tf.tile
Stay organized with collections
Save and categorize content based on your preferences.
Constructs a tensor by tiling a given tensor.
tf.tile(
input: Annotated[Any, TV_Tile_T],
multiples: Annotated[Any, TV_Tile_Tmultiples],
name=None
) -> Annotated[Any, TV_Tile_T]
Used in the notebooks
Used in the guide |
Used in the tutorials |
|
|
This operation creates a new tensor by replicating input
multiples
times.
The output tensor's i'th dimension has input.dims(i) * multiples[i]
elements,
and the values of input
are replicated multiples[i]
times along the 'i'th
dimension. For example, tiling [a b c d]
by [2]
produces
[a b c d a b c d]
.
a = tf.constant([[1,2,3],[4,5,6]], tf.int32)
b = tf.constant([1,2], tf.int32)
tf.tile(a, b)
<tf.Tensor: shape=(2, 6), dtype=int32, numpy=
array([[1, 2, 3, 1, 2, 3],
[4, 5, 6, 4, 5, 6]], dtype=int32)>
c = tf.constant([2,1], tf.int32)
tf.tile(a, c)
<tf.Tensor: shape=(4, 3), dtype=int32, numpy=
array([[1, 2, 3],
[4, 5, 6],
[1, 2, 3],
[4, 5, 6]], dtype=int32)>
d = tf.constant([2,2], tf.int32)
tf.tile(a, d)
<tf.Tensor: shape=(4, 6), dtype=int32, numpy=
array([[1, 2, 3, 1, 2, 3],
[4, 5, 6, 4, 5, 6],
[1, 2, 3, 1, 2, 3],
[4, 5, 6, 4, 5, 6]], dtype=int32)>
Args |
input
|
A Tensor . Can be of any rank.
|
multiples
|
A Tensor . Must be one of the following types: int32 , int64 .
1-D. Length must be the same as the number of dimensions in input
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor . Has the same type as input .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tf.tile\n\n\u003cbr /\u003e\n\nConstructs a tensor by tiling a given tensor.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.manip.tile`](https://www.tensorflow.org/api_docs/python/tf/tile), [`tf.compat.v1.tile`](https://www.tensorflow.org/api_docs/python/tf/tile)\n\n\u003cbr /\u003e\n\n tf.tile(\n input: Annotated[Any, TV_Tile_T],\n multiples: Annotated[Any, TV_Tile_Tmultiples],\n name=None\n ) -\u003e Annotated[Any, TV_Tile_T]\n\n### Used in the notebooks\n\n| Used in the guide | Used in the tutorials |\n|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| - [Better performance with the tf.data API](https://www.tensorflow.org/guide/data_performance) - [Ragged tensors](https://www.tensorflow.org/guide/ragged_tensor) - [Understanding masking \\& padding](https://www.tensorflow.org/guide/keras/understanding_masking_and_padding) | - [Time series forecasting](https://www.tensorflow.org/tutorials/structured_data/time_series) - [Calculate gradients](https://www.tensorflow.org/quantum/tutorials/gradients) - [Quantum data](https://www.tensorflow.org/quantum/tutorials/quantum_data) - [Parametrized Quantum Circuits for Reinforcement Learning](https://www.tensorflow.org/quantum/tutorials/quantum_reinforcement_learning) - [A Tutorial on Multi-Armed Bandits with Per-Arm Features](https://www.tensorflow.org/agents/tutorials/per_arm_bandits_tutorial) |\n\nThis operation creates a new tensor by replicating `input` `multiples` times.\nThe output tensor's i'th dimension has `input.dims(i) * multiples[i]` elements,\nand the values of `input` are replicated `multiples[i]` times along the 'i'th\ndimension. For example, tiling `[a b c d]` by `[2]` produces\n`[a b c d a b c d]`. \n\n a = tf.constant([[1,2,3],[4,5,6]], tf.int32)\n b = tf.constant([1,2], tf.int32)\n tf.tile(a, b)\n \u003ctf.Tensor: shape=(2, 6), dtype=int32, numpy=\n array([[1, 2, 3, 1, 2, 3],\n [4, 5, 6, 4, 5, 6]], dtype=int32)\u003e\n c = tf.constant([2,1], tf.int32)\n tf.tile(a, c)\n \u003ctf.Tensor: shape=(4, 3), dtype=int32, numpy=\n array([[1, 2, 3],\n [4, 5, 6],\n [1, 2, 3],\n [4, 5, 6]], dtype=int32)\u003e\n d = tf.constant([2,2], tf.int32)\n tf.tile(a, d)\n \u003ctf.Tensor: shape=(4, 6), dtype=int32, numpy=\n array([[1, 2, 3, 1, 2, 3],\n [4, 5, 6, 4, 5, 6],\n [1, 2, 3, 1, 2, 3],\n [4, 5, 6, 4, 5, 6]], dtype=int32)\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------|---------------------------------------------------------------------------------------------------------------------------------------|\n| `input` | A `Tensor`. Can be of any rank. |\n| `multiples` | A `Tensor`. Must be one of the following types: `int32`, `int64`. 1-D. Length must be the same as the number of dimensions in `input` |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor`. Has the same type as `input`. ||\n\n\u003cbr /\u003e"]]