4 Budgeted learning . 43
2.5 Conclusion . 45

Suppose that, for diagnosing a disease, we do not know any good doctor who can
provide a reliable answer most of the time with a high confidence, but instead, we
have access to a large, possibly infinite, number of “bad” doctors that only provide
the right diagnosis barely more than half of the time, and on different subsets of
patients for each doctor individually. The question that arises then is: can we could
pick up a subset of these doctors, endow each of them with a weight and combine
them so that their weighted majority vote would provide a reliable diagnosis?

The question of combining simple decision rules in order to produce an overall re-
liable predictor was first raised in Machine Learning by Kearns and Valiant (1994),
following a previous work on PAC models (Kearns and Vazirani, 1994), a family of
models suitable for analyzing machine learning algorithms. Boosting algorithms
came later to answer this question positively. The gist of boosting methods is to
iteratively construct an ensemble of weak classifiers, for example an ensemble of
“bad” doctors, so that their combination forms an overall reliable classifier, called
the final (or strong) classifier. In every iteration, a subroutine called the weak learner
is invoked to select the appropriate weak classifier for a given subset of the ob-
servations, and once selected, the weak classifier is assigned a coefficient and then
added to the overall pool. More generally, the weak learner can be given the en-
tire training dataset along with a distribution over the observations, which is often
referred to as the examples weights.

24 Chapter 2. Boosting based frameworks

The weakness of a classifier literally means that we do not assume its performance
to be strong, i.e, close to perfect classification, nevertheless, it is not to be confused
with a trivial classifier that does not conveys any relevant information. In the bi-
nary classification for instance, the “weak learnability” is defined by the condition
for a weak learner to output a classifier with a smaller error rate than 50%, in other
words, it must perform better than if we simply flipped a coin at random. Note
that we also use the term “base” instead of “weak” to emphasize the compositional
aspect of the weak learner, both terms remain equivalent however.

Boosting methods have met a great success during the past decades and many
boosting algorithms were proposed to solve different kinds of problems, mainly
in multi-class classification, regression and ranking. The main axes of variation
between the different algorithms lie in the following two question:

• how to set the weights of the examples before the weak learning,

• and how to set the coefficient of every weak classifier.

The flexibility that the boosting framework provides and its additive nature makes
it a privileged framework for fast classification. In this dissertation, we mainly
review the boosting algorithms that are related our issue of interest, i.e, fast and
budgeted classification. For a comprehensive coverage of boosting, the literature
is full of excellent reviews (Schapire, 2003; Meir and Rätsch, 2003), we particularly
refer the reader to the book of Freund and Schapire (2012).

2.1 Adaboost

ADABOOST (Freund and Schapire, 1997) was historically the first efficient
polynomial-time boosting algorithm. It has been since then subject to a throughout
theoretical study and led to a plethora of successful applications like in text catego-
rization, face detection or even experimental analysis in particle physics (Gligorov
and Williams, 2012).

2.1.1 Description

Figure 2.1 depicts the pseudocode of ADABOOST in the binary case. The algorithm
takes as input a training set

Dm =
{
(x1, y1), . . . , (xm, ym)

}

where x ∈ X and y ∈ {−1,+1}. It also expects a base learner BASE(·, ·), and a
number of iterations T.

2.1. Adaboost 25

The main idea behind ADABOOST learning is to maintain a set of positive weights
on the examples. This set of weights sums to 1 so we call it a distribution and we
denote the weight of the ith example by w(i). Initially, the examples are equally
weighted (line 1) and are updated in every iteration.

The learning procedure consists of calling BASE(·, ·) repeatedly, for T iterations,
with the same training dataset but with varying weights on the examples (line 3).
In the simplest case, BASE(·, ·) outputs a binary classifier h(x) ∈ {±1}. Once,
in a given iteration t, a weak classifier h(t) is found, it is assigned a coefficient
α(t) proportional to its performance. Note that the performance is measured with
respect to the weighted error ε(t), defined by the sum of the weights of misclassified
examples. Intuitively, the α(t) coefficient represents the importance that particular
weak classifier in the final decision, lower errors will naturally correspond to more
important base classifiers.

At the end of the iteration, we increase the weight of the misclassified examples
and the correctly classified examples get their weight decreased (lines 8 and 10
respectively). This reweighting scheme has the effect of letting the next iteration
emphasize more on hard examples when choosing the base classifier.

The final classifier corresponds to the weighted sum of different votes of the base
classifiers

f (T)(·) =
T

∑
t=1

α(t)h(t)(·)

The empirical efficiency of ADABOOST has been widely demonstrated in various
applications. Furthermore, it has been shown that ADABOOST minimizes the train-
ing error exponentially fast as the number of combined weak classifiers grows and
that it guarantees a bounded generalization error (Freund and Schapire, 2012).
ADABOOST has been extensively studied theoretically but one element appears
to be particularly important to emphasize in order to fully understand the subse-
quent sections, namely the study of ADABOOST as an optimization procedure.

2.1.2 Gradient descent boosting

Many machine learning algorithms contain or consist of an optimization proce-
dure with an explicit loss function to minimize. Even though ADABOOST was not
designed explicitly as such, Mason et al. (2000) proved that ADABOOST fits into
a more generic optimization framework, which they call AnyBoost. In the specific
case of ADABOOST, the loss function that is minimized is so called the exponential
loss function

1
m

m

∑
i=1

exp
(
−yi f (T)(xi)

)
,

26 Chapter 2. Boosting based frameworks

ADABOOST
(
Dm, BASE(·, ·), T

)

1 w(1) ← (1/m, . . . , 1/m) . initial weights

2 for t← 1 to T

3 h(t) ← BASE
(
Dm, w(t)) . base classifier

4 ε(t) ←
m

∑
i=1

w(t)
i I

{
h(t)(xi) 6= yi

}
. weighted error of the base

classifier

5 α(t) ← 1
2

ln

(
1− ε(t)

ε(t)

)
. coefficient of the base classifier

6 for i← 1 to n . re-weighting the training points

7 if h(t)(xi) 6= yi then . error

8 w(t+1)
i ← w(t)

i
2ε(t)

. weight increases

9 else . correct classification

10 w(t+1)
i ← w(t)

i
2(1−ε(t))

. weight decreases

11 return f (T)(·) =
T

∑
t=1

α(t)h(t)(·) . weighted “vote” of base classifiers

Figure 2.1 – The pseudocode of binary ADABOOST.

This view of ADABOOST allowed to derive new boosting algorithms by modifying
the loss function to minimize. In fact, both the choice of the base classification and
its coefficient in each iteration, as well as the reweighting scheme of the examples,
result directly from minimizing this loss function.

Given a loss function L, the choice of the base classifier h and the coefficient α at
each the iteration t + 1 result from the following minimization

ht+1 = arg min
h

∂L
(

f (t) + α h
)

∂α

∣∣∣∣∣
α=0

αt = arg min
α

∂L
(

f (t) + α ht+1
)

∂α

and the new weight of the example xi corresponds to

∂L
(

f (t)
)

∂ f (t)(xi)
.

2.2. MULTIBOOST 27

2.1.3 Multi-class ADABOOST

ADABOOST can be extended to multi-class classification in several ways. The semi-
nal paper of Freund and Schapire Freund and Schapire (1997) described two multi-
class extensions of ADABOOST, namely ADABOOST.M1 and ADABOOST.M2 but
they both required a quite strong assumption from the base learner’s performance.
For the training error to be decreased, the base learner is required to achieve a
minimum training error of 50%, which can be problematic in the multi-class et
in particular given the hard distributions that the algorithm produces. A particu-
larly successful multi-class extension, however, came later in Schapire and Singer
(1999). Schapire and Singer described, among other interesting algorithms, AD-
ABOOST.MH (Figure 2.2) which can be seen as a way to solve K one-vs-all classifi-
cation problems by maintaining a m×K weight matrix over the training examples
and the classes

W =
[
wi,`
]`=1...,K

i=1...,m

The boosting procedure then seeks to minimize the weighted multi-class exponential
loss

R̂EXP

(
f(T), W

)
=

1
n

n

∑
i=1

LEXP

(
f, (x, y), wi) (2.1.1)

with the convex loss LEXP defined as

LEXP

(
f, (x, y), w) =

K

∑
`=1

w` exp
(
− f`(x)y`

)
.

that upperbounds the classical multi-class hamming loss

LH

(
f, (x, y), w) =

K

∑
`=1

w`I
{

sign
(

f`(x)
)
6= y`

}

ADABOOST.MH outputs a vector-valued discriminant function

f(T)(x) =
T

∑
t=1

h(t)(x) (2.1.2)

as a sum of T multi-class base classifiers h(t) : X → RK returned by a base learner
algorithm BASE

(
X, Y, W(t)) in each iteration t.

2.2 MULTIBOOST

The simplicity of ADABOOST makes it extremely easy to implement, especially in
the binary case, so one might expect to find a large number of implementations

28 Chapter 2. Boosting based frameworks

ADABOOST.MH(X, Y, W, BASE(·, ·, ·), T)

1 W(1) ← 1
n W

2 for t← 1 to T

3
(
α(t), v(t), ϕ(t)(·)

)
← BASE

(
X, Y, W(t))

4 h(t)(·)← α(t)v(t)ϕ(t)(·)
5 for i← 1 to n for `← 1 to K

6 w(t+1)
i,` ← w(t)

i,`
exp

(
−h(t)` (xi)yi,`

)

∑n
i′=1 ∑K

`′=1 w(t)
i′ ,`′ exp

(
−h(t)`′ (xi′)yi′ ,`′

)
︸ ︷︷ ︸

Z
(
h(t), W(t))

7 return f(T)(·) = ∑T
t=1 h(t)(·)

Figure 2.2 – The pseudocode of the ADABOOST.MH algorithm. X is the n × d
observation matrix, Y is the n× K label matrix, W is the user-defined weight ma-
trix used in the definition of the weighted exponential margin-based error (2.1.1),
BASE(·, ·, ·) is the base learner algorithm, and T is the number of iterations. α(t) is
the base coefficient, v(t) is the vote vector, ϕ(t)(·) is the scalar base (weak) classifier,
h(t)(·) is the vector-valued base classifier, and f(T)(·) is the final (strong) discrimi-
nant function.

freely available but in reality, there is a real lack of implementations that are both
efficient and extensible, as far as we know.

MULTIBOOST (Benbouzid et al., 2012a) is boosting toolbox that aims to fill this gap
by providing a framework that efficiently implements some boosting algorithms in
C++ as well as providing the basic “buiding blocks” to implement new algorithms.

The toolbox mainly focuses on ADABOOST.MH to provide an off-the-shelf multi-
class/multi-label boosting software but also implements other boosting based al-
gorithms as well

• FILTERBOOST (Bradley and Schapire, 2008): an online “filtering” booster.

• VJCASCADE (Viola and Jones, 2004): an algorithm that learns a cascade clas-
sifier (c.f section 2.3) by running ADABOOST at each node.

• SOFTCASCADE (Bourdev and Brandt, 2005): another cascade learner that
starts with a set of base classifiers, reorders them, and augments them with
rejection thresholds.

MULTIBOOST was designed with modularity so that the implementation of the
boosting algorithms (the strong learners) and the weak learners are clearly decou-

2.3. Cascade classifiers 29

pled. New weak learners can be implemented without modifying the existing code
and would immediately be available to combine with the existing strong learners.

2.2.1 Implemented base learners

MULTIBOOST implements the following base learners.

• The SINGLESTUMP learner is a one-decision two-leaf tree learned on real-
valued features. It is indexed by the feature it cuts and the threshold where
it cuts the feature.

• SELECTOR is a one-decision two-leaf tree learned on nominal features. It is
indexed by the feature it cuts and the value of the feature it selects.

• INDICATOR is similar to SELECTOR but it can select several values for a given
feature (that is, it can indicate a subset of the values).

• HAARSTUMP is a STUMP learned over a feature space generated using rect-
angular filters on images.

• TREE is a meta base learner that takes any base learner as input and learns
a vector-valued multi-class decision tree using the input base learner as the
basic cut.

• PRODUCT is another meta base learner that takes any base learner as in-
put and learns a vector-valued multi-class decision product (Kégl and Busa-
Fekete, 2009) using the input base learner as terms of the product.

The code of MULTIBOOST has been fully documented in Doxygen.1 It is available
under the GPL licence at multiboost.org.

2.3 Cascade classifiers

Most of the successful learning algorithms for classification produce classifiers
with an algorithmic complexity such that they can not be directly deployed in
real-time situations or when some strong constraints are imposed on the classi-
fication time. The boosting family of classifiers is no exception. As we combine
more classifiers, we might improve the classification accuracy but we also increase
the time needed for classifying each observation. Take the example of face detec-
tion in images. Building a face detector by boosting decision stumps on the pixel
values, i.e, without any feature engineering, typically necessitates a couple of hun-
dreds base classifiers before reaching an accuracy beyond 90% (Figure 2.3). Using

1See www.doxygen.org.

multiboost.org
www.doxygen.org

30 Chapter 2. Boosting based frameworks

more elaborate features, such as Haar-like features, improves the performance but
still produce relatively complex classifiers (Figure 2.4). We are indeed far from the
dozens of base classifier typically needed to obtain real-time performance. It is
not trivial therefore, to satisfy both the accuracy and the complexity requirements,
even though we have access to an accurate algorithm on the one hand, and a fine
control on its complexity on the other hand.

0 200 400 600 800 1000

t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

e
r
r
o
r

train
test

Figure 2.3 – ADABOOST learning curve on a face detection dataset. The base
learner consist in a decision stump on the pixel values.

0 200 400 600 800 1000

t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

e
r
r
o
r

train
test

Figure 2.4 – ADABOOST learning curve on a face detection dataset, with Haar-like
features.

2.3. Cascade classifiers 31

The fact that boosting algorithms, being additive models by nature, offer a direct
and precise control on the complexity of the final classifier actually was the key-
stone for a whole family of solutions to the problem of combining accuracy with
speed in classification, namely the concept of cascade classifiers.

The crux of the cascade idea is to decompose the whole classification process into a
set of smaller classification steps, called stages, that each observation would have
to traverse sequentially. Then, if the early stages of the cascade are simple enough
and the observations are allowed to stop this sequential process as soon as some
confidence level about the final decision is reached, we end up lowering the aver-
age number of evaluated stages over all the observations, thus potentially obtain-
ing fast classifiers without sacrificing the accuracy. Boosting techniques particu-
larly fit into this framework as the number of base classifiers in each stage directly
determines its complexity and can be set to gradually increase with the stage in-
dex.

Figure 2.5 depicts an example of this structure containing 4 stages (the rectangles),
each of them is a strong classifier. The plain circles in each stage represent base
classifiers and the arrows between stages show the path that each example can
take, in this case, either access the next stage or stop the classification (represented
by the ∞ circle). The cascaded classification is effective when most of the examples
can be classified in the early stages and only a minor subset arrives to the last stage.
This situation occurs for example when a subset of the classes is prevalent, by sev-
eral orders of magnitude, over the other classes or when one of the classes, such
as noise, uninteresting physics events, or simple background in the case of image
classification, needs to be “filtered” out. In the general case, classifying sequen-
tially becomes interesting when some observations can be more easily classified
than others, requiring a less complex classification in order to predict their label
correctly.

2.3.1 The original Viola-Jones cascade

The seminal and first successful work on cascade classifiers was introduced by
Paul Viola and Michael Jones (VJ) (Viola and Jones, 2004) in which they used the
cascade structure to design the first real-time face detector. The success of their
application was mainly due to a precise control of the classifier’s complexity via
the following building blocks

• a pertinent choice of image features, namely the Haar-like features2, which
not only avoid the limitations of the raw pixels, but can also be computed
efficiently;

• the choice of ADABOOST to learn a classifier by selecting an exact number of
features per stage;

2In the MULTIBOOST package, Haar-like features correspond to the HAARSTUMP base learner.

32 Chapter 2. Boosting based frameworks

LABORATOIRE DE RECHERCHE EN
I N F O R M AT I Q U E

Learning deep decision DAGs in a Markov Decision Process setup
{djalel.benbouzid,busarobi,balazs.kegl}@gmail.com

Original motivation

Before...

•

Stage 1

Stage 2

Stage 3

Stage 4

After...

MNIST dataset

1 3 4

5

6 7

8

9

10

11

12

13

14

15

18

17

16

20

19

21

22

23

24

26

27

25

29

28

32

30

31

33

34

35

36

37

38

!

39

40

All labels

only 2s

The setup

AdaBoost.MH
Sequence of features

€

f1
f2
f3
...
fK

"

$
$ $

%

$
$
$

€

f =
i=1

T

∑

€

h1

€

h2

€

h3

€

...

€

hT

Multi-class discriminant function

skip%
eval%
quit%

Actions

States

Feature%index%

€

f1

€

f2

€

f3

€

...

€

fK

Markov Decision Process Controller((

€

πPolicy

MDDAG

Objective function Value unction representation

1

Figure 2.5 – The structure of the Viola-Jones cascade. Rectangles represent stages,
circles represent base classifiers. The width of the base classifiers in each stage
represents the portion of examples that gets into that stage. Each observation is
sequentially classified by the stages, starting from stage 1, and at the end of each
stage, it either calls the evaluation of the next stage or it stops the classification,
ending at the ∞ circle. Thus, every observation follows a specific path along the
cascade. In Chapter 3, we keep this visualization in order to show how we can
give more flexibility to the paths taken by the observations.

• and the cascade structure of the whole detector.

Given an image that contains a face at an unknown location, the common approach
for the detection is to sweep over the whole image with a sliding window over
all the possible scales and locations. Because this process generates an enormous
amount of non-face sub-images (the negatives, also called background), the cascade
in this case acts as a stage-wise filter, eliminating a portion of the background at
each stage, while letting almost all of the positive sub-images, the faces, go to
the subsequent stage. Thus, each stage can only classify the negative instances
except the last stage which can also classify positives as well. Given an image that
contains a face at an unknown location, the common approach for the detection
is to sweep over the whole image with a sliding window over all the possible
scales and locations. Because this process generates an enormous amount of non-
face sub-images (the negatives, also called background), the cascade in this case
acts as a stage-wise filter, eliminating a portion of the background at each stage,
while letting almost all of the positive sub-images, the faces, go to the subsequent
stage. Thus, each stage can only classify the negative instances except the last stage
which can also classify positives as well. Because the number of base classifiers in
the first two stages is relatively small, most of the background sub-images ends
up being classified with a small complexity. The algorithm in Figure 2.6 shows the
classification algorithm of the VJ cascade provided an input of two vectors, one
containing the stages and the other containing the corresponding thresholds.

2.3. Cascade classifiers 33

VJCASCADECLASSIFIER
(
F , Θ, x

)

1 for s← 1 to ||F || . iterating on the element of the vector F
2 fs(·)← F (s) . fetch the sth classifier from the vector F
3 θs ← Θ(s) . fetch the sth threshold from the vector Θ

4 if fs(x) < θs then return −1

5 return +1

Figure 2.6 – The pseudocode of the Viola-Jones Cascade classifier. The input of the
algorithm are F , the vector of stages and Θ, the vector of thresholds. The stages
are evaluated sequentially. As soon as the score the observation falls below the
stage’s threshold, it is classified as negative. Otherwise, after the evaluation of the
last stage, it is classified as positive.

Training a VJ CASCADE

Training an optimal VJ CASCADE is far from being trivial. The stages are trained
individually and greedily until the overall false positive rate falls below a prespeci-
fied level Foverall . Two other hyper-parameters that concern the stages individually
must be set as well in order to control the cascade accuracy and complexity, namely
the maximum acceptable false positive rate r and the minimum acceptable detec-
tion rate d. During the training of a stage, the base classifiers keep being added
until the maximum acceptable false positive rate r is satisfied. r, however, is not
controlled directly. Instead, the temporary strong classifier being constructed is
thresholded in order to satisfy d, the minimum acceptable detection rate, and this
thresholding affects the false positive rate. Once a stage is trained, it is fixed for
the rest of the learning. The algorithm is described with more details in Figure 2.7

Because the hyperparameters only control the false positive and detection rates,
there is no direct control on the accuracy/complexity trade-off and there is no
guarantee on whether the resulting cascade is optimal or not. Moreover, the train-
ing necessitates a considerable amount of negative observations, otherwise, the
negative class can quickly become underrepresented in the latest stages. To over-
come this issue, Viola and Jones proposed what they call the bootstrapping (line
17 in Figure 2.7) which consists in injecting new false positive instances after the
training of each stage. Drawn for a large database of negatives, the instances are
passed through the cascade and the ones that make it through as positives are used
in the training of the subsequent stage.

34 Chapter 2. Boosting based frameworks

VJCASCADELEARNER
(
Dm, BASE(·, ·), r, d, Foverall

)

1 F0 ← 1.0, D0 ← 1.0 . initial stage-wise rates

2 s← 0 . stage index

3 F ← ∅, Θ← ∅ . vector of stages and thresholds respectively

4 while Fs > Foverall

5 s← s + 1, ns ← 0

6 Fs ← Fs−1

7 while Fs > r× Fs−1

8 ns ← ns + 1

9 fs(·)← ADABOOST
(
Dm, BASE(·, ·), ns

)

10 (Fs, Ds)← EVALUATE
(
Dm,F , Θ, fs(·)

)

11 θ ← 0

12 while Ds < d×Ds−1

13 θs ← DECREASETHRESHOLD
(
Dm,F , Θ, fs(·), θ

)

14 (Fs, Ds)← EVALUATE
(
Dm,F , Θ, fs(·)

)

15 F ← F ∪ fs

16 Θ← Θ ∪ θs

17 if Fs > Foverall then BOOTSTRAP
(
Dm,F , Θ

)

18 return VJCASCADECLASSIFIER
(
F , Θ, ·

)

Figure 2.7 – The pseudocode of the Viola-Jones Cascade training algorithm. EVAL-
UATE is a simple function that counts the number of false positives and false neg-
atives. DECREASETHRESHOLD simply decreases θ by a certain amount, it is left
generic on purpose so that it’s efficiency depends on its actual implementation. It
is left generic. BOOTSTRAP augments the training dataset with new false positives.

