tfm.utils.get_activation
Stay organized with collections
Save and categorize content based on your preferences.
Maps an identifier to a Python function, e.g., "relu" => tf.nn.relu
.
tfm.utils.get_activation(
identifier, use_keras_layer=False, **kwargs
)
It checks string first and if it is one of customized activation not in TF,
the corresponding activation will be returned. For non-customized activation
names and callable identifiers, always fallback to tf.keras.activations.get.
Prefers using keras layers when use_keras_layer=True. Now it only supports
'relu', 'linear', 'identity', 'swish', 'mish', 'leaky_relu', and 'gelu'.
Args |
identifier
|
String name of the activation function or callable.
|
use_keras_layer
|
If True, use keras layer if identifier is allow-listed.
|
**kwargs
|
Keyword arguments to use to instantiate an activation function.
Available only for 'leaky_relu' and 'gelu' when using keras layers.
For example: get_activation('leaky_relu', use_keras_layer=True, alpha=0.1)
|
Returns |
A Python function corresponding to the activation function or a keras
activation layer when use_keras_layer=True.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-02-02 UTC.
[null,null,["Last updated 2024-02-02 UTC."],[],[],null,["# tfm.utils.get_activation\n\n\u003cbr /\u003e\n\n|-------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/models/blob/v2.15.0/official/modeling/tf_utils.py#L87-L137) |\n\nMaps an identifier to a Python function, e.g., \"relu\" =\\\u003e [`tf.nn.relu`](https://www.tensorflow.org/api_docs/python/tf/nn/relu). \n\n tfm.utils.get_activation(\n identifier, use_keras_layer=False, **kwargs\n )\n\nIt checks string first and if it is one of customized activation not in TF,\nthe corresponding activation will be returned. For non-customized activation\nnames and callable identifiers, always fallback to tf.keras.activations.get.\n\nPrefers using keras layers when use_keras_layer=True. Now it only supports\n'relu', 'linear', 'identity', 'swish', 'mish', 'leaky_relu', and 'gelu'.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `identifier` | String name of the activation function or callable. |\n| `use_keras_layer` | If True, use keras layer if identifier is allow-listed. |\n| `**kwargs` | Keyword arguments to use to instantiate an activation function. Available only for 'leaky_relu' and 'gelu' when using keras layers. For example: get_activation('leaky_relu', use_keras_layer=True, alpha=0.1) |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A Python function corresponding to the activation function or a keras activation layer when use_keras_layer=True. ||\n\n\u003cbr /\u003e"]]