tf.raw_ops.QuantizedMatMul
Stay organized with collections
Save and categorize content based on your preferences.
Perform a quantized matrix multiplication of a
by the matrix b
.
tf.raw_ops.QuantizedMatMul(
a,
b,
min_a,
max_a,
min_b,
max_b,
Toutput=tf.dtypes.qint32
,
transpose_a=False,
transpose_b=False,
Tactivation=tf.dtypes.quint8
,
name=None
)
The inputs must be two-dimensional matrices and the inner dimension of
a
(after being transposed if transpose_a
is non-zero) must match the
outer dimension of b
(after being transposed if transposed_b
is
non-zero).
Args |
a
|
A Tensor . Must be one of the following types: qint8 , quint8 , qint32 , qint16 , quint16 .
Must be a two-dimensional tensor.
|
b
|
A Tensor . Must be one of the following types: qint8 , quint8 , qint32 , qint16 , quint16 .
Must be a two-dimensional tensor.
|
min_a
|
A Tensor of type float32 .
The float value that the lowest quantized a value represents.
|
max_a
|
A Tensor of type float32 .
The float value that the highest quantized a value represents.
|
min_b
|
A Tensor of type float32 .
The float value that the lowest quantized b value represents.
|
max_b
|
A Tensor of type float32 .
The float value that the highest quantized b value represents.
|
Toutput
|
An optional tf.DType from: tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16 . Defaults to tf.qint32 .
|
transpose_a
|
An optional bool . Defaults to False .
If true, a is transposed before multiplication.
|
transpose_b
|
An optional bool . Defaults to False .
If true, b is transposed before multiplication.
|
Tactivation
|
An optional tf.DType from: tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16 . Defaults to tf.quint8 .
The type of output produced by activation function
following this operation.
|
name
|
A name for the operation (optional).
|
Returns |
A tuple of Tensor objects (out, min_out, max_out).
|
out
|
A Tensor of type Toutput .
|
min_out
|
A Tensor of type float32 .
|
max_out
|
A Tensor of type float32 .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tf.raw_ops.QuantizedMatMul\n\n\u003cbr /\u003e\n\nPerform a quantized matrix multiplication of `a` by the matrix `b`.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.raw_ops.QuantizedMatMul`](https://www.tensorflow.org/api_docs/python/tf/raw_ops/QuantizedMatMul)\n\n\u003cbr /\u003e\n\n tf.raw_ops.QuantizedMatMul(\n a,\n b,\n min_a,\n max_a,\n min_b,\n max_b,\n Toutput=../../tf/dtypes#qint32,\n transpose_a=False,\n transpose_b=False,\n Tactivation=../../tf/dtypes#quint8,\n name=None\n )\n\nThe inputs must be two-dimensional matrices and the inner dimension of\n`a` (after being transposed if `transpose_a` is non-zero) must match the\nouter dimension of `b` (after being transposed if `transposed_b` is\nnon-zero).\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `a` | A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. Must be a two-dimensional tensor. |\n| `b` | A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. Must be a two-dimensional tensor. |\n| `min_a` | A `Tensor` of type `float32`. The float value that the lowest quantized `a` value represents. |\n| `max_a` | A `Tensor` of type `float32`. The float value that the highest quantized `a` value represents. |\n| `min_b` | A `Tensor` of type `float32`. The float value that the lowest quantized `b` value represents. |\n| `max_b` | A `Tensor` of type `float32`. The float value that the highest quantized `b` value represents. |\n| `Toutput` | An optional [`tf.DType`](../../tf/dtypes/DType) from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. Defaults to [`tf.qint32`](../../tf#qint32). |\n| `transpose_a` | An optional `bool`. Defaults to `False`. If true, `a` is transposed before multiplication. |\n| `transpose_b` | An optional `bool`. Defaults to `False`. If true, `b` is transposed before multiplication. |\n| `Tactivation` | An optional [`tf.DType`](../../tf/dtypes/DType) from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. Defaults to [`tf.quint8`](../../tf#quint8). The type of output produced by activation function following this operation. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|-----------|-------------------------------|\n| A tuple of `Tensor` objects (out, min_out, max_out). ||\n| `out` | A `Tensor` of type `Toutput`. |\n| `min_out` | A `Tensor` of type `float32`. |\n| `max_out` | A `Tensor` of type `float32`. |\n\n\u003cbr /\u003e"]]