2.3.2 Improvements and variations

The Viola-Jones cascades inspired many subsequent works that also followed the
approach of classifying the instances sequentially, trying to overcome the limita-
tions of the initial work. Some focused on the feature level, others on the training
algorithm used, and some works proposed new cascade architectures. We are par-
ticularly interested in the cascade structure itself, since it is this architecture that
allows to classify sequentially, but we briefly review some improvements in the
feature employed since it can help understand further sections.

2.3. Cascade classifiers 35

Haar-like features and variants

Figure 2.8 – The four categories of the original Haar-like features. The grey area
of each feature is summed up and subtracted from the sum of the white area. The
resulting value is then thresholded with the decision stump algorithm.

The features used in VJ CASCADE, the Haar-like features, consist summing the
pixels within rectangles and applying basic addition/subtraction operations on
them. Viola and Jones for example proposed to use 4 types of features (Figure 2.8)
where the difference in the sum of the pixels within adjacent rectangles is com-
puted and thresholded to form the base classifier. This type of features, although
simple, shows good performance when boosted.

In order to compute the sums of the pixels efficiently, Viola and Jones preprocess
all the images before the training. They replace every pixel image(x, y) in an image
i by the sum of the pixels above and to the left of (x, y), producing what they call
an integral image ii:

ii(x, y) = ∑
x′≤x,y′≤y

i(x, y)

This transformation can be applied in one pass by applying the following recur-
rences (Viola and Jones, 2004)

s(x, y) = s(x, y− 1) + i(x, y)

ii(x, y) = ii(x− 1, y) + s(x, y)

s(x, y) being the cumulative row sum, s(x,−1) = 0, and ii(−1, y) = 0.

Applying the integral image transformation allows to compute the Haar-like fea-
tures in constant time by only using the rectangle corner pixels. The rectangle’s

36 Chapter 2. Boosting based frameworks

sum in Figure 2.10 for example simply consists of the following pixels’ value sum
C + A− B− D

Figure 2.9 – The sum of pixels within the rectangle ABCD can be calculated only
with the value of its corner pixels and is equal to C + A - B - D.

Figure 2.10 – The sum of pixels within the rectangle ABCD can be calculated only
with the value of its corner pixels and is equal to C + A - B - D.

Haar-like features, although being simple, are able to capture some type of cor-
relation in pixels, corresponding to difference of contrasts along lines, edges etc.
Lienhart and Maydt (2002) extended the original 4 categories of features by adding
rotated features (Figure 2.11) in order to capture 45◦ edges. Many other works fo-
cused on improving the features selected by the boosting algorithm during the
training of a stage. Li et al. (2006) allowed to place a distance between rectan-
gles in the same feature, allowing more flexibility. Viola et al. (2005) augmented
the Haar-like features with a one-pixel-shift operator, encoding the local varia-
tions that occur inside videos and motions in the same region within consecutive
frames. Since it is not our main subject to review extensively the features used for
detecting objects in images, we refer the reader to the excellent review of Zhang
and Zhang (2010).

a b c d e f

x

y A

a b c d e f

Figure 5. The rotated integral image/summed area table.

+2

-2
x

y

dx

dy

+1

-2

dx

dy

+1

x
y'dx

-1

+1

dx

dy

+1

x
y

'dx -1

(a)(a)

(b)
Figure 6. (a) Rectangular features with flexible sizes and distances
introduced in [46]. (b) Diagonal filters in [38].

rotated rectangular features (a-d), and center-surround fea-
tures (e-f). In order to compute the 45 degree rotated rect-
angular features, a new rotated summed area table was in-
troduced as:

rii(x, y) =
X

x0∑x,|y°y0|∑x°x0

i(x0, y0). (9)

As seen in Fig. 5, rii(A) is essentially the sum of pixel in-
tensities in the shaded area. The rotated summed area table
can be calculated with two passes over all pixels.

A number of researchers noted the limitation of the orig-
inal Haar-like feature set in [92] for multi-view face detec-
tion, and proposed to extend the feature set by allowing
more flexible combination of rectangular regions. For in-
stance, in [46], three types of features were defined in the
detection sub-window, as shown in Fig. 6 (a). The rectan-
gles are of flexible sizes x £ y and they are at certain dis-
tances of (dx, dy) apart. The authors argued that these fea-
tures can be non-symmetrical to cater to non-symmetrical
characteristics of non-frontal faces. Jones and Viola [38]
also proposed a similar feature called diagonal filters, as
shown in Fig. 6 (b). These diagonal filters can be computed
with 16 array references to the integral image.

Jones et al. [39] further extended the Haar-like fea-
ture set to work on motion filtered images for video-based

j = (011)2 = 3
Figure 7. The joint Haar-like feature introduced in [62].

pedestrian detection. Let the previous and current video
frames be it°1 and it. Five motion filters are defined as:

¢ = |it ° it°1|
U = |it ° it°1 " |
L = |it ° it°1 √ |
R = |it ° it°1 ! |
D = |it ° it°1 # |

where {",√,!, #} are image shift operators. it " is it
shifted up by one pixel. In addition to the regular rectan-
gular features (Fig. 2) on these additional motion filtered
images, Jones et al. added single box rectangular sum fea-
tures, and new features across two images. For instance:

fi = ri(¢)° ri(S), (10)

where S 2 {U,L,R, D} and ri(·) is a single box rectangu-
lar sum within the detection window.

One must be careful that the construction of the motion
filtered images {U,L, R, D} is not scale invariant. That is,
when detecting pedestrians at different scales, these filtered
images need to be recomputed. This can be done by first
constructing a pyramid of images for it at different scales
and computing the filtered images at each level of the pyra-
mid, as was done in [39].

Mita et al. [62] proposed joint Haar-like features, which
is based on co-occurrence of multiple Haar-like features.
The authors claimed that feature co-occurrence can better
capture the characteristics of human faces, making it pos-
sible to construct a more powerful classifier. As shown
in Fig. 7, the joint Haar-like feature uses a similar feature
computation and thresholding scheme, however, only the
binary outputs of the Haar-like features are concatenated
into an index for 2F possible combinations, where F is the
number of combined features. To find distinctive feature
co-occurrences with limited computational complexity, the
suboptimal sequential forward selection scheme was used in
[62]. The number F was also heuristically limited to avoid
statistical unreliability.

To some degree, the above joint Haar-like features re-
semble a CART tree, which was explored in [8]. It was
shown that CART tree based weak classifiers improved re-
sults across various boosting algorithms with a small loss

Figure 2.11 – Rotated Haar-like features.

2.3. Cascade classifiers 37

The learning algorithm

While some works were interested in the features employed inside the boosted
classifiers, others focused particularly on the cascade itself, its shape, how to set its
thresholds and the boosting algorithm within. Viola and Jones (Viola and Jones,
2001) noticed that the requirements of each stage in terms of minimum detection
rate and maximum false positive rate can be difficult to satisfy altogether. If, for
example, a 10-stage is to have an overall detection rate of 0.95%, the average min-
imum detection rate per stage must be equal to 10

√
0.95 ≈ 0.995. This is not ob-

vious to obtain if, at the same time, the cascade targets an overall false positive
rate of 10−6, requiring each stage to discard 25% of the observations. If this issue
particularly concerns the later stages, another phenomenon hinders the training
of the first stages. A strong classifier with N base classifiers will output at most
2N different score values for all the example. If N is small, it can be difficult to
threshold the corresponding strong classifier in order to increase the detection rate
without making big increasing “jumps” in the false positive rate. Viola and Jones
(2001) introduced a variation of ADABOOST that takes into account the different
mis-classification costs among the classes. Although this cost-sensitive version of
ADABOOST is not directly based on theoretical justifications (cf. Section 2.1.2), it al-
ready improves the cascade’s performance by inducing a bias towards classifying
the positives correctly. The concept of including cost-sensitivity into boosting al-
gorithms has been studied by a number of papers (Fan et al., 1999; Ting, 2000; Sun
et al., 2005), and in particular in the context of cascade classifiers (Hou et al., 2006;
Pham and Cham, 2007), but most of them consists in heuristically upweighting the
positive examples during each boosting iteration in order to induce a bias. One
noticeable work, however, provides theoretical justifications through the gradient-
descent framework of boosting (Masnadi-Shirazi and Vasconcelos, 2011) wherein
the authors directly minimize a cost-sensitive loss function.

Another direction in the attempt to improve the boosting algorithm inside the
cascade has been to investigate the use of real ADABOOST (also known as RE-
ALBOOST) which allows the base classifiers to output real valued scores, corre-
sponding the classification confidence (Xiao et al., 2003; Li et al., 2002). In their
empirical analysis, Lienhart et al. (2003) conclude that GENTLEBOOST, another
variation of ADABOOST, provides better performance than its two experimental
contenders, ADABOOST and REALBOOST, in addition to using less base classifiers.
Furthermore, Li et al. (2002) were also motivated by reducing the number of base
classifiers in each stage and in order to reach this goal, they included the idea
of FLOATING SEARCH, originally used in feature selection, into the boosting al-
gorithm in order to backtrack the least relevant base classifiers and remove them
from the pool. The resulting algorithm, named FLOATBOOST uses less classifiers
but has been shown empirically not to provide a stable decrease in the error rate,
as the number of base classifiers increases (Wu et al., 2004).

38 Chapter 2. Boosting based frameworks

Stage-less cascades

In the original VJ CASCADE, the stages are independent boosted classifiers, there-
fore, when an instance is passed to the next stage, its score is set back to zero before
the classification starts in new stage. In other words, the information, in terms of
classification score and confidence, that every stage computes is not carried onto
the subsequent stages and is definitively lost. A number of papers addressed this
issue and tried to take advantage of the cumulated knowledge within a cascade.

Various approaches were proposed, Wu et al. (2004) introduced the “boosting
chain” cascade in which every stage Li+1 (i > 0) is initialized with its predecessor
Li. In other words, Li plays the role of the first base classifier trained in Li+1. The
resulting cascade is then similar to a classical boosted classifier augmented with
intermediate rejection thresholds, which provides it with the same generalization
properties as ADABOOST.

Xiao et al. (2003) proposed a very similar idea to the “boosting chain” (Wu et al.,
2004) under the name “nesting structured cascade”. As far as we know, the only
difference between these two cascades lies in the use of real ADABOOST inside
the nesting-structured cascade, in replacement of ADABOOST (also called discrete
ADABOOST)3.

? ? ? ? ? ? +1

-1 -1 -1 -1 -1 -1 -1

Designing DAG-shaped classi�ers for fast triggers 2 / 3

Figure 2.12 – The structure of the Soft Cascade. The stages consist of only one base
classifier each, which allows to exploit the cumulative knowledge of the cascade.

Similarly, the SOFT CASCADE (Bourdev and Brandt, 2005) has the form of a long
boosted classifier with intermediate rejection thresholds, with the exception that
every stage consists of only one base classifier and hence there are as many thresh-
olds as there are classifiers (Figure 2.12). The training of the SOFT CASCADE is
done in two steps, first ADABOOST is trained to obtain a series of base classifiers
and then, the base classifiers are reordered so that the most discriminative ones
are placed at the head of the chain. While reordering the base classifiers, their
thresholds are set following an exponential function family parametrized by one
hyperparameter. This hyperparameter explicitly determines if the cascade rejec-
tion policy is conservative, thus slow, or if it is permissive and fast. Sun and Zhou
(2013) go further in the exploration of the effects of reordering the base classifiers.
They first propose a representation of the score evolution as the base classifiers are
sequentially evaluated, from which they analyze different policies for early classi-
fication (for example whenever the score of an observation reaches a certain value
so that the subsequent base classifiers can not alter the classification decision any-

3However, most of the papers reviewing both works treat them as two distinct type of cascades.

2.3. Cascade classifiers 39

more), and then they propose a reordering method called SIFTING in order to
optimize the early classification.

Noticeably, the general idea of reusing the cumulated information across the cas-
cade has consistently shown improvements in the cascade performance, both in
terms of accuracy and speed. Our algorithm (Chapter 3) also follows this ap-
proach.

? ? ? ? ? ?

-1 -1 -1 -1 -1 -1 -1

+1 +1 +1 +1 +1 +1 +1

Designing DAG-shaped classi�ers for fast triggers 3 / 3

Figure 2.13 – The structure of Waldboost. The stages, are endowed with two
thresholds in order to discard both positives and negatives.

WALDBOOSTCLASSIFIER
(
F , Θ, x

)

1 for s← 1 to ||F || . iterating on the element of the vector F
2 fs(·)← F (s) . fetch the sth classifier from the vector F
3 (θA

s , θB
s)← Θ(s) . fetch the sth couple of thresholds from Θ

4 if fs(x) < θA
s then return −1

5 if fs(x) > θB
s then return +1

Figure 2.14 – The pseudocode of Waldboost classifier. The input of the algorithm
are F , the vector of stages and Θ, the vector of threshold couples. Each stage is
endowed with two thresholds for classifying both positives and negatives.

Tuning the thresholds

One fundamental question related to designing cascades is how to set the rejec-
tion policy. The most naive rejection policy (Viola and Jones, 2004; Bourdev and
Brandt, 2005) consists of a single threshold per stage that is set to let most of the
positives carry on their path to the next stages while only a fraction of the negatives
is correctly classified and discarded. (Zhang and Viola, 2011) improve the speed
of the cascade through a simple idea: the positive examples that are anyway mis-
classified by the last stage can be discarded at earlier stages without decreasing
the training error, thus the thresholds are set accordingly which allows the cascade
to discard more negatives per stage. They further improve the cascade speed via
a multiple-instance framework, in which they focus only on a subset of positive
sub-images, corresponding to adjacent sub-windows in the original image, hence
the term of multiple instance pruning.

40 Chapter 2. Boosting based frameworks

Following the same structure as in the SOFT CASCADE, the authors of WALDBOOST

(Wu et al., 2004) propose to set two thresholds for discarding both positives and
negatives (Figure 2.13). Based on the Wald’s sequential probability ratio test, they
optimize these thresholds for every base classifier and show that the final classi-
fier is faster since it can also early classify positives, however, WALDBOOST does
not show exceptional performance in terms of accuracy, comparing to other cas-
cades. The classification algorithm of a cascade with two thresholds is described
in Algorithm 2.14. Similarly, Póczos et al. (2009) augment the VJ CASCADE with
a couple of threshold per stage in order to early classify positives as well as nega-
tives. In this work, and contrary to WALDBOOST, the training procedure does not
need to estimate the likelihood ratios and the problem is set into a Reinforcement
Learning framework. In Sun and Zhou (2013), the authors do not directly compute
thresholds but instead define an “escape interval” of every base classifier, which
corresponds to the range of scores in which the classification decision becomes
definitive, even when only a subset of the base classifiers has been evaluated.

The automatic training and the optimality of the cascade

Most of the cascades (Viola and Jones, 2004; Xiao et al., 2003; Bourdev and Brandt,
2005; Brubaker et al., 2008) are tuned through a set of hyperparameters which do
not directly control the trade-off between the accuracy and the complexity. As for
the original VJ CASCADE, one needs to set the targeted overall accuracy as well
as the stage-wise performance. Not only this makes the training of the cascade
tedious and particularly long4 because of the important number of features (of-
ten Haar-like features) and instances needed to achieve good results, but it raises
also the question about how to get the optimal performance, given a limit on the
complexity for example or for a specific accuracy-complexity trade-off in general.
The question of the cascade’s optimality has not been directly addressed in early
works, in fact, most of the algorithms that were proposed for designing the first
cascades consisted of heuristics that focused on decreasing the overall classifica-
tion cost. Thus, no theoretical work addressed both the accuracy and the complex-
ity of the final classifier and provided guarantees on its performance.

Within a generic framework for cascades, Brubaker et al. (2006, 2008) propose a
cascade analysis, both in terms of classification accuracy and complexity, from
which they derive an automatic procedure for the training and for setting the dif-
ferent thresholds. The stages, however, are still trained sequentially in a greedy
fashion. Saberian and Vasconcelos (2010) construct a global loss function, taking
into account the overall accuracy, as well as the overall cascade complexity includ-
ing all the stages. They combine the new loss function with the gradient boosting
framework (Section 2.1.2) in order to obtain a fully automatic cascade learning

4It usually necessitates a couple of weeks to manually tune a cascade but it used to take month
with the early works.

2.3. Cascade classifiers 41

where the base classifiers are no more added to the last stage exclusively but can
also update the other stages as well. The resulting algorithm, named FCBOOST,
consists of boosting iterations and is tuned by a central hyperparameter which di-
rectly controls the accuracy-complexity trade-off. (Lefakis and Fleuret, 2010) also
propose a joint learning of all the stages, based on a noisy-and probabilistic model
that is minimized with a boosting algorithm.

Another critical aspect of the cascade learning is the use of bootstrapping (Sung
and Poggio, 1998). By definition the role the cascade structure is to filter as many
negatives as possible, therefore, as the number of stages increases, the number of
available negatives for training becomes insufficient. On the other hand, training
ADABOOST with a tremendous amount of negatives with the purpose to over-
come the latter issue can quickly degrade the quality of the learned classifier, as
the learning objective would tend to constantly classify as negative. The solu-
tion that is commonly used, the bootstrapping, is to have at disposal an enormous
database of negative instances that we pass through the cascade at each stage in
order to collect the false positives and use them for the training of a new stage. Wu
et al. (2004) drew a parallel between bootstrapping and the weighting scheme of
boosting algorithms by considering the former as a weighted sampling of negative
instances. In the case of FCBOOST (Saberian and Vasconcelos, 2010), the stages are
not constructed sequentially so the authors only replace a fraction (another hyper-
parameter, usually fixed once for all) of the negatives by new false positives at each
iteration.

Multi-class cascades

After frontal face detector were proven to be efficient and applicable to real-time
detection, the focus has also been put on extending this work to multi-pose face
detectors. Since the cascade was originally designed for binary problems, where
one of the two classes was designated as background and meant to be step-wise
filtered out, it appears that when it comes to detecting varying faces, or objects in
general, the original cascade architecture does not provide as good performance
as for upright frontal faces. In fact, it is difficult to take into account a large inner-
class variability while assuring an acceptable false positive rate, so the problem
has to be turned into a multi-class classification but it is not straightforward to
adapt the cascade efficiency to multi-class problems. A number of papers, moti-
vated by multi-pose face detection and multi-class cascades in general, addressed
the issue by coining new cascade architectures. The most straightforward architec-
ture is to simply have parallel cascades, one for each class except the background
that is to be discarded. Obviously, this is the least effective solution and it goes
against the initial objectives of the cascades in terms of speed as we have more
classes. For multi-pose face detection, this can still be applicable since the differ-
ent poses are not completely separate classes and one cascade can be trained to
handle a whole range of pose angles but for large multi-class problems in gen-

42 Chapter 2. Boosting based frameworks

eral where each class is distinct, this solution is not applicable. Wu et al. (2004),
along with the nesting-structured cascade, propose a variant of the parallel cas-
cade approach by including a pose estimator at the beginning of each cascade,
making possible for the instances to jump from a cascade to another at the exit of
the pose estimator. This estimator has itself a nesting-structure and prefixes the
corresponding cascade. During the classification, the observation is sent to all the
stages and after the first base classifiers that perform pose estimation, the instance
is potentially redirected towards another cascade. Jones and Viola (2003) also in-
clude a post estimator at the beginning of parallel cascades, the estimator is trained
with a decision tree and the observations are finally treated by only one cascade.
The drawbacks of such an approach are obviously that errors made by the pose
estimator are definitive and can drastically decrease the overall accuracy of the
detector. In Li and Zhang (2004), the authors apply FLOATBOOST to multi-pose
face detection by hierarchically split the pose estimation following a coarse-to-fine
approach. This pyramid detector refines the pose estimation as the observation goes
from a level of the pyramid to a lower level and can also discard the observation
at the end of each level.

All the architectures made of distinct cascades for the different classes suffer from
the drawback of not exploiting the inter-class correlations, which hints towards the
fact that this architecture can be optimized in order to be more efficient. Zehnder
et al. (2008) describe an algorithm for constructing a parallel cascade having shared
features among the stages. The resulting cascade has a Directed Acyclic Graph
shape and exhibits a sub-linear scalability with the number of classes.

Lin and Liu (2005); Huang et al. (2005) propose two similar approaches, MBH-
BOOST and VECTOR BOOSTING respectively, based on a vector-valued boosting al-
gorithm (Section 2.1.3). The crux of these ideas is to make the base classifiers share
the same features across the classes and thus reduce the overall computational
cost. Zhang and Zhang (2009) use a fully boosted classifier for pose estimation.
The originality of their boosting algorithm, named WTA-MCBOOST, is to assign
virtual labels to the training examples so their label gets adapted to the real class
as the learning proceeds. Their algorithm is particularly suited for large datasets
which is typically the case in object detection and images.

Note: In particle physics experiments, one often needs to measure different phe-
nomena and select observations of interest through the on-line classifier (the trig-
ger). In fact, it often happens that even the background to be discarded is com-
posed of different classes. Thus, coupling the efficiency of the cascades with multi-
class classifiers is of particular interest for our motivating problem. We address this
issue when defining our approach in Chapter 3 as well as in our main application
in Chapter 4.

2.4. Budgeted learning 43

Tree-shaped boosted classifiers

In Kim et al. (2011), a trained boosted classifier is transformed into a tree structure
by casting the problem into a boolean expression optimization. The authors show
that this tree classifier performs as good as the original strong classifier with a
considerable decrease in the evaluation time. Although not motivated by fast clas-
sification, Freund and Mason (1999) also propose an algorithm for constructing
tree-shaped strong classifiers which can be viewed as a generalization of decision
trees. Each node of the tree is a base classifier and instead of summing up the
weighted vote of the all the base classifiers, the score of a classified observation
only involves the traversed nodes, giving at the same time more intelligibility to
the classification. In Tu (2005), the author proposes a procedure to grow a tree of
classifiers in which the nodes are full strong classifier. The resulting classifier fol-
lows a divide-and-conquer strategy and can also handle multi-class classification
by splitting the data at each node based on estimated posterior probabilities.

