tfp.substrates.numpy.math.log_cumsum_exp
Stay organized with collections
Save and categorize content based on your preferences.
Computes log(cumsum(exp(x))).
tfp.substrates.numpy.math.log_cumsum_exp(
x, axis=-1, name=None
)
This is a pure-TF implementation of tf.math.cumulative_logsumexp
; unlike
the built-in op, it supports XLA compilation. It uses a similar algorithmic
technique (parallel prefix sum) as the built-in op, so it has similar numerics
and asymptotic performace. However, this implemenentation currently has higher
overhead, so it is significantly slower on smaller inputs (n < 10000
).
Args |
x
|
the Tensor to sum over.
|
axis
|
int Tensor axis to sum over.
|
name
|
Python str name prefixed to Ops created by this function.
Default value: None (i.e., 'cumulative_logsumexp' ).
|
Returns |
cumulative_logsumexp
|
Tensor of the same shape as x .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-11-21 UTC.
[null,null,["Last updated 2023-11-21 UTC."],[],[],null,["# tfp.substrates.numpy.math.log_cumsum_exp\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/probability/blob/v0.23.0/tensorflow_probability/substrates/numpy/math/generic.py#L93-L119) |\n\nComputes log(cumsum(exp(x))).\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tfp.experimental.substrates.numpy.math.log_cumsum_exp`](https://www.tensorflow.org/probability/api_docs/python/tfp/substrates/numpy/math/log_cumsum_exp)\n\n\u003cbr /\u003e\n\n tfp.substrates.numpy.math.log_cumsum_exp(\n x, axis=-1, name=None\n )\n\nThis is a pure-TF implementation of [`tf.math.cumulative_logsumexp`](https://www.tensorflow.org/api_docs/python/tf/math/cumulative_logsumexp); unlike\nthe built-in op, it supports XLA compilation. It uses a similar algorithmic\ntechnique (parallel prefix sum) as the built-in op, so it has similar numerics\nand asymptotic performace. However, this implemenentation currently has higher\noverhead, so it is significantly slower on smaller inputs (`n \u003c 10000`).\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|--------|---------------------------------------------------------------------------------------------------------------------|\n| `x` | the `Tensor` to sum over. |\n| `axis` | int `Tensor` axis to sum over. |\n| `name` | Python `str` name prefixed to Ops created by this function. Default value: `None` (i.e., `'cumulative_logsumexp'`). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|------------------------|------------------------------------|\n| `cumulative_logsumexp` | `Tensor` of the same shape as `x`. |\n\n\u003cbr /\u003e"]]