2.4 Budgeted learning

Another type of problems which is related to fast classifications appears when we
are to manage a certain budget that is consumed as we evaluate the different fea-
tures; we speak then about the feature costs and budgeted classification. The type
of the budget varies from an application to another, it can be some computational
constraints as in particle physics experiments, a set of different tests in medical
diagnosis, or more generally, when one must provide an answer within a limited
time frame. The difference with the problem of fast classification treated above
appears in particular when the features have different costs, so that the total cost
of classifying an observation depends on which subset of features was in fact eval-
uated during the process.

Once again, the family of additive models in general and boosting methods in par-
ticular appears to provide a suitable framework for budgeted classification prob-
lems. (Reyzin, 2011) proposes an adaptation of ADABOOST in which a strong clas-
sifier is first trained, and during test-time, this pool of base classifiers is sampled
following a distribution induced by their weights. In a variant algorithm from the
same paper, the feature costs also influence the sampling distribution making the
cheapest features more likely to be sampled. This work is supported by both the-
oretical foundation and empirical analysis and the resulting classifier is shown to
perform almost identically as ADABOOST while only using 20% of the features.

Grubb and Bagnell (2012) also adopt the boosting framework, through minimiz-
ing a tailored loss function with functional gradient descent (Section 2.1.2). The
algorithm, named SPEEDBOOST, minimizes a loss function that incorporates the
base classifiers’ costs and at each iteration, the base classifier with the best ratio

44 Chapter 2. Boosting based frameworks

between the loss decrease and complexity is selected. The authors further apply
this algorithm to build a cascade following the SOFT CASCADE structure.

Very similarly, “The Greedy Miser” (Xu et al., 2012b) is trained through a variation
of the gradient boosting framework that directly takes into account the feature
costs in the construction of the CART trees (Breiman et al., 1984) that are selected
in each iteration. The difference with the work of Grubb and Bagnell (2012) mainly
lies in the fact that the construction of the CART trees also involves the cost mini-
mization so the algorithm potentially constructs more efficient trees. On the other
hands, SPEEDBOOST incorporates a filtering procedure which makes the evalua-
tion of a base classifier for a given observation only occurs if its score is low, giving
a cascade aspect to the whole classifier.

In an orthogonal work, Chen et al. (2012) assume a sequence of decision trees al-
ready obtained from a boosting algorithm that belongs to the gradient boosting
family and then optimizes again the coefficients of the trees in order to take into
account the cost of the features employed within each tree, in addition to the per-
formance of the overall classifier. For further efficiency, a cascade is produced by
considering a global optimization of all the stages at once, which has the effect of
re-ordering the decision trees in order to promote early exists with cheap features.

Xu et al. (2012a) take advantage of the tree structure in order to tackle the budgeted
learning through hierarchically splitting the input space. They build a Cost Sensi-
tive Tree of Classifiers (CSTC) in which each node is an ensemble of CART trees,
obtained through a gradient boosting algorithm. They avoid the combinatorial
NP-hard problem of constructing the CSTC by assuming the CART trees to be al-
ready available and through the use of soft thresholding at each node. This allows
to tune the CART trees parameters along with the node thresholds via a global
optimization procedure where the objective function includes the different feature
costs. The resulting classifier is shown to be efficient, especially when large groups
of instances use similar features. This is, in fact, not the first time that the hierar-
chical tree structure is shown to be suitable for cost-sensitive problems. Turney
(1995) also build cost-sensitive trees that are optimized with genetic algorithms.

(Xu et al., 2013) tackle the problem of budgeted learning but they also propose an
anytime solution to the problem. Anytime algorithms improve the quality of their
results as they have more computational time, hence, they can be stopped when-
ever the user wants and provide intermediate results. (Xu et al., 2013) combine
the anytime aspect of boosted classifiers with the well-known good generaliza-
tion properties of large-margin classifiers (Cortes and Vapnik, 1995). In particular,
they use “The Greedy Miser” (Xu et al., 2012b), that is already a budget-sensitive
boosting algorithm, in order to map the input space into the scores of boosted
CART trees. Then, within this new feature space, they optimize the parameters
of a Support Vector Machine to maximize the margin. During the learning, the
parameters of both CART trees and SVM are optimized jointly and “snapshots”
of the state of these parameters are taken whenever a new feature cost is involved.

2.5. Conclusion 45

These snapshots are stored so that during test time, the CART trees are evaluated
sequentially, like stages, in order to affine the input representation gradually and
the corresponding SVM (embedded in the snapshot) is used for the classification.

2.5 Conclusion

In this chapter, we reviewed the main methods proposed in the literature to deal
with both the accuracy and speed of the classification. We saw that the cascade
classifiers succeed in combining these two criteria and are particularly suited for
real-time detectors. The principles we can draw from the cascade literature is that
their success is due to three factors,

• the classification is divided into sub-classification steps, each of which can
be quickly executed;

• these sub-classifications are done sequentially;

• and the whole process has the ability to early-stop, for example because a
certain level of confidence is reached.

Our work, presented in Chapter 3 is inspired by this sequentiality paradigm. It ex-
tends the typical tree structure of the cascades into a more generic Directed Acyclic
Graph. Hence, it can be viewed as generalization of the cascades which provides
an automatic way to deal with time-constrained classification.

Furthermore, we saw that the problem of fast classification is in fact a special case
of a broader family of problems known as budgeted learning problems. In the case
of fast classification, the budget corresponds to a limited time span or equivalently
to some limited computational resources to comply with, however, the distinction
with general budgeted learning problems becomes clearer when the different fea-
tures incur different costs and, at the same time, are more relevant to different
subset of observations, hence pointing even more to the fact that the classification
must not be done “the same way” for all the observations. In this precise context,
the sequential aspect of our approach appears to provide an advantage in terms of
flexibility, in addition to exposing an intuitive and intelligible way to address this
family of learning problems.

CHAPTER 3

Making decisions for classification

Contents
3.1 Designing fast sequential classifiers 48

3.1.1 Instance-dependent sparsity 49

3.1.2 Sequential instance-dependent sparsity 54

3.1.3 MDDAG: Markov Decision Directed Acyclic Graph 55

3.1.4 Learning bj(x) from delayed rewards 56

3.1.5 The state representation . 60

3.1.6 The learning algorithm . 65

3.1.7 Visualizing the final classifier 68

3.2 Unsupervised side-effects . 70

3.2.1 Synthetic data . 70

3.2.2 MNIST example . 72

3.3 Discussions . 72

3.3.1 The action space . 72

3.3.2 The influence of the order of the classifiers 73

3.3.3 The evaluation cost of the agent 74

3.4 Experiments . 74

3.4.1 The Adult dataset . 75

3.4.2 The Arcene dataset . 76

3.4.3 The Balance Scale dataset . 77

3.4.4 The Gisette dataset . 78

3.4.5 The Landsat Satellite dataset 79

3.4.6 The Pendigits dataset . 80

3.4.7 The Viola-Jones dataset . 81

3.5 Prediction as a sequential process . 82

3.5.1 The paradigm continuum . 85

3.5.2 The learning method . 85

3.5.3 Myopic vs non myopic . 86

3.5.4 The features used for the actions 86

3.5.5 The type of actions . 86

3.6 Conclusion and perspective . 87

48 Chapter 3. Making decisions for classification

In Chapter 2, we reviewed a family of work that tackled the problem of fast and
budgeted classification through supervised learning. These methods often consist
in casting the learning problem into an optimization procedure, as in the Anyboost
framework (2.1.2), by tailoring a loss function that takes into account both the clas-
sification accuracy and the evaluation cost of the final classifier. One orthogo-
nal way to achieve the fast and budgeted learning goals is to design a cascaded
classifier, where fractions of the examples are discarded stepwise. One can see
the cascade classifiers as a decision framework in which subparts of the classifier
choose whether to send the current observation for further processing or to clas-
sify it given the current information. In that respect, cascades are a step towards a
more abstract framework where the classification consists of sequential decisions
that vary from an instance to another. In the case of the classical cascades, the de-
cisions are simply based on thresholding the score of the observation at a given
point but the principle of having a dynamic processing of the observations can be
generalized.

In this chapter, we introduce a work published in (Benbouzid et al., 2012b) where
we actually extend the concept of cascades to a more generic category of fast clas-
sifiers. We explicitly cast the classification as a sequential procedure and use Rein-
forcement Learning algorithms to solve the resulting problem. Similarly to cascade
classifiers, decisions are made for each observation individually with the purpose
to produce a fast classifier but unlike cascades, the decisions are allowed to be
more complex, they are not restricted to simple thresholds but instead, they are
implemented as a mapping from the information available at a given point to a set
of possible actions. We discuss both the advantages and disadvantages of such an
approach as well as the different variations that it can lead to. This work mainly
appears in (Benbouzid et al., 2012b) but some parts of it are discussed within
other publications that we mention later. After describing our main algorithm,
MDDAG, we also review other papers that use sequential models for prediction
tasks.

3.1 Designing fast sequential classifiers

We introduce our main algorithm in this section. We follow a step by step descrip-
tion of the different building blocks that constitute the overall approach, in order
to clearly motivate our choices. Thus, we start by defining a framework that cor-
responds to our motivating problem, then we refine it before actually proposing
an concrete instantiation of this resulting framework. We will also often alternate
formalization and concrete experiments for pedagogical purposes.

3.1. Designing fast sequential classifiers 49

3.1.1 Instance-dependent sparsity

Let us first clearly define our objectives. Our goal is to produce classifiers which
are

1. accurate and competitive with state-of-the-art performance;

2. simple and fast enough to be used in real-time;

3. flexible enough to incorporate different domain-specific constraints like fea-
ture acquisition costs.

The accuracy is, naturally, the most important criteria as it is one of the main rea-
sons that made data-driven methods and machine learning in particular the de
facto solutions for classification problems. Considering only the accuracy crite-
ria, data-driven methods have proven to be extremely effective, like for producing
nearly perfect classification (LeCun and Cortes, 1998) or even beating human per-
formance Netzer et al. (2011).

However, producing accurate classifiers often comes at the price of heavy compu-
tations whereas many industrial applications require the classification of an obser-
vation to be executed in a limited time, thus with a limited amount of computation.
This is typically the case for object detection in images where the classification is
done in real-time or in particle physics experiments where the amount of data gen-
erated can not be entirely stored in the hard disks so it becomes necessary to only
retain some kind of events. In general, the pervasiveness of mobile devices (with
the evolution of embedded computing) and the new user requirements in term of
of instance response, in one hand, and the enormous amounts of data that we pro-
duce nowadays, in the other hand, make the complexity issues as important as the
accuracy itself.

Our last criteria comes directly from our original motivation in particle physics
experiments where one not only needs to design a fast classifier but also needs
to take into account the cost of acquiring the different features and, furthermore,
some specific dependencies within the computation of the features. Hence, the
need of flexibility in our final classifier. It is important to remember these criteria,
i.e, the accuracy, the speed, and the flexibility, as they drive the different choices we
make throughout this section. At the end of the chapter, we review others works
that, motivated by other constraints, made different choices.

Additive models

As mentioned in Chapter 2, additive models already offer a level of control on
the algorithmic complexity of the resulting classifier, both through the choice of
the base classifiers in each term and the number of terms employed in the final

50 Chapter 3. Making decisions for classification

classifier. Additionally, a common practice that makes the final classifier less prone
to overfitting and consequently provides better generalization properties consists
in penalizing the complexity of the final classifier. Regularization is a way to achieve
it.

Assume a finite sequence of classifiers

H = (h1, . . . , hN), hj : X → RK.

The corresponding additive model which combines them, given an instance x ∈ X ,
is

f(x) =
N

∑
j=1

bjhj(x) (3.1.1)

where X is the input space, K is number of classes, and bj ∈ R are the coefficients
of the additive model. Given a loss function L to minimize that is relative to the
accuracy of the classifier f, the regularization consists in inducing an additional
cost in the loss function through a vector space norm Lp on the coefficient vector
b = [b1, . . . , bN], weighted by a trade-off parameter β, so that the overall function
to minimize is

m

∑
i=1

L(y, f(xi)) + β ‖b‖p

The L0 and L1 norms defined respectively by1

‖f‖0 =
N

∑
j=1

I
{

bj 6= 0
}

and

‖f‖1 =
N

∑
j=1
|bj|

are known to yield sparse classifiers with a fraction of null coefficients which, in
addition to reduce the overfitting, perform a feature selection and allow the infor-
mative features (or classifiers in our case) to emerge and give intelligibility to the
final classifier. These norms work particularly well when we know that the final
classifier is sparse. In our case, sparsity is used to control the complexity of the
final classifier and by nullifying some coefficients, it allows the “economy” of the
evaluation of the corresponding base classifiers. This, in fact, constitutes a step
towards satisfying our speed criteria, however, depending on the complexity re-
quirements for the given problem, this complexity reduction can be insufficient
and, in our case in particular, it becomes quickly difficult to obtain a satisfying ac-
curacy as we approach the extreme nature of the sparsity required for our targeted

1The L0 "norm" is not a proper norm since it is not homogeneous with respect to multiplication
by a scalar. However, this abuse of terminology is often made in the literature.

3.1. Designing fast sequential classifiers 51

problems. In other words, increasing the level of sparsity with classical methods
can not come without a drastic decrease in classification accuracy. Because of this
strong antagonistic relationship between the accuracy and speed of the final clas-
sifier, we conjecture that to satisfy our first two criteria together, namely both the
accuracy and speed, the final classifier must be sparse but also instance-dependent.
Intuitively, instance-dependency in our case means that the complexity with which
the different instances are processed varies depending on the how much resources
are needed to achieve a correct classification. The resource in question can be the
number of actually evaluated classifiers in the simplest case and it can also take
into account the cost of acquiring a specific information about the instance, when
one has to deal with a limited budget for example. As we describe it later in Chap-
ter 4, this occurs in the LHCb trigger where every observation needs to be classified
within a couple of milliseconds.

This instance-dependent sparsity is in contrast with the atomic aspect of “classi-
cal” machine learning methods (Support Vector Machines, Neural Networks etc.)
where all the observations undergo the same processing and, therefore, lead to
new types of learning problems. Formally, we define an instance-dependent clas-
sifier as an additive model where the coefficients bj depend on x, the current ob-
servation

fN(x) =
N

∑
j=1

bj(x)hj(x), (3.1.2)

where

bj(x) =

{
1 if the classifier hj is evaluated

0 otherwise
, j = 0 . . . N,

become indicator functions that induce the instance-dependent sparsity in the final
classifier. Note that bj is henceforth binary and the problem then corresponds to an
L0 optimization. The fact that hj belongs to R allows us to consider its coefficient
to be part of its output value, preventing us from loosing generality.

During the classification, for a given observation x ∈ X , we select a subset of H
to evaluate, where each selected classifier h ∈ H can vote for or against the class
` by setting its `th component h`(x) to, respectively, a positive or negative value,
following the same semantics introduced in Section 1.3; the absolute value, again,
|h`(x)| can be interpreted as the confidence of the vote. 2

Learning the functions
bj : x 7→

{
1, 0
}

in order to minimize
m

∑
i=1

(
L(y, f(xi)) + β

N

∑
j=1

bj(xi)
)

(3.1.3)

2A binary classifier can still be transformed into a multiclass classifier as described in Gao and
Koller (2011b) as well as in the online MULIBOOST documentation (Benbouzid et al., 2012a).

52 Chapter 3. Making decisions for classification

makes the regularization trivial during the training phase and offers no general-
ization guarantees. In fact, it would suffice to evaluate all the classifiers and then
select, for each observation independently, a subset of the correct classifiers which
satisfies the Lagrangian term within the sum in function 3.1.3. This “postdictive”
selection is of course unusable since one has to evaluate each base classifier before
deciding whether or not to select it.

One way to make the setup non-trivial and potentially usable is to formulate the
problem as a multi-class classification where the target corresponds to the bj func-
tions.

Setup

Assuming a data set

D =
{
(x1, y1), . . . , (xm, ym)

}
∈ (X ×Y)m

where X is the input space and Y = {±1}K is the K-multi-label output space, we
construct a matrix B ∈ {0, 1}m×N , that include all the bj, s.t

B(i, j) =

{
1 if hj(xi) = +1

0 otherwise,

that is, B(i, j) indicates whether hj is correctly classifying xi. We generate an aux-
iliary dataset by assigning to each instance xi a new label yi ∈ {±1}N whose kth

component is
yk

i = (B(i, k)× 2)− 1

and train a classifier π (the control classifier) on this auxiliary data set

π : X → {±1}N .

We use ADABOOST.MH to train both the classifier 3.1.1 (the data classifier) and
the control classifier so the final classifier is

f(x) =
N

∑
j=1

(
πj(x) + 1

)
/2× hj(x)

Experiments

In order to empirically illustrate our approach, we will be using two datasets
throughout this Section (c.f table 3.1). The first is a multinomial synthetic dataset
(that we will refer to as the Toy dataset) that we will use to illustrate the case of bi-
nary classification and as the proof of concept. The generation of this dataset was

3.1. Designing fast sequential classifiers 53

partly inspired by the Madelon dataset (Guyon, 2003; Pedregosa et al., 2011): to
generate a d-dimensional dataset with K classes, we generate m Gaussian clusters
such that K×m ≤ 2d, the clusters are then randomly spread over the classes. The
second dataset is the Pendigits dataset from the UCI repository (Bache and Lich-
man, 2013) for classifying handwritten digits. This dataset is meant to serve as a
realistic multi-class dataset and it is is described on the UCI website as follows:

We create a digit database by collecting 250 samples from 44 writ-
ers. The samples written by 30 writers are used for training, cross-
validation and writer dependent testing, and the digits written by the
other 14 are used for writer independent testing. We use a WACOM
PL-100V pressure sensitive tablet with an integrated LCD display and
a cordless stylus. The input and display areas are located in the same
place. Attached to the serial port of an Intel 486 based PC, it allows
us to collect handwriting samples. The tablet sends x and y tablet co-
ordinates and pressure level values of the pen at fixed time intervals
(sampling rate) of 100 miliseconds. These writers are asked to write
250 digits in random order inside boxes of 500 by 500 tablet pixel reso-
lution. Subject are monitored only during the first entry screens. Each
screen contains five boxes with the digits to be written displayed above.
Subjects are told to write only inside these boxes. If they make a mis-
take or are unhappy with their writing, they are instructed to clear the
content of a box by using an on-screen button. The first ten digits are ig-
nored because most writers are not familiar with this type of input de-
vices, but subjects are not aware of this. In our study, we use only (x, y)
coordinate information. The stylus pressure level values are ignored.
First we apply normalization to make our representation invariant to
translations and scale distortions. The raw data that we capture from
the tablet consist of integer values between 0 and 500 (tablet input box
resolution). The new coordinates are such that the coordinate which
has the maximum range varies between 0 and 100. Usually x stays in
this range, since most characters are taller than they are wide. In order
to train and test our classifiers, we need to represent digits as constant
length feature vectors. A commonly used technique leading to good
results is resampling the (xt, yt) points. Temporal resampling (points
regularly spaced in time) or spatial resampling (points regularly spaced
in arc length) can be used here. Raw point data are already regularly
spaced in time but the distance between them is variable. Previous
research showed that spatial resampling to obtain a constant number
of regularly spaced points on the trajectory yields much better perfor-
mance, because it provides a better alignment between points. Our re-
sampling algorithm uses simple linear interpolation between pairs of
points. The resampled digits are represented as a sequence of T points
(xt, yt)T

t=1, regularly spaced in arc length, as opposed to the input se-

54 Chapter 3. Making decisions for classification

Number of features Number of classes Number of instances

Toy 10 2 8000

Pendigits 16 9 10992

Table 3.1 – The properties of the illustrative datasets.

Data |H| AdaBoost regularized CC complexity DC complexity

Toy
10 0.363 0.314 1000 5.23

100 0.345 0.34 1000 50.074

Pendigits

10 0.375 0.235 1000 6.325

100 0.125 0.136 1000 54.278

1000 0.057 0.085 545 527.57

Table 3.2 – The results of an instance-dependent sparse classifier (regularized) in
comparison with the full AdaBoost with different complexities. The table also
shows the number of base classifier in the Control Classifier (CC) and the average
number of evaluated base classifiers in the Data Classifier (DC).

quence, which is regularly spaced in time. So, the input vector size is
2× T, two times the number of points resampled. We considered spa-
tial resampling to T = 8, 12, 16 points in our experiments and found
that T = 8 gave the best trade-off between accuracy and complexity.

Table 3.2 shows that the bj functions can be learned efficiently, i.e, we can skip
the evaluation of nearly half of the classifiers on average while still achieving an
accuracy comparable to the dense classifier, if not better when the dense classifier
overfits. However, mapping the observation x to the functions bj can be costly.
The control classifier in our case ends up containing more classifiers than the data
classifier, so it is not useful if the goal is budgeted classification.

3.1.2 Sequential instance-dependent sparsity

In order to keep our data-dependent sparsity while simplifying the computation
of the bj functions, we impose a sequentiality constraint on the evaluation of the
bj functions so that the information available before evaluating every bj is limited
to past bi, i = 1 . . . j− 1 as well as the output of the evaluated hj. This means that
the controller can use more information than what is available in x, but only up to
the point where the inclusion of hj must be decided (so no postdiction is allowed).
The classification, then, consists of iterating over the classifiers and sequentially

3.1. Designing fast sequential classifiers 55

deciding whether to evaluate the current classifier or to skip it, based on the in-
formation acquired “on the way”. The problem consists of learning a sequence of
functions of the form

bj :
(
x, b1, h1, . . . , bj−1, hj−1

)
7→
{

0, 1
}

.

Note that the sequentiality constraint implies putting a total order on the classi-
fiers but, as described further, this requirement is not difficult to satisfy with a
reasonable criteria.

Retrospectively, we find that the same intuition motivated the Viola-Jones cascade
to become the first real-time face detector. Recall that Viola and Jones had to deal
with a large number of instances to classify per second where the non-face images
were prevalent but easier to classify than the face images.

In a sense, Viola and Jones proposed a framework to make decisions at the instance
level, choosing sequentially whether to discard the image early on or to carry on
the classification process if a certain level of confidence was not yet reached. In that
respect, the framework we propose relates to the cascade paradigm introduced by
Viola and Jones except that we aim to provide more flexibility by allowing more
complex instance-level decisions while keeping the overall complexity acceptable
enough to satisfy all of our three key criteria together.

3.1.3 MDDAG: Markov Decision Directed Acyclic Graph

Having explained the motivations that, in turn, allowed us to define an appro-
priate framework, we introduce MDDAG (for Markov Decision Directed Acyclic
Graph), an implementation of this framework that allows us to learn the sequential
b functions.

We use ADABOOST.MH (Schapire and Singer, 1999) to provide the set of classifiers
H. In principle, any algorithm that builds its final classifier as a linear combination
of simpler functions can be used to provideH. However, there are key advantages
in using base classifiers provided by ADABOOST.MH:

• The base classifiers can have a low complexity that is suitable for our perfor-
mance criteria. They typically consist of simple DECISIONSTUMPS or small
trees.

• The first base classifiers output by ADABOOST have usually the best perfor-
mance which will help accelerate the learning.

• The base learner decomposition in the multi-class case will help us simplify
our algorithm.

56 Chapter 3. Making decisions for classification

As a reminder, the final (or strong) classifier defined by the full sequenceH is

f(x) =
N

∑
j=1

hj(x)

and its prediction for the class index of x is

̂̀= arg max
`

f`(x).

Note that in the binary case, f1(x) = − f2(x) = f (x) and the observation x is
classified as positive if f (x) > θ and negative otherwise. The threshold θ is a free
parameter that can be tuned to achieve, for instance, a specific false positive rate.

Experiments

Running ADABOOST.MH on the illustrative datasets gives the learning curves
in Figure 3.1. The SINGLESTUMP algorithm appears to give satisfying results on
Pendigits, however, the learner quickly overfits on the Toy dataset. For this reason,
we also use small 4 nodes trees (TREE-4) with the Toy dataset, which illustrate also
the possibility to use different classifiers. Figure 3.1 can also be seen as a Pareto
front between the accuracy of ADABOOST.MH and its complexity at different it-
erations. Note that we did not run ADABOOST.MH for more than 500 iterations
since we are interested in very low complexity “regimes”.

3.1.4 Learning bj(x) from delayed rewards

Sequential problems are usually tackled with Reinforcement Learning (RL) meth-
ods. In RL, the main source of information is the environment and the goal is to
learn how to interact with this environment in order to perform a certain task or
maximize an objective function. Each step of the interaction is defined by a state,
in which a learning agent takes actions that influence the environment and receives
some feedback about his actions and his state. The different steps that result from
this interaction are called an episode. Unlike in supervised learning, one does not
have access to instructive labels on the data but only to some evaluative feedback
from the environment.

RL problems are often formalized with a Markov Decision Process in order to ap-
ply learning methods. An MDP is a 5-tupleM = (S ,A,P ,R, γ), where

• S is the state space. At time t, the agent is in the a state st.

• A is the countable set of actions. The action that the agent takes at time t is
denoted at.

3.1. Designing fast sequential classifiers 57

0 100 200 300 400 500

t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

e01

SingleStump train
SingleStump test
Tree-4 train
Tree-4 test

(a) Toy dataset

0 100 200 300 400 500

t

0.00

0.05

0.10

0.15

0.20

e01

SingleStump train
SingleStump test

(b) Pendigits dataset

Figure 3.1 – ADABOOST.MH learning curves. The curves represent the 0-1 error
for the training and test set.

• P : S × S ×A → [0, 1] is the transition probability kernel which defines the
random transitions st+1 ∼ P(·|st, at) from a state st applying the action at.

• R : R× S × A → [0, 1] defines the distribution R(·|st, at) of the immediate
reward rt for each state-action pair.

• and γ ∈ [0, 1] is a discount factor. In our case, it is always set to 1.

58 Chapter 3. Making decisions for classification

A deterministic policy π assigns an action to each state

π : S → A.

When the state transition and the reward probabilities are not known, the main
approach consists in estimating the value of each action-state pair and then apply
a greedy selection of the actions in each state.

The value of a state-action pair (st, a), following a policy π is defined by the ex-
pected sum of rewards starting at state st, taking action a, and following the policy
π,

Qπ(s, a) = Eπ{rt | st = s, at = a} = Eπ

{
∞

∑
k=0

γkrt+k+1

∣∣∣∣ st = s, at = a

}

In order to achieve the sequential instance-dependent sparsity, we endow each
classifier hj with a decision (or action), and, during test-time, we sequentially se-
lect the classifiers to evaluate for a given observation. At a given classifier hj, and
depending on the output of the previously selected classifiers w.r.t. the observa-
tion, we choose an action aj among three possible actions:

EVALuate hj,

SKIP hj, or

QUIT and return the classifier built so far.

Hence, the initial problem is cast as a decision making problem, and learning the
bj(x) functions boils down to training a deterministic policy (or agent) π which
maps a given state to one of the aforementioned actions:

π
(

x, h1(x), . . . , hj−1(x)︸ ︷︷ ︸
state descriptor

)
7→
{

EVAL, SKIP, QUIT︸ ︷︷ ︸
actions

}

Having defined a state space S , a set of actions A and the dynamics of the system
P , it only remains to define the rewardsR in order to complete the formalization of
an episodic Markov decision process (MDP)M = (S ,A,P ,R) and hence, apply
RL algorithms.

During the learning, the observation x is drawn randomly from the distribution
D to form the initial state s1 and is fixed throughout the episode. The termi-
nal state s∞ finishes the classification with the instance-dependent score function
(3.1.2) with

bj(x) = 1− I
{

aj = SKIP ∨ ∃j′ < j : aj′ = QUIT
}

3.1. Designing fast sequential classifiers 59

The rewards

The crux of RL methods lies in the fact that we do not need to explicitly describe
the “right way” of doing a task, unlike in supervised learning. Instead, we only
provide informative feedback (the rewards) in response to the agent’s actions. The
agent, in turn, seeks to maximize the expected sum of the rewards (the undiscounted
return) over the finite horizon T of action-state pairs

$ = E

{
T

∑
t=1

rt

}
. (3.1.4)

This RL property translates into a great level of flexibility in MDDAG and satisfies
our third criteria.

As the primary goal is to optimize the accuracy, we simply penalize the misclas-
sifications of the agent at the end of the episode3. When the agent maximizes the
return, it also minimizes a well know loss function in supervised learning, namely
the multi-class 0-1 loss function

LI(f, (x, `)) = I

{
f`(x)−max

`′ 6=`
f`′(x) < 0

}

Furthermore, we want to foster the sparsity of the final classifier, so we penalize
the EVAL action by a factor β. The overall loss function that MDDAG minimizes
is

E(x,`)∼D

{
LI

(
f, (x, `)

)
+ β

N

∑
j=1

bj(x)

}
. (3.1.5)

By modifying the classification reward, LI can be replaced by other loss functions,
such as the commonly used

• multi-class exponential loss function (Schapire and Singer, 1999)

LEXP(f, (x, `)) = exp

(
K

∑
`′ 6=`

f`′(x)− f`(x)

)
,

• or the multi-class logistic loss (Friedman et al., 1998)

LLOGIT(f, (x, `)) = − ln

(
e f`(x)

∑K
l′=1 e f`′ (x)

)

3The penalization can be constant across the classes or can privilege a subset of classes over the
rest by assigning a bigger misclassification cost.

60 Chapter 3. Making decisions for classification

3.1.5 The state representation

One of the key ingredients that make the RL methods successful is the right rep-
resentation of the state space. Intuitively, if the state space is too complex, the
learning phase might be impractical; if it is too simple, the agent might lack in-
formation to make the right decision. In our case, the state complexity plays an
important role as the computation cost of the state must not overshadow the effi-
ciency gain of the sparsity.

The raw state at a given time t is

st = (x, φ1(x), . . . , φt−1(x), 0, . . . , 0)

where

φt(x) =

{
ht(x) if h was evaluated

0 if h was skipped

It represents all the information available to the agent and it consists of N × K
continuous variables.

Note: Henceforth, we deliberately omit the observation x since it is fixed
throughout the episode as well as the trailing zeros corresponding to the remain-
ing classifiers at time t so the state can be expressed as

st = (φ1(x), . . . , φt−1(x)).

Without losing information, we can simplify the state space decomposing the base
learner into

ht(x) = αtvt ϕt(x),

where ϕt(x) ∈ {±1} is a binary function and vt ∈ {±1}K is K-valued vector. In-
tuitively, vt corrects the anti-correlations between ϕt(x) and the label vector. Since
only ϕt depends on x, φt becomes

φt(x) =

+1 if ϕ(x) = +1

−1 if ϕ(x) = −1

0 if h was skipped

Using our multi-class formulation of ADABOOST.MH reduces the state space to N
ternary variables.

3.1. Designing fast sequential classifiers 61

Experiments

We run this first version of MDDAG on the two illustrative dataset as a first check
of feasibility. The choice of the RL learning algorithm used is orthogonal to the
state representation, for this reason, we describe it further in Section 3.1.6. Since
both the accuracy and the complexity of the final classifier are crucial, we plot the
Pareto front which opposes these two measures where the complexity is character-
ized by the average number of evaluated base classifiers. We adopt this complexity
measure mainly because it does not depend on any hardware. The only condition
that makes it valid, however, is that the complexity of the agent stays insignificant
comparing to the overall complexity. We discuss this issue in Section 3.3.3.

Figure 3.2 shows that the learning is effective and the agent succeeds in combining
the base classifiers in order to improve the accuracy of the final classifier. Figure 3.3
shows that for the same number of base classifiers used, MDDAG achieves a sig-
nificantly better accuracy than ADABOOST.MH, for both the binary and multiclass
case.

The drawback of this state representation is still the size of the state space which
impacts the scalability of the approach wrt. the number of input classifiers to use.
In fact, we quickly end up with tens of thousands of different states which, al-
though still very far from the 3N theoretical possible states, prevents a better gen-
eralization of the RL algorithm to new states.

Improving the state space

In order to overcome the generalization problems of the discrete state space, we
summarize the history of an episode through the intermediate classification score
up to time t:

f(t)(x) =
t

∑
τ=1

bτ(x)hτ(x) t < N (3.1.6)

so the new state st becomes
st = (t, f(t−1)(x))

This representation means that the decisions are independent among the classifiers
and that they are based upon the current confidence. Although this representation
proves empirically the effectiveness of the approach for the binary class, where
f(t)(x) = f (t)(x) is a single continuous variable, it scales poorly in the multi-class
case as the number of continuous variables in the state space grows linearly with
the number of classes. Thus, we opt for a variation where we only retain the iden-
tity of the two winning classes at time t along with their class-wise score difference.
Formally, defining the two winning classes at time j

`
(j)
1 = arg max

`

f (j−1)
` (x)

62 Chapter 3. Making decisions for classification

0 1 2 3 4 5 6

t 1e6

64

66

68

70

72

74

76

78

80

acc

train
test

(a) Toy dataset

0.0 0.2 0.4 0.6 0.8 1.0 1.2

t 1e7

60

65

70

75

80

85

90

acc

train
test

(b) Pendigits dataset

Figure 3.2 – Learning curve: the accuracy (acc) of the final classifier vs the episode
number (t).

`
(j)
2 = arg max

`,` 6=`
(j)
1

f (j−1)
` (x)

and their score difference

∆(j)(x) = f
`
(j)
1
(x)− f

`
(j)
2
(x)

the state st is characterized as follows

3.1. Designing fast sequential classifiers 63

0 5 10 15 20

average number of evaluations

62

64

66

68

70

72

74

a
c
c
u
r
a
c
y

(a) Toy dataset

0 5 10 15 20 25 30

average number of evaluations

20

30

40

50

60

70

80

90

a
c
c
u
r
a
c
y

(b) Pendigits

Figure 3.3 – The Pareto front: The scatter points represent different policy evalu-
ations and the continuous line represents the accuracy of ADABOOST.MH for the
corresponding complexity. The colors simply allow us to see how the learning
evolves: The first episodes correspond to the blue points and subsequent episodes
turn progressively into the red.

st =
(

j︸︷︷︸
base classi f ier index

, (`
(j)
1 , `(j)

2)︸ ︷︷ ︸
winning labels

, ∆(j)(x)︸ ︷︷ ︸
score di f f erence

)
(3.1.7)

64 Chapter 3. Making decisions for classification

Experiments

0 10 20 30 40 50 60

average number of evaluations

55

60

65

70

75

80

a
c
c
u
r
a
c
y

(a) Toy dataset

6 8 10 12 14 16 18 20

average number of evaluations

50

60

70

80

90

100

a
c
c
u
r
a
c
y

(b) Pendigits

Figure 3.4 – The Pareto front with the raw state space

With the exact same parameters as in the previous experiments, MDDAG with
this new state space manages to combine more base classifiers, achieving a better
accuracy (Figure 3.4).

3.1. Designing fast sequential classifiers 65

The Toy dataset with DECISIONSTUMP

Interestingly, when ADABOOST.MH with the DECISIONSTUMP algorithm overfits
the Toy dataset, MDDAG acts as a regularizer, outperforming the best validated
ADABOOST.MH (Figure 3.5).

100 101 102

average number of evaluations

54

56

58

60

62

64

66

68

70

72

a
c
c
u
r
a
c
y

Figure 3.5 – The Pareto front of the Toy dataset with SINGLESTUMP

3.1.6 The learning algorithm

Different learning algorithms in reinforcement learning output agents with dif-
ferent complexities. Learning the policy of the agent with a classifier, known as
Classification-based Policy Iteration, would yield a classifier which might be as
costly as the final classifier, if not costlier. The same statement holds for Fitted-
Q Iteration techniques, where the Q function is approximated through regression,
such as with random regression trees (Ernst et al., 2005) or Neural Networks (Ried-
miller, 2005). Even though these two family of techniques exhibit satisfying em-
pirical results, they can only be applied when no strong constraints are put on the
overall complexity of the classifier. As the complexity of the agent is extremely
important, we restrict to that of a table look-up, thus, we only consider Q-learning
methods.

We use the tabular version of Q-LEARNING for the following reasons:

• The horizon is finite, thus we can learn individual simple Q functions for
each step (Busoniu et al., 2010),

66 Chapter 3. Making decisions for classification

• the complexity of a table look-up is low enough not to overcome the overall
complexity of the final classifier.

• With our state representation (equation 3.1.7), we end up with only one con-
tinuous variables which can be discretized without blowing the state space.

In Q-LEARNING, the update rule after taking an action at in a state st is

Q
(
st, at

)
← Q

(
st, at

)
+ α
[
rt+1 + max

a
Q
(
ss+1, a

)
−Q

(
st, at

)]

In our case, the classifiers are processed sequentially during an episode, thus every
time t corresponds to a unique classifier j that we have reached with the two top
scored labels `1, `2 and their score difference ∆, so following the state representa-
tion described in equation 3.1.7 and assuming a binning function

bin
(
∆
)
∈ N

the update rule after taking an action at at a given classifier j is

Q
j,`(j)

1 ,`(j)
2

(
n(j), aj

)
←

Q
j,`(j)

1 ,`(j)
2

(
n(j), aj

)
+ α
[
rj+1 + max

a
Q

j+1,`(j+1)
1 ,`(j+1)

2

(
n(j+1), a

)
−Q

j,`(j)
1 ,`(j)

2

(
n(j), aj

)]

where n(j) = bin
(
∆(j)), n(j+1) = bin

(
∆(j+1)), and rj+1 is the immediate reward

after taking the action aj.

Instead of discretizing the unique continuous variable, one can also parametrize
it. A very common approach is to use a linear approximation with Gaussian radial
basis functions (RBF), as defined in equation 3.1.8 and depicted in Figure 3.6.

kg(∆) = exp

(
−||∆− cg||2

2σ2
g

)
(3.1.8)

Because this function approximation is local, it is preferable to normalize it as in
equation 3.1.9 in order to have a better generalization to unknown regions in the
score space (Morimoto and Doya, 1998).

bg(∆) =
kg(∆)

∑G
l=1 al(∆)

(3.1.9)

The Q value for a given classifier j and a given couple of winning labels, `1 and `2

would be the following function of the score difference ∆

Q
j,`(j)

1 ,`(j)
2

(
∆, aj

)
=

G

∑
g=1

wgbg(∆) (3.1.10)

3.1. Designing fast sequential classifiers 67

0.0 0.2 0.4 0.6 0.8 1.0

∆

0.0

0.2

0.4

0.6

0.8

1.0

Q
 v

a
lu

e
(a) Unnormalized Radial Basis Functions

0.0 0.2 0.4 0.6 0.8 1.0

∆

0.0

0.2

0.4

0.6

0.8

1.0

Q
 v

a
lu

e

(b) A normalized RBF network with 2 units.

0.0 0.2 0.4 0.6 0.8 1.0

∆

0.0

0.2

0.4

0.6

0.8

1.0

Q
 v

a
lu

e

(c) When the two central units are added, the shapes of the previous units also change,
due to the normalization.

Figure 3.6 – Examples of unnormalized and normalized Radial Basis Function

Still following the approach of Morimoto and Doya (1998), one can add the RBF
units as we explore new score regions for the different classifiers, instead of setting
a fixed number of units during the whole episode.

Starting the episode with no RBF, it consists of adding a new unit whenever the
activation of the current units falls below a minimum threshold kmin and the error
on the Q value (i.e, the difference between the current Q value and the immediate
reward) is above a second threshold emax. Formally these two criteria are

• maxg kg(∆) < kmin and

• |Q
j,`(j)

1 ,`(j)
2

(
∆(j), aj

)
− rj+1| > emax

68 Chapter 3. Making decisions for classification

The new unit kg is initialized with a center cg = ∆(j), a coefficient wg = rj+1 and a
pre-defined standard deviation σg = σinit.

The Q-LEARNING update is done then with a gradient descent (equation 3.1.11)
that not only modifies the coefficients of the units but it can also modify their
center and shape as well. Note however that the learning rates for the center and
the variance, ηc and ησ respectively, must be very small in practice to avoid too big
steps and the resulting oscillation.

Let
err = Q

j,`(j)
1 ,`(j)

2

(
∆(j), aj

)
− rj+1

for g = 1 . . . G, the update rules are

∆cg = −ηc × err× wg ×
∂bg

∂cg
(3.1.11a)

= −ηc × err× wg × (bg(∆(j))− 1)× bg(∆(j))× ∆(j) − cg

σ2
g

(3.1.11b)

∆σg = −ησ × err× wg ×
∂bg

∂σg
(3.1.11c)

= −ησ × err× wg × (bg(∆(j))− 1)× bg(∆(j))× (∆(j) − cg)2

σ3
g

(3.1.11d)

∆wg = −ηw × err× wg ×
∂bg

∂wg
(3.1.11e)

= −ηw × err× wg × bg(∆(j)) (3.1.11f)

3.1.7 Visualizing the final classifier

The final classifier is sequential and linear but if we draw the paths that link the
evaluated classifiers for each observation individually, we end up with a Directed
Acyclic Graph (a DAG, thus the name of the approach) that allow to visualize the
instance-dependent aspect of the classifier in a particularly clear way.4

1 2

3

4

5

6

7

8

10

∞

9

13
11

12 15

14

16

19

18

17

20

21

24
22

25

26
30

27

28

32

31
34 35

33

38

36 39

43

37

40
41 44

46

47

48 49

51

50

52
54

53

55
58

59

61 62

64

63

65 66 67
69

68

70 72 73

74 75

76 77

79

78

80
81

82

83

84

87

89

90

The figure above represents the different paths that are taken by the observations
once the learning is done. The node radii and the edge widths are drawn propor-
tionally to the number of observations that traverse them. Thus, we can clearly see
how the final classifier is sparse: most of the observations take short paths in fine.

4The fine details of these graphs can only be seen when blowing up the pdf on screen.

3.1. Designing fast sequential classifiers 69

Even though the last figure is a only a conceptual depiction of the structure of
MDDAG, it nevertheless gives a strong intuition about the type of classifiers that
is learned. If MDDAG had to be compared with trees, the main difference would
that each node of the graph in MDDAG can have multiple thresholds and not
only one as in trees and that these thresholds depend on the cumulative score of
the instance that traverses the graph, instead of its feature values.

In the next figure, we depict each pair of classes with two colors, blue and red.
The node and edge are colored by mixing these two colors according to the class
proportions of the observations that reached them.

Legend

class 0

class 1

1 2

3

4

5

6

7

8

10

∞

9

13
11

12 15

14

16

19

18

17

20

21

24
22

25

26
30

27

28

32

31
34 35

33

38

36 39

43

37

40
41

44

46

47

48 49

51

50

52
54

53

55
58

59

61 62

64

63

65 66 67
69

68

70 72 73

74 75

76 77

79

78

80
81

82

83

84

87

89

90

It is interesting to note how the observations of different classes tend to take dif-
ferent paths.

We plot the same DAG for the Pendigits dataset and we obtain the following rep-
resentation

2

3

4 5

6

7

12

10

8

9

11

∞

15

14
16

13

17

18

20

19

21

22

23

24

26

25

27

29

3028

31

33

34

35

32

37

38

36

39

40

41

42

43

45

44

47

46

49

48

50

52

51

53 54

55

56

57

59

60

58

66

71

64

62

61

63

67

68

65

69

7270 74

73

75 77

76 78 81

82

83
85

84

86
87

88 90 91

93
94

95 98

103

The last DAG only depicts the paths that are taken only by the 4’s and 6’s.

Legend

class 4

class 6

2

3

4 5

7

6

10

8
12

119

∞

15

13

17

14

16

18

19

20

23

22

21

24

26

25
27

28

29

3330

34

3231 35

36

38

4039

37

41

43

42

44

45

47

46

48 51 53 54 55 60 62 63

70 Chapter 3. Making decisions for classification

3.2 Unsupervised side-effects

We show two toy examples to illustrate how MDDAG can discover structure in
the input data (Benbouzid et al., 2011). In Section 3.2.1 we first verify the sparsity
and heterogeneity hypotheses on a synthetic example. In Section 3.2.2 we use an
MNIST subproblem to show “path-wise” clustering.

3.2.1 Synthetic data

The goal of this experiment is to verify whether MDDAG can learn the subset of
“useful” base classifiers in a data-dependent way. We created a two-dimensional bi-
nary dataset with real-valued features where the positive class is composed of two
well-separable clusters (Figure 3.7a). This is a typical case where ADABOOST or a
traditional cascade is suboptimal since they both have to use all the base classifiers
for all the positive instances.

We ran MDDAG with on 1000 decision stumps learned by ADABOOST.MH. In
Figure 3.7b we plot the number of base classifiers used for each individual pos-
itive instance as a function of the two-dimensional instance itself. As expected,
the “easier” the instance, the fewer base classifiers it needs for classification. Fig-
ure 3.7c shows the actual DAG learned for the positive class and confirms our
second hypothesis: base classifiers are used selectively, depending on whether the
positive instance is in the blue or red cluster. As in the previous section, we fol-
low each training instance and “summarize” sequences of SKIP actions into single
transitions. Empirical class probabilities are color coded in each node and on each
transition. The structure of the DAG also confirms our intuition: the bulk of the
two sub-classes are separated early and follow different paths. It is also remarkable
that even though the number of possible paths is exponentially large, the number
of the realized subpaths is very small. Some “noisy” points along the main diag-
onal (border between the subclasses) generate rare subpaths, but the bulk of the
data basically follows two paths.

3.2. Unsupervised side-effects 71

2 0 2 4 6 8 10 12
x

4

2

0

2

4

6

8

10

12

y

neg
pos
pos

(a) Experiments with synthetic data. The positive class is composed of the blue and red
clusters, and the negative class is the green cluster.

2 0 2 4 6 8 10 12
x

4

2

0

2

4

6

8

10

12

y

2,5 (454)
2,6,7,13 (357)
2,6,7,8,9,10,11 (800)
2,5,7,8,9,10,11 (64)
2,5,7,13,14,15,16,17,18 (8)
2,6,7,13,14,15,16,17,18 (81)
2,5,7,8,9,10,11,12,14,15,16 (25)
2,6,7,13,14,15,16,17,19,22,24,26 (54)
2,5,7,8,9,10,11,12,14,15,16,17,18 (8)
2,6,7,13,14,15,16,17,19,22,24,26,27 (52)
2,6,7,8,14,15,16,17,19,20,21,22,24,26,27 (1)
2,6,7,8,9,10,12,13,14,15,16,17,19,22,24,26,27 (10)
2,6,7,8,14,15,16,17,18,19,20,21,22,23,24,26,27 (22)
2,6,7,8,14,15,16,17,18,19,20,21,23,24,25,26,28 (14)
2,6,7,8,14,15,16,17,19,20,21,23,24,25,26,27,28 (1)
2,6,7,8,14,15,16,17,18,19,20,21,22,23,24,26,27,28 (19)
2,6,7,8,14,15,16,17,18,19,20,21,23,24,25,26,27,28 (8)
2,6,7,8,9,10,12,13,14,15,16,17,19,20,22,23,24,26,27 (17)
2,6,7,8,9,10,12,13,14,15,16,17,19,20,22,23,24,26,27,28 (1)
2,5,7,8,9,10,11,12,14,15,16,17,18,19,20,21,23,24,25,26,27,28 (4)

(b) The number of base classifiers used for each individual positive instance as a function
of the two-dimensional feature coordinates. In the right panel, the lines represent the
indices of the base classifiers and the number between parenthesis represents the number
of instances that followed this path.

Legend

class pos_b

class pos_r

2

5

6 7

∞

8

13

9

14

10 11

12 15 16

17 18

19

20 22

21 23

24
25

26 27

28

(c) The decision DAG for the positive class. Colors represent sub-class probabilities (pro-
portions) and the node sizes and arrow widths represent the number of instances in the
states and following the actions, respectively.

72 Chapter 3. Making decisions for classification

3.2.2 MNIST example

We ran MDDAG on 300 Haar stumps trained on 2s and 4s against 6s and 9s. Fig-
ure 3.8 shows the trained decision DAG of the 2-4 class. As in the previous section,
we color-code the nodes and the arrows to show how MDDAG automatically sep-
arates subclasses without knowing their labels. In Table 3.3 we enumerate all the
paths followed by at least 6 training instances and the pixelwise averages of the
corresponding instances. First note that the number of actual paths is tiny com-
pared to the exponentially many possible paths. This mens that even though the
nominal complexity of the class of classifiers represented by all the DAGs is huge,
the algorithm can successfully control the effective complexity. Second, the aver-
age images indicate that MDDAG finds sub-classes even within the 2s and 4s. Fi-
nally, although our goal with this example is to illustrate the structure-learning ca-
pabilities of MDDAG, on the performance side MDDAG outperforms AdaBoost
by 10%: the decision DAG uses 6.03 base classifiers on average and achieves 91.6%
accuracy whereas AdaBoost achieves 80.7% after 6 iterations.

2 3

4

∞

5

6

7

8

9

10

11

12
13

14 15

16
17 18

19

23

24

20

25

28

29

31 33

Figure 3.8 – The decision DAG for the 2-4 class. Colors represent sub-class proba-
bilities (blue is 2 and red is 4) and the node sizes and arrow widths represent the
number of instances in the states and following the actions, respectively.

3.3 Discussions

3.3.1 The action space

The action space influences both the shape of the final classifier and the complex-
ity of the agent. If the actions were restricted to EVAL and QUIT (without the
SKIP action), we would have categorized MDDAG as a cascade algorithm and
an embedded cascade in particular (2.3.2). However, having the possibility to skip a
classifier complexifies the space of the final instance-dependent sparse classifier in
addition to showing better performance.

On the other end of the spectrum, allowing the agent to select any classifier at any
time would indeed release us from the sorting assumption on the classifiers but

3.3. Discussions 73

path average number of
image test instances

2-3 835
2-3-4-6-7-9-10 18
2-3-4-6-7-9-10-11-12 28
2-3-4-6-7-9-10-11-12-13-14-15 26
2-3-4-6-7-9-10-11-12-13-14-15-16-17-18 10
2-3-4-6-7-9-10-11-12-13-14-15-17-18-24-25-29 19
2-3-4-6-7-9-10-11-12-13-14-15-17-18-24-28-29 18
2-3-4-6-7-9-10-11-12-13-14-15-17-18-24-28-31-33 44
2-3-4-6-7-9-10-11-12-13-15-16-17-18-19 9
2-3-4-6-7-9-10-11-12-13-15-16-17-18-19-20 12
2-3-4-6-7-9-10-12-13-15-16-17-18 6
2-3-4-6-7-10 18
2-3-4-6-7-10-11 10
2-3-4-6-8-9-11-12-13-14-15-16-17-18 11
2-3-4-6-8-9-11-12-13-14-15-17-18-24-28-31-33 11
2-3-4-6-8-9-11-12-13-15-16-17-18 7
2-3-4-6-8-10-11-12-13-14-15-16-17-18-24 6
2-3-4-6-8-10-11-12-13-15-16-17-18 21
2-3-4-6-8-10-11-12-13-15-17-18-24-25-29 7
2-3-4-6-8-10-11-12-13-15-17-18-24-28-31-33 11
2-3-4-6-8-10-12 699
2-3-4-6-8-10-12-13-15-16-17-18 38
2-3-4-6-8-10-12-13-15-16-17-18-19 9
2-3-4-6-8-10-12-13-15-16-17-18-19-20 12

Table 3.3 – The paths followed by more than 6 test instances, the corresponding
average images, and the number of instances.

it would also necessitate a more complex agent to learn. Not only it is counter-
intuitive in Reinforcement Learning to define an action space that grows with the
input data (here the input classifiers) but the resulting agent would be too com-
plex to satisfy our complexity criterion, especially if it has to be trained with non-
tabular learning algorithms.

However, we can draw a continuum between no skipping at all (the cascade-like
case) and the possibility to jump to any classifier by allowing a number S < N of
skips. For instance, if S = 2, we allow the agent to skip one or two classifiers in
one single action, in addition to its the evaluation and quit actions.

3.3.2 The influence of the order of the classifiers

In order to assess the influence of the order of the classifiers in MDDAG, we apply
random permutations to the sequence of classifiers before the learning of the MDP
and compare the results with the default order output by ADABOOST.

74 Chapter 3. Making decisions for classification

Figure 3.9 provides the empirical hint that the order of the classifiers might influ-
ence the average number of evaluated classifiers but not necessarily the accuracy
of the final classifier. In other words it just necessitates more classifiers to reach the
same accuracy. This might indicate a problem of convergence of the MDP since
the learner starts from a worse point in the parameter space of the policy.

3.3.3 The evaluation cost of the agent

The policy of the agent consists of a greedy selection of the action with the highest
value for a given state. Thus, the complexity of the agent is that of a look-up
table. With a naive implementation, one can use an ordered hash table storing
the keys in a binary search trees. The states could then be fetched in logarithmic
time, however, as the state space can be deconstructed into ordered subparts, it is
possible to reduce the table look up to a constant time. In fact, the first subpart of
the state space is the index j of the current classifier which is fully ordered. The
second subpart consists of the all the possible pairs of labels (`

(j)
1 , `(j)

2) and it can
also be ordered once for all. The third and final part corresponds to the bin of the
current score bin

(
∆(j)) which can also be accessed in constant time.

3.4 Experiments

We conducted a series of experiments in order to show the applicability of
MDDAG. In the next plots, we compare the accuracy of MDDAG with that of
ADABOOST.MH. The plots represent the Pareto front between the accuracy and
the complexity of the overall classifier. The complexity is measured in terms of
the average number of evaluated base classifiers. We mainly adopt this complex-
ity measure because it is independent of the hardware on which the classifiers are
run. In the case of ADABOOST.MH, it simply corresponds to the learning curve
as the algorithm is iterative and adds one base classifier at a time. For MDDAG,
the number of evaluated base classifiers is averaged across the test instances. Note
that in all the plots (except for the Viola-Jones dataset), the average number of
evaluations is in log scale. Also, the right-most point in ADABOOST.MH curves
represents the best validated error of the algorithm, corresponding to the optimal
number of base classifiers for the corresponding dataset (except for the Viola-Jones
dataset).

We use 8 datasets from the UCI repository5. In all the experiments, the hyperpa-
rameters of ADABOOST.MH (the number of iterations and the number of nodes in
the decision trees of the base learners) are validated using a 5-fold cross validation
(except when the dataset already comes with a validation set). Then MDDAG is
trained on the validated base classifiers with different values for β (controlling the

5http://archive.ics.uci.edu/ml/datasets.html

http://archive.ics.uci.edu/ml/datasets.html

3.4. Experiments 75

accuracy/complexity trade-off), namely−0.01,−0.001, and−0.0001. The parame-
ters of the MDP were fixed throughout the experimentation as we noticed that the
learning is quite stable with respect to them. The eligibility trace λ is set to 0.93,
the learning rate α is set to 0.005. Note that in order to converge theoretically, α

must decrease so that

∞

∑
k=1

αk = ∞ and
∞

∑
k=1

α2
k < ∞

however, we found in practice that fixing α provides better performance. All the
plots represent the performance on a held-out test set. The solid line represents
ADABOOST and the scatter plot represents MDDAG. The different points in the
scatter plots result from evaluating the learned policy every 10000 episodes.

We kept the experimentation simple in order to show that MDDAG is almost a
turn-key algorithm and that the additional hyperparameters of the MDP are not
an obstacle to its effective application. Also, although it acts as a post-processing
after the learning of ADABOOST, MDDAG does not need a separate dataset for its
training. This is an appealing aspect when dealing with small datasets.

From the following experiments, it appears that MDDAG provides promising re-
sults. The resulting sparse classifier is consistently better than ADABOOST in small
complexity regions. It is even competitive with the full ADABOOST classifier (rep-
resented by the end point in ADABOOST curve). Furthermore, it can sometimes
regularize ADABOOST and improve its performance by preventing overfitting, as
we already saw with the Toy dataset in Section 3.1.5 and here with the Arcene
dataset.

3.4.1 The Adult dataset

Source: http://archive.ics.uci.edu/ml/datasets/Adult

Description: Predict whether income exceeds $50 000 a year based on census
data. Also known as "Census Income" dataset.

Data characteristics:

Number of training instances 30162

Number of test instances 15060

Number of features 105

Number of classes 2

http://archive.ics.uci.edu/ml/datasets/Adult

76 Chapter 3. Making decisions for classification

Pareto front:

3.4.2 The Arcene dataset

Source: http://archive.ics.uci.edu/ml/datasets/Arcene

Description: ARCENE’s task is to distinguish cancer versus normal patterns
from mass-spectrometric data. This is a two-class classification problem with con-
tinuous input variables. This dataset is one of 5 datasets of the NIPS 2003 feature
selection challenge.

Data characteristics:

Number of instances 900

Number of features 10000

Number of classes 2

Pareto front:

http://archive.ics.uci.edu/ml/datasets/Arcene

3.4. Experiments 77

Remarque: The Arcene dataset is mainly meant for feature selection challenges.
We plot our results on this dataset in order to show the regularization capabilities
of MDDAG and not to compete with specialized feature selections algorithms.

3.4.3 The Balance Scale dataset

Source: http://archive.ics.uci.edu/ml/datasets/Balance+Scale

Description: This data set was generated to model psychological experimental
results. Each example is classified as having the balance scale tip to the right, tip to
the left, or be balanced. The attributes are the left weight, the left distance, the right
weight, and the right distance. The correct way to find the class is the greater of
(left-distance × left-weight) and (right-distance × right-weight). If they are equal,
it is balanced.

Data characteristics:

Number of instances 625

Number of features 4

Number of classes 3

http://archive.ics.uci.edu/ml/datasets/Balance+Scale

78 Chapter 3. Making decisions for classification

Pareto front:

3.4.4 The Gisette dataset

Source: http://archive.ics.uci.edu/ml/datasets/Gisette

Description: GISETTE is a handwritten digit recognition problem. The problem
is to separate the highly confusible digits ’4’ and ’9’. This dataset is one of five
datasets of the NIPS 2003 feature selection challenge.

Data characteristics:

Number of training instances 6000

Number of validation instances 1000

Number of test instances 6500

Number of features 5000

Number of classes 2

Pareto front:

http://archive.ics.uci.edu/ml/datasets/Gisette

3.4. Experiments 79

3.4.5 The Landsat Satellite dataset

Source: http://archive.ics.uci.edu/ml/datasets/Statlog+%28Landsat+
Satellite%29

Description: Multi-spectral values of pixels in 3x3 neighbourhoods in a satellite
image, and the classification associated with the central pixel in each neighbour-
hood.

Data characteristics:

Number of training instances 4435

Number of test instances 2000

Number of features 36

Number of classes 7

Pareto front:

http://archive.ics.uci.edu/ml/datasets/Statlog+%28Landsat+Satellite%29
http://archive.ics.uci.edu/ml/datasets/Statlog+%28Landsat+Satellite%29

80 Chapter 3. Making decisions for classification

3.4.6 The Pendigits dataset

Source: http://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+
of+Handwritten+Digits

Description: Digit database of 250 samples from 44 writers.

Data characteristics:

Number of training instances 7494

Number of test instances 3498

Number of features 16

Number of classes 10

Pareto front:

http://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
http://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits

3.4. Experiments 81

3.4.7 The Viola-Jones dataset

Source: Not published anymore.

Description: Face detection dataset of 24x24 images.

Data characteristics:

Number of training instances 6394

Number of test instances 6394

Number of features 576

Number of classes 2

Pareto front:

82 Chapter 3. Making decisions for classification

3.5 Prediction as a sequential process

In Chapter 2, some of the works we reviewed addressed the problem of classifi-
cation with sequential models, mainly with cascades architectures. In this section,
another type of sequential models is reviewed where the decisions are explicitly
modeled, learned, and no longer limited to simple threshold adjustments. These
types of approaches have known a rise of interest during the last two years, which
tends to confirm the main thesis of this dissertation about the benefits of such mod-
eling. However, it is striking to see, through the relatively few works that have
been published, the variety of problems and applications that can be addressed
with sequentiality and the direct benefits of translating prediction into decision
making.

If our motivation was mainly driven by fast and budgeted classification, in the line
of cascade classifiers, we also find that structured prediction and feature selection
have been at the origin of a number of works that can be related to ours. Maes et al.
(2009) apply reinforcement learning (RL) algorithms to solve sequence labeling
problems and tree transformation in structured documents, which they introduce
as a new type of structured prediction problem. They mainly define a state space
that contains the current observation as well as the partial outputs, and an action
space that translates the step-wise structured prediction outputs, hence they cast
the original supervised learning problem into a reinforcement learning task. Also
in sequence labeling and structured prediction, Daumé III et al. (2009) borrow RL
concepts in order to build an algorithm, named SEARN, that takes a binary cost-
sensitive learning algorithm (called policy in the original context) and embed it
into a meta-learning procedure that iterates between a search phase and a learning

3.5. Prediction as a sequential process 83

phase. The search phase is related to the structured learning problem; it is used to
create a cost sensitive dataset, on which a classifier is trained and used to extrapo-
late previously trained classifiers. Another work, by Weiss et al. (2013); Weiss and
Taskar (2013) tackles the problem of combining different models for structured
prediction under budget constraints. Directly inspired by cascade classifiers, they
sequentially evaluate the models and choose whether to evaluate the next model in
the list by explicitly learning the value of evaluating the next model given the pre-
viously evaluated ones. Also inspired by cascade classifiers but allowing a multi-
class classification at each stage, (Trapeznikov and Saligrama, 2013) propose an
approach that assumes an ordered sequence of stages wherein each stage allows
to use one more feature, usually more informative, than its predecessor. They
derive a stage-wise risk minimization resulting from a dynamic programming for-
mulation of the problem and train a classifier for each stage, choosing whether to
classify the current observation immediately or to delay it for further stages.

Unlike the previously mentioned works that use both supervised and reinforce-
ment learning, Dulac-Arnold et al. (2011a, 2012) propose to fully formalize the clas-
sification problem as a reinforcement learning task in order to obtain a sequential
instance-dependent sparsity6 (Section 3.1.2). The authors learn a linear classifier
that, given an observation, sequentially selects the features to evaluate. Thus, the
classification consists in taking actions that correspond either to a new feature to
evaluate or to one of the class labels, ending the classification with that label as an
answer. The authors define a state space composed of the feature values of the cur-
rent observation as well as a binary vector that indicates which features have been
evaluated at the current time. The function is set so that every feature selected is
penalized and overall, the learning of the agent corresponds to optimizing a classi-
fication loss function, penalized by an L0 norm. The authors also propose an adap-
tation of this framework to tackle diverse applications such as structured learning
and cost-sensitive classification. Also motivated by feature selection, (Rückstieß
et al., 2011) propose a very similar approach for instance-dependent feature se-
lection. They formalize the sequential problem with a Partially Observable MDP
(POMDP) in which the belief over the states is deterministically maintained by
an overall classifier. Gaudel and Sebag (2010) also use reinforcement learning in
order to overcome the intractable problem of feature selection, the final classifier,
however, is not instance-dependent.

Computer vision also has been tackled with explicit sequential models. Gao and
Koller (2011a) assume a set of trained classifiers and learn the value of each clas-
sifier based on the information gain it provides penalized by its complexity cost.
The authors also mention that a penalized classification loss can be used equiva-
lently. During the classification, the classifiers are picked greedily, i.e, based on the
one with the highest value and once a classifier is evaluated, its output is used to
update a belief over the classes using locally weighted regression. In order to ac-

6Coined in the original paper as datum-wise sparse classification model

84 Chapter 3. Making decisions for classification

celerate the classification, the authors also propose to stop the classification early
whenever the relative information between the current and the previous posterior
estimation is small enough or if the margin information does not change beyond
a certain threshold. They also prune the class space and the classifier space as the
learning proceeds in order to economize the value computation for the least rele-
vant classifiers and the least likely classes. Arguing that the greedy selection of the
classifiers used in Gao and Koller (2011a) offers room for improvement, Karayev
et al. (2012), formalize the multi-class object detection problem with RL techniques,
in a setup that similar to that of Dulac-Arnold et al. (2012). The authors address the
problem of large multi-class problems and aim at providing an anytime algorithm.
To this end, they incorporate the time into the reward function.

As a hint towards the fact that sequential models are not necessarily restricted to
RL methods, Larochelle and Hinton (2010) train a controller that collect glimpses in
an image, indicating the next location to “look at”, and classify the glimpses with
a small sequential classifier. Both the controller and the classifier are learned with
a Restricted Boltzmann Machine that include third-order connections between the
visible units, the hidden units and the location of glimpses.

Sequential models were also successfully in other problems such as information
extraction (Kanani and McCallum, 2012) and parser design Neu and Szepesvári
(2009). Noticeably, these approaches offer a “natural” way to deal with these ap-
plications, as they are themselves intrinsically sequential.

Retrospectively, most of the works that explicitly model the classification (or the
prediction in general) as a decision making process share a number of common
points. In particular, one recurrent aspect is the learning of a score function that
allows to estimate the best action to take during the prediction process. This score
function is very similar, conceptually, to the value of a state or a state-action pair in
reinforcement learning (when it is not explicitly defined as such). It is not surpris-
ing then that the gist of a broad family of RL methods is also used when supervised
learning is cast as making sequential decisions.

The different approaches also diverge in many aspects. Besides the diverse afore-
mentioned motivations, we can in fact distinguish some axes of investigations,
along which one can make choices in order to devise a learning method for sequen-
tial predictors: some works rely more or less heavily on the use of reinforcement
learning when formalizing the original problem, others only employ RL concepts
but still use supervised learning during the decision making. As for choosing the
learning algorithm, there are a plethora of solutions in the reinforcement learning
literature that can be used that, in this particular context, might have different ad-
vantages and disadvantages. The choice usually depends on the application and
the type of constraints that it involves. The learning also affects the policy that
is output, some works adopt myopic policies for choosing the actions and others
take the overall horizon into account. Finally, the implementation of a sequential
learning approach strongly depends on the choice of the state space, on which the

3.5. Prediction as a sequential process 85

decisions are based, as well as the possible actions that the classifier (or the agent
in general) can take in a given state. The different approaches are described in the
next sections and summarized in Table 3.4.

3.5.1 The paradigm continuum

In our work (Benbouzid et al., 2011, 2012b), the algorithm takes an input sequence
of classifiers and learns an overall sparse classifier that combines them. Simi-
larly, some works first employ supervised learning in order to extract models from
the data and then apply reinforcement learning as a post-processing in order to
achieve their targeted goal (Rückstieß et al., 2011; Karayev et al., 2012).

On the other hand, it has been shown that the problem of classification can be fully
formalized within a reinforcement learning framework, in the sense that the learn-
ing agent can have access to the “raw” feature space of the observations without
resorting to any type of feature mapping such as the use of pre-trained classifiers.
The agent is thus responsible for both querying the data features and assigning
labels to the instances. This approach, albeit more elegant and more flexible re-
garding the different kinds of applications it can tackle, yields a more complex
problem to solve and an inference complexity that grows with the dimensionality
of the data and the number of classes (Dulac-Arnold et al., 2011a, 2012).

Reinforcement learning methods have sometimes inspired supervised learning ap-
proaches that tackle the decision making through multi-class classification, thus
only simulating the sequential concepts of RL. Trapeznikov and Saligrama (2013)
explicitly train classifiers to learn the rejection binary decision of each stage. The
objective function is defined recursively across the stages and takes into account
the cost of acquiring a new feature when delaying the classification to a further
stage. For combining models, Weiss et al. (2013); Weiss and Taskar (2013) learn a
value function that explicitly trades off the accuracy gain in using a new model
with the cost that it incurs.

3.5.2 The learning method

When learning the decision making is not tackled as supervised learning
(Trapeznikov and Saligrama, 2013), one can a use a plethora of reinforcement
learning methods for either estimating the state or action-state values, or to di-
rectly learn the decision policy. Rollout-based approaches for example have been
proved to be efficient both in RL problems in general and in sequential prediction
in particular. Rollouts empirically estimate a given policy or the value of a state
by running the policy from that state multiple times and then average the cumu-
lated rewards received along the trajectories. Rückstieß et al. (2011) use Fitted-Q-
Iteration (Ernst et al., 2005) that use rollouts in order to approximate the Q func-
tion with regression. (Dulac-Arnold et al., 2011a, 2012) use Rollouts Classification

86 Chapter 3. Making decisions for classification

Policy Iteration (RCPI) (Lagoudakis and Parr, 2003) to iteratively improve the pol-
icy without necessarily estimating the value of each state. The main drawback of
rollout-based approaches lies mainly in the complexity of the learning. Other ap-
proaches use imitation learning (He et al., 2012) or inverse reinforcement learning
(Neu and Szepesvári, 2009).

3.5.3 Myopic vs non myopic

The type of decisions made at each step is very important, some works rely on
myopic greedy decisions (Ji and Carin, 2007; Gao and Koller, 2011a) which already
show the benefits of using sequential models. In these approaches, a classifier or
feature, is selected based on its individual gain with respect to the objective func-
tion, however, it has been shown that incorporating the idea of “looking ahead”
in the decision making, taking into account the distribution of future actions, im-
proves overall the performance (Karayev et al., 2012).

3.5.4 The features used for the actions

The information on which the sequential decisions are based, let us coarsely call it
the state space, can also vary. In our case, we take into account the output of the
base classifiers and in order to further improve the performance, we summarize
the different outputs by their overall sum, which corresponds to the classification
score. Gao and Koller (2011a) and Rückstieß et al. (2011) also assume pretrained
classifiers and only consider their output. On the other hand, (Dulac-Arnold et al.,
2012) include the observation in the state space that they augment with boolean
variables in order to keep track of the evaluated features. The best choice depends
on the application at hands and its constraints. In our case, we were motivated
by fast classification, hence, mapping the instances with classifiers allows to gain
some information and to ease the sequential learning problem. Additionally, dif-
ferent types of heterogeneous classifiers can be used, such as some of the cost-
sensitive classifiers mentioned in Chapter 2.

3.5.5 The type of actions

Finally, the different approaches also differ in the choice of actions the agent is
given. In this regard, we can distinguish three types of solutions proposed. Some
works stick to the cascade architecture and only allow the instance to travel from
a stage/classifier to its successor (Trapeznikov and Saligrama, 2013). Other works,
mainly in feature selection, allow to select at any time any feature or classifier that
has not been evaluated yet (Rückstieß et al., 2011; Dulac-Arnold et al., 2011b). This
approach has the benefit of being less restricted but, as noticed by Dulac-Arnold
et al. (2011b), the classifier might overfit trying to select the strictly appropriate

3.6. Conclusion and perspective 87

subset of features for each observation. In order to avoid the overfitting problem,
the authors constrain the order in which the features are selected to be the same.
This order is determined during the learning. Our approach that impose an order
on the base classifiers but allows to skip them can be considered as an intermediate
solution, in particular for fast classification problems where the complexity of the
decision maker is crucial.

3.6 Conclusion and perspective

In this chapter, we introduced MDDAG as a novel way to tackle real-time and
budgeted classification. By formalizing the problem with Reinforcement Learning,
we could achieve satisfying classification performance while considerably reduc-
ing the amount of computation during the test-time. We also reviewed other works
that similarly learn sequential predictors for different tasks and saw how both the
initial motivation and the domain-specific constraints impact on the formulation
and the choices of the learning algorithms employed.

In the next chapter, we show that our approach can be easily adapted to very com-
plex situations where the classification is subject to constraints that can not be sat-
isfied with classical machine learning methods. We apply MDDAG to our initial
motivating problem, the particle physics experiments, wherein the features can
have different acquisition costs and, furthermore, exhibit different types of cost
calculations depending on the history of the evaluated features within the same
instance but also across groups of instances that share some feature computations.

88 Chapter 3. Making decisions for classification

0 1 2 3 4 5 6 7 8 9
average number of evaluations

84

86

88

90

92

94

96

a
cc

u
ra

cy

Adaboost
noshuffle

(a) Original ordering

0 5 10 15 20 25 30
average number of evaluations

55

60

65

70

75

80

85

90

95

100

a
cc

u
ra

cy

Adaboost
out

(b) Shuffled base classifiers

5 0 5 10 15 20 25 30
average number of evaluations

80

82

84

86

88

90

92

94

96

98

a
cc

u
ra

cy

out
noshuffle

(c) Comparison of the original ordering and the shuffled case

Figure 3.9 – The influence of the order of the classifiers.

3.6. Conclusion and perspective 89

Variation Representative papers

Motivation

Fast classification (Póczos et al., 2009; Benbouzid et al., 2012b)

Feature selection (Gaudel and Sebag, 2010; Rückstieß et al., 2011;
Dulac-Arnold et al., 2011b)

Structured learning Neu and Szepesvári (2009); Daumé III et al.
(2009); Maes et al. (2009); Weiss et al. (2013)

Cost-sensitive learning (Greiner, 2002; Ji and Carin, 2007)

Multi-class budgeted classification (Karayev et al., 2012;
Trapeznikov and Saligrama, 2013)

Learning
paradigm

Supervised learning (Daumé III et al., 2009; Larochelle and Hin-
ton, 2010; Weiss et al., 2013; Weiss and Taskar, 2013; Trapeznikov
and Saligrama, 2013)

Reinforcement learning (Ji and Carin, 2007; Dulac-Arnold et al.,
2011a, 2012)

Mixed formalization (Benbouzid et al., 2011, 2012b; Rückstieß
et al., 2011; Karayev et al., 2012).

Decision
type

Myopic (Ji and Carin, 2007; Gao and Koller, 2011a)

Non-myopic (Karayev et al., 2012; Trapeznikov and Saligrama,
2013)

RL
Learning
method

Q-learning (Benbouzid et al., 2011, 2012b)

Fitted-Q-Iteration Rückstieß et al. (2011)

RCPI (Dulac-Arnold et al., 2011a, 2012)

Imitation Learning (He et al., 2012)

Inverse RL Neu and Szepesvári (2009)

State space
Full observation information (Dulac-Arnold et al., 2011a, 2012)

Outcome of classifiers Gao and Koller (2011a); Rückstieß et al.
(2011); Benbouzid et al. (2012b)

Action
space

Features and class labels (Rückstieß et al., 2011; Dulac-Arnold
et al., 2011b)

Ordered (Trapeznikov and Saligrama, 2013)

Ordered with skipping (Benbouzid et al., 2011, 2012b)

Table 3.4 – The different type of sequential approaches.

CHAPTER 4

Trigger design in the LHCb
experiment

Contents
4.1 Background . 92

4.1.1 The LHCb experiment . 92

4.1.2 The LHCb trigger . 92

4.2 The LHCb data . 93

4.2.1 The D decay . 93

4.2.2 Data description . 93

4.2.3 The feature costs . 94

4.2.4 The data filtering trick . 96

4.2.5 MDDAG training . 97

4.2.6 Results . 98

4.3 Conclusion . 102

In this chapter, we apply MDDAG to data that belong to the LHCb experiment.
In this particle physics experiment, an on-line fast classifier, called trigger, classi-
fies the events that the particle collisions generate in order to discriminate what
is called the background, i.e, uninteresting events, from events that are likely to
contain the targeted particle decay that is to be studied. From a machine learn-
ing learning point of view, the problem has some very interesting particularities.
Firstly, the studied phenomenon is a rare event and most of the data that arrive to
the trigger actually belongs to the background category, which allows us to draw
parallels with the object detection in images problems. Secondly, the different at-
tributes that are used during the classification necessitate an acquisition cost and,
more particularly, this cost is computed in a non trivial way, depending not only
on the feature requested but also on other features that are related from a physics
point of view. Hence, we adapt MDDAG to manage this cost calculation through
simple modification of the state space, showing at the same time the flexibility of
MDDAG when it comes to real applications.

92 Chapter 4. Trigger design in the LHCb experiment

4.1 Background

Modern particle physics is a branch of physics that studies the elementary compo-
nents of the matter. If the elementary particles that form the matter, such as the
quarks, can not be seen through microscopes because of their small size – even
smaller than the smallest wavelength of the visible light, they can however be in-
vestigated by accelerating other particles, providing them with enough speed and
energy in order to collide and collapse into elementary particles, the trace of which
can be then measured. This is, quickly enunciated, the principle behind particle
colliders.

The Large Hadron Collider (LHC) is a 27 km wide ring-shaped particle collider
located in CERN on the France-Swiss border. Hadrons are a family of composite
particles made of two or three quarks held together by the strong force, such as
protons and neutrons. The LHC accelerates two beams of protons with opposite
directions so as to create collisions between the particles. The collisions happen at
a rate of 600 million per second and generate 1 Petabyte of data per second.

4.1.1 The LHCb experiment

The LHC contains four experiments spread around the ring, at points designed to
make the collisions occur the most frequently. The LHCb is one of them. It has
been designed to study the physics of two quarks flavors, namely, the beauty, or b
quark and the charm quark, also known as c quark. These two elementary parti-
cles have the advantage of decaying relatively slowly, easing their identification,
and they are expected to be particularly affected by what is known as the CP vi-
olation: each of the b and c quarks behave differently from their corresponding
antiparticle, b̄ and c̄ respectively, when decaying from a parent hadron, violating
the CP-symmetry principle.

The particles that produce a b quark when decaying are called B mesons. Similarly,
D mesons produce c quarks. Since these mesons are relatively slow to decay, the
location whereby the decay occurs can be recovered with a high precision, this
location is called the primary vertex. Determining the primary vertex happens in
the vertex detector and is essential for discriminating events that generated a b or c
quark from the ones that did not.

4.1.2 The LHCb trigger

The data arrives at the LHCb detector at a rate of 16MHz. Since it is impossible
to store all the events on disk, an on-line classification must filter the events and
let the most likely to be interesting be stored. This selection is done in the LHCb
trigger in two steps, similarly to a two-stage cascade. The first stage, implemented

4.2. The LHCb data 93

electronically, reduces the event rate to 1MHz. This operation takes 4µs. The sec-
ond stage, called the High Level Trigger, reduces the event rate to 2kHz so that 200
megabyte can be stored every second. The typical time frame at which the second
stage must discard an event is about 30ms (Aaij et al., 2013). Our aim in fact is to
design the High Level Trigger by applying MDDAG and to be able to classify an
event in the order of 30ms.

4.2 The LHCb data

4.2.1 The D decay

The dataset we use in this section focuses on the D meson decay. In particular, a
first decay occurs in which a D∗ produces a pair of D0s and a charged pion. The
D0 meson, with a relatively long lifetime, flies a certain distance away from the
primary vertex and then decays into n other charged particles (kaons or pions)
producing n tracks. The decay, known as an n-body decay, produces either 2, 3 or 4
particles in the case of the D0 meson.

4.2.2 Data description

The data is generated by simulation and have been privately provided by a mem-
ber of the LHCb collaboration. It consists of a 4 class classification problem where
one of the classes, named (bkgd), constitutes the background to be discarded and
the other three classes constitute three different types of signal that are to be de-
tected. The signal classes, named 2body, 3body and 4body, correspond to different
decay channels for the D0 particle, corresponding respectively to 2, 3, and 4 body
decay types. The features are described in Table 4.1.

The number of instances in the dataset reflects, to some extent, the class propor-
tions in nature so the background class is several orders of magnitude more preva-
lent than the signal classes. The class disproportionality is particularly important
when computing the overall classification cost as we describe it further. Further-
more, instances that belong to the same class and which correspond to the same
particle decay are grouped in bags, also named events. The reason behind is that
when a particle decays and produces multiple tracks, the features are computed
on combinations of two of these tracks, hence, each combination is represented as
an instance in the dataset. In particle physics, the individual instances are called
candidates. Henceforth, when taking the bags into account, xij will denote the jth

instance (or candidate) of the ith bag (or event). Likewise, yij = yi will denote the
corresponding label vector, keeping the same semantic as described in Section 1.3.

Grouping the instances into bags is very similar to what is known as Multiple-
Instance Learning (MIL), introduced by Dietterich et al. (1997). In a MIL setup, the

94 Chapter 4. Trigger design in the LHCb experiment

examples also come grouped in bags but, unlike our setup, one only has access to
the bag labels and ignores the individual labels within each bag. The first example
of MIL problems described in Dietterich et al. (1997) was that of predicting drug
molecules activity. The goal was to predict whether a drug molecule would bind
to a target protein, however, the molecules might come in different shapes and
the only information available is that inside a positive bag, there was at least one
positive instance corresponding to a shape that binds well. The negative bags were
consequently defined as containing strictly no positive instance. MIL approaches
were later successfully applied to other problems as well such as object detection
in images wherein positive bags are defined as containing at least one target image
(Viola et al., 2006).

The similarity thus between the MIL setup and ours lies in that a bag (or an event)
is classified as positive (i.e, one of the signals) if at least one of its instances is
classified positive. Otherwise, the bag is classified as negative. However, the most
important consequence in grouping the instances, for our problem in particular,
lies in the way classification cost is computed.

4.2.3 The feature costs

As described in Table 4.1, the data features consist of measurements and compu-
tations related to different particles. Because of the architecture of the LHCb de-
tector, some features are computed immediately for all the instances within a bag
and others are acquired on demand. All the feature costs are expressed in terms
of computational time, also, we distinguish three non mutually exclusive types of
cost, namely

• immediate cost,

• value-dependent cost,

• and bag-dependent cost.

Features that incur an immediate cost are computed in every case, before the clas-
sification starts. In the dataset, they correspond to what is computed at the level
of the vertex detector:

• D0_VTX_FD

• PiS_IP

• D0C_1_IP

• D0C_2_IP

4.2. The LHCb data 95

Particle Feature name Description

D0

D0M The invariant mass of the particle.

D0Tau The particle life time.

D0_VTX_DF The distance from the primary vertex.

D∗ DstM The invariant mass of the particle.

Slow Pion

PiS_IP Impact parameter wrt. the primary vertex.

PiS_PT Transverse momentum.

PiS_IPC The χ2 fit of the impact parameter.

PiS_TFC The χ2 fit of the Kalman track fit.

D0 first child

D0C_1_IP Impact parameter wrt. the primary vertex.

D0C_1_PT Transverse momentum.

D0C_1_IPC The χ2 fit of the impact parameter.

D0C_1_TFC The χ2 fit of the Kalman track fit.

D0 second child

D0C_2_IP Impact parameter wrt. the primary vertex.

D0C_2_PT Transverse momentum.

D0C_2_IPC The χ2 fit of the impact parameter.

D0C_2_TFC The χ2 fit of the Kalman track fit.

Table 4.1 – Description of the dataset features.

and they cost 4ms to be computed altogether and for all the instances within a bag.

For every feature that corresponds to a transverse momentum (D0C_1_PT,
D0C_2_PT, PiS_PT), the acquisition cost depends on the actual value of the fea-
ture, they are the value-dependent cost category. In the case of this dataset, whenever
the momentum is higher than 1200 MeV, these features cost 0.5ms, otherwise, the
computation is more expensive and it costs 1.5ms.

The last category concerns features that are computed only once for a subset of
the instances within a bag. This comes from the fact that the candidates belong to
the same event and some of them have tracks in common, thus, they also share
the computation of the corresponding features. It is important to note that, once a
bag-dependent feature is computed, it is cached so that all the subsequent requests
of that feature incur no cost for the related candidates. In this dataset, this category
concerns all the features that do not incur an immediate cost.

Finally, there is another level of dependencies among the features. Some features
necessitate other features to be computed beforehand, which creates a network of

96 Chapter 4. Trigger design in the LHCb experiment

dependencies among the features, depicted in Figure 4.1.

Note that the real classification cost involves the feature acquisition but also the
base classifier cost and the cost of final linear combination of the base classifiers.
The last two costs are in the order of nanoseconds, since the base classifiers used
consist of decision stumps or two-nodes decision trees, therefore, we only consider
the feature acquisition cost in our experiments.

Immediate cost

Bag-dependent cost

Value-dependent cost

D0_VTX_FD
PiS_IP

D0C_1_IP
D0C_2_IP

D0C_2_PTD0C_1_PT PiS_PT

D0C_2_IPC

D0C_2_TFC

D0C_1_IPC

D0C_1_TFC

PiS_IPC

PiS_TFCDstMD0MD0Tau

Figure 4.1 – The dependency graph of the feature cost calculation.

4.2.4 The data filtering trick

In order to let MDDAG “focus” on the most difficult instances, we first filter the
data set and discard a subset that is classified as background with a high probabil-
ity. This filtering only concerns the training phase and not the test phase, in which
we use the entire dataset. To this end, we train ADABOOST.MH using 100 decision
trees, each of which contains 3 decision nodes, however, we limit the features to
the four that have an immediate cost and that are computed anyway. We obtain a
vector-valued discriminant function, f ∈ R4 that provides a classification score for
each of the 4 classes.

4.2. The LHCb data 97

Number of instances Number of bags

Class Entire Post-filtering Entire Post-filtering

2body 3347 3347 3347 3347

3body 9799 9792 3935 3935

4body 18706 18685 3889 3889

bkgd 8077679 639309 94555 56784

Total 8109531 671133 105726 67955

Table 4.2 – The properties of the illustrative datasets.

f(x) =
100

∑
j=1

hj(x)

and its prediction for the class index of x is

̂̀= arg max
`

f`(x).

We test the data with this classifier and retain only what is not classified as back-
ground. In order not to discard signal instances, we bias the score of the back-
ground class negatively. Table 4.2 describes the initial as well as the filtered data.

Conceptually, it is similar to manually designing a two-stage cascade but, in fact,
we only use the second stage, i.e, MDDAG, in the final classification and to-
tally throw the first stage away. As shown further, this speeds up the learning of
MDDAG without impacting the overall performance. This “trick” is in fact only a
speed-up that corresponds to sampling of the observations during the learning of
the MDP, giving more chances to the difficult instances to be selected.

4.2.5 MDDAG training

We adapt MDDAG in order to accommodate the feature costs of this dataset. We
only make two modifications to the setup presented in Chapter 3. First, after each
EVAL action, the agent receives a reward that directly translates the computation
time of features used in the corresponding base classifier. This reward takes into
account the whole dependency graph illustrated in Figure 4.1 so that when a fea-
ture is acquired, all of its dependencies are also considered as computed.

The other modification comes from the fact that, during an episode, if the agent
selects an already computed feature, it must not incur a new cost. Thus, in order
to keep track of the computed features, we augment the state space with a boolean

98 Chapter 4. Trigger design in the LHCb experiment

variable c, that informs the agent whether the feature used in the current base
classifier has already been acquired. If the base classifier employs more than one
feature (as for trees), we simply consider that the boolean value changes whenever
all the corresponding features have been acquired. Another solution would have
been to augment the state space with as much boolean variables as there are fea-
tures, but it would cause a combinatorial explosion of the state space. Our setup
only doubles the number of states in the state space and can be seen as a com-
promise that keeps our initial tractability. By extending the state space defined in
Equation 3.1.7, the new state space is then

st =
(

j︸︷︷︸
base classi f ier index

, c︸︷︷︸
Feature evaluation boolean

, (`
(j)
1 , `(j)

2)︸ ︷︷ ︸
winning labels

, ∆(j)(x)︸ ︷︷ ︸
score di f f erence

)

4.2.6 Results

First, we compare the new setup with the classical one that does not take the fea-
ture costs into account. We use the same set of hyperparameters and compare the
evolution of the cost during the training of the MDP. The plots in Figure 4.2 show
that MDDAG uses more costly base classifiers during the exploration (the oscil-
lation effects comes from the discrete nature of the cost additions). Moreover, the
final cost is lower in the cost-sensitive learning.

Validation of the hyperparameters

All the learning was done by splitting the data described in Table 4.2 into training,
validation and test sets. The following hyperparameters were then validated,

• The base learning : Decision Stump, Decision Trees.

• The number of nodes in the case of Decision Trees.

• The complexity-accuracy trade-off parameter β.

For the MDP hyperparameters, i.e, the learning rate α, the exploration rate ε, the
eligibility trace λ, they are first validated and then fixed once for all the other
hyperparameters.

Figure 4.3 shows the Pareto front between the accuracy of the classifier and its av-
erage evaluation cost. Each red dot in the scatter plot represents a policy evaluated
by MDDAG. The red solid line represents a convex hull over the dots.

We take one of the dots in Figure 4.3, and show its detailed performance. Tables
4.3 and 4.4 show the confusion matrices on the test set, the results are shown on

4.2. The LHCb data 99

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

t 1e7

0.4

0.6

0.8

1.0

1.2

c
o
s
t

Cost-sensitive learning
train

test

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

t 1e7

0.4

0.6

0.8

1.0

1.2

c
o
s
t

Cost-insensitive learning

train

test

Figure 4.2 – Comparing the new cost-sensitive setup (top) with the classical cost-
insensitive setup (bottom). On the y-axis, the overall classifier cost. On the x-axis,
the episode number (t). In the classical setting, the learning does not take into ac-
count the features costs, which results in high cost “spikes” during the exploration.
It also shows that the problem is non trivial: when the learning only minimizes
the classification error, the resulting classifier ends up using costly features. The
cost-sensitive setup, on the other hands, keeps the overall cost low and orient the
exploration towards the usage of cheap features.

the instance and bag level respectively. The prediction of a bag corresponds to the
prediction of its instance with the highest score, i.e,

ˆ̀(xi) = arg max
`

(
max

j
f(xij)

)

with
max

j
f(xij) =

(
max

j
f1(xij), . . . , max

j
fK(xij)

)
∈ RK.

The bag score is

100 Chapter 4. Trigger design in the LHCb experiment

4.0 4.5 5.0 5.5

Average candidate evaluation cost (ms)

88

90

92

94

96

98

A
c
c
u
r
a
c
y

Figure 4.3 – The Pareto front of the trigger. Red dots are individual policies, most
of them correspond to exploration policies. The accuracy is expressed in percent
and the evaluation cost in millisecond.

f(xi) = max
j

f(xij)

Noticeably, only a small fraction of the background is classified as signal, which is
one of the most appealing aspect when designing a trigger. However, the 3body
class bags tend to be classified as 4body. In our present case, it is not a major issue
since the function of a trigger is to discard most of the background. Table 4.5 shows
the average classification costs for the instances and the bags each class.

Plotting the ROC curve

Since the problem is a 4-class classification, we first convert it into a virtual binary
classification problem in order to obtain a unique score for every bag and, hence,
draw the ROC curve. We first merge the three signal classes, 2body, 3body, and
4body under one unique signal label, st. for a bag xi,

fsignal(xi) = max
(

f`2body(xi), f`3body(xi), f`4body(xi)
)

The unique score funique, defined as

funique(xi) = fsignal(xi)− fbackground(xi)

4.2. The LHCb data 101

Predicted label

2body 3body 4body bkgd

R
ea

ll
ab

el
2body 1636 7 4 27

In
st

an
ce

s

3body 22 1980 2683 207

4body 16 795 8240 339

bkgd 255 961 21019 4001962

2body 0.9773 0.0042 0.0024 0.0161

%
3body 0.0045 0.4047 0.5484 0.0423

4body 0.0017 0.0847 0.8775 0.0361

bkgd 0.0001 0.0002 0.0052 0.9945

Table 4.3 – The confusion matrix, at the instance level, on the test set.

Predicted label

2body 3body 4body bkgd

R
ea

ll
ab

el

2body 1636 7 4 27
Ba

gs3body 8 895 956 109

4body 3 140 1663 139

bkgd 0 0 2 47275

2body 0.9773 0.0042 0.0024 0.0161

%
3body 0.0041 0.4548 0.4858 0.0554

4body 0.0015 0.0720 0.8550 0.0715

bkgd 0.0000 0.0000 0.0000 1.0000

Table 4.4 – The confusion matrix, at the bag level, on the test set.

is thresholded in order to obtain the ROC curve in Figure 4.4.

The intelligibility of the classifier

MDDAG allows us to see exactly what base classifiers were used for a given in-
stance. In the context of particle physics, this intelligibility can be helpful when
doing analysis. Figures 4.5, 4.6 and 4.7 represent the DAG visualization of the
classifier selected in the previous section.

102 Chapter 4. Trigger design in the LHCb experiment

Instances Bags

2body 8.7763 8.7763

3body 8.1334 14.2746

4body 6.4882 16.0126

bkgd 4.3742 35.8483

Average 4.3854 33.4581

Table 4.5 – The average classification costs in milliseconds.

10-4 10-3 10-2 10-1
0.90

0.92

0.94

0.96

0.98

1.00

Figure 4.4 – The ROC curve of the trigger. The three signal classes are merged into
one class that form with the bkgd class a virtual binary problem.

4.3 Conclusion

In this chapter, we introduced a new type of budgeted learning problems that
can be encountered in particle physics experiments. The specificity of these prob-
lems lies in the complex computation of the classification costs that can be value-
dependent or bag-dependent. We also showed that MDDAG can successfully
accommodate complex feature cost schemata, with inter-feature dependencies.
Through simple modifications of the state space and the rewards, we could in-
clude in the algorithm the entire logic for computing value-dependent and bag-
dependent cost. To our knowledge, there are no turn-key methods that can be
applied in a such a straightforward way to complex real applications in budgeted
classification.

4.3. Conclusion 103

Further engineering steps and research questions

As a next engineering step before actually implementing MDDAG as a trigger, we
can think of producing smaller decision DAGs wherein each node would use one
and only one feature. This way, the cost management policy would become more
explicit and the resulting classifier would potentially exhibit more intelligibility.
This can be achieved by grouping all the base classifiers by feature and consider
each group as an atomic base classifier, before the actual MDP training. For two-
nodes trees, the grouping can be done by every couple of features, which would
only increase the number of nodes in the final DAG.

Furthermore, one could reduce the number of used base classifiers by binning the
feature values. Classifiers depending on feature values that fall into the same bin
can be summed up simply by adding their coefficients. Also, if we form groups of
base classifiers, nothing prevents us from, in turn, defining a sub-state space within
each group in order to obtain a sequential instance-dependent sparsity inside each
group of base classifiers.

These are engineering considerations that show that MDDAG, by using base clas-
sifiers, is flexible enough to be further “tuned” and adapted to real applications.
However, grouping the base classifiers can also bring interesting research ques-
tions about how to hierarchically define a state-space so that subgroups of base
classifiers are recursively sparsified. This could be, in fact, a research direction
towards scaling MDDAG to a broader range of classification problems, that go
beyond fast classification. Another line of research is also to derive a batch ver-
sion of the algorithm. This could for example allow to tackle multiple-instance
problems through sequential models.

104 Chapter 4. Trigger design in the LHCb experiment

Trees

D0_VTX_FD > 1804.19 DstM > 1875.68yes

bkgd
no

3body 4bodyno

2body bkgd
yes

D0C_2_TFC > 1.74 D0_VTX_FD > 1804.15no

bkgd
yes

2body 3body 4bodyno

bkgd
yes

D0_VTX_FD > 270.1 D0C_1_PT > 1346.63no

2body 3body 4body
yes

bkgdno

2body 3body 4body
yes

D0_VTX_FD > 1804.19 DstM > 1264.92no

2body
yes

2body 3body 4bodyno

bkgd
yes

D0C_2_PT > 1073.36 D0_VTX_FD > 1804.15yes

bkgd
no

2body 3body 4bodyno

bkgd
yes

D0C_1_PT > 608.38 D0C_1_TFC > 3.38yes

bkgd
no

2body 3body 4bodyno

bkgd
yes

D0M > 1290.63 DstM > 2050.95yes

4body bkgd
no

2body 3bodyno

4body bkgd
yes

D0_VTX_FD > 1803.52 DstM > 1855.17no

2body bkgd
yes

3body 4bodyno

2body bkgd
yes

D0C_2_PT > 504.88 D0C_1_PT > 1741.58no

3body 4body
yes

bkgdno

2body 3body 4body
yes

D0C_1_PT > 608.75 DstM > 1058.93no

yes

2body 3body 4bodyno

bkgd
yes

D0M > 1812.94 DstM > 998.18no

2body
yes

2body 4bodyno

3body bkgd
yes

DstM > 1697.08 D0C_2_PT > 1741.08yes

3body 4body
no

bkgdno

2body 3body 4body
yes

D0C_2_TFC > 1.75 D0C_2_TFC > 4.26yes

no

2body 3body 4bodyno

bkgd
yes

D0C_1_PT > 2055.46 D0C_2_PT > 2403.34no

2body 3body
yes

4body bkgdno

2body 3body
yes

D0M > 1084.2 DstM > 1750.44yes

bkgd
no

3body 4bodyno

2body bkgd
yes

DstM > 1485.8 D0M > 1544.57yes

3body 4body
no

4body bkgdno

2body 3body
yes

D0C_2_PT > 1067.55 D0C_1_PT > 1037.17no

2body
yes

bkgdno

2body 3body 4body
yes

D0C_2_PT > 2216.69 D0C_1_PT > 2106.42no

2body 4body
yes

3body bkgdno

2body 4body
yes

D0C_2_PT > 711.54 DstM > 1897.53yes

2body 3body bkgd
no

3body 4bodyno

2body bkgd
yes

D0C_1_TFC > 3.38 D0_VTX_FD > 272.94no

2body 3body 4body bkgd
yes

2body 3body 4body bkgdno

yes

DstM > 1566.35 D0C_1_IPC > 8.43no

2body 3body bkgd
yes

4bodyno

2body 3body bkgd
yes

D0_VTX_FD > 817.72 DstM > 948.66no

3body 4body
yes

2body 3body 4bodyno

bkgd
yes

D0M > 1301.17 D0M > 1822.81yes

no

3body 4body bkgdno

2body
yes

D0C_1_PT > 1324.23 DstM > 1354.51no

2body
yes

2body 3body 4bodyno

bkgd
yes

D0C_1_PT > 422.84 D0C_1_IP > 461.63yes

2body bkgd
no

3body 4bodyno

2body bkgd
yes

D0Tau > 69.12 D0C_2_IPC > 23.42yes

2body 3body bkgd
no

2body 4bodyno

3body bkgd
yes

D0M > 844.22 DstM > 618.18no

4body
yes

2body 4bodyno

3body bkgd
yes

DstM > 1122.82 D0C_1_PT > 1576.57no

2body 3body bkgd
yes

4bodyno

2body 3body bkgd
yes

D0C_2_PT > 1953.67 D0C_1_PT > 610.17yes

bkgd
no

2body 3body 4bodyno

bkgd
yes

D0C_1_TFC > 1.82 D0C_1_PT > 1533.72yes

2body 3body 4body
no

bkgdno

2body 3body 4body
yes

D0C_2_PT > 535.55 D0C_1_PT > 543.74no

yes

2body bkgdno

3body 4body
yes

D0C_1_TFC > 1.64 D0C_1_PT > 611.05no

3body 4body bkgd
yes

3body 4body bkgdno

2body
yes

D0C_1_TFC > 1.35 D0C_1_PT > 416.12no

bkgd
yes

2body bkgdno

3body 4body
yes

D0M > 1124.54

D0_VTX_FD > 1806.53
yes

bkgd

no

2body 3body 4body bkgdno

yes

D0C_1_TFC > 1.34 D0_VTX_FD > 1374.78yes

2body
no

bkgdno

2body 3body 4body
yes

DstM > 1461.3 D0C_2_PT > 1467.46yes

3body 4body
no

bkgdno

2body 3body 4body
yes

1

1

2

3

4

5

2

3

6

7

∞

4

5

6

8

9

7

8

10 11 12

9

10

11

13

12

14

13

16

17

14

15

15

16

18 19

20

17

18

22

19

21

23

20

27

21

22

24

23

24

25

25

26

26

27

28

29

28

30

29

30

31

33

31

34
33

34
35

35

37

37

38
38

Figure 4.5 – A visualization of the selected MDDAG classifier. The red nodes
represent 2-node trees, which are represented in the upper right corner. Every red
node is linked to its corresponding tree with a dashed line. As for the previous
visualizations, the node radii and the edge widths are proportional to the number
of instances that traverse the corresponding element.

4.3. Conclusion 105

Legend

class 2body

class 3body

1

2 3

5

4

7

∞

6

8

9

10
11

12

13

14

16

17

15

19

20

18

22

21

27

23

24 25

28

29

30

31

33

34 35 37 38

Legend

class 2body

class 4body

1

2 3

5

4

7

∞
6 8

9 10

11

12

13

14

16

17

15

19

20

18

21
22

23

24 25

27 28

29 30 31 34 35 37 38

Legend

class 3body

class 4body

1 2

3 5

4

7

∞

6

8

9

10
11

12

13

14

17

15

16

19
20

18

22

21

27

23

24 25

28

29

30 31

33

34 35

37 38

Figure 4.6 – MDDAG: The 3 signal classes visualized pair-wise. The colors repre-
sent the class-wise proportions.

106 Chapter 4. Trigger design in the LHCb experiment

Legend

class 2body

class bkgd

1

2

3

4

5
6

7

∞

8

9

10

11

12

13

14

16

17
15

18

19

20

21

23

22 24 25

26

27 28
29 30 31 34 35 37 38

Legend

class 3body

class bkgd

1

2 3

4

5 6

7

∞
8

9

10

11

12

13

14

1715

16

18

19

20

22

21

23

27

24

25

26

28

29
30

31

33

34 35 37 38

Legend

class 4body

class bkgd

1

2

3

4

5 6

7

∞

8

9

10

11

12

13 14

17

15

16

18

19

20

21

23

22

24

25
26

27 28 29

30 31 34 35 37 38

Figure 4.7 – MDDAG: The 3 signal classes visualized along with the background
class. The colors represent the class-wise proportions.

CHAPTER 5

Conclusion

5.1 Epilogue

In this dissertation, we have introduced a novel way to design fast classifiers. The
proposed approach benefits both from supervised learning in the training of ac-
curate classifiers and reinforcement learning in the flexibility to accommodate real
application constraints. The use of boosted base classifiers, even though not nec-
essary at a conceptual level, shows in practice the benefits of providing relevant
classifiers that have low computational costs and that can provide a reliable classi-
fication when combined together. Furthermore, the pre-training of the base classi-
fiers simplifies the subsequent reinforcement learning problem and can be seen as
a help in the exploration / exploitation learning of the MDP.

Our approach can be related to many domains. By our initial motivation, we nat-
urally position MDDAG among the fast cascade classifiers that also share with
MDDAG the sequential aspect of evaluating boosted classifiers. Because it pro-
duces sparse final classifiers, it is also linked to feature selection, and in particular,
because it takes the different feature costs into account, MDDAG can be also re-
lated to active feature acquisition and budgeted learning.

It appears to us that designing sequential predictors is a particularly natural way
of conceiving supervised learning in the sense that, for living beings in nature,
learning often occurs in step-wise episodes and during the inference, not all the
cognitive resources are used but only what is necessary to process a punctual task.
There is also evidence that for classifying hierarchical objects, the human brain
does have different answer delays depending on the semantic distance of the ob-
jects in the hierarchy. In this regard, predicting with sequential models mimics
the non-monolithic aspect of the brain when classifying objects. It has been logi-
cal for what is considered today as “stantard” classification algorithms in machine
learning to be first formalized as monolithic procedures that output “one-shot” an-
swers. Obtaining good generalizations properties is, in and of itself, far from being
a trivial problem, however, we saw in this thesis and through the different works
that we reviewed that “unrolling” the prediction into a sequence of decision steps
is an important step to make in order to open machine learning to a broader range
of applications that will, in turn, certainly lead to new research questions.

The main difficulty of learning sequential models lies, at it is recurrent in machine

108 Chapter 5. Conclusion

learning, in the curse of dimensionality. In fact, adding a temporal dimension to
the selection of the feature or the classifiers results in a complex combinatorial
problem. It is perhaps the reason why reinforcement learning algorithms have
been so successful at solving these problems since they explicitly trade off the ex-
ploitation of the relevant features / classifiers with the exploration of this complex
space.

The new question is then what are the most appropriate reinforcement learning
methods for sequential prediction tasks and in particular, can we device tailored
approaches that are more specific to these types of problems. In fact, reinforce-
ment learning algorithms were generally designed for other types of problems and
with other type of constraints. Some of these constraints are simply absent from
prediction tasks which makes the prediction an easier problem and, conversely,
prediction tasks introduce new challenges:

• The state space space is usually intractable due to the number of continuous
variables. Value estimation becomes then difficult and consequently, identi-
fying good actions is also difficult.

• Some actions can have meaning in certain applications where the intelligibil-
ity is important.

• On the other hand, the environment is usually deterministic and in, some
cases, completely known which can lead to analytical solutions as with dy-
namic programming.

• When the environment is deterministic, new exploration strategies related to
the application domain can appear to more suitable.

• Finally, prediction tasks usually correspond to a finite horizon sequential
problem.

5.2 Future work

Many directions can be investigated from now, both in the specific framework of
MDDAG and the general concept of prediction with sequential models. MDDAG
is now restricted to fast and budgeted classifier where the average number of eval-
uated base classifiers is relatively low. The same sparsity questions however can be
tackled for more complex classifiers. In fact, some applications require a number
of base classifiers that is in the order of tens of thousands in order to compete with
the most accurate classifiers (eg. Kégl and Busa-Fekete (2009) for the digit recog-
nition and Busa-Fekete et al. (2011, 2013) for ranking problems) so, without going
down to the level of tens of base classifiers, is it still possible to reduce the overall
complexity by an important factor? Such a requirement is a complex combinatorial
problem for which one can not afford keeping simple controllers.

5.2. Future work 109

Another question related to MDDAG concerns the path space that the observa-
tions traverse. As we saw in Section 3.1.7, there is an unsupervised side effect
that takes place when learning the agent. Similar examples tend to follow similar
paths even when the class information is not given during the learning, forming a
relatively simple encoding of the instances. It is interesting to investigate from a
information theoretic point of view the gain that this graph shape offers, whether
this encoding can be made more complex and to which extent it can be exploited
during the classification.

If the path that the examples take conveys some new information, one can think
for example of using MDDAG as a base classifier within an ensemble model. This
can also be a way to scale the algorithm to other types of problems where the bud-
get is not strictly bounded. Historically, this happened for decision trees as they
are already full classification algorithms, but can also be used to capture variable
correlations as base classifiers before being boosted or bagged.

Another direction would be to derive a batch version of MDDAG, which could
then be adapted to problems where the grouping of observations is necessary, such
as in Multiple Instance Learning.

On a more generic level, we think that one of the main upcoming challenges of ma-
chine learning would be to devise a unified framework for sequential prediction in
order to foster the investigation of new dedicated learning methods as well as new
learning formalisms. Orthogonally to deep learning approaches that are showing
that feature abstraction is an important component of learning, we think that incor-
porating sequentiality into the prediction can broaden the palette of applications of
machine learning methods. Again, behaviorist psychology and cognitive science
appear to be a tremendous source of inspiration for computer scientists.

Bibliography

Aaij, R., Albrecht, J., Alessio, F., Amato, S., Aslanides, E., Belyaev, I., van
Beuzekom, M., Bonaccorsi, E., Bonnefoy, R., Brarda, L., et al. (2013). The LHCb
trigger and its performance in 2011. Journal of Instrumentation, 8(04):P04022.
(Cited on page 93.)

Bache, K. and Lichman, M. (2013). UCI machine learning repository. (Cited on
page 53.)

Benbouzid, D., Busa-Fekete, R., Casagrande, N., Collin, F.-D., and Kégl, B. (2012a).
MultiBoost: a multi-purpose boosting package. Journal of Machine Learning Re-
search, 13:549–553. (Cited on pages 28 and 51.)

Benbouzid, D., Busa-Fekete, R., and Kégl, B. (2011). MDDAG: learning deep de-
cision DAGs in a Markov decision process setup. In NIPS’11 workshop on Deep
Learning and Unsupervised Feature Learning. (Cited on pages 70, 85 and 89.)

Benbouzid, D., Busa-Fekete, R., and Kégl, B. (2012b). Fast classification using
sparse decision DAGs. In Proceedings of the 29th International Conference on Ma-
chine Learning. (Cited on pages 48, 85 and 89.)

Bourdev, L. and Brandt, J. (2005). Robust object detection via soft cascade. In
Conference on Computer Vision and Pattern Recognition, volume 2, pages 236–243.
IEEE Computer Society. (Cited on pages 28, 38, 39 and 40.)

Bradley, J. and Schapire, R. (2008). FilterBoost: Regression and classification on
large datasets. In Advances in Neural Information Processing Systems, volume 20.
The MIT Press. (Cited on page 28.)

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification
and regression trees. wadsworth & brooks. Monterey, CA. (Cited on page 44.)

Brubaker, S., Mullin, M., and Rehg, J. (2006). Towards optimal training of cascaded
detectors. Computer Vision–ECCV 2006, pages 325–337. (Cited on page 40.)

Brubaker, S. C., Wu, J., Sun, J., Mullin, M. D., and Rehg, J. M. (2008). On the
design of cascades of boosted ensembles for face detection. International Journal
of Computer Vision, 77(1-3):65–86. (Cited on page 40.)

Busa-Fekete, R., Kégl, B., Éltető, T., and Szarvas, G. (2011). A robust ranking
methodology based on diverse calibration of AdaBoost. In European Conference
on Machine Learning, volume LNCS, 6911, pages 263–279. (Cited on page 108.)

Busa-Fekete, R., Kégl, B., Éltető, T., and Szarvas, G. (2013). Tune and mix: learning
to rank using ensembles of calibrated multi-class classifiers. Machine Learning
Journal, 93(2):261–292. (Cited on page 108.)

112 Bibliography

Busoniu, L., Babuska, R., De Schutter, B., and Ernst, D. (2010). Reinforcement learn-
ing and dynamic programming using function approximators. CRC Press. (Cited on
page 65.)

Cambazoglu, B. B., Zaragoza, H., Chapelle, O., Chen, J., Liao, C., Zheng, Z., and
Degenhardt, J. (2010). Early exit optimizations for additive machine learned
ranking systems. In Proceedings of the third ACM International Conference on Web
Search and Data Mining, pages 411–420. (Cited on page 18.)

Chen, M., Xu, Z., Weinberger, K., Chapelle, O., and Kedem, D. (2012). Classifier
cascade for minimizing feature evaluation cost. In Proceedings of the 15th In-
ternational Conference on Artificial Intelligence and Statistics (AISTATS). (Cited on
page 44.)

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning,
20(3):273–297. (Cited on page 44.)

Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration
of mental storage capacity. Behavioral and brain sciences, 24(1):87–114. (Cited on
page 12.)

Daumé III, H., Langford, J., and Marcu, D. (2009). Search-based structured predic-
tion. Machine Learning, 75(3):297–325. (Cited on pages 82 and 89.)

Dietterich, T. G., Lathrop, R. H., and Lozano-Pérez, T. (1997). Solving the multiple
instance problem with axis-parallel rectangles. Artificial Intelligence, 89(1):31–71.
(Cited on pages 93 and 94.)

Dulac-Arnold, G., Denoyer, L., Preux, P., and Gallinari, P. (2011a). Datum-wise
classification: a sequential approach to sparsity. In Machine Learning and Knowl-
edge Discovery in Databases, pages 375–390. Springer. (Cited on pages 83, 85
and 89.)

Dulac-Arnold, G., Denoyer, L., Preux, P., and Gallinari, P. (2011b). Datum-wise
classification: A sequential approach to sparsity. In European Conference on Ma-
chine Learning. (Cited on pages 86 and 89.)

Dulac-Arnold, G., Denoyer, L., Preux, P., and Gallinari, P. (2012). Sequential ap-
proaches for learning datum-wise sparse representations. Machine Learning,
pages 1–36. (Cited on pages 83, 84, 85, 86 and 89.)

Ernst, D., Geurts, P., and Wehenkel, L. (2005). Tree-based batch mode reinforce-
ment learning. Journal of Machine Learning Research, 6. (Cited on pages 65 and 85.)

Fan, W., Stolfo, S. J., Zhang, J., and Chan, P. K. (1999). Adacost: misclassification
cost-sensitive boosting. In ICML, pages 97–105. Citeseer. (Cited on page 37.)

Bibliography 113

Freund, Y. and Mason, L. (1999). The alternating decision tree learning algorithm.
In Proceedings of the 16th International Conference on Machine Learning, pages 124–
133. (Cited on page 43.)

Freund, Y. and Schapire, R. (2012). Boosting: Foundations and Algorithms. MIT Press,
Cambridge, MA. (Cited on pages 24 and 25.)

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sciences,
55:119–139. (Cited on pages 24 and 27.)

Friedman, J., Hastie, T., and Tibshirani, R. (1998). Additive logistic regression: a
statistical view of boosting. Technical report, Dept. of Statistics, Stanford Uni-
versity. (Cited on page 59.)

Gao, T. and Koller, D. (2011a). Active classification based on value of classifier. In
NIPS, pages 1062–1070. (Cited on pages 83, 84, 86 and 89.)

Gao, T. and Koller, D. (2011b). Multiclass boosting with hinge loss based on output
coding. In Proceedings of the 28th International Conference on Machine Learning
(ICML-11), pages 569–576. (Cited on page 51.)

Gaudel, R. and Sebag, M. (2010). Feature selection as a one-player game. In Inter-
national Conference on Machine Learning (ICML’10). (Cited on pages 83 and 89.)

Gligorov, V. and Williams, M. (2012). Efficient, reliable and fast high-level trig-
gering using a bonsai boosted decision tree. Technical report, arXiv:1210.6861.
(Cited on page 24.)

Greiner, R. (2002). Learning cost-sensitive active classifiers. Artificial Intelligence,
139(2):137–174. (Cited on page 89.)

Grubb, A. and Bagnell, J. (2012). Speedboost: Anytime prediction with uniform
near-optimality. In AISTATS, volume 15, pages 458–466. (Cited on pages 43
and 44.)

Guyon, I. (2003). Design of experiments of the nips 2003 variable selection bench-
mark. In NIPS 2003 workshop on feature extraction and feature selection. (Cited on
page 53.)

He, H., Daumé III, H., and Eisner, J. (2012). Cost-sensitive dynamic feature selec-
tion. In ICML Workshop on Inferning: Interactions between Inference and Learning. 6
pages. (Cited on pages 86 and 89.)

Hoecker, A., Speckmayer, P., Stelzer, J., Therhaag, J., von Toerne, E., Voss, H.,
Backes, M., Carli, T., Cohen, O., Christov, A., et al. (2007). Tmva-toolkit for
multivariate data analysis. arXiv preprint physics/0703039. (Cited on page 12.)

114 Bibliography

Hou, X., Liu, C., and Tan, T. (2006). Learning boosted asymmetric classifiers for
object detection. In Computer Vision and Pattern Recognition, 2006 IEEE Computer
Society Conference on, volume 1, pages 330–338. IEEE. (Cited on page 37.)

Huang, C., Ai, H., Li, Y., and Lao, S. (2005). Vector boosting for rotation invari-
ant multi-view face detection. In Computer Vision, 2005. ICCV 2005. Tenth IEEE
International Conference on, volume 1, pages 446–453. IEEE. (Cited on page 42.)

Ji, S. and Carin, L. (2007). Cost-sensitive feature acquisition and classification.
Pattern Recognition, 40(5):1474–1485. (Cited on pages 86 and 89.)

Jones, M. and Viola, P. (2003). Fast multi-view face detection. Mitsubishi Electric
Research Lab TR-20003-96, 3. (Cited on page 42.)

Kanani, P. H. and McCallum, A. (2012). Selecting actions for resource-bounded
information extraction using reinforcement learning. In WSDM, pages 253–262.
(Cited on page 84.)

Karayev, S., Baumgartner, T., Fritz, M., and Darrell, T. (2012). Timely object recog-
nition. machine translation, 1:C2. (Cited on pages 84, 85, 86 and 89.)

Kearns, M. and Valiant, L. (1994). Cryptographic limitations on learning boolean
formulae and finite automata. Journal of the ACM (JACM), 41(1):67–95. (Cited on
page 23.)

Kearns, M. and Vazirani, U. V. (1994). An introduction to computational learning
theory. The MIT Press. (Cited on page 23.)

Kégl, B. and Busa-Fekete, R. (2009). Boosting products of base classifiers. In In-
ternational Conference on Machine Learning, volume 26, pages 497–504, Montreal,
Canada. (Cited on pages 29 and 108.)

Kim, T., Budvytis, I., and Cipolla, R. (2011). Making a shallow network deep:
Conversion of a boosting classifier into a decision tree by boolean optimisation.
International Journal of Computer Vision, pages 1–13. (Cited on page 43.)

Lagoudakis, M. and Parr, R. (2003). Reinforcement learning as classification:
Leveraging modern classifiers. In Proceedings of the 20th International Conference
on Machine Learning, pages 424–431. (Cited on page 86.)

Larochelle, H. and Hinton, G. (2010). Learning to combine foveal glimpses with
a third-order Boltzmann machine. In Advances in Neural Information Processing
Systems 23, pages 1243–1251. MIT Press. (Cited on pages 84 and 89.)

LeCun, Y. and Cortes, C. (1998). Mnist handwritten digit database. AT&T Labs
[Online]. Available: http://yann. lecun. com/exdb/mnist. (Cited on page 49.)

Lefakis, L. and Fleuret, F. (2010). Joint cascade optimization using a product of
boosted classifiers. In Advances in neural information processing systems, pages
1315–1323. (Cited on page 41.)

Bibliography 115

Li, S. and Zhang, Z. (2004). Floatboost learning and statistical face detection.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(9):1112–1123.
(Cited on page 42.)

Li, S., Zhu, L., Zhang, Z., Blake, A., Zhang, H., and Shum, H. (2006). Statistical
learning of multi-view face detection. Computer Vision ECCV 2002, pages 117–
121. (Cited on page 36.)

Li, S. Z., Zhang, Z., Shum, H.-Y., and Zhang, H. (2002). Floatboost learning for
classification. In Advances in Neural Information Processing Systems, pages 993–
1000. (Cited on page 37.)

Lienhart, R., Kuranov, A., and Pisarevsky, V. (2003). Empirical analysis of detection
cascades of boosted classifiers for rapid object detection. Pattern Recognition,
pages 297–304. (Cited on page 37.)

Lienhart, R. and Maydt, J. (2002). An extended set of haar-like features for rapid
object detection. In Image Processing. 2002. Proceedings. 2002 International Confer-
ence on, volume 1, pages I–900. IEEE. (Cited on page 36.)

Lin, Y. and Liu, T. (2005). Robust face detection with multi-class boosting. In
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, volume 1, pages 680–687. IEEE. (Cited on page 42.)

Maes, F., Denoyer, L., and Gallinari, P. (2009). Structured prediction with reinforce-
ment learning. Machine Learning Journal, 77(2-3):271–301. (Cited on pages 82
and 89.)

Masnadi-Shirazi, H. and Vasconcelos, N. (2011). Cost-sensitive boosting. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 33(2):294–309. (Cited on
page 37.)

Mason, L., Bartlett, P., Baxter, J., and Frean, M. (2000). Boosting algorithms as gra-
dient descent. In Advances in Neural Information Processing Systems, volume 12,
pages 512–518. The MIT Press. (Cited on page 25.)

Meir, R. and Rätsch, G. (2003). An introduction to boosting and leveraging. Ad-
vanced lectures on machine learning, pages 118–183. (Cited on page 24.)

Miller, G. A. (1956). The magical number seven, plus or minus two: some limits
on our capacity for processing information. Psychological review, 63(2):81. (Cited
on page 12.)

Mitchell, T. M. (2006). The discipline of machine learning. Carnegie Mellon University,
School of Computer Science, Machine Learning Department. (Cited on page 13.)

Morimoto, J. and Doya, K. (1998). Reinforcement learning of dynamic motor se-
quence: Learning to stand up. In Intelligent Robots and Systems, 1998. Proceed-
ings., 1998 IEEE/RSJ International Conference on, volume 3, pages 1721–1726. IEEE.
(Cited on pages 66 and 67.)

116 Bibliography

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011). Read-
ing digits in natural images with unsupervised feature learning. In NIPS Work-
shop on Deep Learning and Unsupervised Feature Learning, volume 2011. (Cited on
page 49.)

Neu, G. and Szepesvári, C. (2009). Training parsers by inverse reinforcement learn-
ing. Machine Learning, 77(2-3):303–337. (Cited on pages 84, 86 and 89.)

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-
del, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–2830.
(Cited on page 53.)

Pham, M. and Cham, T. (2007). Online learning asymmetric boosted classifiers for
object detection. In Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE
Conference on, pages 1–8. IEEE. (Cited on page 37.)

Póczos, B., Abbasi-Yadkori, Y., Szepesvári, C., Greiner, R., and Sturtevant, N.
(2009). Learning when to stop thinking and do something! In Proceedings of
the 26th International Conference on Machine Learning, pages 825–832. (Cited on
pages 40 and 89.)

Reyzin, L. (2011). Boosting on a budget: Sampling for feature-efficient prediction.
ICML. (Cited on page 43.)

Riedmiller, M. (2005). Neural fitted q iteration–first experiences with a data ef-
ficient neural reinforcement learning method. Machine Learning: ECML 2005,
pages 317–328. (Cited on page 65.)

Roth, D., Yang, M.-H., and Ahuja, N. (2000). A snow-based face detector. Urbana,
51:61801. (Cited on page 18.)

Rückstieß, T., Osendorfer, C., and van der Smagt, P. (2011). Sequential feature
selection for classification. AI 2011: Advances in Artificial Intelligence, pages 132–
141. (Cited on pages 83, 85, 86 and 89.)

Russell, S. and Norvig, P. (2009). Artificial intelligence: a modern approach. Prentice
Hall. (Cited on page 11.)

Saberian, M. and Vasconcelos, N. (2010). Boosting classifier cascades. In Advances
in Neural Information Processing Systems 23, pages 2047–2055. MIT Press. (Cited
on pages 40 and 41.)

Schapire, R. E. (2003). The boosting approach to machine learning: An overview.
LECTURE NOTES IN STATISTICS-NEW YORK-SPRINGER VERLAG-, pages
149–172. (Cited on page 24.)

Bibliography 117

Schapire, R. E. and Singer, Y. (1999). Improved boosting algorithms using
confidence-rated predictions. Machine Learning, 37(3):297–336. (Cited on
pages 27, 55 and 59.)

Schneiderman, H. (2004). Feature-centric evaluation for efficient cascaded object
detection. In Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceed-
ings of the 2004 IEEE Computer Society Conference on, volume 2, pages II–29. IEEE.
(Cited on page 18.)

Schneiderman, H. and Kanade, T. (2000). A statistical method for 3d object de-
tection applied to faces and cars. In Computer Vision and Pattern Recognition,
2000. Proceedings. IEEE Conference on, volume 1, pages 746–751. IEEE. (Cited on
page 18.)

Sun, P. and Zhou, J. (2013). Saving evaluation time for the decision function in
boosting: Representation and reordering base learner. In International Conference
on Machine Learning (ICML). (Cited on pages 38 and 40.)

Sun, Y., Wong, A., and Wang, Y. (2005). Parameter inference of cost-sensitive boost-
ing algorithms. In Proceedings of the 4th international conference on Machine Learn-
ing and Data Mining in Pattern Recognition, pages 21–30. Springer-Verlag. (Cited
on page 37.)

Sung, K.-K. and Poggio, T. (1998). Example-based learning for view-based human
face detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
20(1):39–51. (Cited on page 41.)

Ting, K. M. (2000). A comparative study of cost-sensitive boosting algorithms. In
In Proceedings of the 17th International Conference on Machine Learning. Citeseer.
(Cited on page 37.)

Trapeznikov, K. and Saligrama, V. (2013). Supervised sequential classification un-
der budget constraints. (Cited on pages 83, 85, 86 and 89.)

Tu, Z. (2005). Probabilistic boosting-tree: Learning discriminative models for clas-
sification, recognition, and clustering. In Computer Vision, 2005. ICCV 2005. Tenth
IEEE International Conference on, volume 2, pages 1589–1596. IEEE. (Cited on
page 43.)

Turney, P. (1995). Cost-sensitive classification: Empirical evaluation of a hybrid
genetic decision tree induction algorithm. Journal of Artificial Intelligence Research
(JAIR), 2. (Cited on page 44.)

Viola, P. and Jones, M. (2001). Fast and robust classification using asymmetric
adaboost and a detector cascade. Proc. of NIPS01. (Cited on page 37.)

Viola, P. and Jones, M. (2004). Robust real-time face detection. International Journal
of Computer Vision, 57:137–154. (Cited on pages 18, 28, 31, 35, 39 and 40.)

118 Bibliography

Viola, P., Jones, M. J., and Snow, D. (2005). Detecting pedestrians using patterns of
motion and appearance. International Journal of Computer Vision, 63(2):153–161.
(Cited on page 36.)

Viola, P., Platt, J., and C., Z. (2006). Multiple instance boosting for object detec-
tion. In Advances in Neural Information Processing Systems, volume 18, pages
1417–1424. (Cited on page 94.)

Weiss, D., Sapp, B., and Taskar, B. (2012). Structured prediction cascades. arXiv
preprint arXiv:1208.3279. (Cited on page 18.)

Weiss, D., Sapp, B., and Taskar, B. (2013). Dynamic structured model selection.
ICCV. (Cited on pages 83, 85 and 89.)

Weiss, D. J. and Taskar, B. (2013). Learning adaptive value of information for struc-
tured prediction. In Advances in Neural Information Processing Systems, pages 953–
961. (Cited on pages 83, 85 and 89.)

Wu, B., Ai, H., Huang, C., and Lao, S. (2004). Fast rotation invariant multi-view
face detection based on real adaboost. In Automatic Face and Gesture Recognition,
2004. Proceedings. Sixth IEEE International Conference on, pages 79–84. Ieee. (Cited
on pages 37, 38, 40, 41 and 42.)

Xiao, R., Zhu, L., and Zhang, H. J. (2003). Boosting chain learning for object detec-
tion. In Ninth IEEE International Conference on Computer Vision, volume 9, pages
709–715. (Cited on pages 37, 38 and 40.)

Xu, Z., Kusner, M., Huang, G., and Weinberger, K. Q. (2013). Anytime represen-
tation learning. In Dasgupta, S. and Mcallester, D., editors, Proceedings of the
30th International Conference on Machine Learning (ICML-13), volume 28, pages
1076–1084. JMLR Workshop and Conference Proceedings. (Cited on page 44.)

Xu, Z., Kusner, M. J., Weinberger, K. Q., and Chen, M. (2012a). Cost-sensitive tree
of classifiers. arXiv preprint arXiv:1210.2771. (Cited on page 44.)

Xu, Z., Weinberger, K., and Chapelle, O. (2012b). The greedy miser: Learning
under test-time budgets. Arxiv preprint arXiv:1206.6451. (Cited on page 44.)

Zehnder, P., Meier, E., and Gool, L. (2008). An efficient shared multi-class detection
cascade. In British Machine Vision Conf. (Cited on page 42.)

Zhang, C. and Viola, P. (2011). Multiple-instance pruning for learning efficient
cascade detectors. US Patent 8,010,471. (Cited on page 39.)

Zhang, C. and Zhang, Z. (2009). Winner-take-all multiple category boosting for
multi-view face detection. Technical report, Citeseer. (Cited on page 42.)

Zhang, C. and Zhang, Z. (2010). A survey of recent advances in face detection.
Technical report, Microsoft Research. (Cited on page 36.)

Abstract

Classification in machine learning has been extensively studied during the past
decades. Many solutions have been proposed to output accurate classifiers and to
obtain statistical grantees on the unseen observations. However, when machine
learning algorithms meet concrete industrial or scientific applications, new com-
putational criteria appear to be as important to satisfy as those of classification
accuracy. In particular, when the output classifier must comply with a compu-
tational budget needed to obtain the features that are evaluated at test time, we
talk about “budgeted” learning. The features can have different acquisition costs
and, often, the most discriminative features are the costlier. Medical diagnosis and
web-page ranking, for instance, are typical applications of budgeted learning. In
the former, the goal is to limit the number of medical tests evaluate for patients,
and in the latter, the ranker has limited time to order documents before the user
goes away.

This thesis introduces a new way of tackling classification in general and bud-
geted learning problems in particular, through a novel framework lying in the
intersection of supervised learning and decision theory. We cast the classification
problem as a sequential decision making procedure and show that this framework
yields fast and accurate classifiers. Unlike classical classification algorithms that
output a “one-shot” answer, we show that considering the classification as a se-
ries of small steps wherein the information is gathered sequentially also provides
a flexible framework that allows to accommodate different types of budget con-
straints in a “natural” way. In particular, we apply our method to a novel type of
budgeted learning problems motivated by particle physics experiments. The par-
ticularity of this problem lies in atypical budget constraints and complex cost cal-
culation schemata where the calculation of the different features depends on many
factors. We also review similar sequential approaches that have recently known a
particular interest and provide a global perspective on this new paradigm.

	Introduction
	Preamble
	Machine learning
	Supervised learning notation
	The training workflow
	Fast and budgeted classification
	Similarity with particle physics experiments problems
	The LHCb trigger
	Overview

	Boosting based frameworks
	Adaboost
	Description
	Gradient descent boosting
	Multi-class AdaBoost

	Multiboost
	Implemented base learners

	Cascade classifiers
	The original Viola-Jones cascade
	Improvements and variations

	Budgeted learning
	Conclusion

	Making decisions for classification
	Designing fast sequential classifiers
	Instance-dependent sparsity
	Sequential instance-dependent sparsity
	MDDAG: Markov Decision Directed Acyclic Graph
	Learning bj(x) from delayed rewards
	The state representation
	The learning algorithm
	Visualizing the final classifier

	Unsupervised side-effects
	Synthetic data
	MNIST example

	Discussions
	The action space
	The influence of the order of the classifiers
	The evaluation cost of the agent

	Experiments
	The Adult dataset
	The Arcene dataset
	The Balance Scale dataset
	The Gisette dataset
	The Landsat Satellite dataset
	The Pendigits dataset
	The Viola-Jones dataset

	Prediction as a sequential process
	The paradigm continuum
	The learning method
	Myopic vs non myopic
	The features used for the actions
	The type of actions

	Conclusion and perspective

	Trigger design in the LHCb experiment
	Background
	The LHCb experiment
	The LHCb trigger

	The LHCb data
	The D decay
	Data description
	The feature costs
	The data filtering trick
	MDDAG training
	Results

	Conclusion

	Conclusion
	Epilogue
	Future work

	Bibliography

